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Probing the ground state in gauge theories
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We consider two very different models of the flux tube linking two heavy quarks: a string linking
the matter fields and a Coulombic description of two separately gauge invariant charges. We compare
how close they are to the unknown true ground state in compact U(1) and the SU(2) Higgs model.
Simulations in compact U(1) show that the string description is better in the confined phase but
the Coulombic description is best in the deconfined phase; the last result is shown to agree with
analytical calculations. Surprisingly in the non-abelian theory the Coulombic description is better
in both the Higgs and confined phases. This indicates a significant difference in the width of the
flux tubes in the two theories.

I. INTRODUCTION

We can naively think of a heavy meson as being made
up of a static quark and a static anti-quark separated
by some distance. Around these fermions there will be
a cloud of glue whose form is unknown but is typically
thought of as being ‘cigar shaped’ (we neglect light quark
flavours in this paper).

It is important to realise that the matter fields in an
interacting gauge theory, which are not locally gauge in-
variant, cannot be directly interpreted as observables.
Thus a crucial role of the glue around quarks is to make
the system gauge invariant. It is easy to imagine doing
this by linking the fermions by a string like gluonic line.
In an operator approach this is the familiar path ordered
exponential which, assuming it to have a non-zero over-
lap with the ground state, is evolved in time to form
the rectangular Wilson loop approach to the interquark
potential.

It is worth noting that in such a string like state the
only gauge invariant object is the overall colourless me-
son state. There are no separately gauge invariant con-
stituent quarks and, even at small interquark separations,
there is no sign of a Coulombic potential.

While producing a confining potential might be
thought to compensate for this deficit, it is well known
that lattice simulations are greatly improved by ‘smear-
ing’ the string. This improvement is due to the naive
Wilson loop being formed from an initial state where the
flux is trapped on an infinitesimally thin path. As we
will see below in U(1) theory, where we can calculate an-
alytically, this leads to the stringy description actually
having zero overlap with the true ground state unless a
UV cutoff (such as a finite lattice spacing) is imposed.
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An alternative description, which may be expected to
be closer to the ground state at shorter separations in
QCD, is to ‘dress’ the quarks separately so that they
are each locally gauge invariant. For static quarks this
may be done via a Coulombic dressing which has been
shown [1] to generate the perturbative interquark poten-
tial (parts of which have been verified to next to next
to leading order). It also allows an identification of
the gluonic structures which generate the anti-screening
and screening interactions, and incorporating this dress-
ing removes perturbative infra-red divergences in on-shell
Green’s functions. Beyond perturbation theory the Gri-
bov ambiguity sets a fundamental limit [2] on the observ-
ability of individual dressed quarks, but it has previously
[3] been shown that such Coulombic states may never-
theless be used on the lattice simply by averaging over
Gribov copies.
In this paper we will compare the string like (or ‘axial’)

and Coulombic descriptions of a heavy quark-antiquark
system. We will do this analytically for deconfined U(1)
and on a lattice for both compact U(1) and the SU(2)
Higgs model. We will see that there are great differences
in the two theories.
We make contact between our analytic and numerical

studies of the ground state through a particular probe,
namely the ratio

|〈ψ′ | 0〉|2

|〈ψ | 0〉|2
, (1)

for any two states |ψ 〉 and |ψ′ 〉 and where | 0 〉 is the
(typically unknown) ground state of the theory. Simply,
if this ratio is less than one then the overlap of the ground
state with |ψ 〉 is better than the overlap with |ψ′ 〉, and
we should expect |ψ 〉 to yield the closer description of
physics in the ground state. If the ratio is greater than
one then |ψ′ 〉 has the better overlap.
This ratio can be realised both analytically, for the

deconfined U(1) theory, and on the lattice through cal-
culation of the large Euclidean time limit

lim
t→∞

〈ψ′ |e−Ĥt|ψ′ 〉

〈ψ |e−Ĥt|ψ 〉
, (2)
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since in Euclidean space the large time limit is a vacuum
projector [4].
This paper is organised as follows. We begin in Sec-

tion II by analysing a system of two non-confined abelian
charges. This explicit investigation will allow us to build
up ideas and methods which will be applicable more gen-
erally. We will see that the Coulombic description yields
the ground state while the axial system does not yield
the correct potential and is severely divergent. This is in
good agreement with physical expectations. In Section
III we describe the lattice techniques we employ and go
on to examine the ground state in compact U(1) in both
the deconfined and confining phases. It will be shown
that the simulations in the deconfined phase are in good
agreement with the analytical results. In Section IV we
apply our lattice techniques to an SU(2) Higgs theory.
Finally in Section V we give our conclusions.

II. ANALYTIC TREATMENT OF
DECONFINED U(1) THEORY

In this section we consider QED with very heavy
fermions, identified with static external sources. This
is an ideal testing ground for our methods, as we may
solve this theory exactly and analytically. This will al-
low us to build up an intuition for the physics involved
before proceeding to more complex systems. The iden-
tification of the heavy fermions with physical objects is,
however, somewhat suspect, as the Lagrangian fermions
are not gauge invariant. Creating physical charges in
gauge theories is the focus of the dressing approach, to
be discussed below. We work in Weyl gauge, A0 = 0, [5]
and with very heavy fermions our Hamiltonian is simply
that of free gauge fields,

H =
1

2

∫

d3x (E2 +B2) , (3)

where B is the magnetic field. Quantisation in Weyl
gauge is straightforward [5, 6, 7] as gauge potentials and
electric fields are canonical variables. Hence we impose
the non-zero equal time commutator

[Âi(x, t), Êj(y, t)] = iδijδ
3(x− y) . (4)

We will work in the Schrödinger representation where
the commutator (4) is realised on the state space by di-

agonalising the field operator Âi and taking Êi to act
as a derivative, in direct analogy to the position repre-
sentation of quantum mechanics. States |Ψ, t 〉 are then
identified with functionals Ψ[A, t] of a vector field A on
which the operators act as

〈A |Âi(x)|Ψ, t 〉 = Ai(x)Ψ[A, t] ,

〈A |Êi(x)|Ψ, t 〉 = −i
δ

δAi(x)
Ψ[A, t] .

(5)

As we quantise the full gauge potential including its lon-
gitudinal gauge non-invariant part, we must implement

gauge invariance by imposing Gauss’ law on the Hilbert
space,

〈A |∂jÊj(z)|Ψ, t 〉 = −i∂j
δ

δAj(z)
Ψ[A, t] = ρ(z)Ψ[A, t] ,

(6)
where ρ(z) is the charge distribution of the fermionic
fields.
We will frequently use the transverse (T ) and longitu-

dinal (L) projectors, which in momentum space are

Tij(p) = δij −
pipj
|p|2

, Lij(p) =
pipj
|p|2

, (7)

and obey T + L = 1, TL = 0. Transverse fields and
derivatives are defined in a natural way by

fTi (p) := Tij(p)fj(p) , (8)

and similarly for longitudinal parts.

A. Dressed states in the abelian theory

The Lagrangian fermions are not gauge invariant. In
order to discuss physical, gauge invariant objects we dress
the fermions with a function of the gauge field, which we
write exp(W [A]). We will be interested in states with
two heavy fermions, where the state takes the form [8]

eW [A] q(x2)q
†(x1)| 0 〉 , (9)

for q and q† the heavy fermions and | 0 〉 the vacuum. In
this section we will construct the most general functional
W [A] which makes the state invariant under the residual
gauge transformations of Weyl gauge [47],

Aj(x) → Aλ
j (x) ≡ Aj(x) + ∂jλ(x) ,

q(x) → e−ieλ(x)q(x), q†(x) → eieλ(x)q†(x) .
(10)

These imply that W [A] must transform as

W [Aλ] =W [A] + ie λ(x2)− ie λ(x1) . (11)

Equivalently, Gauss’ law implies

−
∂

∂xi
∂

∂Ai(x)
W [A] = ie δ3(x−x2)−ie δ

3(x−x1) , (12)

which constrains only that piece of W [A] which is linear
in A to have longitudinal part

ie
1

∇2
∂jAj(x2)− ie

1

∇2
∂jAj(x1) . (13)

Here, Aj may be replaced with its longitudinal part
AL
j . This is called the ‘Coulomb dressing’, first pro-

posed by Dirac for modelling the gauge invariant static
electron [11]. The general dressing which gives a gauge
invariant charge-anticharge state is therefore

exp

[

ie
1

∇2
∂jAj(x2)− ie

1

∇2
∂jAj(x1) + J [AT ]

]

, (14)

for arbitrary J . We will investigate some of the choices
of J [AT ] below.
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B. The axial state

What other principles shall we use to construct our
dressings? Let us make an educated guess as to what a
gauge invariant state might look like. Taking a bottom-
up approach, we could think of beginning with the
ground state in the vacuum sector, i.e. in the presence of
no matter, ρ(z) = 0. This is the lowest, gauge invariant,
eigenstate of our Hamiltonian (3) which is easily found
to be given by the Gaussian

Ψ0[A
T ] := Det1/4

√

−∇2

× exp

[

−
1

2

∫

d3p

(2π)3
Ai(−p)|p|Tij(p)Aj(p)

]

,

(15)

Gauss’ law implying that this state is independent of AL
j

[48]. Now we add our fermion-antifermion pair, and ask
what else we must add to make them gauge invariant. A
common approach is to connect the sources by a string.
This gives us what we call the ‘axially dressed’ state χ,

χ[A] = exp

[

ie

∫

C

dziAi(z)

]

Ψ0[A
T ] . (16)

We will take the curve C to be the straight line from x1

to x2. Fourier transforming, it is easily checked that χ
is of the general form (14), with J being the line integral

of AT . Therefore χ[A] q(x2)q
†(x1)| 0 〉 describes a gauge

invariant state.
Have we found the ground state in the fermion-

antifermion sector? Far from it – the axially dressed
state (16) is not even an eigenstate of the Hamiltonian,
which, imposing a large momentum cutoff |p| < Λ, has
expectation value

〈χ |Ĥ |χ 〉 = ǫ0 −
e2Λ

4π2
+
e2

4π
Λ2|x2 − x1|+ . . . (17)

where the ellipses denote terms vanishing as Λ → ∞.
The first terms denote the vacuum energy,

ǫ0 :=

∫

d3x

∫

d3p

(2π)3
|p| , (18)

which obviously represents the total energy of a noninter-
acting photon ‘gas’ filling all space, and self-energies of
the sources. The final term in (17) gives a linearly rising
potential between the sources – i.e. they appear to be
confined! The cutoff Λ2 regulates a short distance diver-
gence δ2(0) coming from the infinitely small extension

of the string in the two directions perpendicular to n.
The potential diverges as we remove the cutoff, and the
axially dressed state is therefore infinitely excited [12].
In the classical theory it is known that the string be-

tween the sources radiates energy and decays in time to
an energetically more favourable state describing sources
surrounded by a Coulomb field [13]. We will consider the
quantum time development of this state below, but in
preparation we first construct the true ground state.

C. The ground state

Gauss’ law has already fixed the longitudinal piece of
our wavefunctionals to be the Coulomb dressing, which
is an eigenstate of the longitudinal part of the Hamil-
tonian. The lowest eigenvalue of the transverse part of
the Hamiltonian is just the vacuum functional Ψ0[A].
The ground state, or Coulomb dressed state, Φ in the
fermion-antifermion sector is therefore [7, 14, 15]

Φ[A] ≡ exp

[

ie
1

∇2
∂jAj(x2)−ie

1

∇2
∂jAj(x1)

]

Ψ0[A
T ] ,

(19)
with Φ[A] q(x2)q

†(x1) describing a static, gauge invari-
ant charge and anti-charge of minimal energy. The total
energy of the ground state is found to be IR finite but
UV divergent. For large values of the momentum cutoff
we find

EC := ǫ0 +
e2Λ

2π2
−

e2

4π|x2 − x1|

(

1 +O
(

Λ−1
)

)

, (20)

Again we have the vacuum and self energies. The fi-
nal term is finite as the cutoff is removed and gives the
Coulomb potential between the sources. The ground
state in the fermion-antifermion sector is therefore de-
scribed by two individually gauge invariant sources sur-
rounded by a Coulomb field.
Our dressed states (16) and (19) are related by

χ[A] = exp

[

ie

∫

C

dziAT
i (z)

]

Φ[A] . (21)

It is this extra transverse piece which, in the classical
theory, radiates away. We now study the time develop-
ment of our quantum states. In our functional picture,
time evolution described by the Schrödinger equation is
implemented by taking the inner product of states with
the Schrödinger functional. For the explicit form of this
functional see, e.g. [14, 16]. Here, the calculation reduces
to performing a Gaussian integral, with the result that
the axial state at time t is
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χ[A, t] = e−iECt Φ[A] exp

[

1

2
N (t)−

1

2
N (0) + e

∫

d3p

(2π)3
e−i|p|t

(

eip·x2 − eip·x1

n·p

)

nkA
T
k (p)

]

, (22)

N (t) := e2
∫

d3p

(2π)3
1

|p|
e−2i|p|t

(

1− cosp·(x2 − x1)

(n·p)2

)

niTij(p)nj , (23)

which defines N (t). There is no divergence at n·p = 0 in
any of our expressions, as the difference of exponentials,
above, always appears to ‘regulate’ the notorious axial
gauge divergence [17].
The axially dressed state, at time t, is comprised of

the Coulomb dressed state together with an additional
transverse contribution and a time dependent normalisa-
tion N (t). Imposing a momentum cutoff, the transverse
term and N (t) are regulated expressions which are sup-
pressed by rapid oscillations as t→ ∞. Alternatively, we
may use Abel’s limit [18, 19],

lim
t→∞

f(t) = lim
ǫ→0+

ǫ

∞
∫

0

ds f(s) e−ǫs , (24)

to study the large time behaviour of these oscillatory ex-
pressions. Physically, this limiting procedure adds a tiny
imaginary part to the energies in the Fourier represen-
tation of f which leads to exponential damping and the
appearance of imaginary energy denominators. Apply-
ing this, for example, to the transverse term we take the
limit

lim
ǫ→0+

∫

d3p

(2π)3
−iǫ

|p| − iǫ

(

eip·x2 − eip·x1

n·p

)

nkA
T
k (p) .

(25)
This is very similar to our original axial dressing but with
improved UV convergence. As ǫ→ 0 this expression van-
ishes, and the transverse contribution, along with N (t),
drops out. Therefore, pre-multiplying by the exponential

of the Coulombic energy, we find (with a chosen regular-
isation understood)

lim
t→∞

eiECtχ[A, t] = e−N (0)/2 Φ[A] . (26)

This result echoes that of the classical theory. We have
that both classically and quantum mechanically the ax-
ially dressed state decays to the Coulomb state in the
large time limit. The additional factor exp(−N (0)/2)
ensures conservation of probability.

D. Confined and deconfined U(1) charges

We have seen that the lowest energy state of a gauge in-
variant fermion–antifermion pair in U(1) gauge theory is
given by the Coulomb dressing, the inter-fermion poten-
tial being the expected Coulomb potential. Connecting
the fermions by a string gives an unphysical, infinitely ex-
cited state. It describes a confining potential between the
matter sources and decays to the energetically favourable
ground state.

Having found the ground state exactly in this sim-
ple theory, we may ask what use, if any, has the in-
finitely excited axial state? To answer this, note that
the Coulomb state Φ[A]q(x2)q

†(x1)| 0 〉 describes two in-
dividually gauge invariant fermions. This may be seen
from (19), as the Coulomb dressing factorises into two
parts,

Φ[A] = exp

[

ie
1

∇2
∂jAj(x2)

]

exp

[

− ie
1

∇2
∂jAj(x1)

]

Ψ0[A
T ] . (27)

The first exponential dresses q(x2), giving us a gauge
invariant fermion, and the second exponential makes
q†(x1) gauge invariant. In a deconfined theory this is
the situation we expect — individual charges exist and
are separately gauge invariant.

It is not possible to unambiguously factorise the axial
state into, similarly, one dressing for the charge and one
for the anticharge. Taking (16), we Fourier transform
and separate A into transverse and longitudinal parts,

writing the line integral as

ie

∫

d3p

(2π)3

(

eip·x2 − eip·x1

i|p|2

)

pkA
L
k (p)

+

(

eip·x2 − eip·x1

in·p

)

nkA
T
k (p) .

(28)

We have written out the longitudinal projector explic-
itly. The first term is precisely the Coulomb dressing,
as is necessary for gauge invariance. However, it is not
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possible to factorise the second, transverse, part of (28)
in a fashion similar to (27) without introducing new di-
vergences. For example, we could try to write,

eip·x2 − eip·x1

in·p
→

eip·x2

in·p
−

eip·x1

in·p
, (29)

but whereas the left hand side of this expression is regular
everywhere the right hand side requires the regularisation
of axial gauge poles.
What is the physical significance of this result? We

saw earlier that the axial dressing appeared to lead to a
confining potential. Physically, we therefore interpret the
lack of a natural factorisation as an absence of individ-
ually gauge invariant electrons and positrons. Instead,
there is only a single, neutrally charged, object bound by
a (thin) flux tube. It would seem, then, that in a confin-
ing theory our axial state could be a better model of the
true ground state than the Coulomb state.
A suitable toy model of such a confining theory is

compact QED, originally introduced by Polyakov [20]
who argued that the 4d lattice model has a confinement-
deconfinement phase transition. This was later proven
analytically [21, 22, 23], see also [24] and [25]. In the
confining phase we expect the electric field to be concen-
trated along a flux tube connecting the sources. Quali-
tatively, this does not look much like the Coulombic field
which we have seen is optimal so far, so the ground state
could well differ significantly from the simple functional
(19).
Although in this phase neither of our states will rep-

resent the true ground state we may use them to extract
information about it. We describe this method below
and proceed to apply it to compact QED in the follow-

ing section.

E. A ground state probe

What object are we to calculate which probes the
ground state? Rotating to Euclidean space we consider,
for any two states |ψ 〉 and |ψ′ 〉, the ratio

〈ψ′ |e−Ĥt|ψ′ 〉

〈ψ |e−Ĥt|ψ 〉
. (30)

In the large time limit contributions from excited states
are exponentially suppressed. This limit then projects
onto the ground state, call it | 0 〉, so that our ratio tends
to

|〈ψ′ | 0〉|2

|〈ψ | 0〉|2
. (31)

If the ratio is less than one in the limit then ψ has the
better overlap with the ground state, whereas if the ratio
is greater than one ψ′ is closer to the ground state.

Below we will examine the ratio for ψ′ = χ and ψ = Φ,
our axial and Coulomb states respectively. Writing r ≡
|x2 − x1| the ratio of interest to us is

R(r, t) :=
〈χ |e−Ĥt|χ 〉

〈Φ |e−Ĥt|Φ 〉
, (32)

where the r dependence is contained in the states. In the
deconfined U(1) theory we have studied so far is

R(r, t) = eECt〈χ |e−Ĥt|χ 〉 ,

= exp

[

− e2
Λ
∫

d3p

(2π)3
1

|p|
(1− e−|p|t)

(

1− cos(rn·p)

(n·p)2

)

niTij(p)nj

]

,

→ exp(−N (0)) as t→ ∞ ,

(33)

where the first line follows from Φ being an eigenstate.
In the large time limit this correctly reproduces the

mod squared overlap between the axial state and the
ground (Coulomb) state,

〈χ |Φ〉 = exp
(

−N (0)/2
)

. (34)

N (0) is UV divergent (so that the overlap formally van-
ishes, as one may expect for the overlap between a phys-
ical and an unphysical state), but with the UV regulator
in place N (0) is positive definite and so our ratio be-
comes |〈χ |Φ〉|2 < 1, as we would expect since |Φ 〉 is the
ground state and |χ 〉 is not.

The ratio is plotted in Figure 1. To make contact
with the lattice data of the following section, we take
e−2 = 1.05 and measure distance in units of π/Λ. In
these dimensionless units momentum is cut off at |p| < π
so that 1/Λ is associated with the lattice spacing. In-
creasing the value of the cutoff does not qualitatively
change the features of the plots. The integrand above
is positive semi definite so that (with the regulator in
place), we have R(r, t) < 1 for all r and t, as it must be
since Φ is the ground state and χ is not. This may be seen
in Figure 1, which also shows that the ratio decreases
rapidly with t to its asymptotic value of exp(−N (0)).
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FIG. 1: The ratio R(r, t) defined in (32) for unconfined
U(1). Units are discussed below (33). As the separation of
the charges increases the axial state becomes an increasingly
poorer description of the ground state.

We also observe that the ratio decreases as we increase
the separation r of the charges. Increasing the length
of the string concentrates more and more energy along
the lengthening flux tube, giving an increasingly worse
description of the true 1/r falloff of the Coulomb field.
We turn now to the confining phase.

III. A SIMPLE CONFINING MODEL:
COMPACT U(1)

There is no exact analytic treatment of compact QED,
although we note that the functional methods we employ
have been successfully applied in 2+1 dimensions [26, 27].
We therefore turn to lattice methods. In the following we
outline our numerical approach and go on to calculate the
ratio R(r, t). In the deconfined phase we will see that our
analytic results can be reproduced numerically, providing
a check on our methods. We will then go on to study the
confining phase.

A. Setting up compact QED on the lattice

In the lattice formulation, the degrees of freedom are
the fields

Uµ(x) = exp(iθµ(x)) , −π < θµ(x) ≤ π ,

which are associated with the links of the 4–dimensional
Euclidean space-time lattice. Using the standard Wilson
action, the partition function is given by

Z =

∫

Dθµ exp
{

β
∑

x

∑

µ<ν

cos (θP (x)µν )
}

, (35)

where β = 1/e2 with e the bare gauge coupling. The
plaquette angles are defined by

θP (x)µν = θµ(x) + θν(x+ µ)− θµ(x+ ν)− θν(x) . (36)

Because of the compact domain of support for the degrees
of freedom, the U(1) theory admits magnetic monopoles.
High precision measurements indicate that at β = βcrit,
with βcrit = 1.0111331(15) in 3+1 dimensions [28], there
is a phase transition. Below the transition, β < βcrit,
there is an abundance of magnetic monopoles leading
to confinement of electric charges by means of the dual
Meissner effect [20]. This has been convincingly con-
firmed by lattice simulations [29, 30]. For β ≥ βcrit,
monopole nucleation is suppressed, and the theory is re-
alised in the standard Coulomb phase.
Our lattice comprises 124 points at β=1.0 (confining

phase) and β=1.05 (Coulomb phase). A subtlety is that
we must use open boundary conditions in the spatial di-
rections and periodic boundary conditions in the tem-
poral direction. This particular setup is necessary for a
proper implementation of the axial gauge, further dis-
cussed below. In order to reduce the influence of bound-
ary effects, we always allow a distance of two lattice spac-
ings to the boundaries when measuring observables.
A standard heat-bath algorithm combined with micro-

canonical reflections was used to bring the initial configu-
rations into thermal equilibrium. Both disordered (hot)
and ordered (cold) initial configurations were used and
it was verified that our measurements were independent
of the choice of the initial configuration. Measurements
were taken with 20,000 configurations for each of the two
phases.

B. Gauge fixing: Coulomb and axial gauges

The quantities of interest are correlators of short
Polyakov lines of temporal extent t and spatial separa-
tion r, which begin in the time slice x0 = 0 and end in
the time slice x0 = t. Bringing these correlators into spe-
cific gauges amounts to choosing specific dressings for the
static test charge (and corresponding anti-charge). For
more details see [3].
Let us focus first on Coulomb gauge fixing. Given the

gauge transformation Ω(x) = exp(iα(x)),

Uµ(x) → UΩ
µ (x) = exp

(

− iα(x+ µ) + iα(x)
)

Uµ(x) ,

− π < α(x) ≤ π ,

(37)

Coulomb gauge fixing is implemented by maximising,
with respect to α, the gauge fixing functional

F [UΩ] =
1

2
Re

[

∑

x

3
∑

i=1

UΩ
i (x)

]

. (38)

We use a standard iteration-overrelaxation scheme for
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this task. To provide a stopping criterion for the itera-
tion, we define

∆ =
1

Nin

∑

xin

∆2
x ,

∆x = Im
3

∑

i=1

[

UΩ
i (x) + UΩ †

i (x− i)
]

,

(39)

where the sum over (interior) lattice points excludes
points on the boundary, and where consequently Nin =
(Ni − 2)3 ×Nt. Introducing the photon field Aµ(x) via

Uµ(x) = exp
(

iaAµ(x)
)

, (40)

the above quantity ∆ is a measure of the violation of the
transversality condition, as can be seen from

∆ =
a4

Nin

∑

x

[

∂iAi(x)
]2

+O(a5) . (41)

We use ∆ < 10−12 in our simulations.
While Coulomb gauge fixing involves a non-linear opti-

misation problem, axial gauge fixing can be implemented
straightforwardly. The axial gauge condition is given by

A3(x) = 0 , equivalently UΩ
3 (x) = 1 , (42)

choosing our earlier unit vector n to point in the 3–
direction. Let us assume that we haveN3 lattice points in
the 3–direction, and the gauge transformations are num-
bered according to

Ωk ≡ Ω(xk) with xk ≡ (x1, x2, ka, x4) . (43)

The crucial observation is that, because of open bound-
ary conditions, the gauge transformations Ω1 and ΩN3

are independent. Hence, it is always possible to choose
Ωk+1 to satisfy

UΩ
3 (xk) = Ωk U3(xk)Ω

†
k+1 = 1 . (44)

As a result Ω1 remains undetermined and represents a
residual gauge degree of freedom.

C. Probing the ground state of compact QED

Now that we have our lattice implementation of the
dressings we may investigate their physical significance
by looking at the overlap of the dressed states with the
ground state. We will calculate the ratio R(r, t), defined
in (32), which probes the ground state in the large t limit.
It is useful to introduce the matrix of transition ampli-
tudes

M(r, t) =

(

CΦΦ(r, t) CχΦ(r, t)
CΦχ(r, t) Cχχ(r, t)

)

, (45)

where Cψ′ψ := 〈ψ′ |e−Ĥt|ψ 〉. This enables us to de-
termine (for fixed values of r) the minimal value of t for

which the contributions of excited states to the Cψ′ψ(r, t)
are sufficiently suppressed so that we can extract the
overlaps with the ground state. Inserting a complete set
of states, we obtain

Cψ′ψ =
∑

n

e−Ent〈ψ′ |n〉〈n |ψ〉 , (46)

where as usual En denotes the eigenvalue of Ĥ for the
state |n 〉. All contributions but that of the ground state
(n = 0) to Cψ′ψ can be neglected due to exponential
suppression in the large t limit. A calculation of the
determinant of the matrix M yields the large time limit

e2E0t det[M(r, t)] →

∣

∣

∣

∣

|〈Φ | 0〉|2 〈χ | 0〉〈 0 |Φ〉
〈Φ | 0〉〈 0 |χ〉 |〈χ | 0〉|2

∣

∣

∣

∣

= 0 .

(47)
Therefore, if the value of the determinant of M substan-
tially deviates from zero (within error bars), the large t
limit has not yet been reached.
The calculation of CΦΦ(r, t), the Coulomb dressed

Polyakov line correlator (pictorially, we may represent
this object by | |, see [3]), is straightforward. Calculat-
ing its axially dressed counterpart amounts to calculating
the ordinary, gauge invariant, Wilson loop. This can be
seen as follows: our starting point is the correlator of
two Polyakov lines P (x1,x2) of temporal extent t and
distance r calculated from gauge fixed links

P (x1,x2)[U
Ω
µ ] , x2 = x1 + rn , (48)

where n is the unit vector in 3–direction. Since in axial
gauge the links UΩ

3 are gauged to the unit elements, the
above correlator can be completed to an r × t Wilson
loop lying in the 3−t plane. Since the Wilson loop is
manifestly gauge invariant, we find:

P (x1,x2)[U
Ω
µ ] =W [UΩ

µ ] =W [Uµ] . (49)

In other words, the loose ends of the Polyakov lines are
joined by a straight line of parallel transporters Uµ(x) in
the initial and final time slices (this may be represented
by �). Calculating the correlator of charges that evolve
from axial gauge into Coulomb gauge, CΦχ(r, t), means
putting in a straight line of parallel transporters between
the static charges in the initial time slice, the resulting
object being of a ⊔ shape. Calculating the correlator
from Coulomb to axially dressed charges CχΦ(r, t) pro-
ceeds similarly, looking like a staple, ⊓.

D. Numerical results

Calculating the familiar static potential between both
axially and Coulomb dressed charges below and above
βcrit, the phase transition is clearly illustrated. These
results are displayed in Figure 2 (upper panel). We see
the Coulomb potential above the transition, β = 1.05,
and the linear rising potential below the phase transition,
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FIG. 2: Upper panel: the U(1) inter-fermion potential in the
confined and deconfined phases. Lower panel: behaviour of
the determinant det[M(r, t)].

β = 1.0 (see also [31] for numerical investigations of the
confining phase). In the lower panel of Figure 2 we have
plotted the behaviour of the determinant det[M(r, t)].
We see that the determinant vanishes rapidly, coming
effectively to zero at around t = 3a both above and below
the phase transition. Thus the ‘large time limit’, in which
we can extract good overlaps with the ground state, is
reached quite rapidly.
The numerical results for the overlap ratio R(r, t) are

shown in Figure 3. The upper panel shows the Coulomb
phase results (β =1.05). Figure 1 is overlaid for com-
parison. We see a close agreement between the ana-
lytic solution and the lattice data, despite the differ-
ent short distance cutoffs in use (the lattice spacing a
in each direction compared to the O(3) symmetric mo-
mentum cutoff |p| < Λ). We observe the formation of
a plateau at around t = 3a, where the ratio approaches
its asymptotic value, in agreement with the behaviour
of the determinant of M(r, t), cf. Figure 2. Increasing

the spatial separation r of the charges probes the phys-
ically more interesting long-distance behaviour. In the
Coulomb phase, as seen in the analytic calculations, the
ratio R(r, t) decreases as the separation r of the charges
is increased. The energy of the axial state increases lin-
early with r, giving an increasingly worse overlap with
the ground (Coulomb) state.
Encouraged by the agreement between our numerical

and analytic results, we now consider the confining phase,
β = 1.0. The results are shown in the lower panel of Fig-
ure 3. Most notably, the ratio is now greater than one,
which signals that the axially dressed state has the bet-
ter overlap with the ground state. Although the signal
is rather noisy in this phase, compared to the Coulomb
phase, one can still observe the formation of a plateau
in R(r, t) up to r = 3a. Beyond this value, the statistics
were not sufficient to extract data points which met our
acceptance criterion of a relative error smaller than 10%.
As r increases the ratio R rises well above 1. There is no
string breaking, and for larger r the Coulomb potential,
falling off as 1/r, becomes a poorer and poorer descrip-
tion of the long flux tube connecting the sources. These
results show that the ground states differ significantly
above and below the phase transition. Our physical in-
tuition tells us that in a deconfined theory we expect to
find two separate, gauge invariant charges. In a confining
theory, however, we presume that physical states should
be composite, uncharged objects. These expectations are
indeed supported by our results. In the confining phase
the Coulomb state, with its individual physical charges,
is not a good description of the ground state. Instead it
is now the, overall uncharged, axial state with its nar-
row flux tube (its divergences regulated by the lattice
spacing) which more closely resembles the true physics.
In the next section we will extend our discussion to

non-abelian theories.

IV. TOWARDS QCD: THE GROUND STATE IN
THE SU(2) HIGGS MODEL

Ideally, we would like to study the overlaps of the
Coulomb and axially dressed states with the true ground
state in a non-abelian pure gauge theory (no matter)
which has both a confining and a non-confining phase.
However, for an SU(N) pure gauge theory asymptotic
freedom implies that there is no fixed point in coupling
constant space other than that at β → ∞. Hence, the
SU(N) pure gauge theory has only a single, confining,
phase at zero temperature. High temperature SU(N)
Yang-Mills theory should provide a non-confining frame-
work. However, as the critical temperature of, e.g., SU(2)
pure gauge theory is approximately Tc ≈ 300MeV, the
temporal extent of the lattice is

Lt ≈
1

300MeV
≈

2

3
fm . (50)

Hence, excited states are only suppressed by a factor
exp(−H Lt) which is not enough to provide a good over-
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FIG. 3: The overlap ratio R(r, t) as a function of t and r
in the deconfined/Coulomb phase, above the phase transition
(upper panel, solid lines are analytic results) and in the confin-
ing phase, below the phase transition (lower panel). Lattice:
124, spatially open boundary conditions, temporally periodic
boundary conditions, β = 1.05 (upper panel) and β = 1.0
(lower panel).

lap with only the ground state.
The simplest theory which provides both a confining

and a non-confining phase at zero temperature is an
SU(2) gauge theory with a Higgs field φ in the fundamen-
tal representation. This will be our model, but before we
can study it we must briefly discuss what we mean by
the Coulomb and axial dressings in a non-abelian theory.

A. Non-abelian dressings

As in Section II, we are interested in the properties
of quark-antiquark states made gauge invariant by us-
ing dressings. The form of the non-abelian dressings
is much more complex than their abelian counterparts.

However, in a perturbative expansion the lowest order
term of the non-abelian dressings is typically given by
taking the dressings of Section II and replacing Aj with
A
a
jT

a for T
a the Lie algebra generators. For example,

the Coulomb dressing is, to lowest order in the coupling
g,

exp

(

g
∂jAa

jT
a

∇2
+ . . .

)

, (51)

of similar form to the abelian case, (14). All orders in
this dressing are required to make gauge invariant states,
and for the construction of higher order terms, and issues
relating to Gribov copies, we refer the reader to [2, 3, 32].
Just as in the abelian case, correlators between dressed

states are calculated (using the full dressing) by putting
time slices into particular gauges – Coulomb and axial in
our case. The methods employed in the U(1) theory may
then equally be applied to non-abelian theories. With
this understanding, we proceed to define and examine
our SU(2) model.

B. The SU(2) Higgs model

We will study a gauged O(2) model where the length
of the Higgs field is restricted to unity,

φ†φ = 1 . (52)

It has long been known that the confinement phase and
the Higgs phase are smoothly connected [33]. A true or-
der parameter, i.e., a local operator which distinguishes
between both phases, does not exist. When static quark
and antiquark sources are exposed to the gluon field the
electric flux tube between them may break if the energy
stored in the tube exceeds twice the mass of the Higgs
particle, and the string tension vanishes. Although a lo-
cal order parameter does not exist, the physics in the
string breaking phase is vastly different from that in the
Higgs phase: while short electric flux tubes form in the
confining phase (thereby giving rise to a “string tension”
at intermediate distances), there is no flux tube at all
in the Higgs phase. Although this behaviour cannot be
detected with local order parameters, non-local quanti-
ties, such as the vortex percolation probability [34], can
map out the phase diagram. In fact the critical line for
vortex percolation follows the first order line of the phase
diagram, and turns into a Kertész line in the crossover
regime [35, 36, 37].
The Higgs doublet

φ =

(

φ1
φ2

)

, φ1,2 ∈ C , (53)

may be equivalently written as a matrix α,

α =

(

φ1 −φ∗2
φ2 φ∗1

)

, (54)
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where α is unitary. The lattice action of the theory is
then

S = SWilson + SHiggs , (55)

SWilson = β
∑

x,µ<ν

1

2
tr Uµ(x)Uν(x+ µ)U †

µ(x+ ν)U †
ν (x) ,

(56)

SHiggs = κ
∑

x,µ

1

2
tr α(x) Uµ(x) α

†(x + µ) , (57)

where κ is the Higgs hopping parameter. The “gluonic”
degrees of freedom are represented by the SU(2) link ma-
trices Uµ(x) as usual. The action and partition function
Z,

Z =

∫

DUµ Dα exp (S) , (58)

are invariant under SU(2) gauge transformations:

UΩ
µ (x) = Ω(x) Uµ(x) Ω

†(x+ µ) , Ω ∈ SU(2) (59)

αΩ(x) = α(x) Ω†(x) . (60)

In addition the theory possesses a global O(2) symmetry:

αω(x) = ω α(x) , ω ∈ O(2) . (61)

The model may be studied using standard lattice tech-
niques. We work with β = 2.2, several values of κ and
values of the lattice size N [49]. The susceptibility of the
Higgs action,

cHiggs =
1

N4

[

〈

S2
Higgs

〉

− 〈SHiggs〉
2
]

, (62)

may be used to explore the phase structure (for fixed
β). Our numerical results are shown in the upper panel
of Figure 4. The susceptibility is rather independent of
the lattice size and strongly peaked at a critical value
κ = κc, where κc ≈ 0.839(2). This indicates that the
model undergoes a crossover from the confinement phase
to the Higgs phase at κc.
Figure 4, lower panel, shows the static quark poten-

tial for κ = 0.825 (confined phase) and for κ = 0.88
(Higgs phase) which is significantly bigger than the crit-
ical value κc. In the low κ phase, we observe a linear
rise of the potential at large quark-antiquark distances.
String breaking, induced by the presence of the funda-
mental Higgs field, is not observed for r a ≤ 8. We do,
however, observe a string tension

σ a2 ≈ 0.15(1) , β = 2.2 , κ = 0.825 , (63)

that is somewhat reduced compared to the string tension
of pure SU(2) Yang-Mills theory, σa2 ≈ 0.28(1) (for β =
2.2, κ = 0). In contrast, the potential data at κ = 0.88
are well fitted by a Coulomb law.
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FIG. 4: Upper panel: The susceptibility of the Higgs action
(62) as a function of κ for β = 2.2 for several lattice sizes N .
Lower panel: The static quark potential for a 164 lattice and
β = 2.2 for two different κ values.

C. Overlaps with the ground state

The ratio R(r, t) in this theory is shown in Figure 5. In
the Higgs phase (κ = 0.88) the ratio is below one show-
ing that the Coulomb state has a better overlap than the
axial state, similar to our U(1) results. Comparing the
two panels of Figure 5 one sees that, for a given separa-
tion r, the ratio is slightly larger in the confined phase
(κ = 0.825) but it is still below one. This implies that,
counter intuitively, the Coulomb dressed quarks still pro-
vide a better approximation to the true ground state. We
attribute this finding to a bad overlap between the axial
and ground states caused by the infinitely thin flux tube
of the axial state. The true ground state is expected to
sustain a flux tube with a thickness of the order of several
lattice spacings. In this regime, the ansatz of a very thin
flux tube, whose potential energy is only finite because
of the lattice spacing, is not as good a description as the
Coulomb dressing.



11

0 1 2 3 4 5 6 7 8 9 10 11 12

t/a
0

0.2

0.4

0.6

0.8

1

R
r=a
r=2a
r=3a
r=4a
r=5a
r=6a
r=7a
r=8a

0 1 2 3 4 5 6 7 8 9

t/a
0

0.2

0.4

0.6

0.8

1

R

r=a
r=2a
r=3a
r=4a
r=5a
r=6a
r=7a

FIG. 5: Ratio of overlaps between the axially dressed and the
Coulomb dressed quark states in the Higgs phase (κ = 0.88,
upper panel) and the confining phase (κ = 0.825, lower panel).
Lines have been added between data points to guide the eye.

Our analysis suggests, then, that the traditional view
of a thick flux tube [38] is a better description of the true
ground state. In Figure 5 we see that as the separation
of the charges increases, the ratio R decreases (at all
times plotted), indicating that a thin string is a poorer
description of the ground state at large r. To emphasise
this point we plot, in Figure 6, our ratio in the ‘large
time limit’, t = 4a, where the ratio is clearly seen to
decrease with increasing separation in both phases. This
indicates, in particular, that in the confining phase, at
fixed lattice spacing, the thin string is a poor description
of the ground state at large separations.

V. CONCLUSIONS

In this paper we have studied various locally gauge
invariant ansätze for the lowest energy state in the
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κ=0.825
κ=0.88

FIG. 6: Ratio of overlaps at t = 4a, plotted as a function of
the quark separation r/a in the Higgs phase (κ = 0.88) and
the confining phase (κ = 0.825).

heavy fermion-antifermion sector of both abelian and
non-abelian gauge theories. One of these constructions
corresponds to a Coulombic dressing around each matter
field, i.e., the state is made up of two separate physi-
cal charges (with opposite signs). In the other, axial,
ansatz the fermions are linked by a string like flux tube.
This dressing does not factorise naturally, so no locally
invariant charges can be defined. There is instead a sin-
gle, uncharged object. We have compared how these two
constructions overlap with the ground state for different
theories and in various phases. Our primary tool here
is the ratio R(r, t), defined in (32), which compares the
overlaps between two ansätze and the true ground state.

Firstly we considered U(1) theory where we have a
good understanding and expect the ground state to cor-
respond to two Coulomb charges. Using the functional
Schrödinger representation we were able to construct the
Coulomb state and also to show that the axial state is
unstable and decays into the Coulomb one. This was fol-
lowed by lattice simulations of compact U(1). In the de-
confined phase the results agreed very well with our ana-
lytic arguments, the Coulomb dressed state being clearly
preferred.

In the confined phase of compact U(1), where we do
not have a good analytic understanding, our simulations
showed that the axial state was preferred. This is per-
haps what one might expect, the axial state corresponds
to a flux tube between the fermions. However, it is an
extremely thin flux tube — which is only non-zero on the
links between the fermions — and in previous work [3]
it was shown that for SU(2) a Coulombic dressed state
more readily yielded the interquark potential than an
axial state. This seems to indicate a major difference
between the confining flux tubes in compact U(1) and
SU(2).
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Spurred on by this we then studied the SU(2) Higgs
model where there is a crossover from a Higgs phase to
a confined phase. We calculated the potential on either
side of the crossover and clearly saw the two phases and
the effect of the Higgs field on the potential compared
to the pure SU(2) theory. As with pure SU(2), [3], our
simulations clearly demonstrated that the Coulomb state
was preferred to the axial ansatz on both sides of the
crossover. We interpret this as a consequence of the ex-
treme thinness of the axial flux tube. Presumably the
flux tube in the true ground state in this non-abelian
theory is much thicker than its compact U(1) counter-
part and this is why the Coulomb dressing is preferred
despite its slow (1/r) fall-off. It is interesting to speculate
on the phenomenological implications of this insight.
Our results agree with those of the investigations

[39, 40], where thickening of the tube with an increase in
charge separation was observed at a fixed lattice spacing.
However, those authors, based on an ansatz for the form
of the string, also claimed that for finer lattices the width
of the flux tube was proportional to the lattice spacing.
This surprising result was argued to imply that in the
continuum limit the width of the flux tube vanishes, i.e.,
the continuum ground state would be described by an
infinitely thin string of flux. This result is the subject
of some current debate and we will return to it in future
work.
The differences between the overlaps in the confining

phases of the abelian and non-abelian theories clearly de-
serve further study. It would be interesting to try to con-
struct different dressings which correspond to a thicker
flux tube (‘cigar shape’) around the fermions but which
still fall off more rapidly than the Coulombic dressing.
One possible way to approach this would be to use a
dressing which corresponds to some form of interpolating
gauge, somewhat analogous to ideas of ‘t Hooft [41, 42]
and others [43, 44, 45, 46] on gauges depending on some
‘flow’ parameter. A gauge interpolating between axial
and Coulomb gauge, say, is expected to yield, for an op-
timal choice of the interpolating parameter, a still better
overlap with the ground state. It could then be used for
more efficient lattice calculations of, e.g., the interquark
potential.

It would also be interesting to compare the overlap of
axial and Coulombic dressings in the SU(3) theory; this
would let us investigate whether modifying the number
of colours significantly alters the flux tube between two
heavy quarks.
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[16] M. Lüscher, R. Narayanan, P. Weisz and U. Wolff, Nucl.
Phys. B 384 (1992) 168 [arXiv:hep-lat/9207009].

[17] A. C. Kalloniatis and R. J. Crewther, Temporal Gauge

Propagator From The Coulomb Gauge, published in
Physical and Nonstandard Gauges, Springer-Verlag,
1990, p 145.

[18] S. Weinberg, The Quantum Theory of Fields, Vol. I:

Foundations, Cambridge University Press, 1995, Ch. 9.2.
[19] G. Grawert, Quantenmechanik, Akademische Verlagsge-

sellschaft, Frankfurt am Main, 1977, Ch. 13.2.
[20] A. M. Polyakov, Phys. Lett. B 59, 82 (1975).
[21] T. Banks, R. Myerson and J. B. Kogut, Nucl. Phys. B

129, 493 (1977).
[22] M. E. Peskin, Annals Phys. 113, 122 (1978).
[23] A. H. Guth, Phys. Rev. D 21, 2291 (1980).
[24] J. B. Kogut, Rev. Mod. Phys. 55, 775 (1983).
[25] E. Seiler, Lect. Notes Phys. 159, 1 (1982).
[26] I. I. Kogan and A. Kovner, Phys. Rev. D 51 (1995) 1948

[arXiv:hep-th/9410067].
[27] D. Nolland, arXiv:hep-th/0408075.
[28] M. Vettorazzo and P. de Forcrand, Phys. Lett. B 604

(2004) 82 [arXiv:hep-lat/0409135].
[29] T. A. DeGrand and D. Toussaint, Phys. Rev. D 22 (1980)

2478.
[30] J. D. Stack and R. J. Wensley, Nucl. Phys. B 371, 597

(1992).
[31] M. Panero, JHEP 0505 (2005) 066

http://arxiv.org/abs/hep-th/0510077
http://arxiv.org/abs/hep-th/0701168
http://arxiv.org/abs/0705.2718
http://arxiv.org/abs/0704.3547
http://arxiv.org/abs/hep-th/9806150
http://arxiv.org/abs/hep-ph/9909257
http://arxiv.org/abs/hep-ph/9909262
http://arxiv.org/abs/hep-th/9702204
http://arxiv.org/abs/hep-th/9710235
http://arxiv.org/abs/hep-lat/9207009
http://arxiv.org/abs/hep-th/9410067
http://arxiv.org/abs/hep-th/0408075
http://arxiv.org/abs/hep-lat/0409135


13

[arXiv:hep-lat/0503024].
[32] M. Lavelle and D. McMullan, Phys. Rept. 279 (1997) 1

[arXiv:hep-ph/9509344].
[33] E. H. Fradkin and S. H. Shenker, Phys. Rev. D 19, 3682

(1979).
[34] K. Langfeld, Phys. Rev. D 67, 111501 (2003)

[arXiv:hep-lat/0304012].
[35] K. Langfeld, talk given at Workshop on Strong and Elec-

troweak Matter (SEWM 2002), Heidelberg, Germany, 2-5
Oct 2002. arXiv:hep-lat/0212032.

[36] S. Wenzel, E. Bittner, W. Janke, A. M. J. Schakel
and A. Schiller, Phys. Rev. Lett. 95, 051601 (2005)
[arXiv:cond-mat/0503599].

[37] K. Langfeld, AIP Conf. Proc. 756, 133 (2005)
[arXiv:hep-th/0412020].

[38] M. Luscher, Nucl. Phys. B 180 (1981) 317.
[39] P. Y. Boyko, F. V. Gubarev and S. M. Morozov,

arXiv:0704.1203 [hep-lat].
[40] P. Y. Boyko, F. V. Gubarev and S. M. Morozov,

arXiv:0712.0656 [hep-lat].
[41] G. ’t Hooft, Nucl. Phys. B 35, 167 (1971).
[42] G. ’t Hooft, Nucl. Phys. B 190, 455 (1981).
[43] H. S. Chan and M. B. Halpern, Phys. Rev. D 33, 540

(1986).
[44] M. Lavelle and M. Schaden, Phys. Lett. B 217, 551

(1989).
[45] T. Heinzl and S. Krusche, A Path Integral Formulation

of Yang-Mills Theory in Regularised Axial Gauges, Re-
gensburg preprint TPR 90-16 (1990).

[46] P. V. Landshoff and P. van Nieuwenhuizen, Phys. Rev.
D 50, 4157 (1994) [arXiv:hep-th/9307117].

[47] The dressing typically has two parts. The ‘non-minimal’
part of the dressing is chosen such that the heavy
fermions are static in time, although in Weyl gauge this
piece becomes trivial. In this paper we focus on the ‘min-
imal’ part of the dressing which ensures gauge invariance.
See [9, 10] for more details.

[48] With regard to the norm of the vacuum state, 〈Ψ0 |Ψ0〉,
the transverse integral is correctly normalised, the inte-
gral over A

L contributes the infinite volume of the gauge
group, which we should divide out. We therefore neglect
such factors in the sequel.

[49] We do not work at a smaller value of β in order to avoid
lattice artifacts which dominate in the strong coupling,
non universal, regime.

http://arxiv.org/abs/hep-lat/0503024
http://arxiv.org/abs/hep-ph/9509344
http://arxiv.org/abs/hep-lat/0304012
http://arxiv.org/abs/hep-lat/0212032
http://arxiv.org/abs/cond-mat/0503599
http://arxiv.org/abs/hep-th/0412020
http://arxiv.org/abs/0704.1203
http://arxiv.org/abs/0712.0656
http://arxiv.org/abs/hep-th/9307117

