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Abstract

In this paper we describe gauge invariant multi-quark states generalising the

path integral framework developed by Parrinello, Jona-Lasinio and Zwanziger to

amend the Faddeev-Popov approach. This allows us to produce states such that, in

a limit which we call the ice-limit, fermions are dressed with glue exclusively from the

fundamental modular region associated with Coulomb gauge. The limit can be taken

analytically without difficulties, avoiding the Gribov problem. This is illustrated by

an unambiguous construction of gauge invariant mesonic states for which we simulate

the static quark–antiquark potential.
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1 Introduction

Yang-Mills theories are the cornerstone of the standard model. Their success is largely

based upon perturbation theory where gauge fixing, implemented using the Faddeev-

Popov method [1], plays a key role. However, Gribov [2] has pointed out that, at a

non-perturbative level, the Faddeev-Popov method fails since there are always gauge equiv-

alent (Gribov) copies which satisfy a chosen gauge condition. Initially this was shown for

Coulomb gauge, but Singer has proven that this is in fact a general problem [3].

There have been various attempts to extend the Faddeev-Popov method to the non-

perturbative regime. For example, it was suggested that the various Gribov copies, weighted

by the Faddeev-Popov determinant, should contribute to the functional integral with al-

ternating signs. This approach can be viewed as the insertion of a topological invariant
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into the partition function. Unfortunately, that topological invariant turns out to be zero

in SU(Nc) Yang-Mills theory leaving us with the disastrous conclusion that the generalised

Faddeev-Popov method results in physical observables being in indeterminate form [4–6].

This state of affairs is unfortunate as the need for non-perturbative gauge fixing is

widely recognised as physically desirable. For example, Dyson-Schwinger equations are

widely used in hadron phenomenology, and their construction relies on unambiguous gauge

fixing, in particular in the infra-red regime. Using stochastic quantisation to by-pass the

Gribov problem [7–9], Zwanziger showed [10] that the tower of Dyson-Schwinger equations

is unchanged but supplemented with additional constraints reflecting that gauge config-

urations are confined to the first Gribov region. It turns out that the Green’s functions

solving the Dyson-Schwinger equations [11–13] appear to agree to a large extent with lat-

tice simulations [14–16]. We note, however, that some initial discrepancies [17–19] in the

infra-red [20] behaviour of Green’s functions have been confirmed in large volume simula-

tions [21,22]. It became clear only recently that these findings can be accommodated by the

Gribov-Zwanziger approach when the Gribov-Zwanziger action is appropriately modified

while preserving renormalisability and BRST invariance [23, 24].

To go beyond the Faddeev-Popov method, we will here use an alternative construction of

the partition function [25,26] which defines a gauge invariant action by integrating a weight

function over the gauge orbit. This method has been studied on the lattice in the strong

coupling expansion [27,28], and in numerical simulations of the weak-coupling regime [29].

The phase diagram was explored in [30], and a phase transition from the weak to the strong

gauge fixing regime was reported. Finally, it was argued in [31] that the gluon propagator

displays gluon confinement. As we shall show, in a particular limit, which we call the

ice-limit, the weight function constrains the gauge configurations to unique representatives

of each gauge orbit. Altogether, these form what is called the fundamental modular region.

In a Hamiltonian framework integration over the gauge group may be used to define

projection operators onto the different non-Abelian charge (superselection) sectors of the

Yang-Mills Hilbert space in the presence of external charges. This was first emphasised

by Polyakov [32] and Susskind [33] and subsequently worked out in detail by a number of

authors (see e.g. [34, 35]). More recently Zarembo has used this approach to discuss the

Yang-Mills mass gap, confinement and the interquark potential [36, 37] (see also [38, 39]).

A thorough study of U(1) quantum mechanics along these lines may be found in [40].

In this paper, we introduce gauge invariant external fields (such as heavy quarks)

through the projection techniques [32–37] into the above alternative construction of the

partition function [25, 26]. Using lattice regularisation, we will study the ice-limit where

the fields are restricted to the fundamental modular region of Coulomb gauge. As an

illustration, we will calculate the static heavy quark–antiquark potential.
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2 Non-perturbative gauge fixing

2.1 The Gribov problem

Recall that gauge fixing amounts to identifying the space A/G of gauge inequivalent config-

urations (that is the space A of all configurations A modulo gauge transformations g ∈ G)

with a subset of the total configuration space: A/G ⊂ A. The original idea of gauge fixing

(due to Weyl, see [41] for the historical context) attempts at choosing a gauge ‘slice’ Γ

(of configurations satisfying the gauge condition) to be identified with the physical config-

uration space. While this works for the Abelian case, it fails for the non-Abelian theory

due to the existence of residual gauge copies, as shown by Gribov [2], who was also the

first to suggest a possible solution. As the copies only appear as one moves away from the

perturbative small field regime and reaches what is called the ‘Gribov horizon’ it seems ap-

propriate to just stay within its interior, i.e. within the Gribov region. Mathematically, this

is defined as that neighbourhood of the classical vacuum (A = 0) where the Faddeev-Popov

operator has a positive spectrum. It turns out, however, that this ‘off-limits’ prescription

is not sufficient. Let us briefly recapitulate the problem and its (formal) solution.

Following ‘t Hooft [42] one may formulate the gauge fixing procedure in terms of dis-

tance functionals Sfix[A
g] ≡ ‖Ag‖2 with ‖ . ‖2 an appropriate L2 norm. As shown by

Semenov-Tyan-Shanskii and Franke [43] as well as dell’Antonio and Zwanziger [44] the

extrema of Sfix define the gauge condition while its Hessian (at the critical points) is the

Faddeev-Popov operator such that the Gribov region is the domain of positive curvature

containing A = 0, known to be convex and to cover all orbits [43, 44]. Its boundary is

the Gribov horizon where the lowest eigenvalue of the Faddeev-Popov operator vanishes.

These authors also realised that there are copies remaining within the Gribov region, and

one has to restrict configurations even further to the set Λ of global minima,

Λ ≡ {A ∈ A : Sfix[A] ≤ Sfix[A
g], for all g ∈ G} . (1)

Note that, by construction, this set is included in the Gribov region and hence the gauge

slice. As pointed out by van Baal [45] one still requires suitable boundary identifications

within ∂Λ endowing the subset Λ ⊂ A with the appropriate topology before it can finally

be identified with the physical configuration space of gauge inequivalent configurations.

In this context the latter is denoted the fundamental modular region (FMR), see [46, 47]

for reviews on this subject. We emphasise at this point that it is gauge invariant by

construction. The details of the embedding A/G ⊂ A, however, will depend on the gauge

fixing (functional) chosen as its starting point.
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2.2 An alternative implementation of gauge fixing

As we have discussed, a gauge fixing condition χa[A] = 0 can always be identified as a

stationary point of a gauge fixing functional Sfix[A
g] such that

δ

δθa(x)
Sfix[A

g] = 0 =⇒ χa[A] = 0 , (2)

where the fields θa(x) parameterise the gauge transformation, g(x) = exp{iθa(x) ta}, with
ta being the generator of the SU(Nc) gauge group. The Faddeev-Popov approach is then

based on the usual assumption [48, Chapter 16] that one can write 1 as

1 =

∫

Dθ δ(χa[A
g]) Det

(

δχ[Ag]

δθ

)

. (3)

This, though, is not true non-perturbatively (see Appendix A for more details) as, in fact,

the right hand side of (3) is zero. We will therefore use a different approach here [25, 26],

and, after reviewing it, we will study a series of examples.

The starting point of this approach is the definition of a gauge invariant effective action

Seff [A] derived from the gauge fixing functional via the identity

1 = e−Seff [A]

∫

Dg eSfix[A
g], (4)

where Dg is the Haar measure on the gauge group. As it stands, this is a purely formal

definition and one might ask if the right hand side of (4) is genuinely 1. In the continuum

this question is hard to address, but using a lattice regulator it becomes clear that this

really is a 1. To this end, we need to translate into a lattice formulation where the potential

Aµ(x) is replaced by link variables Uµ(x) which transform under a gauge transformation

(now conventionally written as Ω(x)) according to

UΩ
µ (x) = Ω(x)Uµ(x)Ω

†(x+ aeµ) . (5)

Inserting (4) into the Yang-Mills partition function we obtain

Z =

∫

DUµDΩ eSfix[U
Ω] e−Seff [U ] eSYM[U ] . (6)

For such a lattice regulated partition function, we may interchange the integration over

the links Uµ and the gauge transformations Ω:

Z =

∫

DΩDUµ eSfix[U
Ω] e−Seff [U ] eSYM[U ] =

∫

DΩDUΩ
µ eSfix[U

Ω] e−Seff [U
Ω] eSYM[UΩ]

=

(
∫

DΩ

)
∫

DUµ e
Sfix[U ] e−Seff [U ] eSYM[U ], (7)
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from the invariance of the action and the Haar measure. This means that we have been

able to factor out the gauge redundancies into a volume factor in much the same way as

the original Faddeev-Popov trick tried to do. However, as we shall see, this procedure is

valid non-perturbatively.

We will now investigate how this construction is used in three examples.

2.3 Three examples

2.3.1 The Christ-Lee Model

The Christ–Lee partition function [49] is given by the two dimensional integral

Z
CL

=

∫

d2x eSCL
(x), (8)

where S
CL
(x) is a function depending only on r ≡

√

x2 + y2. Gauge transformations are

rotations through an angle φ, which we write x → x
φ. Taking, for example, S

CL
(x) = −x

2,

one may check that Z
CL

= 2π × 1/2, where the 2π comes from the integral over the angle

φ and 1/2 is the ‘physical’ partition function. We will consider the following gauge fixing

functional

Sfix[x
φ] = −κ

2

(

x
φ − v

)2
, (9)

where v is an external “gauge fixing” vector. The corresponding gauge condition

∂Sfix[x
φ]

∂φ
= 0 =⇒ v · xφ+π/2 = 0 ,

exhibits two Gribov copies: x
φ parallel or antiparallel to v. The FMR is given by those

vectors x which (globally) maximise the gauge fixing action. In the present case, these are

all vectors of arbitrary length parallel to v. Without loss of generality, we choose v = (1, 0)

so that the gauge fixing condition becomes y = 0. The FMR is then given by the positive

x–axis (with Gribov copies appearing on the negative x–axis).

In analogy to (4), we find an effective action

exp
(

Seff[x]
)

=

∫

dφ exp
(

Sfix[x
φ]
)

= 2πI0(κr) exp

(

− κ

2
r2 − κ

2

)

, (10)

with I0 a modified Bessel function of the first kind. The effective action is manifestly gauge

invariant as it depends only on r. We now insert the associated representation of unity,

1 = exp
(

− Seff[x]
)

∫

dφ exp
(

Sfix[x
φ]
)

=
1

2π I0(κr)

∫

dφ exp
(

κxφ · v
)

,
(11)
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into the partition function (8) where it follows from the discussion in Section 2.2 that

Z
CL

=

(
∫

dφ

)
∫

d2x exp
(

S
CL
(x)

) eκ x

2π I0(κr)
, (12)

using x · v = x. For S
CL

= −|x|2, it is a straightforward matter to perform the d2x

integral in (12) and show that we recover the expected value of 1/2. The important point

is that the Gribov problem does not hamper this calculation. This can be made explicit

by considering the limit of large κ, where the asymptotic behaviour of the modified Bessel

function gives

ZCL ≃
(
∫

dφ

)
∫

d2x eSCL(x)

√

κ r

2π
e−κ (r−x) . (13)

Importantly, κ(r − x) > 0 so that the κ dependent terms of (13) are a Gaussian regulari-

sation of the delta function. The support of the delta function arising in the κ → ∞ limit

are those vectors x for which

κ(r − x) = 0 =⇒ y = 0 and x ≥ 0.

The condition y = 0 corresponds to our chosen gauge condition, but the condition x ≥ 0

restricts us to only the FMR, i.e. the Gribov copy at x < 0 is not seen by the partition

function. Explicitly:

lim
κ→∞

√

κ r

2π
e−κ(r−x) = |x| θ(x) δ(y) , (14)

where θ is the Heaviside step function. Using this in (13) our final result for the κ → ∞
limit is:

Z
CL

=

(
∫

dφ

)
∫

d2x eSCL(x) θ(x) |x| δ(y), (15)

Our approach has not only correctly produced the gauge fixing constraint in terms of

the δ function and the Faddeev–Popov determinant |x|, but also the correct “horizon

function” [50, 51] θ(x), which singles out the FMR to the right of the Gribov horizon at

x = 0. In Figure 1 we give contour plots of the κ dependent fraction in (12), at κ = 16. We

clearly see the FMR emerging as the domain of support. The discussion of a more general

class of gauge fixing functions is left to Appendix B.

2.3.2 Example: U(1) Landau gauge

As a second example we consider U(1) gauge theory in Landau gauge. Although this does

not have a traditional Gribov problem, zero-modes must be eliminated in order for the

Faddeev-Popov determinant to be non-zero.

The gauge fields Aµ(x) change under gauge transformations as

Ω(x) = eiλ(x) , AΩ
µ (x) = Aµ(x) + ∂µλ(x) . (16)
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Figure 1: Contour plots of the κ dependent fraction in (12), at κ = 16. The support of

this combination of Seff and Sfix, and thus of the partition function Z
CL
, is restricted to the

FMR at large κ.

We choose Dirichlet boundary conditions:

Aµ(x)|x∈∂V = 0, λ(x)|x∈∂V = λ0 (17)

with λ0 being constant. The gauge fixing action for Landau gauge is given by

Sfix[A] = −m2

∫

d4x AµA
µ(x) , (18)

where the “mass” m acts as a gauge fixing parameter. This gauge fixing action generates

the Landau gauge condition via

δ

δλ(x)
Sfix[A

λ] = 0 =⇒ ∂µAλ
µ = 0 . (19)

Given the boundary conditions (17), it follows that any λ(x) may be written

λ(x) = λ0 + λ(x) . (20)

where λ0 is the surface value of λ(x) and λ(x) vanishes on ∂V (λ may be decomposed as a

sum over the non-zero Fourier modes of the Laplace operator). The measure on the algebra

elements λ is inherited from the group, so that DΩ = dλ0Dλ̄. Note that the gauge fixing

action (18) is invariant under constant gauge transformations since A → A+∂λ = A+∂λ.

We must adopt some prescription to deal with the zero modes and to this end we will
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include in our measure a delta function δ(λ0) which kills the zero mode and makes the

d’Alembertian � invertible. We are therefore led to propose the following form for the

effective action:

eSeff[A] =

∫

Dλ exp
(

Sfix[A
λ]
)

= det−1/2(−m2
�) exp

(

− Sfix[A
T ]
)

. (21)

The transverse gauge field AT is defined by

AT
µ =

(

ηµν −
1

�
∂µ∂ν

)

Aν , (22)

and is gauge invariant. This result may be used in (7) to obtain the partition function of

U(1) gauge theory. We evaluate

Sfix[A]− Seff[A] = −m2

∫

d4x AL
µA

Lµ +
1

2
log det(−m2

�) , (23)

where the longitudinal part of the field is defined by AL ≡ A − AT . Inserting our repre-

sentation of unity into the partition function we find that for this U(1) theory

Z = det−1/2(−m2
�)

∫

DAµ exp
(

− SYM[A]−m2

∫

d4x AL
µA

Lµ
)

. (24)

Note that the gauge fixing parameter m acts as a mass for the longitudinal gauge fields. In

the large mass limit, these decouple from the partition function leaving us with transverse

fields only.

2.3.3 Example: SU(2) and weak gauge fixing

In our final example we consider SU(2) Yang-Mills theory, in lattice regularisation, with

the gauge fixing functional

Sfix[U
Ω] = κ

∑

x,µ

trUΩ
µ (x), µ = 1 . . . 4 , (25)

which implies (lattice) Landau gauge upon extremisation. When applied to the partition

function Z, the (local) maxima of Sfix give the dominant contributions at large κ. We refer

to this as the ‘strong gauge fixing’ limit.

As we have illustrated with our previous models the use of the effective action approach

is not limited to the large κ regime. Here, we take κ ≪ 1, the ‘weak gauge fixing’ limit,

and calculate the effective action perturbatively in κ. Expanding the defining equation (4)

and noting that Sfix is of order κ, we find, up to fourth order in κ,

Seff [U ] =
1

2

〈

S2
fix

〉

+
1

24

[

〈

S4
fix

〉

− 3
〈

S2
fix

〉2
]

+O(κ6) , (26)

〈Sn
fix〉 :=

∫

DΩ Sn
fix[U

Ω]. (27)
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For SU(2), terms with an odd power of κ vanish upon integration over Ω. The term

quadratic in κ is independent of the links since there is no gauge invariant combination of

two link variables apart from a constant:

〈

S2
fix

〉

=
κ2

4
Nl, (28)

where Nl is the number of links on the lattice. The calculation of the fourth order term is

tedious but straightforward. We find:

〈

S4
fix

〉

− 3
〈

S2
fix

〉2
=

κ4

8
Nl +

κ4

64

∑

p

1

2
trPp[U ], (29)

where the sum extends over all plaquettes, Pp. Inserting (29) and (28) in (26), we finally

obtain:

Seff [U ] = Nl

[

1

2

(κ

2

)2

+
1

12

(κ

2

)4
]

+
1

4

(κ

2

)4∑

p

1

2
trPp[U ] +O(κ6). (30)

For sufficiently small κ, the effect of Seff [U ] is just to correct the coefficient β of the

plaquette in the Wilson action, showing explicitly that Seff[U ] is gauge invariant. Terms

such as the 1× 2 Wilson loop appear at order κ6.

3 Non-perturbative dressing

In this section we will introduce gauge invariant heavy quarks into the above approach

to the partition function. We will adopt a Schrödinger representation, considering gauge

invariant states constructed in a single time slice. Transition amplitudes between such

states will be discussed in section 4. We begin by briefly reviewing the construction of

gauge invariant charges [52].

A gauge invariant charged state |Q 〉may be constructed from a fermionic state q(x)| 0 〉
by ‘dressing’ the latter with an appropriate function h[A] of the gauge field A,

|Q 〉 := h[A](x) q(x)| q 〉 . (31)

From the transformation properties of the fermion, q(x) → Ω(x)q(x), requiring gauge

invariance of the state |Q 〉 implies that the dressing h[A] transforms as

hΩ[A](x) = h[A](x) Ω†(x) . (32)

Dressings may be constructed through a field–dependent gauge transformation which ro-

tates a given field A into a gauge χ[A] = 0 . The dressing factor is not unique and should
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be selected according to its physical properties [53,54]. For example, the dressing describ-

ing a single static quark in SU(Nc) comes from the field dependent rotation into Coulomb

gauge defined by

∂i

(

hAi h
−1 + ih ∂ih

−1

)

= 0 . (33)

From this example it is clear that the above dressing approach is sensitive to the Gribov

problem of Coulomb gauge: although a gauge invariant charge may be constructed pertur-

batively from a solution of (33), Gribov copies imply that the dressing factor is not well

defined non–perturbatively [55]. This offers a route to understanding confinement as this

lack of single observable quarks is in agreement with experiment. The open dynamical

question is how the Gribov ambiguity produces the physical scale of hadronic multi–quark

systems.

3.1 Dressing by projection

In this section we review the projection, or group integration, method of [32–37] to con-

struct gauge invariant states, and then make the connection with the partition function

above. Consider, for illustration, the group integral

h[A](x) :=

∫

DΩ Ω(x) eW [AΩ] , (34)

with an, a priori arbitrary, weight function exp(W [A]). It may be checked that (34) obeys

the transformation law (32) and therefore gives a dressing for a single charge. Dressings for

multi–fermion states may be similarly constructed by inserting the appropriate factors of

Ω or Ω† under the group integral. In this paper we propose the weight functional W = Sfix,

which will allow us to combine the projection approach with the construction of the gauge

fixed partition function discussed in section 2.

We have made two assumptions in writing down these dressings: (i) the group inte-

gration exists (this is certainly the case in, e.g., lattice gauge theory), and (ii) the group

integration does not yield a vanishing result for h[A].

The latter assumption is more restrictive. Indeed, we will see below that (ii) is not

fulfilled for the Coulomb dressing, and that (34) needs modifications for this important

case. In fact we will see that the required changes allow us, importantly, to attribute a

global charge to our locally gauge invariant states.

Let us first look at an Abelian example of this.

3.2 Example: U(1) dressing and zero modes

In this example we construct a U(1) dressing from the Coulomb gauge fixing functional.

To illustrate the importance of flat directions, i.e. invariance under some class of gauge
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transformations, in Sfix, and how they are related to global charge, we will work in a finite

cubic volume V = L3, with boundary ∂V (recall our states are defined in an initial time

slice). We again take Dirichlet boundary conditions on Ai(x), and λ(x) constant on ∂V

so that we may write λ(x) = λ0 + λ(x), analogously to (20).

The gauge fixing functional for Coulomb gauge is

Sfix[A] = −m

∫

V

d3x Ai(x)Ai(x) . (35)

We would now like to perform the U(1) analogue of the group integration (34) to construct

a dressing for a U(1) fermion. Again, the measure is DΩ = dλ0Dλ. However, Sfix[A] is

invariant under constant transformations. It therefore does not see the zero mode λ0, as

Sfix[A
λ] = Sfix[A

λ]. It follows that the integral over λ0 vanishes, and therefore so does the

dressing. To avoid this we once again add δ(λ0) to the group measure and find

h[A](x) =

∫

dλ0Dλ δ(λ0) exp
(

iλ(x) + Sfix[A
λ]
)

=

∫

Dλ exp
(

iλ(x) + Sfix[A
λ]
)

= N exp
(

Sfix[A
T ]
)

exp
(

i△−1∂iAi(x)
)

.

(36)

Here N = det
−1/2
D (−m∇2) exp

[

△−1
xx/4m

]

is a normalisation factor which is IR finite but

UV divergent. The inverse Laplacian △−1 is well defined on Ai as the fields obey Dirichlet

boundary conditions. The transverse field AT
i is gauge invariant while the longitudinal

term △−1∂iAi is non–invariant. One may check using any of the expressions in (36) that

the behaviour of h under a gauge transformation α(x) = α0 + α(x) is

h[Aα](x) = h[A](x) e−i α(x) . (37)

We see that excluding the zero modes from the integral (36) has given us a dressing which

transforms as in (32) under local transformations, but is insensitive to global transforma-

tions. It follows that the dressed fermion state transforms with a constant phase,

|Qα 〉 = h[A](x)e−iα(x) eiα(x)q| 0 〉 = eiα0 |Q 〉 , (38)

which allows us to assign a global charge of one to these states. We now consider the

analogous Coulomb dressed state in SU(Nc).

3.3 Example: multi-quark states in SU(Nc)

The Coulomb gauge fixing functional in SU(Nc), using lattice regularisation, is

Sfix[U
Ω] = κ

∑

x,l=1...3

1

Nc

trUΩ
l (x) . (39)
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As in the U(1) example above, Sfix is invariant under constant gauge transformations C

because of the cyclic invariance of the colour trace. The corresponding dressing obeys

h[U ] =

∫

D(ΩC) Ω eSfix[U
(ΩC)] =

∫

D(ΩC) (ΩC) eSfix[U
ΩC ]C† = h[U ]C† , (40)

and therefore vanishes. The difference between this and the U(1) example is that the

measure on SU(Nc) does not allow us to separate out the constant gauge transformations

and preserve the dressing property (32). For the remainder of the paper we confine ourselves

to multi–quark singlet states which are invariant under global transformations. Let us

concentrate on physically relevant states such as mesons and baryons adapting the methods

of [35] for our purposes.

For example, the dressing for a baryonic state in SU(3) would be

h(3)[U ]ikm(z,y,x) =

∫

DΩ ǫrstΩri(z) Ωsk(y) Ωtm(x) e
Sfix[U

Ω] . (41)

The baryonic trial state is invariant under global transformations C since

ǫrstCri Csk Ctm = det(C) ǫikm = ǫikm.

The dressing for a quark–antiquark state appears as a straightforward generalisation of

(34),

h(2)[U ](y,x) =

∫

DΩ Ω†(y) Ω(x) eSfix[U
Ω] , (42)

This dressing transforms homogeneously,

h(2)[UG](y,x) = G(y) h(2)[U ](y,x)G†(x) , (43)

and is invariant under constant transformations. The quark–antiquark state

|QQ̄ 〉 := q̄(y) h(2)[U ](y,x) q(x) |0〉 (44)

is therefore gauge invariant.

In the strong gauge fixing limit, the dominant contribution to the dressing comes from

the gauge transformation which globally maximises the gauge fixing functional. This is the

transformation ΩFMR[A](x) which transforms a given A to its gauge equivalent configura-

tion in the FMR, so for the mesonic states

|QQ̄ 〉 ∼ q̄(y) Ω†
FMR(y) ΩFMR(x) q(x) |0〉 eSfix[A]

∣

∣

∣

∣

κ≫1

. (45)

In this case, the external quarks are dressed by those gauge transformations which rotate

the gauge field into the FMR. In the following section we use this result to derive our main

finding – we will be able to carry out the strong gauge fixing limit analytically without

constructing the FMR explicitly.
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4 Applications

4.1 The heavy quark potential

We now use the formalism above to address, in SU(2) gauge theory, the static potential

of a heavy quark–antiquark pair made gauge invariant via Coulomb dressing. The ground

state energy in this channel depends on the quark–antiquark separation r and equals the

static potential V (r). Using the “mesonic dressing” (42), we calculate the matrix element

(where r = |x− y|)

ρκ(r, T ) =
〈QQ̄ |κ e−HT |QQ̄ 〉κ

〈0|e−HT |0〉 , (46)

|QQ̄ 〉κ = q̄(y) h(2)(y;x) q(x) |0〉 ,

where H is the Yang-Mills Hamiltonian. Note the dependence of the states on the gauge

fixing parameter κ. For Coulomb dressing, the gauge fixing functional is separately defined

at each time slice and depends on time t through the time dependence of the background

field Uµ(x):

Sfix[U ](t) = κ
∑

x, l

1

2
trUl(x, t). (47)

The static quark–antiquark potential V (r) can be extracted from the large T limit of ρ(r, T )

via

ρκ(r, T ) →
∣

∣〈2|QQ̄ 〉κ
∣

∣

2
e−V (r)T , (48)

where |2〉 is the true ground state in the quark–antiquark channel. Our aim will be to

consider the strong gauge fixing limit κ → ∞ for which the quark–antiquark trial state is

dressed with glue from the FMR (see (45)). Given that the static heavy quark propagator

from time 0 to T is proportional to the so-called “short” Polyakov line [56], i.e.,

P [U ](x, 0, T ) =
∏

t∈[0,T ]

U0(x, t) . (49)

we finally obtain for ρκ in (46)

ρκ(r, T ) =
〈

Ω†(x, 0)P [U ](x, 0, T )Ω(x, T ) Ω†(y, T )P †[U ](y, 0, T )Ω(y, 0)
〉

F
, (50)

where the latter expectation value is defined by

〈O〉F = N−1

∫

DUµ DΩ O eSYM[U ]+SF[U
Ω] , N ≡

∫

DUµ eSYM[U ]. (51)

Here the integral DΩ is initially taken over the gauge transformations in the initial and

final time slices, defining the states. However, with a properly normalised Haar measure

14



this may be extended to the entire lattice, which is how we are to understand DΩ here and

below. We have also introduced the total gauge fixing action by

SF[U ] = Sfix[U ](0) + Sfix[U ](T ). (52)

4.2 The weak gauge fixing limit

The gauge fixing action (52) contains the gauge fixing parameter κ which controls the

overlap of the Coulomb dressed quark–antiquark state with the true ground state. In fact,

for κ = 0, our ansatz for the trial state vanishes, leaving us with a null result for ρκ(r, t)

in (46). For small but non-vanishing κ, the overlap is non-zero, and we should be able to

recover the full static potential in this limit of weak gauge fixing.

Let us consider ρκ(r, T ) in (50) in leading order of an expansion with respect to κ. For

this purpose, we will first perform the integration of Ω using techniques familiar from the

strong coupling expansion of gauge theories. To leading order, we may expand the gauge

fixing action:

eSF[U
Ω] ·
=

∏

x, l

(

1 +
κ

2
trUΩ

l

)

, x ∈ (x, 0), (x, T ), l = 1 . . . 3. (53)

Subsequently, we perform the integration over the gauge transformations restricting to the

minimal power of κ for which (53) produces a non-vanishing result. This technique is

standard textbook material [57] so that we only quote our final result,

ρκ(r, T ) =
(κ

2

)2(r/a+1)

W (r, t) , (54)

where W (r, t) is the rectangular Wilson loop of spatial and temporal extent r and T ,

respectively. The static potential can be recovered in the standard fashion

W (r, T ) ≈ |〈2|a〉|2 e−V (r)T , (55)

where |a〉 is the axially dressed quark–antiquark trial state [58,59], usually associated with

a chromo-electric string joining the quark and antiquark.

There are two important implications of (54): (i) the κ dependent prefactor does not

influence the static potential V (r) implying that we analytically find the correct potential

for small but non-zero κ; (ii) the overlap of our gauge invariant trial state with the true

ground state is quite poor, at least in the weak gauge fixing limit:

|〈2|QQ̄〉κ|2 =
(κ

2

)2(r/a+1)

|〈2|a〉|2 , (56)

The overlap is even lower than that associated with “thin” Wilson lines. For practical

calculations using lattice gauge theory, we will seek values κ of order one.
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4.3 Strong gauge fixing and the ice-limit

In the last subsection we have shown that we can recover the static quark–antiquark

potential in the weak gauge fixing limit without being hindered by the Gribov problem.

We now show that this also holds for strong gauge fixing. To contrast our approach with

the common difficulties previously encountered we will first show how the Gribov ambiguity

reappears for large values of κ. However, we will then demonstrate how to circumvent the

Gribov problem in the dressing approach by taking the limit κ → ∞ in an appropriate

and novel fashion.

Consider the matrix element ρκ(r, T ) given by the functional integral (50), and how we

might attempt to perform the orbit integrations DΩ before the integration over link vari-

ables, Uµ. In other words, we integrate over Ω treating the links Uµ as a fixed background

configuration. Hence, in this step, the matrices Ω are considered as the fundamental de-

grees of freedom of a theory with probability weight exp{SF[U
Ω]}. For SU(2) gauge theory

we have

Ω = ω0 + i~ω · ~τ , ω2
0 + ~ω · ~ω = 1 ,

identifying these degrees of freedom as 4-dimensional vectors (spins) of unit length such

that the associated partition function possesses a global O(4) symmetry. These spins

interact only with their nearest neighbours. As the background links provide a nontrivial

“metric” for these interactions the partition function describes a spin-glass. In the strong

gauge fixing limit, κ → ∞, this spin-glass will approach its ground state. However, for

generic background fields, there exists a variety of highly degenerate near ground-states

leading to frustration of the system. Finding the global maximum of SF[U
Ω],

SF[U
Ω]

Ω−→ max. (57)

amounts to identifying the true ground state of this spin-glass. It is well known that

dealing with this problem is extremely costly and beyond the scope of standard numerical

techniques such as importance sampling. Hence, the Gribov problem has reappeared in

disguise, as the problem of simulating a spin glass at low temperatures.

The crucial idea to avoid any Gribov (or spin-glass) problem is to trivialise the orbit

integration over Ω by factoring it out altogether. This can be done as follows. First note

that in the matrix element ρκ from (50) we may write

Ω†(x, 0)P [U ](x, 0, T )Ω(x, T ) = P [UΩ](x, 0, T ).
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Figure 2: Illustration of the ice-limit: action density and orientation of the finite length

Polyakov lines (vertical lines). The low action planes (at t = 0 and t = T ) are clearly

visible.

Hence, using the gauge invariance of action and Haar measure, we obtain for Nρκ
∫

DUµ DΩ Ω†(x, 0)P [U ](x, 0, T )Ω(x, T ) Ω†(y, T )P †[U ](y, 0, T )Ω(y, 0) eSYM[U ]+SF[U
Ω]

=

∫

DUµ DΩ P [UΩ](x, 0, T )P †[UΩ](y, 0, T ) eSYM[U ]+SF[U
Ω]

=

∫

DUΩ
µ DΩ P [UΩ](x, 0, T )P †[UΩ](y, 0, T ) eSYM[UΩ]+SF[U

Ω]

=
(

∫

DΩ
)

∫

DUµ P [U ](x, 0, T )P †[U ](y, 0, T ) eSYM[U ]+SF[U ],

and, indeed, the gauge group integration factors out as a trivial volume factor,
∫

DΩ = 1.

Thus, our final answer for ρκ becomes

ρκ(r, T ) = N−1

∫

DUµ P [U ](x, 0, T )P †[U ](y, 0, T ) eSYM[U ]+SF[U ] (58)

N =

∫

DUµ eSYM[U ]. (59)
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Figure 3: The static quark–antiquark potential from simulations with κ = 2.0 (left) and

in the ice-limit κ = ∞ (right).

It remains to discuss the strong gauge fixing limit. In contrast to (57) we now need to find

the maximum of the gauge fixing action with respect to the links, Uµ,

SF[U ]
Uµ−→ max. (60)

Crucially, this does not constitute a spin-glass problem as the global maximum of (60) is

easily obtained:

Ul(x, t = 0) = 1, Ul(x, t = T ) = 1, l = 1 . . . 3. (61)

Hence, for infinitely large κ, the spatial links of the time-slices t = 0 and t = T are both

frozen to the perturbative vacuum. We therefore call the limit κ → ∞ the “ice-limit” of

the integral dressing approach. The (finite length) Polyakov lines start and end on the

frozen time slices. Figure 2 shows the action density in the cube consisting of the time axis

and two spatial directions.

We now present our numerical results. For finite values of κ (with κ not too large

to avoid ergodicity problems in the spin-glass limit), we generated configurations (Uµ,Ω)

corresponding to the partition function
∫

DUµ eSYM[U ]+SF[U ] =

∫

DUµ DΩ eSYM[U ]+SF[U
Ω] , (62)

SYM[U ] = β
∑

x,µ>ν

1

2
trPµν [U ](x) , (63)
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recalling
∫

DΩ = 1. In order to ensure that the excited states are sufficiently suppressed,

the Euclidean time T must be chosen large enough. Here, we have considered all values

T ≥ Tth for the straight-line fit of

− ln ρ(r, t)κ = V (r) T − ln |〈2|QQ̄〉|2κ (64)

where the asymptotic form (48) of ρκ(r, t) was used. Our final result for V (r)a using a 164

lattice, β = 2.3 and 10000 independent configurations is shown in Figure 3 (left panel).

The line is a fit of the Tth = 4 data to

V (r)a = σa2
r

a
− α/(r/a) + V0, σa2(β = 2.3) = 0.14 , (65)

where the known value for the string tension in lattice units was used. We find that Tth = 4

is sufficient to decouple the excited states. A good agreement with the potential obtained

with standard overlap enhancing techniques is observed.

We finally study the ice-limit κ → ∞. In this case, configurations were generated using

the standard partition function except that the spatial links in time slices t = 0 and t = T

were fixed to unity. Using β = 2.3 and a 164 lattice, the static potential was extracted from

10, 000 independent configurations in the ice-limit. The result is shown in Figure 3 (right

panel). We observe that rather large values for Tth are required to decouple the excited

states in this case. One needs Tth = 6 to achieve good results for V (r). Note, however, that

no smearing was involved and gauge fixing ambiguities (‘Gribov noise’ [56]) are absent.

5 Conclusions

Non-perturbative gauge fixing is a key ingredient of many approaches to Yang-Mills theory.

In order to have full analytic or numerical control all such approaches must confront and

understand the Gribov problem as this unavoidably arises in any direct imposition of a

gauge fixing condition. In this paper we have seen how to by-pass this problem both in

the definition of an unambiguous partition function and in the construction of suitable

mesonic states. To this end we have designed a novel and unified framework that combines

the properly gauge fixed path integral introduced in [25, 26] and a generalised dressing

approach based on group integration to construct gauge invariant states. The feasibility

of this framework has been explicitly demonstrated for various examples ranging from the

Christ-Lee model, U(1) gauge theory to SU(2) Yang-Mills theory.

From our new vantage point, the emergence of the Gribov problem could be traced

back technically to a problem associated with the order of two integrations extending over

the gauge orbits and field configurations, respectively. If the gauge group integration is

performed before the average over the gluon fields, the Gribov problem arises as the problem

to find the ground state of a spin-glass. However, since gauge invariance is manifest in
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our approach, the Gribov problem can be avoided by interchanging the integrations over

gauge group and gluon fields. In this case, the (‘ice’) limit of strong gauge fixing can be

performed analytically, and the external matter fields become properly dressed by gauge

transformations unambiguously connected to the FMR of Coulomb gauge. The numerical

feasibility of the method was finally demonstrated by a lattice calculation of the static

quark antiquark potential from trial states in the ice limit, living on (initial and final) time

slices frozen to the perturbative vacuum.

Acknowledgments: The authors thank Andreas Wipf for helpful discussions. The

numerical calculations in this paper were carried out on the HPC and PlymGrid facilities

at the University of Plymouth.

A Faddeev-Popov method and Gribov problem

The standard approach to (nonabelian) gauge fixing is the Faddeev-Popov method. Let

us briefly recall it in the slightly generalised framework of [4–6]. In this modified approach

one generalises the usual representation of unity (3) to the topological invariant

N [A] =

∫

Dθa DetM [A] δ
(δSfix[A

Ω]

δθa(x)

)

(66)

M [A]ab(x, y) =
δ2Sfix[A

Ω]

δθa(x)δθb(y)
. (67)

Under the idealising assumption that there is a unique solution to the gauge fixing condition

(featuring in the δ-function in (66)) the standard identity (3) is recovered,

N [A] = 1 , (68)

with a gauge invariant Faddeev-Popov determinant, DetM [A] = DetM [Ag]. This may in

turn be used to remove the gauge group volume from the partition function,

Z =

∫

DAµ eS[A] =

∫

DAµ Dθb DetM [A] δ
(δSfix[A

Ω]

δθa(x)

)

eSYM[A]

=

∫

DAΩ
µ Dθb DetM [AΩ] δ

(δSfix[A
Ω]

δθa(x)

)

eSYM[AΩ],

exploiting the invariance of the Haar measure, the action and the Faddeev-Popov determi-

nant. Interchanging the order of integration and renaming AΩ
µ → Aµ finally yields

Z =

(
∫

Dθb
)

∫

DAµ DetM [A] δ
(δSfix[A]

δθa(x)

)

eSYM[A]. (69)
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The latter equation is the desired result: the trivial factor from the gauge degeneracy

has been factored out from the partition function, and the residual integration can be

straightforwardly evaluated by means of perturbation theory.

The crucial observation, due to Gribov [2], is that the gauge fixing condition has many

solutions. Hence, the group integration in (66) becomes a sum over all residual gauge

transformations which cast a given background field Aµ into one of its Gribov copies. Due

to the compactness of the group integration this implies that (68) is actually replaced by

N [A] = 0 , (70)

so that also this generalised Faddeev-Popov approach remains ill-defined [5, 6] .

B Christ-Lee model revisited

In order to make contact with the Faddeev-Popov method we need to evaluate, from (12),

the expression

Seff [x] = Sfix[x]− ln

∫

dφ eSfix[x
φ]

for large values of κ, and for an arbitrary Sfix. To this end, let φ0 denote the gauge

transformation which transports the vector x along its orbit to the global maximum of the

gauge fixing action. For large κ we may use a semi-classical approximation to evaluate Seff,

via:

ln

∫

dφ eSfix[x
φ] = Sfix[x

φ0 ]− 1

2
lnM [x] + ln

√
2π, (71)

M [x] = −∂2Sfix[x
φ]

∂φ2

∣

∣

∣

φ=φ0

, (72)

where M is the gauge invariant “Faddeev-Popov matrix”. It follows that (12) becomes

Z = (2π)

∫

d2x eSCL
(x) eSfix[x]−Sfix[x

φ0 ] e
1
2
lnM [x]−ln

√
2π . (73)

For Sfix[x
φ] as in (9) with v = (1, 0) and for a given vector x = (x, y), φ0[x] is defined by

x cos φ0 − y sinφ0
φ0→ max.

This implies

x cosφ0[x] − y sinφ0[x] = r, Sfix[x
φ0 ] = −κ

2

(

r − 1)2.

and indeed the Faddeev-Popov matrix is gauge invariant, M [x] = κr.
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Returning to a general Sfix, consider the weight factor P (x) = exp{Sfix[x]− Sfix[x
φ0 ]}.

This will restrict the field (here, x) integration to the FMR for large values of κ. To show

this, it is convenient to decompose the vector x into a part x
FMR

∈ FMR and a fluctuation

along the gauge orbit,

x = x
ϕ
FMR

.

In contrast to the Faddeev-Popov approach, this must not be done for the 2-dimensional

space as a whole but only locally for x close to the FMR. Since

∂Sfix[x
ϕ]

∂ϕ

∣

∣

∣

x∈x
FMR

= 0,

we are led to

eSfix[x]−Sfix[x
ϕ0 ] = h(x

FMR
) δ

(

∂Sfix[x
ϕ]

∂ϕ

∣

∣

∣

x∈x
FMR

)

. (74)

The weight function h(x
FMR

) can be calculated by integrating ϕ over a small interval

around zero. We will assume that the map x ↔ (x
FMR

, ϕ) is invertible for x in a region

around the FMR. We stress, however, that this depends on the gauge choice and might not

be the case for more general settings thus hinting at a shortcoming of the Faddeev-Popov

approach. Under the above assumption, we use
∫

dϕ M(x
FMR

)δ

(

∂Sfix[x
ϕ]

∂ϕ

∣

∣

∣

x∈x
FMR

)

= 1

and find

h(x
FMR

) =

∫

dϕ M(x
FMR

) eSfix[x]−Sfix[x
ϕ0 ] ·

= M(x
FMR

)

∫

dϕ e−
1
2
M(x

FMR
)ϕ2

=
√

2πM(x
FMR

).

(75)

Inserting (75) and (74) in (73), we finally obtain the desired result,

Z = (2π)

∫

d2x eSCL
(x)M(x

FMR
) δ

(

∂Sfix[x
ϕ]

∂ϕ

∣

∣

∣

x∈x
FMR

)

, (76)

which is the starting point of the Faddeev-Popov method.
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