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Abstract: We explore some consequences of the crossing symmetry for defect conformal
field theories, focusing on codimension one defects like flat boundaries or interfaces. We
study surface transitions of the 3d Ising and other O(N) models through numerical solutions
to the crossing equations with the method of determinants. In the extraordinary transition,
where the low-lying spectrum of the surface operators is known, we use the bootstrap equa-
tions to obtain information on the bulk spectrum of the theory. In the ordinary transition
the knowledge of the low-lying bulk spectrum allows to calculate the scale dimension of the
relevant surface operator, which compares well with known results of two-loop calculations
in 3d. Estimates of various OPE coefficients are also obtained. We also analyze in 4-ε di-
mensions the renormalization group interface between the O(N) model and the free theory
and check numerically the results in 3d.
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1. Introduction and motivations.

Conformal field theories (CFTs) play in many senses a preeminent role among quantum
and statistical field theories. Such a privileged position is first granted by the flow of the
renormalization group, whose fixed points are scale invariant theories, which usually show
full conformal invariance [1, 2]. More generally, approximate scale invariance is a feature
of systems in which a wide separation of scales makes the flow very slow in intermediate
regions. Through the renormalization group, nature realizes the theories possessing the
maximum amount of bosonic symmetry, both in condensed matter and in particle physics,
in appropriate UV and IR regimes. Reversing the argument, one can understand a generic
quantum field theory as a CFT deformed by a set of relevant operators. All perturbative
analyses are in fact justified by the small size of relevant couplings in the UV limit. One
can even pursue non-perturbative explorations of RG flows using the ultraviolet data as the
only input [3] (see also [4, 5] and references therein). As a consequence, the importance of
conformal invariance exceeds the experimental interest: conformal field theories are among
the main actors in formal investigations of the space of quantum field theories, which has
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seen a huge development in recent times. Furthermore, they are an invaluable tool for
studying quantum gravity, through the AdS/CFT correspondence [6].

The most striking feature of a generic CFT is that, however strongly coupled, it is
completely described by two sets of numbers: the spectrum of scale dimensions of operators
of every spin, and the Operator Product Expansion coefficients. This simplification occurs
because the predictive power of the OPE is boosted by the conformal symmetry. On one
hand, irreducible representations of the conformal group gather infinitely many operators,
and the contribution to the OPE of every conformal family is labeled by the dimension
and spin of the highest weight and is fixed up to a single coefficient. On the other hand,
the OPE converges inside correlation functions [7], and can be repeatedly used to reduce
all of them to a sum over functions of the kinematic variables, the so called conformal
blocks, one for each conformal family. This pairwise reduction can be carried out fusing
operators in various different orders, so that sums over different blocks need to be equal.
The crossing equations obtained this way provide constraints on the possible CFT data [8],
and after the seminal paper [9], a wealth of new results on the space of conformal field
theories in dimensions greater than two were found by exploiting these constraints [10–28].
The method proposed in [12,16] which we refer to as the linear functional method, relies on
unitarity to find forbidden regions in the space of the CFT data, by considering particular
channels in the conformal block decomposition of a four-point function. At the boundary of
these regions a spectrum which is crossing symmetric up to some maximum scale dimension
can be extracted numerically [16]. It is not difficult to show that the four-point functions of
local operators on the vacuum encode all of the constraints coming from crossing symmetry:
however, one needs in principle all of them, and therefore the trial spectrum extracted from
a specific correlator is not guaranteed to correspond to a unitary CFT. Sometimes it does,
though [13], or maybe a set of minimal hypotheses on the spectrum can be put in place to
lower the bound disregarding uninteresting solutions which stand in the way [18]. Another
possibility is to consider more than one four-point function, so that further requirements
on the spectrum can be made: for instance, internal symmetries differentiate the set of
primaries appearing in different OPEs. This strategy was applied to the 3d Ising model in
[24], providing strong evidence that the presence of Z2 symmetry and two relevant primaries
defines only one theory.

The reader is referred to the aforementioned papers for a detailed explanation of the
linear functional method. Here we shall employ a different technique, introduced in [17],
which we review in section 2. The method of determinants is based on the choice of a
truncation of the spectrum, and directly provides an approximate solution to the crossing
equation. It is independent from unitarity and can be applied to any correlator. On the
other hand, it is not yet completely automated, and this makes it difficult in practice to
deal with truncations involving many primaries. As a consequence, estimating the size of
the systematic error is a delicate matter. We shall comment on this issue along the way.

The aim of this paper is to apply the conformal bootstrap program to some examples of
defect conformal field theories. These are theories in which the conformal group is broken
down to the stabilizer of some hypersurface. We shall be concerned only with the case of a
codimension one hyperplane, alias a flat interface, but the considerations in section 2 apply
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to generic flat conformal defects. Motivations for studying conformal defects are again both
phenomenological and abstract. For instance, conformal defects describe modifications of a
d dimensional QFT localized near a p dimensional plane, with p < d, in the infrared limit,
provided these modifications are not swept away by coarse graining, and scale invariance
is enhanced to invariance under the conformal group SO(p + 1, 1). The simplest example
is of course a conformal boundary - that is, an interface between a non-trivial and the
trivial CFT. Lower dimensional defects may correspond to magnetic-like impurities in a
spin system, see for instance [29], or to dispersionless fermions, acting as a source for the
order parameter of some bosonic system [30], or to vortices in holographic superfluids and
superconductors [31], etc. On the more abstract side, extended defects are probes of a
system, and may be used to constrain properties of the bulk CFT. We shall in fact see this
happening in the present study. Moreover, interfaces are a natural way to “compare” two
theories, and may provide information on the geometric structure of the space of CFTs [32].

The conformal bootstrap was first applied to the boundary setup in [14], while the
twist line defect defined in [29] was tackled in [18]. Both papers are concerned with the 3d

Ising model, and both used the linear functional method. In the latter, four-point functions
of defect operator s were considered, while the former focused on two-point functions of
bulk operators. Correlators of defect operators are blind to bulk-to-defect couplings, but
correlators of bulk primaries do not satisfy in general the positivity constraints required
by the linear functional method, and ad hoc assumptions were made in [14], motivated by
computations in 2d and in ε-expansion. Here we concentrate on the two-point function of
bulk scalar primaries, using the method of determinants, which can be safely applied to
this case. Since our main interest is again the 3d Ising model, we compare our results for
the special and the extraordinary transitions with those of [14]. We also find approximate
solutions to the crossing equations corresponding to the ordinary transition, which cannot
be studied with the linear functional. In the latter case we extended the analysis to the
O(N) models with N = 0, 2, 3, where a comparison can be made with two-loop calculations.
The main results are summarized in the tables 1 and 2.

In the end, we initiate the study of an example of RG domain wall, an interface between
two CFTs connected by the renormalization group, which is obtained by turning on a
relevant deformation on half of the space and flowing to the IR. Specifically, we study the
flow triggered by the (φ2)2 coupling in a bosonic theory. We give a first order description
in ε-expansion which applies to models with O(N) symmetry and can be easily generalized
to other perturbation interfaces. We then focus on the Ising model when looking for a
numerical solution to the crossing equations in 3d.

The structure of the paper is as follows. In section 2 we review the general features of
conformal field theories in the presence of defects, and we explain the method of determi-
nants. Section 3 is devoted to the study of the boundary CFTs associated to the 3d Ising
and other spin systems. We define and study the domain wall in section 4. Finally, we
draw our conclusions in section 5. Appendix A contains some details of the ε-expansion
computations.
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2. Defect CFTs and the method of determinants.

The constraints imposed by conformal symmetry on correlation functions near a boundary
were analyzed in [33] (see also [34]), and the boundary bootstrap was set up in [14], from
which we borrow the notation. Here we review the necessary material, and then introduce
the method of determinants. A general p-dimensional defect differs from the codimension
one case for the residual SO(d − p) symmetry generated by rotations around the defect.
This is just a flavor symmetry for the defect operators, but induces some differences when it
comes to bulk-to-defect couplings. Although most of what we shall say applies to a generic
flat defect, in this paper we shall be concerned with the codimension one case. Therefore,
further reference to the general case are limited to some side comments.

Correlation functions of excitations living at the defect are the same as in an ordi-
nary (d − 1)-dimensional CFT, and are completely characterized by the spectrum of scale
dimensions (∆̂l) and the coefficients of three-point functions ( λ̂lmn). We shall later need
one more piece of information. While no conserved stress-tensor is expected to exist on
the defect, a protected scalar operator of dimension d − or p + 1 in the general case − is
always present: the displacement operator, which we call D(xa), measures the breaking of
translational invariance, and is defined by the Ward identity for the stress-tensor:

∂µT
µd(x) = −D(xa) δ(xd). (2.1)

Here we denoted by latin indices the directions along the defect, which is placed at xd = 0,
while Greek letters run from 1 to d. Similarly, for every bulk current whose conservation is
violated by the defect, a protected defect operator exists.

In the bulk, there is of course the usual OPE. For scalar primaries,

O1(x)O2(y) =
δ12

(x− y)2∆1
+
∑
k

λ12kC[x− y, ∂y]Ok(y) , (2.2)

where C[x−y, ∂y] are determined by conformal invariance, and we isolated the contribution
of the identity. One can also fuse a local operator with the defect. The bulk operator is
thus turned into a sum over defect primaries. The bulk-to-defect OPE for a scalar primary
can be written

O1(x) =
a1

|2xd|∆1
+
∑
l

µ1lD[xd, ∂a]Ôl(x
b) , (2.3)

where we denoted defect operators with a hat. Again, the differential operators D[xd, ∂a]

are fixed by conformal invariance. Similar OPEs can be written for bulk tensors. The
λ12k’s in eq. (2.2) are the coefficients of three-point functions without the defect, while µl
is the coefficient of the correlator 〈O(x)Ôl(y

a)〉, otherwise fixed by conformal symmetry.
Even if, for the sake of simplicity, some abuse of notation is present1, in this paper all OPE
coefficients refer to canonically normalized operators, with one exception: the normalization
of the displacement operator is fixed by eq. (2.1). Taking the expectation value of both
sides in eq. (2.3) one sees that a scalar acquires a one-point function proportional to aO,

1For instance, the coefficient µφ2D in free theory appears in the two point function 〈 φ2
√

2N
D〉.
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the coefficient of the identity in the bulk-to-defect OPE. It is not difficult to prove that
tensors do not acquire an expectation value in the presence of a codimension one defect.
They do, instead, if they are even spin representations and the defect is lower dimensional.

Let us now derive the easiest crossing equation involving the OPEs (2.2) and (2.3).
Consider the two-point function 〈O1(x)O2(x′)〉. One can decompose it into the bulk channel
by plugging in eq. (2.2): a sum over one-point functions is obtained, that is, a sum over
the coefficients λ12kak multiplying some known functions of the kinematic variables. Or,
one can substitute both operators with their Defect OPE, and in this case the sum involves
the quantities µ1lµ2l. In order to write explicitly the equality of the two conformal block
decompositions, let us introduce the conformal invariant combination

ξ =
(x− x′)2

4xdx′d
. (2.4)

This cross-ratio is conveniently positive when both points are chosen in the half-plane
xd > 0. This is not the case when considering bulk operators on opposite sides of an
interface. Moreover, in this setup the bulk OPE is not defined. The issue is solved by
folding the system and treating it as a boundary CFT: the folding trick provides us with a
trivial OPE, fixed by the absence of local interactions between the two primaries. We shall
have more to say on this point in section 4. For now, we just point out that the natural
cross-ratio is the one constructed from a point and the mirror image of the second one, and
it is again positive. We assume ξ ≥ 0 in the rest of this section.

Conformal symmetry justifies the following parametrization:

〈O1(x)O2(x′)〉 =
1

(2xd)∆1(2x′d)∆2
ξ−(∆1+∆2)/2G12(ξ). (2.5)

Then the crossing equation can be written as a double decomposition of the function G12(ξ):

G12(ξ) = δ12 +
∑
k

λ12k ak fbulk(∆12,∆k; ξ) = ξ(∆1+∆2)/2

(
a1a2 +

∑
l

µ1l µ2l fbdy(∆̂l; ξ)

)
,

(2.6)
where [33]

fbulk(∆12,∆, ξ) = ξ∆/2
2F1

(
1

2
(∆1 −∆2 + ∆),

1

2
(∆2 −∆1 + ∆); ∆ + 1− d

2
,−ξ

)
, (2.7a)

fbdy(∆, ξ) = ξ−∆
2F1

(
∆,∆ + 1− d

2
; 2∆ + 2− d;−1

ξ

)
. (2.7b)

It is worth noticing that the conformal blocks of the boundary channel in d = 3 can be
expressed as elementary algebraic functions, namely,

fbdy(∆, ξ)|d=3 =
1

2
√
ξ

(
4

1 + ξ

)∆− 1
2

[
1 +

√
ξ

1 + ξ

]−2(∆−1)

. (2.8)

This is of course of great help in numerical calculations.
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Before describing how to extract information from eq. (2.6), we make some side re-
marks. The set {∆̂l, λ̂lmn,∆i, λijk, ai, µl} is in fact redundant: by repeatedly applying the
bulk-to-defect OPE one can reduce all correlators to correlators of defect operators, there-
fore the λijk are in principle unnecessary to solve the theory. However, it is easy to realize
that all crossing equations constraining the bulk-to-defect couplings µl also involve the bulk
three-point function coefficients. One is naturally led to the following question: what is the
minimal set of correlators encoding all the crossing symmetry constraints of a Defect CFT?
All the four-point functions of defect operators are surely in the number, the proof being
the usual one (see for instance [35]). A similar argument shows that all the other crossing
equations of a generic correlator of bulk and defect primaries are automatically satisfied
once the three-point functions 〈O1O2 Ô〉 are crossing symmetric. In the rest of this paper
we explore the case Ô = 1, leaving for future work the general case.

Let us now turn our attention back to eq. (2.6) that we rewrite in the following form

−
∑
k

λ12k ak fbulk(∆12,∆k; ξ) + ξ(∆1+∆2)/2

(
a1a2 +

∑
l

µ1l µ2l fbdy(∆̂l; ξ)

)
= δ12 . (2.9)

In most situations, an infinite number of operators contributes to both channels, which
makes the crossing constraint difficult to exploit. The strategy described in [17] can be
summarized in the following way. First, we trade one functional equation for infinitely
many linear equations: one for each coefficient of the Taylor expansion around, say, ξ = 1.
Then we truncate both the Taylor expansions, keeping only the firstM derivatives, and the
spectrum, keeping the first N operators in total from the two channels. The bulk identity is
excluded from the count. We denote this truncation with a triple (nbulk, nbdy, s), the three
numbers counting respectively bulk and boundary operators of non vanishing dimension,
and the presence (s = 1) or absence (s = 0) of the boundary identity. We obtain this way
a finite system, at the price of introducing a systematic error, coming from the disregarded
higher order derivatives and heavier operators:

−
nbulk∑
k

pk f
k
bulk

∣∣∣
ξ=1

+

nbdy∑
l

ql f
l
bdy

∣∣∣
ξ=1

+ a1a2 = δ12, nbulk + nbdy + s = N

−
nbulk∑
k

pk ∂
n
ξ f

k
bulk

∣∣∣
ξ=1

+

nbdy∑
l

ql ∂
n
ξ f

l
bdy

∣∣∣
ξ=1

+ a1a2 ∂
n
ξ ξ

(∆1+∆2)/2
∣∣∣
ξ=1

= 0, n = 1, . . . ,M,

(2.10)

where we used a shorthand notation for the OPE coefficients pk = λ12kak, ql = µ1lµ2l . Let
us focus for definiteness on the case of two identical external scalars, δ12 = 1. The pk’s, ql’s
and a2

1 are the unknowns of a linear system whose coefficients depend nonlinearly on the
bulk and defect spectra. ChoosingM ≥ N , the homogeneous system, i.e. the second line in
(2.10), admits a non-trivial solution if and only if all the

(
M
N

)
minors of the system vanish.

This condition provides a set of non-linear equations in the N unknown scale dimensions.
When this set admits a (numerical) solution we say that the the two-point function under
study is truncable. In such a case, inserting the obtained (approximate) spectrum in the
complete linear system (2.10), we get the OPE coefficients.
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Notice that every consistent CFT data is in particular a solution to this crossing equa-
tion. Therefore, some input has to be provided: here we are implicitly assuming that the
external dimensions are known, and in fact this is going to be the strategy when we try
to isolate the 3d Ising model. One does not expect to find an exact solution for a generic
truncation: heavier defect and bulk operators become more and more important when mov-
ing respectively towards the bulk (ξ → 0) or the defect (ξ → ∞), therefore we expect a
good truncation to require N to grow with M . In practice, in this work we usually choose
M = N+1, and we find that the space of solutions to the system of nonlinear equations has
in general non-zero dimension. By fixing the free parameters with the best known values of
the lowest lying bulk primaries, we give predictions for the low lying defect spectrum and
for heavier primaries.
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Figure 1: Top panel: paired histograms of the solutions of two different truncations of the crossing
equations for the ordinary transition of the 2d Ising model. Left: histogram for the scale dimensions
of the first boundary operator in the (2,1,0) truncation. The exact result is at ∆̂ = 1

2 . Right: the
corresponding histogram for the (4,3,0) truncation. Bottom panel: a more detailed view of the
latter histogram.
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Figure 2: The left-hand-side of the sum rule (2.9) for various truncations (nbulk, nbdy, 0) of the two-
point function of the 2d Ising model in the ordinary transition. Only in the nbulk →∞, nbdy →∞
limit the sum rule is saturated.

As a general rule, a finite truncation of the crossing symmetry equations is a good
approximation of a given CFT if the missing operators can be consistently put at ∆ = ∞
or at zero coupling. When a trial spectrum has been found, one can check its stability
by adding one operator and one derivative. It turns out in most cases that the scaling
dimension of the new operator acts as a free parameter which can vary in a fixed range. We
use the solution for predictions only if it does not depend very strongly on this parameter.
This gives a way of controlling the systematic error, albeit not an algorithmic one. Let us
also observe that the general agreement with the results of the epsilon expansion suggests
that the error is rather small, at least for what concerns the boundary case. Another
important check comes from the Ward identity associated with the displacement operator,
which, as we shall see, yields non-trivial relations among the CFT data. These relations
are perfectly verified by the numerical solutions, as described in the next section.

Another parameter to be considered in order to check the quality of a given truncation
is the spread of the solutions. As soon as the number M of equations exceeds the number
of unknowns, the system is over-determined and can be split in consistent subsystems, each
of them giving in principle a different solution. The spread of these solution gives a rough
estimate of the error. In the cases where the exact solution is known the narrower is the
spread the closer is the solution to its exact value. This is the case for instance of the four-
point function of the free scalar massless theory in any dimension [17]. On the contrary
large spreads are associated to large systematic errors due to too rough approximations of
the crossing equations. A clear illustration of this behavior can be found in the ordinary
transition of the 2d Ising model, where the exact two-point function is known [36]. Assuming
we already know the bulk spectrum, we can start considering the truncation (2,1,0) to
evaluate the scale dimensions of the first surface operator. We have to look at the zeros of
3× 3 determinants. Taking for instance 8 derivatives we have 56 equations whose solutions
are plotted in the histogram of of fig. 1. Their large spread is associated with a rather
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rough approximation of the sum rule (2.9) as fig. 2 shows. The same figure points out also
that the truncation (4,3,0) is much better. In this case the unknowns are the dimensions
of the three surface operators. The consistent subsystems are made of sets of three 7 × 7

determinants. With 8 derivatives we have again 56 possible solutions. Their spread is
drastically reduced and the mean value is closer to the exact one, as fig. 1 shows. We
anticipate that all the solutions considered in the next section have a microscopic spread
(see e.g. fig. 3 and fig. 5).

3. The boundary bootstrap and the 3d Ising and O(N) models.

In this Section we shall consider the boundary conformal field theories (BCFTs) associated
with the Ising model and other magnetic systems. Specifically, the IR properties of the
surface transitions in these systems are controlled by RG fixed points, which of course are
described by just as many Defect CFTs. We denote with σ(x) the scalar field (i.e. the
order parameter of the theory) and with σ̂ the corresponding surface operator. The surface
Hamiltonian associated with a flat d − 1 dimensional boundary of a semi-infinite system
can be written in terms of the three relevant surface operators (see for instance [37])

H =

∫
dd−1x

(
cσ̂2 + h1σ̂ + h2∂zσ̂

)
. (3.1)

Here z ≡ xd is the coordinate orthogonal to the boundary. This Hamiltonian has three
fixed points

O : h1 = h2 = 0, c = +∞ ; (3.2)

E : h1 = h2 = 0, c = −∞ ; (3.3)

S : h1 = h2 = c = 0 . (3.4)

Near the first fixed point the configurations with σ̂ 6= 0 are exponentially suppressed, then
σ̂ = 0 (i.e. Dirichlet boundary condition). This fixed point controls the ordinary transition.
The only relevant surface operator in this phase is ∂zσ̂. The fixed point with c = −∞
favors the configurations with σ̂ 6= 0: it is associated with the extraordinary transition,
where the Z2 symmetry is broken and no relevant surface operator can couple with it; the
lowest dimensional surface operator, besides the identity, is the displacement, whose scaling
dimension is d. The fixed point with c = 0 controls the special transition, a multicritical
phase with two relevant primaries. The even operator σ̂2 is responsible for the flow of c
to ∞ or −∞ according to the initial sign, while the odd one, σ̂, is the symmetry breaking
operator of this phase, characterized by the Neumann boundary condition ∂zσ̂ = 0. We
omitted a classically marginal coupling, ∂zσ̂2, because it vanishes with both Neumann and
Dirichlet boundary conditions, and it cannot be turned on in the extraordinary transition,
where there is no local odd relevant excitation. We shall come back to this operator when
considering the RG domain wall.

One important question to address within a BCFT is how to find the scale dimensions
of the surface operators and their OPE coefficients in terms of the bulk data. This problem
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has been completely solved in 2d [38] thanks to the modular invariance. In d > 2 useful
information can be extracted by the epsilon expansion and other perturbative methods.
Recently the conformal bootstrap approach has been shown to be very promising [14].
Here we face this problem with the method of determinants.

We study the 2-point function 〈σ(x)σ(y)〉. The general criterion we use to classify
the surface transition associated with a specific truncation (nbulk, nbdy, s) of the crossing
symmetry equations (2.10) is based on three steps. First, we verify that the solution
is compatible with a unitary theory by requiring the positivity of all the non-vanishing
couplings µ2

a (a = 1, 2, . . . , nbdy). Then we look at the sign of the couplings to the bulk
blocks akλσσk (k = 1, . . . , nbulk). As in [14], we will assume that the ordinary transition
is signaled by the presence of at least one negative coupling in the bulk channel. On the
other hand, positivity of the couplings indicates the extraordinary or the special transition,
depending on the presence or absence of the surface identity. We should point out that
these assumptions have not been proven. However, the results of this work seem to confirm
them, serving as a consistency check on the whole setup.

3.1 The ordinary transition.

We start by considering what is perhaps the simplest successful truncation of eq. (2.10),
corresponding to the fusion rules

σ × σ ∼ 1 + ε+ ε′, bulk channel,

σ ∼ Ô, boundary channel. (3.5)

This truncation is denoted by the triple (2,1,0). The system (2.10) admits a solution
if and only if the 3 × 3 determinants made with the derivatives of the conformal blocks
associated with ε, ε′, Ô vanish. We assume that the scale dimensions of σ, ε and ε′ are
known (∆σ = 1

2 + η
2 ; ∆ε = 3−1/ν; ∆ε′ = 3+ω, see table 1) and in this particular case the

only unknown scale dimension is ∆
Ô
. Fig. 1 shows the values of few determinants of this

kind. Clearly they all apparently vanish at the same point. In fact there is a microscopic
spread of the solutions and we find ∆

Ô
= 1.276(2). The solution of the complete linear

system yields a negative aελσσε, thus, according to the above criterion, we are faced with
the ordinary transition of the 3d Ising model. Hence, Ô has to be identified with ∂zσ̂. A
two-loop calculation in the 3d φ4 model yields [39] ∆∂z σ̂ ' 1.26 in good agreement with
our result.

This solution admits a straightforward generalization to any 3d O(N) model by simply
replacing the critical indices with the appropriate values. Table 1 shows our results for
N = 0 (the non-unitary self-avoiding walk model), N = 1 (Ising), N = 2 (XY model) and
N = 3 (Heisenberg model), where we can compare our results with the two-loop calculation
of [39].

3.2 The extraordinary transition.

Such a transition is characterized by the non-vanishing contribution of the boundary identity
to the two-point functions of Z2 odd operators. In this case the boundary surface is in an
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N η ν ω

0 0.0314(32) 0.5874(2) 0.812(16)

1 0.03627(10) 0.63002(10) 0.832(6)

2 0.0380(4) 0.67155(27) 0.789(11)

3 0.0364(6) 0.7112(5) 0.782(13)

∆∂z σ̂

N 2-loop Monte Carlo Bootstrap
0 1.33 − 1.332(6)

1 1.26 1.2751(6) 1.276(2)

2 1.211 1.219(2) 1.2342(9)

3 1.169 1.187(2) 1.198(1)

N aελσσε aε′λσσε′ µ2
∆̂

0 −0.8447(34) 0.0366(17) 0.692(1)

1 −0.789(3) 0.042(1) 0.755(13)

2 −0.747(1) 0.0488(4) 0.80022(5)

3 −0.710(1) 0.0509(6) 0.8395(6)

Table 1: The first table collects the input parameters. The second one is a comparison between
two-loop calculations [39], Monte Carlo simulations (reference [40] for N = 1 and reference [41]
for N > 1) and our bootstrap results for the scaling dimension of the surface operator ∂zσ̂ in the
ordinary transition of 3d O(N) models. The last three columns collect our results for the OPE
coefficients. The critical indices η and ν for N = 0, 1, 2, 3 are taken respectively from references
[42], [43], [44] and [45]. Those for ω from [46].

1.1 1.2 1.3 1.4
D

-0.15

-0.10

-0.05

0.05

0.10

0.15

Det

Figure 3: Plot of the 10 3 × 3 minors made with the first 5 derivatives of the conformal blocks
associated with ε, ε′ and Ô as functions of ∆Ô. They all vanish approximately at he same point,
selecting the allowed value of ∆Ô.

ordered phase, therefore the degrees of freedom described by Z2 odd operators are frozen.
The first non-vanishing surface operator, besides the identity, is the displacement D with
∆D = 3. As a consequence, the most relevant contribution to the boundary channel is
known and the crossing equations can be exploited to obtain information on the bulk
channel.
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Actually adding the boundary identity to the truncation requires adding more bulk
operators as well. We found a first stable solution of the type (4,1,1). This time the scaling
dimensions of the two needed bulk scalars ε′′ and ε′′′ cannot be used as input parameters
because, once fixed ∆σ, ∆ε and ∆ε′

2, we get a solution only if

N = 1 , ∆ε′′ = 7.316(14) , ∆ε′′′ = 13.05(4)3. (3.6)

The other parameters of the solution are

aελσσε = 6.914(6), aε′λσσε′ = 2.261(2), aε′′λσσε′′ = 0.187(1),

aε′′′λσσε′′′ = 0.0046(1), a2
σ = 6.757(4) , µ2

σD/CD = 0.06282(3); (3.7)

where we denoted with CD the Zamolodchikov norm of the displacement operator.
We can easily generalize this solution to the O(N) spin models using as input the data

of table 1. For the XY model (N = 2) we obtain

N = 2 , ∆ε′′ = 6.002(33) , ∆ε′′′ = 10.96(4). (3.8)

with

aελσσε = 5.585(11), aε′λσσε′ = 1.466(10), aε′′λσσε′′ = 0.307(9),

aε′′′λσσε′′′ = 0.0162(3), a2
σ = 5.495(9) , µ2

σD/CD = 0.06741(7). (3.9)

Similarly for the Heisenberg model (N = 3) we get

N = 3 , ∆ε′′ = 5.285(17) , ∆ε′′′ = 10.48(1). (3.10)

with

aελσσε = 5.019(8), aε′λσσε′ = 0.846(13), aε′′λσσε′′ = 0.505(10),

aε′′′λσσε′′′ = 0.0207(1), a2
σ = 4.874(8) , µ2

σD/CD = 0.06919(10). (3.11)

It is interesting to notice that the value of ∆ε′′ = 3 + ω2 as a function of N is close to
that first calculated in [47] with the functional renormalization group method.

In the case of the Ising model, where we used the more precise input data of [19],
we probed the stability of the solution by adding a new conformal block in the boundary
channel. It turns out that the truncation (4,2,1) defines a one-dimensional family of the
solutions, where the free parameter is the dimension of the added surface operator, which
can vary in the range 0 < ∆̂ ≤ ∞. In the limit ∆̂→∞ we recover, as expected in a stable
solution, the truncation (4,1,1). The dimensions of the two bulk operators ∆ε′′ and ∆ε′′′

vary as functions of ∆̂ in a narrow range: the net effect of the unknown parameter is to
reduce a bit the scaling dimensions of these bulk operators. Eliminating ∆̂ we obtain the

2Here and in the rest of this section we use as input parameters of the Ising model the values ∆σ =

0.518154(15), ∆ε = 1.41267(13) and ∆ε′ = 3.8303(18) taken from [19].
3In the entire paper the estimate of the statistical error due to the uncertainty on the input parameters

is obtained by means of a statistical bootstrapping procedure.
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Figure 4: Parametric plot of the scaling dimensions of ∆ε′′ and ∆ε′′′ generated by the unknown
parameter ∆̂. Here we see the effect of the statistical errors on the input data, namely ∆σ, ∆ε and
∆ε′ as well as the effect of the spread of the solutions. Some of these data are presented in table 3.

plot in fig. 4. The uncertainty on the actual value of ∆̂ forces us to enlarge the errors in
the bulk dimensions. Fig. 4 roughly suggests

∆ε′′ = 7.27[5] , ∆ε′′′ = 12.90[15], (3.12)

which supersede eq. (3.6). We used square brackets to indicate that this is not a statistical
error, but a sum of the uncertainties.

Unfortunately one can find in literature a wide range of proposed values for ∆ε′′ and
∆ε′′′ which strongly depend on the method employed (see for instance table 3 of [19]). What
is especially disturbing for us is that the method of determinants applied to the four-point
function gave very different values for these quantities [20], so we decided to reanalyze the
bootstrap equations for the four-point function on the bulk in order to see whether there
is also a solution compatible with the spectrum suggested by the boundary bootstrap. Out
of this study we can confirm the existence of a scalar of dimension ∼ 7.2 with a positive
coupling. We were unable to find a proper solution for the scalar at ∼ 13, all solutions
being characterized by a coupling that is very small, negative and nearly always compatible
with zero. The quoted dimensions of these two scalars found with the linear functional
method [19] are respectively ∼ 7 and ∼ 10.5.

Another interesting two-point function to be studied in the extraordinary transition of
the Ising model is the spin-energy correlator 〈σ(x)ε(y)〉 which is different form zero only in
this phase, being the only surface transition where the Z2 symmetry of the model is broken.
The fusion rule of the bulk sector contains odd operators only:

σ × ε ∼ σ + σ′ + σ′′ + . . . , (3.13)
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Figure 5: Plot of the zeros of some 5× 5 determinants associated with the fusion rules (3.13) and
(3.14).

while in the boundary sector the first primary operator contributing, besides the identity,
is the displacement operator:

σ ∼ 1 +D + . . . , ε ∼ 1 +D + . . . (3.14)

The first stable solution corresponds to the truncation (3,1,1) defined by the above fusion
rules. It is associated with the (apparently) common intersection of the zeros of the 5× 5

determinants made with the derivatives of the 5 conformal blocks involved (see fig. 5):

∆σ′ ' 5.66 ; ∆σ′′ ' 10.89 ; (3.15)

aσλσεσ ' 0.148κ ; aεaσ ' 0.927κ ; µσDµεD/CD ' 0.0196κ . (3.16)

The parameter κ arises because now the bootstrap equations are homogeneous, that is,
they do not contain the information about the normalization of the external operators. The
normalization of the order parameter is contained in the correlator 〈σσ〉, while the normal-
ization of the energy follows from assuming symmetry of the OPE coefficient λσσε = λσεσ.
Therefore, combining (3.16) with the analogous couplings in (3.7), we can compute the
unknowns aε, aσ, µσD/

√
CD, µεD/

√
CD, κ, λσεσ.

In order to probe the stability of the solution and to evaluate the errors we upgraded
the solution to (5,1,1), which corresponds to a one-parameter family of solutions. We used
as a free parameter the heaviest bulk scalar σ4. A solution exists for 18 ≤ ∆σ4 ≤ 28. As
expected for a stable solution, this parameter has no visible effect on the OPE coefficients
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and only slightly affects the scale dimensions of the two scalar σ′′ and σ′′′. The results of
this analysis can be found in table 2

∆ε′′ ∆ε′′′ ∆σ′ ∆σ′′ ∆σ′′′ λσσε

7.27[5] 12.90[15] 5.49(1) 10.6[3] 16[1] 1.046(1)

aε µεD/
√
CD aσ µσD/

√
CD

6.607(7) 1.742(6) 2.599(1) 0.25064(6)

Table 2: The main results of the combined analysis of 〈σσ〉 and 〈σε〉 in the extraordinary transition
are split in two parts. The top table refers to data of the bulk channel, while the bottom table
contains OPE coefficients specific to the boundary channel of the extraordinary transition. Errors
in square brackets refer to data whose uncertainties depend on an unknown parameter; the other
errors simply reflect the statistical errors of the input data, namely, ∆σ, ∆ε and ∆ε′ .

It turns out that ∆σ′ is nicely close to the bound ∆σ′ ≤ 5.41(1) found in [24]. Notice also
that the resulting OPE coefficient λσσε is in perfect agreement with the estimate of a recent
Monte Carlo calculation [48] which gives λσσε = 1.07(3) and the value (λσσε)

2 = 1.10636(9)

found in [19] through the study of the four-point function with the linear functional method.
There is another very impressive check of these results. The Ward identity associated

with the displacement operator tells us that the quantity xO = ∆O
aO
µOD

√
CD does not

depend on the specific bulk operator O but only on the surface transition, as described in
section 4. The above results yield

xσ = 5.3727(27) ; xε = 5.358(15) , (3.17)

showing, within the errors, a reassuring fulfillment of the Ward identities.

3.3 The special transition.

According to our discussion at the beginning of this section, solutions ascribed to the
special transition are associated with truncations of the form (m,n, 0) in which all the OPE
coefficients are non-negative. By consistency with the results of the previous subsection we
have to use the same bulk spectrum determined in the extraordinary transition. We found
solutions of the form (3,3,0) and (4,3,0) with similar properties. Here we only discuss the
latter.

Instead of an isolated solution, in this case we find a one-parameter family in the
three-dimensional space of the boundary scale dimensions (∆̂1 < ∆̂2 < ∆̂3). The lowest-
dimensional operator has to be identified with σ̂ and according with the two-loop calculation
of [39] we expect ∆̂σ̂ ∼ 0.42. In our case a unitary solution exists only for 0.34 ≤ ∆̂1 ≤ 0.45.
Below 0.34 the solution disappears abruptly; above 0.45 it becomes non-unitary.

Using ∆̂3 as a free parameter, we obtain the plot of fig. 6, which is superimposed to the
unitarity upper bound found in [14]. As expected, the transition to the non-unitary region
coincides with the unitarity boundary found by the linear functional method. Consistency
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Figure 6: Plot of the one-parameter family of the truncation (4,3,0) in the plane (∆̂1, ∆̂2), superim-
posed to the upper unitarity bound found in [14]. The blue and green dots correspond respectively
to the minimal and the maximal choice of the pair (∆ε′′ ,∆ε′′′), as determined in fig. 4. These dots
are replaced by ones respectively magenta and yellow when some OPE coefficient become negative.
For the black dots on the unitarity bound see explanation in the text.

requires that the spectrum of our solution at the intersection should agree with the one
extracted from the zeros of the linear functional [16] calculated at the same point. In fact,
the first zero of the linear functional at the intersection point, in the bulk sector, is (see
fig. 7) around ∼ 6.7, which is consistent with our result for ∆ε′′ . Similarly, the zero of
the extremal functional for the boundary sector (besides ∆̂1 and ∆̂2) is perfectly consistent
with the value ∆̂3 ∼ 4.44 at the crossing point.

2 4 6 8
DΕ²

L

3 4 5 6
D
ï

3

L

Figure 7: Linear functionals for the bulk and boundary channels in the special transition.

Such a boundary required by unitarity could also be seen as the locus were one or
more OPE coefficients change sign. Our solution leads us to conjecture that the couplings
vanishing at the unitarity bound are λσσε′ and λσσε′′′ . In the construction of the upper
unitarity bound in [14] it is assumed that the first bulk primary is the Ising energy ε and it
follows that the subsequent primary has scale dimension larger than ∆ε′ , as suggested by
our conjecture.

The knowledge of the linear functional leading to the bound of fig. 6 suggests another
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interesting cross-check of the two methods: given a value of ∆̂1 we insert in the (4,3,0)
truncation the first four zeros of the linear functional on the bulk channel and evaluate
with the method of determinants the corresponding boundary values ∆̂2 and ∆̂3. It turns
out that in the plane ∆̂1, ∆̂2 such a solution lies on the unitarity bound, as consistency
requires (see black dots in fig. 6).

4. Renormalization group domain wall for the O(N) model.

Before starting the exploration of a specific conformal interface, let us recall the relevant
CFT data that one needs to collect in order to completely describe the generic system.
Conformal interfaces are closely related to boundaries. In fact, as we mentioned in section
2, an interface between a CFT1 and a CFT2 can be mapped to a boundary problem using
the folding trick. One turns the original setup into a boundary for the theory CFT1×CFT2,
where the bar means that a reflection xd → −xd has been applied to one of the theories.
We see that the natural bulk CFT data is given by the value of the two point functions
of operators placed in mirroring points with respect to the interface: they are mapped to
expectation values of operators in the folded CFT. This also identifies the needed operators
as primaries of the folded theory, which in particular include all bulk primaries of the two
CFTs. The latter are not sufficient, though, because they do not play any role as building
blocks of correlators across the interface. Another way of understanding this circumstance
is provided by the north-south pole quantization, or equivalently by conformally mapping
the theory to a d-dimensional sphere. Local operators at the north or south pole create a
state belonging to the Hilbert space of either CFT. The interface is a linear map between
the Hilbert spaces, and the correlators of operators placed in mirroring points - that is, at
the north and south poles - are the matrix elements of this map. Analogous considerations
are valid for the bulk-to-defect couplings. Let us now turn to the specific interface we shall
study in this paper.

The Renormalization group domain walls are interfaces between two CFTs which lie
at the top and at the bottom of an RG flow. More precisely, there is an easy operational
definition: start with a CFT on the whole space, and modify the action by integrating a
relevant operator over half of the space. Far away in this region, the long distance physics
will be dominated by the CFT at the bottom of the flow triggered by the perturbation.
This definition can be employed literally when the coupling is only mildly relevant, and
perturbation theory makes sense. In order to single out a unique gluing condition, it is also
necessary to specify which defect deformations are turned on along with the bulk flow. In
the case of interest for us, we shall argue that no marginal deformations exist on the defect,
and so we just choose to fine tune perturbatively the relevant defect couplings. As usual,
near the interface the critical behaviour is modified with respect to both the UV and the
IR homogeneous fixed points, with new critical exponents arising. RG domain walls have
been mainly studied in two dimensions [49–53]. In a general non perturbative setting, the
determination of the defect spectrum and the computation of correlators is a very difficult
task. In some limiting cases, however, some of the answers might be found with little effort.
For instance, a relevant operator may force the bulk to flow towards a trivial theory. In
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this case, the RG interface is reduced to a boundary condition for the ultraviolet CFT. As
an example, consider giving a mass to a free boson on half of the space, in any dimension
greater than two. Correlators on the perturbed side are exponentially damped, and at large
distances the theory is empty. From an RG point of view, the coupling grows in the IR, and
the configurations of non-zero field on the perturbed side are suppressed in the partition
function. As a consequence, a Dirichlet boundary condition is imposed to the massless free
boson on the other side.

A more interesting case is the RG domain wall corresponding to the Wilson-Fisher
fixed point of the O(N) model with (φ2)2 interaction. This interface is captured by the
following bare action:

S =

∫
ddx

1

2Sd(d− 2)
∂µφ

i ∂µφ
i + θ(xd)

g

4!
(φiφi)

2
, (4.1)

where θ(xd) is the Heaviside function, Sd = 2πd/2/Γ(d/2) and we chose to normalize the
elementary field so that it has a canonical two-point function in free theory. As we pointed
out, a question that needs to be answered concerns the stability of this interface. One needs
to know how many relevant operators must be fine-tuned, and if marginal deformations
exist. The interface possesses a weakly coupled description in 4− ε dimensions, and, at the
classical level, the only relevant defect primary in the singlet sector is φ̂2. Once we tune it
to zero, unlike the situation in the special transition, we do not impose Neumann boundary
conditions, but only continuity of ∂zφ̂i on the interface. Hence, the classically marginal
operator ∂zφ̂2 does not vanish, and should be taken into account. We shall show that this
operator becomes irrelevant at one loop. Therefore, the RG interface appears to be isolated
in perturbation theory.

In the following, we characterize the correlations of scalar primaries in the presence
of the domain wall at lowest order in ε-expansion. Along the way, we point out that
correlations across the interface encode at this order the mixing induced by the RG flow
among nearly degenerate operators [51]. This is true in the larger class of perturbation
interfaces constructed by means of a nearly marginal deformation. We then focus on the
RG domain wall between the three dimensional free theory and the Ising model, and study
the two-point function of the field σ using the method of determinants. We also provide
some non-perturbative information on generic conformal interfaces involving the free theory,
by noticing that some of the crossing constraints can be solved analytically.

4.1 The ε-expansion and the role of the displacement operator.

Since the UV side of this RG interface is a free theory, the interface itself is not captured
by mean-field theory: the CFT data related to it is O(ε) in perturbation theory. One can
easily obtain general results at leading order by exploiting the Ward identity eq. (2.1), which
defines the displacement operator. The identity tells us that we can move the interface in
the orthogonal direction by integrating the displacement in the action. Its insertion in a
correlation function is therefore equivalent to a derivative with respect to the position of
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the interface, that is,∫
dd−1y 〈D(ya)O1(x1) . . . On(xn)〉 = −

n∑
i=1

∂

∂xdi
〈O1(x1) . . . On(xn)〉 . (4.2)

Since the violation of translational invariance happens at order g - see eq. (4.7) - the
relation (4.2) rephrases some information about an n-point function of order gL in terms of
the integral of a (n + 1)- point function of order gL−1. In general, knowledge of the variation
with respect to the position of the interface is obviously insufficient for reconstructing the
full correlator. However, all configurations of two points are conformally equivalent to the
one in which the points are aligned on a line perpendicular to the defect. Therefore a
two-point function can be traded for the integrated three-point function on the l.h.s. of eq.
(4.2). The advantage is that the integral does not generate additional divergences: one only
needs to renormalize the theory at order gL−1. On the other hand, it is still necessary to
determine a primitive of the l.h.s. of eq. (4.2) as a function of the position of the interface.
We shall see that this is possible at lowest order: the tree level 2-point correlator, which is
just the homogeneous one, can be used to compute the one loop correction in the presence
of the interface.

It is simple to derive from (4.2) a new scaling relation. As pointed out, when two
operators are placed in mirroring points, in which case ξ = −1, their correlator is equivalent,
through the folding trick, to a one-point function:

〈OL(x)OR(Rx)〉 =
aLR

|2xd|∆L+∆R
, Rx =

(
xa,−xd

)
. (4.3)

Here we think of OL and OR as scalars belonging respectively to the UV and IR spectrum.
Similarly, the three-point function 〈OLORD〉 is fixed up to a number:

〈OL(x)OR(Rx)D(ya)〉 =
µLRD

|2xd|∆L+∆R−d |x− y|2d
(4.4)

Using the fact that in this geometry ξ is stationary with respect to orthogonal displacements
of the interface, it is easy to derive the following relation between these pieces of CFT data

(∆R −∆L)aLR

Sd
= µLRD. (4.5)

In the particular case where one of the bulk operators is the identity, one recovers a relation
which was first noticed in the case of a boundary by Cardy [54] (see also [33]):

± ∆kak
Sd

= µkD, (4.6)

where the plus/minus sign is valid for the interacting/free side respectively. We start by
using eq. (4.6) to determine the ak’s. The answer at order ε is quite simple: only one
operator acquires expectation value, on both sides of the interface. To see this, let us
identify the displacement. Looking at the action (4.1), we see that the interface is displaced
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at leading order by integrating the bare operator g(φ2)2/4!, that is4

D =
g

4!
(φ2)2 +O(g2) =

1

8(N + 8)π2
ε (φ2)2 +O(ε2), (4.7)

where we plugged the fixed point value of the coupling at order ε:

g∗ =
3

(N + 8)π2
ε. (4.8)

Now, since (φ2)2 is a primary of the free theory, and no other primary mixes with it at
order one, its correlation function with any other primary is zero at leading order. This
means that all coefficients µOD = O(ε2), but for the case O = (φ2)2. Using the relation
(4.6), we conclude that the only non vanishing expectation value at this order is 〈(φ2)2〉.
We can then obtain the number aφ4 at order ε from a tree level computation. Indeed, the
relevant bulk-to-defect coupling is given at leading order by

µφ4D = |x|8 〈 (φ2)2(x)√
8N(N + 2)

D(0)〉 =

√
2N(N + 2)

4(N + 8)π2
ε. (4.9)

Therefore

aIR
φ4 = −aUV

φ4 =

√
2N(N + 2)

8(N + 8)
ε. (4.10)

Let us make a comment. It was obvious from the start that only a small class of operators
could exhibit a one-point function at first order in the coupling: four powers of the elemen-
tary field are needed to contract a single vertex, and of course the operator must be in the
singlet of O(N). However, infinitely many scalar primaries can be constructed in free theory
which fulfill these requirements, involving an increasing number of derivatives of the fields5.
The simplest use of eq. (4.10) is the determination of the most general two-point function
of operators lying on the same side of the interface at order ε. Sticking for simplicity to the
case of external scalars, one simply writes

〈O1(x)O2(x′)〉

=
1

(2xd)∆1(2x′d)
∆2

ξ−(∆1+∆2)/2
(
δ12 + λ12φ4aφ4fd=4

bulk(∆12,∆ = 4, ξ)
)

+O(ε2). (4.11)

Notice that λ12φ4 is guaranteed to belong to the 4d free theory only when O1 and O2

are on the UV side. Indeed, primaries on the interacting side are in general a mixture
4Notice that at higher orders the interacting stress-tensor needs to be improved to be kept finite and

traceless [55]. The improvement is proportional to (∂µ∂ν − δµν∂2)φ2, so that the displacement receives a
contribution from the operator ∂a∂aφ2.

5That these primaries must exist can be seen independently from their expression in terms of elementary
fields, for instance from the asymptotics of the two point function of φ2 in a free theory with a boundary. The
presence of the identity in the boundary channel can only be balanced by an infinite number of conformal
blocks in the bulk channel. Only one primary can be built with two powers of the fields, so the rest are the
ones we are interested in. The explicit conformal block decomposition for this case can be found in [14]. It is
also amusing to notice that, analogously to the case at hand, this tower of operators does not contribute at
order ε to the two-point function of φ with Dirichlet or Neumann boundary conditions. As noticed in [14],
in that case the OPE coefficients λφφ ∂2kφ4 are the vanishing quantities at order ε.
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of classically degenerate renormalized operator, and when the mixing happens at leading
order λ12φ4 becomes a linear combination of UV OPE coefficients. For completeness, we
compare this derivation with some direct one loop computations in appendix A.

As pointed out in the introduction to this section, in order to capture correlations
across the interface we would need all the one-point functions of the folded theory. This set
encompasses the aLR defined in (4.3), and is much bigger. It is in fact more viable to reach
for the two-point functions of primaries directly through the integrated Ward identity eq.
(4.2), specified to the case of interest:∫

dd−1y 〈OL(x)OR(x′)D(y)〉 = −
(

∂

∂xd
+

∂

∂x′d

)
〈OL(x)OR(x′)〉 . (4.12)

We pick for the left hand side the three-point function of primaries in the translational
invariant theory, and we get the one-loop two-point function by integrating over the position
of the displacement. Notice that in doing so we disregard the mixing of primaries with
descendants. In the cases in which this happens at order one, on the left hand side of eq.
(4.12) additional terms needs to be taken into account, which have the form of a three-point
function involving derivatives of a primary operator. Consider first two operators which are
degenerate in the free theory. In other words,

∆LR ≡ ∆L −∆R = O(ε). (4.13)

In this case eq. (4.12) can only be used to determine the one loop correlator up to a constant.
Indeed, since both µLRD and ∆L −∆R are of order ε, one needs the one loop three-point
function to determine aLR from eq. (4.5). This is the familiar effect of degeneracies in
perturbative computations, and is related to the mixing of operators along the RG flow
(see section 4.2). Integration of (4.12) is straightforward, and one gets

〈OL(x)OR(x′)〉 =
aLR

|2xd|∆L(2x′d)∆R
(−ξ)−∆L

(
1 +

∆LR

2
log(−ξ)

)
, ∆LR = O(ε). (4.14)

Comparing with the form (2.5) we can write at this order

GLR(ξ) = aLR ∆LR = O(ε). (4.15)

A comment is in order. The presence of a logarithmic singularity compatible with exponen-
tiation is somewhat natural, since turning the coupling off one recovers the short distance
power low divergence proper of the homogeneous theory. However, there is no reason for
this to happen when considering the OPE limits in the Euclidean defect CFT. The expo-
nentiation agrees in the large ξ limit with the defect OPE, as it is easy to verify using the
formulae given in subsection 4.2. On the other hand, no small ξ limit exists for primaries
on opposite sides of the domain wall, and in fact the folded cross-ratio is ξfolded = −(1 + ξ),
which vanishes when the operators are placed in mirroring points. We decide to keep using
the form (2.5), and notice that it might be fruitful to look for a justification in Lorentzian
signature, where the small ξ limit corresponds to light-like separated operators.

In the case of operators with dimension differing in the UV limit, the two-point functions
at one loop can be fixed completely. Due to O(N) and rotational symmetry, ∆LR is an
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even integer in d = 4, which provides a simplification. The computation is slightly more
involved than in a previous case, and we give some details in appendix A. The result in the
case |∆LR| = 2 is different from all the others:

GLR(ξ) =
π2

2
µLRD sign(∆LR) (ξ − 1), |∆LR| = 2, (4.16)

while

GLR(ξ) = − π2Γ(2k + 3)

(k − 1)k2Γ(k + 2)2
µLRD sign(∆LR)

(−ξ)k+1

{(
(4k + 2)ξ2 + 3(k + 1)ξ + 1

)
2F1

(
−k − 1,−k,−2(k + 1);

1

ξ

)
−
(

(4k + 2)ξ2 + (k + 2)ξ
)

2F1

(
−k − 1,−k − 1,−2(k + 1);

1

ξ

)}
,

|∆LR| ≡ 2k > 2. (4.17)

As one might have expected, the hypergeometric functions in eq. (4.17) are in fact
polynomials.

These results complete the analysis of bulk correlations at order ε, if knowledge of the
λ123 is assumed: n-point functions of bulk operators are determined by taking successive
OPEs on the two sides until one is left with a one-point function or a two-point function
across the interface. We shall content ourselves of this leading order solution, but we
would like to comment on the possibility of generalizing the procedure. Unfortunately, the
number of non vanishing one-point functions is infinite already at next to leading order6.
Therefore, once the displacement has been correctly normalized, one has to compute the
relevant three-point functions at one loop and integrate them to find the two loop two-point
functions.

Let us now consider the defect spectrum at order ε. The dimensions of the operators can
be extracted through the defect OPE decomposition of eq. (4.11). When nearly degenerate
operators are present in the UV theory, also the defect operators mix, and the spectrum
is given by the eigenvalues of the matrix of anomalous dimensions. We shall deal with
this more general case in the next subsection. Here we comment on some features of the
spectrum focusing for simplicity on the non-mixing operators. The lightest defect scalar in
the OPE of a bulk operator O has dimension

∆̂O = ∆UV
O − 2λOOφ4 aUV

φ4 +O(ε2)

=
1

2
(∆UV

O + ∆IR
O ) +O(ε2). (4.18)

The second equality in eq. (4.18), which agrees with first order conformal perturbation
theory, says that the defect primary stands half way between the corresponding infrared
and ultraviolet operators in the bulk. Let us make some more specific comments. ∆̂φ4 = 4−ε

6This statement again follows immediately from the fact that the operator φ2 acquires an expectation
value at order ε2.
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is the protected dimension of the displacement operator. This is expected, even if there are
degenerate operators in free theory. Two primaries exist with dimension near to four, but
both of them are protected, the second one being the displacement of the folded theory.
The second interesting scale dimension is obtained by going one step further in the defect
OPE of φ2. We encounter the operator ∂zφ̂2, and since no other scalars exist which could
mix with it, we can safely read off his dimension from the boundary block decomposition:
∆̂∂φ2 = 3− N+14

2(N+8)ε. We see that this scalar is irrelevant at the Wilson-Fisher fixed point, so
that the stability of the interface is not altered by its presence. A third remark concerns the
odd spectrum. Since the anomalous dimension of φi starts at two loops, or equivalently the
bulk OPE does not contain (φ2)2 on either side of the interface, the dimensions of φ̂i and
∂zφ̂

i remain classical. Moreover, at this order all fields of the kind ∂kz φ̂i can be converted to
descendants of φ̂i and ∂zφ̂i by means of the tree level equations of motion. Hence, the latters
are the only primaries appearing with an OPE coefficient of order one. The interesting fact
is that ∆̂φ and ∆̂∂φ do not receive loop corrections at all, as we review in subsection 4.3.
A last comment on the one-loop odd spectrum is in order. The two-point function of φ2φi

should obey eq. (4.11) only on the free side, where the operator is a primary. This two-
point function contains a tower of defect operators which we might identify with φ̂2φi and
its transverse derivatives. The dimension of φ̂2φi is consistently half-way between φ2φi and
its image under RG flow, that is, �φi, and turns out to be marginal at this order. Since
we could not devise a mechanism to protect this operator from quantum corrections, we
believe this feature will disappear from the spectrum at higher orders. The fact that φ̂2φi

is independent from the conformal families of φ̂i and ∂2
z φ̂

i is naturally justified by defining
the defect fields as the limit of the free bulk fields approaching the interface. Notice that
this happens automatically in a hard-core regularization, where all integrals are cut-off at
a small distance from the interface.

The considerations leading to eq. (4.11) apply in fact to the leading order in confor-
mal perturbation theory of any interface obtained by a nearly marginal bulk perturbation.
Indeed, the key point is that the Zamolodchikov norm of the displacement operator equals
the square of the coupling at leading order. We turn now to this more general setting in
order to discuss the leading order mixing of bulk and defect primaries. On the contrary,
notice that eqs. (4.16) and (4.17) do not generalize trivially, because we used the fact that
UV scale dimensions are (nearly) even-integer separated: formulae get a bit more messy in
the general case.

4.2 Leading order mixing of primary operators.

Consider a conformal field theory in any number of dimensions d, whose spectrum includes
one7 mildly relevant operator ϕ, that is ε = d−∆ϕ is a small positive number. The interface
constructed by integrating gϕ on one half of the space has an infrared fixed point in which
g = g∗ ∼ O(ε). The two-point functions of operators on the same side of the interface obey

7We consider for simplicity the case of a one parameter RG flow. The general case proceeds along the
same lines.
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the obvious generalization of eq. (4.11):

〈O1(x)O2(x′)〉

=
1

(2xd)∆1(2x′d)
∆2

ξ−(∆1+∆2)/2
(
δ12 + λ12ϕaϕf

d
bulk(∆12,∆ = d, ξ)

)
+O(ε2). (4.19)

Here aϕ is of order ε and at this order

aIR = −aUV = g∗
Sd
d
, (4.20)

as dictated by eq. (4.6). We would like to study the effect of the mixing of bulk primaries on
the defect operators. Let us choose a set of UV scalar primaries OUV

i which are degenerate
up to terms of order ε. Their defect OPE, restricted to the lowest lying primaries, is encoded
in the fusion rule

OUV
i ∼ µij Ôj + . . . (4.21)

These defect operators are connected by the RG flow to the UV operators themselves,
that is there exists a family of renormalized operators Ôi(g) such that OUV

i = Ôi(0) and
Ôi = P̂i

j Ôj(g
∗). The matrix P̂ ij depends on the definition of the renormalized operators,

that is on the regularization scheme. However, in what follows we shall only need the fact
that P̂ ij is orthogonal at order one. Comparing with eq. (4.21) we see that

µi
j = P̂ j i +O(ε). (4.22)

The relevant part of the defect OPE decomposition of the correlator 〈OUV
i OUV

j 〉 is deter-
mined by the following asymptotic behavior for large ξ:

fdbulk(∆12 = 0,∆ = d, ξ) ∼ d

2

(
log ξ + γ − ψ(d/2)

)
+O(ξ−1). (4.23)

Comparing this with the large ξ and small ε limit of the boundary blocks, we get

∑
k

µi
kµjk

(
∆̂k −

∆UV
i + ∆UV

j

2

)
= −d

2
λUV
ijϕ a

UV
ϕ . (4.24)

Since the quantity in parenthesis is of order ε, we can make the substitution µ → P̂ . The
latter matrix was defined to be the orthonormal change of basis which diagonalizes the
matrix of anomalous dimensions γ̂ij of the boundary operators Ôj(g), so that we get

γ̂ij = ∆UV
i δij −

d

2
λUV
ijϕ a

UV
ϕ = ∆UV

i δij +
Sd
2
λUV
ijϕ g

∗. (4.25)

One may proceed order by order in the large ξ expansion. The resulting defect spectrum
includes in general nearly degenerate scalars with dimension close to ∆ + k, ∆ being the
scale dimension of a bulk primary. A primary of level k of course originates from linear
combinations of transverse and parallel derivatives of a UV primary. But when nearly
integer separated bulk primaries exist, further mixing is expected to take place.
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To complete the analysis, we would like to show that by matching the defect spectrum
with the IR bulk primaries, we get back the known mixing matrix between UV and IR
operators of the homogeneous theory [56]. We restrict ourselves to the case in which the
mixing only involves primary operators. We consider the set of IR primaries OIR

i which are
related to the OUV

i through a matrix P ij whose definition is analogous to the one we gave
for P̂ . The leading part of the defect fusion rule is

OIR
i ∼ νijÔj + . . . (4.26)

where we required that the defect spectrum coincides with the one of the UV counterparts.
This time we have

νi
j = Pi

kP̂ jk +O(ε). (4.27)

The same steps as before now lead to a relation identical to eq. (4.24), up to the sub-
stitutions µ → ν and UV → IR. The combination of eqs. (4.20), (4.25), (4.27) with the
statement

λIR
ijϕ = Pi

mPj
nλUV

mnϕ +O(ε), (4.28)

leads to
∆IR
i δij = Pi

mPj
n
(
∆UV
m δmn + Sd λ

UV
mnϕ g

∗) . (4.29)

Since the matrix P diagonalizes by hypothesis the matrix of bulk anomalous dimensions,
we recover the formula

γij = ∆UV
i δij + Sd λ

UV
ijϕ g

∗. (4.30)

Notice that the anomalous part of the defect mixing matrix is one half of the bulk one.
As a last comment, by means of eq. (4.5), we can verify that the pairing of UV and IR

primaries matches the matrix P at leading order [51]:

aji = Pij +O(ε). (4.31)

Indeed, eq. (4.31) is immediately obtained starting from the equality

(∆IR
i −∆UV

j )aji = Sd Pi
kλUV

jkϕ g
∗, (4.32)

which is valid at leading order, and using the definition (4.30) of the mixing matrix.

4.3 The interface bootstrap.

In order to single out a solution to the crossing equation which corresponds to our inter-
face, we shall again concentrate on the 3d Ising model, and in particular on the two-point
functions involving the lowest lying odd primaries φ and σ, on the free and interacting
side respectively. The bootstrap constraints involving φ can be in fact completely solved in
any number of dimensions by requiring the correlation functions to be annihilated by the
Laplace operator. Therefore, we start by collecting some general facts about free bosonic
theories in the presence of codimension one conformal defects. Let us first of all consider
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the two-point function 〈φφ〉. As it is well known, one can prove by applying the equations
of motion to the φ× φ OPE that it contains only twist two operators, and in particular:

φ× φ ∼ 1 + φ2 + (primaries with zero expectation value). (4.33)

The same method can be applied for establishing that only two primaries appear in the
defect OPE of the field (this was first noticed in [57]). Indeed, when the Laplace operator
is applied to the r.h.s. of the defect OPE, the parallel derivatives give descendants and we
can disregard them. The derivative orthogonal to the defect imposes a constraint on the
scale dimension of allowed primaries:

0 = �φ(x, xd) ∼
∑
Ô

(∆
Ô
−∆φ) (∆

Ô
−∆φ − 1)

Ô(x)

(xd)∆φ−∆
Ô

+2
+ descendants (4.34)

Hence, there are only two primaries, the limiting value of the field φ̂ and of its derivative
∂̂φ. These primaries have protected dimensions ∆

φ̂
= d

2 − 1 and ∆
∂̂φ

= d
2 . We see that the

most general defect CFT featuring the free theory on half of the space, bounded by any
codimension one defect, satisfies the following crossing equation:

1 + λφφφ2 aφ2fdbulk(∆φ2 , ξ) = ξ∆φ

(
µ2
φφ̂
fdbdy(∆

φ̂
, ξ) + µ2

φ∂̂φ
fdbdy(∆

∂̂φ
, ξ)
)
. (4.35)

All conformal blocks reduce to elementary function:

fdbdy

(
d− 2

2
, ξ

)
=

1

2
ξ−∆φ

(
1 +

(
ξ

ξ + 1

)∆φ
)

(4.36)

fdbdy

(
d

2
, ξ

)
=

2

d− 2
ξ−∆φ

(
1−

(
ξ

ξ + 1

)∆φ
)
, (4.37)

so the crossing equation is equivalent to the following:

1

2
µ2
φφ̂

+
2

d− 2
µ2
φ∂̂φ

= 1, (4.38a)

1

2
µ2
φφ̂
− 2

d− 2
µ2
φ∂̂φ

= λφφφ2 aφ2 . (4.38b)

The solution is parametrized by an angle:

µ
φφ̂

=
√

2 cosα, µ
φ∂̂φ

=

√
d− 2

2
sinα, λφφφ2 aφ2 = cos 2α. (4.39)

The solution of this particular crossing equation is only a necessary condition for the ex-
istence of a full fledged defect CFT, therefore the question arises whether for any value of
α such a theory exists. Vice versa, a given value of α might be realized in more than one
defect CFT, which differ elsewhere. We can restrict α to take values in the interval [0, π/2],
since sending the defect fields φ̂ and ∂̂φ to minus themselves does not spoil their canonical
normalization. At the extrema of this interval one finds Neumann (α = 0) and Dirichlet
(α = π/2) boundary conditions, and at the center (α = π/4) the trivial interface between
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the free theory and itself. The RG interface with the O(N) model with φ4 interaction lies
perturbatively near to the no-interface value, in ε-expansion, and fills an interval if N is
allowed to take value over the reals.

Since any two-point function involving the field φ has to contain only the same two
blocks in the defect channel, one can generalize the previous procedure to any correlator of
this kind. The general fusion rule with a primary O with dimension ∆ is

φ×O∆ ∼ O− +O+ + (spinning primaries),

∆− = ∆−∆φ, ∆+ = ∆ + ∆φ. (4.40)

Notice that degenerate primaries may exist with the right dimensions to enter the r.h.s.
of eq. (4.40), as it happens in the O(N) model for N > 1. Denoting λ+ = λφO∆O+ and
λ− = λφO∆O− , the solution to the bootstrap equation is

µ
φφ̂
µ
Oφ̂

= λ− a− + λ+ a+,
4

d− 2
µ
φ∂̂φ

µ
O∂̂φ

= λ− a− − λ+ a+. (4.41)

This includes the system (4.38), in particular. The relations (4.41) also apply when the
operator O is a primary on the interacting side of the interface. In this case, the OPE
happens in the folded picture, and turns out to be a simple way to choose the solution of
the Laplace equation with the appropriate asymptotics. Specifically, no singularities should
arise when the operators are placed in mirroring points, and this prompts us to eliminate
O− from the r.h.s. of eq. (4.40). In other words,

φ×O ∼ :φO : , (4.42)

and the two-point function is simply

〈φ(x)O(x′)〉 =
aφO

(2|xd|)∆φ(2x′d)∆ 2F1 (∆φ,∆,∆,−ξfolded) =
aφO

(2x′d)∆−∆φ(x− x′)2∆φ
,

(4.43)
where ξfolded is just obtained by replacing xd with minus itself. The relation (4.41) reduces
to

aφO = µ
φφ̂
µ
Oφ̂

= − 4

d− 2
µ
φ∂̂φ

µ
O∂̂φ

. (4.44)

This relation is potentially useful in bootstrapping the interacting side of the interface.
Indeed, the defect OPE of every operator which couples with φ contains φ̂ and ∂̂φ, and the
ratio µ

Oφ̂
/µ

O∂̂φ
= −2 tanα/

√
d− 2 does not depend on the operator, and may be used to

match solutions for different external primaries. From eq. (4.38), we see that this ratio
among coefficients of the interacting theory is determined by the expectation value of φ2 on
the free side. In particular, as we pointed out, this one-point function deviates from zero
only at order ε2 in the case we are interested in. We compute the leading order value in
appendix A for generic N , and find

α =
π

4
− 3

1024π6

N + 2

(N + 8)2
ε2. (4.45)
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In sum, the signature of the RG domain wall in the conformal block decomposition of 〈σσ〉
is the presence of two protected defect operators, with a ratio of OPE coefficients near to
the free theory value.

In fact, we found in 3d a numerical solution for a (4,4,0) truncation of 〈σσ〉 which has
the expected features. The defect channel is formed by the two operators σ̂ and ∂̂zσ of
protected dimensions 1

2 and 3
2 and two unprotected operators Ô3 and Ô4 of dimensions

∆̂3 ∼ 3.11 and ∆̂4 ∼ 6.17. The precise value of these quantities as well as the estimates
of the relative OPE coefficients depend on the choice of the bulk spectrum. For the sake
of consistency we put in the same bulk spectrum obtained in the (4,2,1) solution of the
extraordinary transition. The values of ∆ε′′ and ∆ε′′′ depend on the scale dimension ∆̂ of
a surface operator which acts as a free parameter. Therefore, our interface solution also
depends on it, though the dependence is very mild, as a stable solution requires (see the
discussion on the stability of the solutions on section 2). Table 3 shows the relevant data
of such a solution. Note that the ratio µσσ̂/µσ∂̂zσ follows the trend suggested by the ε
expansion.

∆̂ ∆ε′′ ∆ε′′′ µ2
σσ̂ µ2

σ∂̂zσ

3.9 7.235(6)(3) 12.736(7)(4) 1.00612(11)(5) 0.27138(5)(2)

7.9 7.274(10)(2) 12.843(17)(4) 1.00644(15)(4) 0.27123(7)(1)

11.1 7.287(11)(4) 12.892(22)(8) 1.00657(17)(6) 0.27117(7)(2)

15.1 7.297(11)(2) 12.932(23)(4) 1.00668(16)(3) 0.27112(7)(2)

19.9 7.298(11)(1) 12.948(24)(2) 1.00667(16)(2) 0.271127(68)(5)

25.5 7.302(11)(2) 12.968(25)(5) 1.00672(16)(3) 0.27110(7)(2)

31.9 7.303(11)(3) 12.980(25)(7) 1.00674(16)(5) 0.27110(7)(1)

39.1 7.307(12)(4) 12.995(28)(8) 1.00679(17)(5) 0.27108(7)(2)

∆̂ ∆̂3 ∆̂4 µ2
σÔ3

µ2
σÔ4

3.9 3.1190(8)(4) 6.1816(9)(4) 0.002555(5)(2) 0.00002387(4)(2)

7.9 3.1151(12)(3) 6.1757(15)(4) 0.002572(7)(2) 0.00002408(6)(2)

11.1 3.1136(14)(5) 6.1734(17)(6) 0.002579(7)(3) 0.00002417(7)(3)

15.1 3.1123(14)(3) 6.1715(17)(3) 0.002584(7)(2) 0.00002424(7)(2)

19.9 3.1121(14)(1) 6.1710(17)(2) 0.0025850(74)(10) 0.00002426(7)(1)

25.5 3.1115(14)(3) 6.1701(18)(4) 0.002588(7)(1) 0.00002429(7)(1)

31.9 3.1113(14)(4) 6.1697(17)(5) 0.002589(7)(2) 0.00002431(7)(3)

39.1 3.1108(15)(5) 6.1689(19)(6) 0.002591(8)(2) 0.00002433(8)(2)

Table 3: Data of the (4,4,0) solution of the 3d Ising interface with the free UV theory. The first
column is the free parameter of the solution which is the scale dimension of a surface operator
contributing to the extraordinary transition discussed in sec. 3. The data are affected by two kinds
of errors. The first parenthesis reflects the statistical error of the input data (namely ∆σ and ∆ε),
while the second parenthesis indicates the spread of the solutions.

Let us make some final remarks. When the bulk OPE coefficients and the scale dimen-
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sions are exactly known on one side of an interface, one may extract the one-point functions
from the crossing equations involving operators placed on this side. The same data enter
various correlators, and the interplay between different solutions to the crossing equations
may be used to detect systematics, or to reduce the unknowns. We leave this for future
work. For now, we notice that the even spectrum on the free side of our interface is made
by an increasing number of degenerate primaries of integer dimension, so it is foreseeable
that a reliable truncation would require the inclusion of many bulk primaries. Furthermore,
since the parameter N only enters the determinants through the unknown defect spectrum,
one expects to find a one-parameter family of solutions. Studying two-point functions of
free even primaries is important in particular if one is interested in the Zamolodchikov norm
of the displacement operator. Indeed, two defect primaries exist with dimension d, one of
which might be identified with the displacement of the folded theory. Given two primaries
OL and OR with non-vanishing one-point function, it is not difficult to see that, in order to
isolate the displacement, one needs to know 〈OLOL〉, 〈OROR〉 and 〈OLOR〉. Unfortunately,
we have not been able to identify a solution for 〈ε ε〉 which satisfactorily reproduces the
domain wall.

5. Conclusions and outlook.

In this paper we explored some consequences of crossing symmetry for defect CFTs. We
focused our study on the cases where the defect is a codimension one hyperplane, i.e. a flat
interface or a boundary. In the latter case our main results concern the surface transitions
of 3d Ising model.

The numerical solutions to the bootstrap equations with the method of determinants
turn out to be particularly effective in the ordinary transition, where it suffices to know
the scale dimensions of the first few bulk primaries to obtain the dimension of the relevant
surface operator of this transition as well as its OPE coefficient. This analysis has been
extended to the O(N) models with N = 0, 1, 2, 3 where a comparison can be made with
the results of a two-loop calculation [39], finding a perfect agreement (see table 1).

In the extraordinary transition the contribution of the boundary channel is dominated
by the first two low-lying operators, namely the identity and the displacement, thus we
used this fact to extract more information on the even and odd spectrum contributing to
the bulk channel. We obtained in this way also an accurate determination of the OPE
coefficient λσσε which compares well with other estimates based on a recent Monte Carlo
calculation [48] or on conformal bootstrap [19]. We also obtained some OPE coefficients
of one-point and two-point functions (see table 2) which allow to verify the impressive
fulfillment of the Ward identities associated with the displacement operator.

The solution corresponding to the special transition contains a free parameter, hence we
don’t get precise numerical results. This case is still very useful for an accurate cross-check of
the consistency of the method of determinants with the linear functional method. Together
with the just mentioned Ward identities, this check provides evidence for the fact that the
systematic error is rather small when a truncation is stable. In this paper we investigated
the stability of the truncations through the sensitivity to the addition of heavier operators.
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It would be important to establish more rigorous bounds on the systematic error, maybe
along the lines of [15].

The next example of a codimension one defect studied in this paper is an interface
between the O(N) model and the free theory. We tackled the problem both in 4 − ε and
in three dimensions. The weak coupling analysis of the two-point functions was carried
out in a way which is trivially adapted to general perturbation interfaces. A preeminent
role is played by the displacement operator, whose small Zamolodchikov norm signals the
transparency of the interface, in the sense that operators with nearly degenerate dimension
are allowed to couple at order one across the interface, while the opposite is true for primaries
well separated in the spectrum. This intuition can be made precise in 2d, where the norm
of the displacement coincides up to a normalization with the reflection coefficient defined
in [58].8 It is certainly interesting to look for a similar interpretation of the displacement
in higher dimensions, possibly in relation to the correlators of polarized stress-tensors.
However, it is worth emphasizing that while in 2d the reflection coefficient of a boundary
is unity, in dimensions greater than two the norm of the displacement depends on the
boundary conditions. The results of the perturbative analysis also confirm that this kind
of interfaces encode information about the RG flow that links the theories on the two sides:
specifically, the coupling of UV and IR primaries reproduces the leading order mixing of
operators, as does the one-dimensional domain wall constructed non-perturbatively in [51].
On the numerical side, we found a solution to the crossing equation consistent with the
features of the two-point function of σ in three dimensions. The analysis can be extended
in various directions. It would be interesting go to second order in perturbation theory [59],
or to study the setting at large N , and see whether the displacement operator still provides
important simplifications. We already pointed out that it is viable to bootstrap correlators
on the free side, and it would be important in particular to give a prediction for the norm of
the displacement in 3d, to compare it with the estimates for the boundary transitions. We
would also like to emphasize that the interface can be realized on the lattice, for instance
as a Gaussian model with the addition of a quartic potential on one-half of the lattice.

As we mentioned in the introduction, a complete description of the CFT data cannot
be reached, even in principle, only through the study of bulk two-point functions. Four-
point functions of defect operators should be studied, and in this case both the method of
determinants and the linear functional might be employed. Along the same lines, in both
the boundary and the interface setups one may study the crossing constraints coming from
correlators of the kind 〈O1O2Ô〉, or two-point functions of tensors. The necessary tools for
the latters were developed in [14]. It is of course viable to use the method of determinants
for the study of generic defects, and in particular it would be nice to complement the
bootstrap analysis carried out in [18] for the twist line in the Ising model.
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A. RG domain wall: details on the ε-expansion.

A.1 One loop computations.

Two regularization procedures have been preferred in the literature, in dealing with the φ4

model in the presence of a defect of co-dimension one. Dimensional regularization has been
especially used for the systematic renormalization of the Lagrangian and for extracting the
critical exponents [60–62]. More recently, fully real space computations were carried out
in [33, 34], with a short distance cutoff. Both series of works were concerned with the φ4

theory in the presence of a plain boundary. We follow the latter technique.
We start by checking eq. (4.11) through the two-point function 〈φ2φ2〉 on the free side

of the domain wall. At one loop, the only diagram contributing is shown in fig. 8. Since
the correlator depends only on one cross-ratio, it is sufficient [34] to compute the two-point
function in the collinear geometry of fig. 8, for which

ξ → (y − y′)2

4yy′
. (A.1)

(   ,-y)0 (   ,-y')0

(   ,z)x

(   ,-y)0 (   , y')0

(   ,z)x

Figure 8: One loop contributions to 〈φ2(x)φ2(x′)〉 and to 〈φ2φi(x)φj(x′)〉 . The free side is the left
one, and y, y′, z > 0.
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The corresponding integral is

〈φ2(x)φ2(x′)〉one-loop

= −1

3
N(N + 2)g∗

∫ ∞
0
dz

∫
dd−1x

1

{(x2 + (z + y)2) (x2 + (z + y′)2)}d−2
. (A.2)

Notice that we chose y, y′ > 0. The integral does not diverge in the UV. This is expected,
since the coupling constant renormalizes at O(ε2), and the lowest lying interface operator
that might be needed as a counterterm is φ4, which however - barring mixing which appears
at higher orders - equals the displacement operator and is therefore irrelevant. Since the
fixed point coupling constant g∗ is of order ε, we can plug d = 4 in the integral to obtain
the leading order correction, which is easily computed. The result is

〈φ2(x)φ2(x′)〉one-loop =
N(N + 2)

3
g∗

π2

(y − y′)4

(
ξ

ξ + 1
− log(1 + ξ)

)
+O(ε2). (A.3)

Plugging into this expression the fixed point value for g∗ (4.8) and adding the tree level
contribution, one obtains the correlator at first order in ε-expansion:

〈φ2(x)φ2(x′)〉 =
2N

s2(d−2)

{
1 +

1

2

N + 2

N + 8
ε

(
ξ

ξ + 1
− log(1 + ξ)

)}
. (A.4)

Notice that the one point function of φ2 is O(ε2), therefore this is the full correlator - not
just the connected part - at order ε. Comparing the result with the form of the conformal
block of φ4, evaluated in d = 4 at this order:

fd=4
bulk(∆φ4 ; ξ) = −2

(
ξ

ξ + 1
− log(1 + ξ)

)
, (A.5)

and using that in free theory

λφ2φ2φ4 =

√
2(N + 2)

N
, (A.6)

we see agreement with the general result (4.11) and with the one-point function in eq.
(4.10).

Let us compare also the general formula (4.16) with an explicit one-loop example. We
focus on the correlator between the field φi on the interacting side and the free primary
φ2φi. The one-loop contribution is encoded in the diagram on the right in fig. 8, which is
UV finite. Including the combinatorics, the result is

〈 φ2φi(x)√
2(N + 2)

φj(x′)〉 =
δij

(−2y)3(2y′)
ξ−2

√
N + 2

2
√

2(N + 8)
ε (ξ − 1). (A.7)

It is easy to compute the tree level three-point function needed to fix µLRD, and see that
eq. (A.7) matches eq. (4.16).

Next, we compute the first non-trivial contribution to the two-point function of φi

on the free side, which departs from its free theory value at order ε2. The only diagram
contributing is the sunset (fig. 9). As explained in subsection 4.3, we actually only need
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to know aφ2 , which amounts to colliding the two external operators in the diagram. The
computation only slightly simplifies at this order, but the statement is valid at any loop
(and of course, for any interface involving the free theory). The bulk conformal block of
the operator φ2 of dimension ∆φ2 = d− 2 is

fbulk(∆φ2 ; ξ) =

(
ξ

1 + ξ

)d−2

. (A.8)

Therefore we find

〈φi(x)φj(x′)〉 =
δij

sd−2

(
1 + λφφφ2aφ2

(
ξ

ξ + 1

)d−2
)
. (A.9)

The integral to be evaluated is the following:

I =

∫ ∞
0
dz

∫ ∞
0
dz′

∫
d3x

∫
d3x′ 1(

x2 + (y + z)2
)(
x′2 + (y + z′)2

)
× 1(

(x− x′)2 + (z − z′)2
)3 . (A.10)

Along the computation, which is straightforward, we encounter two divergences. A bulk di-
vergence requires a mass counterterm, and a second divergence arises when the interaction
vertices hit the interface. This is compensated by integrating φ̂2 along the interface. Rele-
vant operators are required because our cut-off breaks scale invariance. Their renormalized
couplings, however, must be fine-tuned in order to reach the critical point. Hence, requiring
scale invariance of the one-point function is sufficient to fix the subtraction unambiguously.
After renormalization, one finds

I =
3π4

16

1

y2
. (A.11)

Taking the combinatorics into account, the expectation value at leading order is

〈φ
2(−y)√

2N
〉 ≡

aφ2

(2y)2
=

3

512π6

√
N

2

N + 2

(N + 8)2
ε2

1

(2y)2
. (A.12)

(   ,-y')0
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(   ,z)x

(   ,z')x'

Figure 9: Two loops contribution to 〈φi(x)φj(x′)〉 . Again, y, y′, z, z′ > 0.
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Substituting back in (A.9), and using

λφφφ2 =

√
2

N
, (A.13)

we find at this order

〈φi(x)φj(x′)〉 =
δij

sd−2

(
1 +

3

512π6

N + 2

(N + 8)2
ε2
(

ξ

ξ + 1

)2
)
. (A.14)

One can now extract some CFT data. By using the relations (4.38) one finds the defect
OPE coefficients

µ
φ φ̂

= 1 +
3

1024π6

N + 2

(N + 8)2
ε2, µ

φ ∂̂φ
=

√
d− 2

4

(
1− 3

1024π6

N + 2

(N + 8)2
ε2
)
. (A.15)

We also obtain a piece of information about the defect OPE of any primary on the inter-
acting side which couples with φi, through the equalities (4.44):

µ
O φ̂

µ
O ∂̂φ

= − 4

d− 2

µ
φ ∂̂φ

µ
φ φ̂

= − 2√
d− 2

(
1− 3

512π6

N + 2

(N + 8)2
ε2
)
. (A.16)

We use this result in subsection 4.3 as a check of the solutions to the approximate crossing
equation for 〈σσ〉.

A.2 Two-point functions across the interface.

We give some details on the formulae (4.14), (4.16) and (4.17). Let us call xd = yi the
position of the interface. We choose again the collinear geometry for the two operators
and we place one on either side of the interface, at the points x = (x, yL < yi) and
x′ = (x, yR > yi). After plugging the free theory three-point function in eq. (4.12), we
shall find the two-point function by solving the following equation:

µLRD

(yR − yL)∆L+∆R−4

∫
d3z

(
z2 + (yL − yi)2

)− 4+∆LR
2
(
z2 + (yR − yi)2

)− 4−∆LR
2

=
d

dyi
〈OL(x)OR(x′)〉 . (A.17)

First of all, we briefly comment on (4.14), that is, on the case ∆LR = O(ε). Since µLR is
also at least of order ε, we can plug ∆L = ∆R in (A.17). The integrals are easily evaluated
and we get

〈OL(x)OR(x′)〉 = − π2µLRD

|yL − yR|2∆L
log

∣∣∣∣yR − yiyL − yi

∣∣∣∣+ c(yR, yL). (A.18)

The constant of integration c(yR, yL) does not depend on the position of the interface. One
way to fix it is to require that when the interface stands half-way between the points the
correlator takes the form (4.3):

c(yR, yL) =
aLR

|yL − yR|∆L+∆R
. (A.19)
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By asking for conformal invariance of this result, one gets back at first order the scaling
relation (4.5). Eq. (4.14) is then obtained by reconstructing the correlator for generic choice
of the two points through conformal invariance.

Let us now tackle the case of external dimensions differing at order one. The integration
in the translational invariant directions is easily recast as the Euler representation of a
hypergeometric function:∫

d3z
(
z2 + (yL − yi)2

)− 4+∆LR
2
(
z2 + (yR − yi)2

)− 4−∆LR
2

=
π2

8
|yL − yi|−1−∆LR |yR − yi|−4+∆LR

2F1

(
3

2
, 2− ∆LR

2
; 4; 1−

(yL − yi
yR − yi

)2
)

(A.20)

Internal and spacetime symmetries allow to restrict ourselves to the case ∆LR = 2k, for
integer k, at this order. Furthermore, there is a clear symmetry for the exchange L ↔
R, so we only consider the case k > 0. Since for k > 1 the hypergeometric function
is a polynomial, we treat separately the case k = 1. Eq. (4.16) is obtained integrating
the position of the interface and again fixing the integration constant in accordance with
conformal invariance. When k = 2, 3, . . . one can write eq, (A.17) as

〈OL(x)OR(x′)〉 =
µLRD

(yR − yL)∆L+∆R
×∫ y0

(yL+yR)/2
dyi

3π3/2Γ
(
k − 1

2

)
2Γ(k + 2)

(yR − yL)4

(yi − yL)5 2F1

(
5

2
, 2− k;

3

2
− k;

(yR − yi)2

(yL − yi)2

)
+

aLR

(yR − yL)∆L+∆R
. (A.21)

One can exploit the fact that the hypergeometric function is a polynomial and integrate
addend by addend the second line of (A.21). In particular, we can choose to put the
interface in y0 = 0. Some simplifications occur because of the following observation. As
already pointed out, the value of aLR is fixed by the requirement of conformal invariance.
On the other hand, any constant piece in the integration has the only effect of shifting
aLR. Therefore, we disregard such pieces, and fix the constant in the end. All together,
introducing the scale invariant variable r = yL/yR, we find

〈OL(x)OR(x′)〉 =
µLRD

(yR − yL)∆L+∆R

(−1)kπ5/2

(k − 1)k2Γ(k + 2)Γ(−k − 1/2)

(r − 1)2

4r
×{(

2k(r2 − r + 1) + (r + 1)2
)

2F1

(
1

2
,−k;−k − 1

2
;

1

r2

)
−
(
2k(r2 − r) + (1 + r)2

)
2F1

(
3

2
,−k;−k − 1

2
;

1

r2

)}
+

ã

(yR − yL)∆L+∆R
. (A.22)

We only need to enforce invariance under inversions, which amounts to sending yR → 1/yR
and yL → 1/yL. With the help of standard hypergeometric identities one can check that
the first three lines in (A.22) are invariant, therefore

ã = 0. (A.23)
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Alternatively, one may simply verify that with this choice the relation (4.5) is fulfilled. The
result is not yet explicitly a function of the cross-ratio. The final form eq. (4.17) can be
obtained at the price of some more massage.
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