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Nicholas Alexander James Berkley 

Patterns and Process: Biodiversity and Ecosystem Function Response to Changes 

in the Arable Landscape  

Abstract: Land use change is a major driver of species loss worldwide, the extent and 

intensity of agricultural land use poses particular pressures for biodiversity and the 

ecosystem services it provides. In recent years, agroecosystems have seen the 

introduction of 2nd generation bioenergy crops in order to tackle anthropogenic climate 

change, providing a renewable alternative to fossil fuels. In this thesis I study the impact 

of cultivating two commercial perennial energy crops (PECs), Miscanthus x giganteus 

and willow short-rotation coppice, when compared to the cereal crops they replace. I 

investigate processes relevant to the provisioning of pollination and decomposition 

services and explore patterns of soil element bioaccessibility alongside analyses of the 

similarity and diversity of soil bacterial communities. When compared to cereals, I find 

a consistent increase in pollinator (hoverfly, bumblebee and butterfly/moth) wildflower 

visitation in the margins of willow but not Miscanthus. In Miscanthus, opposing trends 

arose for different pollinator taxa: butterflies/moths were more frequent flower visitors 

in Miscanthus margins than cereal margins, while hoverfly flower visits were most 

frequent in cereal margins. Furthermore, the availability of margin wildflowers was 

enhanced in willow but not Miscanthus and the seed set of margin phytometers was 

similar between Miscanthus and cereals. Cultivation of willow, in particular, may 

therefore yield local conservation benefits for both wildflowers and pollinators. 

However, there was no evidence for enhancement of pollinator activity in cereals 

adjacent to either PEC, indicating that the strategic cultivation of these crops is unlikely 

to enhance pollinator service provision in the wider agri-environment. For investigated 

soil elements, bioaccessibility in PECs did not differ significantly to cereal controls, and 

denaturing gradient gel electrophoresis (DGGE) revealed no difference in the diversity 

of bacterial communities. Similarly, DGGE fingerprint patterns did not indicate the 

development of crop specific assemblages, demonstrating that the mobility of soil 

elements and structure of bacterial communities were principally determined by 

factors other than the identity of the crop cultivated. Investigation of meso-microfaunal 

decomposition rates in Miscanthus using litter bags demonstrated an impact on 

decomposition processes, with a significant increase in winter decomposition rates in 

the PEC when compared to cereals. 
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1.1 Introduction 

Recent figures derived from United Nations data suggest a global population size of 9.6 

billion by 2050, with the potential to rise to 12.3 billion by 2100 (Gerland et al., 2014).  

As the human population continues to grow there is increased pressure to achieve higher 

crop yields from a finite amount of land (Foley et al., 2011). Tilman et al. (2011) 

forecast a 100-110% greater demand on crop production from 2005 to 2050. To date, 

the expansion and intensification of British agriculture, following the world wars and 

the green revolution of the mid-1900s, has allowed for rapid yield increases (Tilman et 

al., 2001). Developed nations have been able to support expanding populations and 

achieve improved food security. Foley et al. (2011) suggest that between the years of 

1985 and 2005 global crop yield increased by 25% and by as much as 56% from 1965 

to 1985. However, the reduction in the size of yield increases in recent decades suggests 

that, globally, yields are beginning to plateau (Foley et al., 2011). Global average yield 

increase fell from 3% in 1960 to just 1.5% in 2000 and pressure upon land resources is 

expected to increase in the coming decades (FAO, 2009).    

Alongside limited improvements in yield there has been a growing awareness that 

current agricultural practices are unsustainable, with detrimental impacts on the land, 

water, biodiversity and climate (Tilman et al., 2001; Foley et al., 2011). The heavy 

reliance on pesticides has been implicated as a key factor in the decline of important 

pollinator species (IPBES, 2016). The detrimental impact of eutrophication as a result of 

the over-use and leaching of fertiliser is also a problem that has been recognised for 

many decades. A notable example being the ‘dead zones’ in the Gulf of Mexico, 

spanning an area of over 6400 square miles in 2015 due to excessive nutrients entering 

the Mississippi River (NOAA, 2015). Furthermore, use of nitrogen fertilisers has had 

concomitant negative effects on greenhouse gas (GHG) emissions, accounting for a 

major proportion of fossil fuel use in agroecosystems (Vitousek et al., 1997). Although 
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intensive inputs and monoculture farming practices are recognised as problems 

requiring urgent attention, it is important to note that without intensification agriculture 

would dominate as much as 2.5 times more of the land area than it does today (FAO, 

2009). In addition, Dr Norman Borlaug, seen by many as the founder of the ‘Green 

Revolution’, has been credited with saving an estimated 1 billion people from starvation 

through improved plant breeding, as well as the international dissemination and 

application of intensive agricultural practices. Developing nations are those most likely 

to have yields below their potential and small future increases in intensification, 

targeted to these areas, could still theoretically result in large yield increases (Twomlow 

et al., 2010).  Nonetheless, in the main, it is now widely understood that biodiversity 

has already paid significantly for human population growth and the agricultural 

practices that have made it possible (Krebs et al., 1999).  

1.2 Agriculture and Insect Pollinator Declines  

In recent decades there have been concerns internationally about the plight of 

pollinators, with declines seen in the abundance and species richness of taxa worldwide 

(Gallai et al., 2009; Potts et al., 2010; Senapathi et al., 2015). Given their widespread 

use as commercial pollinators, particular focus has been directed at the western 

honeybee (Apis melifera Linnaeus), the commercially reared bumblebee Bombus 

terrestris Linnaeus and the solitary bee Megachile rotundata Fabricius (Goulson et al., 

2008). However attention has also begun to shift to the ~20,000 wild pollinating species 

that include, amongst others, many bumblebees, solitary bees, flies, butterflies, moths 

and beetles (IPBES, 2016).  

In the USA Apis melifera colony loss is recorded as 59% between 1947 and 2005 with a 

25% loss of colonies in central Europe between 1985 and 2005 (Potts et al., 2010). A 

wide range of drivers are thought to have played a role in the decline of pollinators, and 

of bees in particular. Colony collapse disorder (CCD), a generic term for the abrupt and 
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disastrous population declines in Apis melifera, is thought to have >60 contributing 

factors (Wu et al., 2011). For example, there are a large number of parasites that affect 

bees, including mites, protozoans, fungi, bacteria, and viruses (Goulson and Hughes, 

2015).  Apis mellifera is thought to be under synergistic pressures from parasites such as 

the varroa mite (Varroa destructor Anderson and Trueman) (an ectoparasite and an 

invasive species native to Asia) and Nosema ceranae Fries et al., an endoparasite 

(Wagoner et al., 2013).  

International trade of both honeybee and bumblebee colonies has potentially been a 

major factor in the spread of diseases worldwide (Goulson and Hughes, 2015). 

Commercially reared bumblebees are thought to have higher incidences of pathogen 

infections than wild bumblebees (Goulson, 2003). A study by Colla et al. (2006) in 

Ontario, Canada, implicates pathogen spill-over from commercial bees to wild bees as 

potential driver in their decline. The authors demonstrated that pathogens such as 

Crithidia bombi Gorbunov and Nosema bombi Fantham & Porter, which may be 

transmitted during flower visitation, were more prevalent in bees collected near to 

greenhouses than those at greater distance.  

Over 1 million bumblebee colonies are produced and exported globally each year 

(Goulson and Hughes, 2015). Since 1961 the number of honey bee hives has increased 

by ~45% worldwide (Aizen et al., 2009). However this does not match the >300% 

increase in the proportion of agricultural crops dependent on pollination services, likely 

placing pressure on pollination capacity (Aizen et al., 2009). The need for these 

commercial colonies may also be, in part, the result of declines in wild species, 

potentially indicating that crops are already limited by availability of wild pollinator 

services (Gallai et al., 2009). Ellis et al. (2016) suggest that the commercial trade in 

bees may also mask the effect of declining pollination services from wild bees. The 

authors argue that if this was more apparent, farmers would be more incentivised to 
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invest in wild pollinator conservation. In the main, the majority of insect pollinated 

crops are still largely reliant, to some extent, on wild pollination services (Breeze et al., 

2011). Concern has been voiced regarding the over-dependence farmers and growers are 

currently placing on a small number of commercial species to provide their pollination 

services. Such dependence leaves crop yields and profits vulnerable to fluctuations in 

the wellbeing of commercial species. This is supported by one of the principle 

arguments for maintenance of biodiversity- the ecological redundancy of species is 

likely an important buffer to the provision of ecosystem services. If two species fulfil 

the same ecological niche then declines in one can be compensated by the other taking 

its place, acting as an ‘insurance policy’ for continued pollination service provision 

(Hallet et al., 2017). 

Alongside the drivers of bee decline discussed above there is also widespread evidence 

for the detrimental impact of agricultural intensification and agricultural expansion on 

bees and other pollinating insects (Kremen et al., 2002; Bergmann et al., 2004). Given 

that reductions in habitat quality and quantity are believed to cause population declines 

this is perhaps unsurprising (Schultz and Dlugosch, 1999). Carvell et al. (2006) argue 

that agricultural land-use and management practices are likely to be the principle factor 

in the decline of social bumblebee species. Loss of flower rich hay meadows following 

a move to silage as a fodder crop, a fall in the use of clover leys and loss of semi-natural 

habitats, being key examples (Corbet et al., 1992). Senapathi et al. (2015) showed that 

sites surrounded by an expansion of arable land in the landscape had greater declines in 

bee and wasp populations than sites that did not, supporting the conclusion of other 

studies which demonstrate the ameliorating effect of heterogeneous semi-natural habitat 

on pollinating species (Bergmann et al., 2004; Klein et al., 2012).  

Declines in wild pollinators not only have implications for agricultural crop pollination 

but also for the pollination of wild plants in field margins and semi-natural habitats 
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(Biesmeijer et al., 2006; Potts et al., 2010). It is thought that 80% of wild plants are 

directly dependent on insects for pollination with 62-73% of studied populations 

showing pollen limitation (Potts et al. 2010). Biesmeijer et al. (2006) has shown that in 

Britain, obligatory outcrossing plants reliant on insect pollinators have declined 

alongside declines in bee species diversity, whilst wind pollinated plants have increased. 

Similarly, in the Netherlands where species richness of bees has declined but hoverflies 

have increased it was shown that obligatory bee pollinated plants had decreased in 

abundance whilst plants pollinated by a variety of insect taxa had increased (Biesmeijer 

et al., 2006).  

Pesticides are one of a suite of environmental stressors on pollinators and considerable 

research has been carried out to determine their effects on bees. Although exposure 

levels of bees to pesticides are generally not lethal, lethal effects have been shown (see 

below) and there is now considerable evidence for sub-lethal effects on managed 

(Stanley and Raine, 2016) and wild bees (Hanley & Wilkins, 2015; Woodcock et al., 

2016). Wu et al. (2011) has shown that pesticide residues in honeybee brood comb (a 

total of 39 chemicals) resulted in delayed larval development and adult emergence, 

reduced adult longevity, and foraging activity with premature shifts in hive roles. 

Application of insecticide phosmet to tackle codling moth (Cydia pomonella Linnaeus) 

in orchards in the western United States also resulted in adult honeybee declines and a 

fall in progeny production (Alston et al., 2007).  

Following their introduction in the early 1990s, neonicotinoids are a group of pesticides 

(five chemicals) that have received much scientific, media and policy attention (The 

Guardian, 2016; Stanley and Raine, 2016). Three neonicotinoid seed dressing 

treatments (thiamethoxam; clothianidin and imidacloprid) have been subject to a partial 

moratorium of use in Europe (Regulation (EU) No 485/2013) and a blanket ban on their 

outdoor use was announced in April 2018 (European Commission, 2018). A study in 
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Italy by Girolami et al. (2009) demonstrated lethal concentrations of these three 

insecticides in the guttation fluid of neonicotinoid seed coated maize plants. Using field 

realistic thiamethoxam concentrations (10 ppb), Stanley and Raine (2016) have also 

demonstrated sub-lethal effects on the foraging behaviour of exposed bumblebees. 

These bumblebees exhibited differing initial forage preferences, increased flower 

handling learning time, and greater frequency of pollen collection. Additive effects of 

the neonicotinoid thiacloprid have also been demonstrated on Apis melifera infected by 

the microbial pathogens Nosema ceranae and black queen cell virus (BQCV) (Doublet 

et al., 2015). Providing evidence for the role of synergistic effects in CCD and the 

additional pressures agricultural inputs place on bee populations.  

The effect of pesticides on non-bee pollinators is still poorly understood. Even for 

neonicotinoids, only a single study appears to have been carried out on hoverflies for 

example, focusing on a single insecticide, thiamethoxam (Basley et al., 2018). Exposure 

of Eristalis tenax (Linnaeus) to 500 ppb thiamethoxam concentration had a significant 

negative effect on survival but no effect was seen at field realistic concentration (Basley 

et al., 2018).  In contrast studies of imidacloprid on the aquatic (non-pollinating) insect 

Ceriodaphnia dubia Richard demonstrate significant LC50 mortality at only 2.1 ppb 

(Chen et al., 2010). It is clear more research is needed on the impact of widespread 

pesticides upon non-bee insects (Pisa et al., 2015). However given the purpose of 

insecticides, and their often limited specificity, future evidence of detrimental effects on 

non-target pollinating insects would not be unexpected. Pyrethroids (insecticides 

accounting for 23% of the global insecticide market, Piccolomini et al., 2018) are 

potential candidates to replace neonicotinoids and may, similarly, have adverse effects 

on non-target pollinators (Raimets et al., 2018), although few studies are currently 

available (Oliver et al., 2015). 
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Additionally, alongside losses in flower rich habitats, widespread herbicide use is also 

likely to be playing a role in pollinator declines (Kluser and Peduzzi, 2007). Just as 

reductions in the provision of pollinator services to wild plants may have contributed to 

plant declines, the converse is also likely, with falls in the availability of forage 

resources understood to have contributed to declines in pollinating insects such as 

bumblebees (Goulson et al., 2005; Carvell et al., 2006). Given that plant and pollinator 

species are functionally linked this is perhaps unsurprising. In both the UK and 

Netherlands, bee and hoverfly species which are more functionally specific, in terms of 

having narrow habitat requirements and/or dietary preferences, have shown greater 

declines in diversity than generalist species (Biesmeijer et al., 2006).  

1.3 Mass Flowering Crops: A Means to Reverse Declines? 

It has been proposed by Westphal et al. (2003) that mass-flowering crops (herein: 

MFCs) may be incorporated into agri-environment schemes (AES) in order to help 

tackle pollinator declines. Compared to wild plants present in the landscape, MFCs 

represent an energetically rewarding source of forage due to their high floral unit 

counts. However, studies to date have shown mixed effects of mass-flowering crops on 

pollinator taxa. The majority of MFC studies have focused on oilseed rape (Brassica 

napus Linnaeus; herein: OSR), likely due to the crop’s widespread cultivation for both 

food and biofuel (Diekötter et al., 2010; Stanley et al., 2013). Several studies have 

shown positive impacts of mass-flowering crop cultivation on bumblebee densities, in 

both the crop and adjoining margins (Westphal et al., 2003; Westphal et al., 2009; 

Hanley et al., 2011). However this response has been shown to be short-lived, with 

densities falling rapidly post-flowering (Hanley et al., 2011). Westphal et al. (2009) 

showed that bumblebee reproductive success (queen and male production) did not 

increase with greater OSR cultivation in the landscape and suggest that this may be due 

to lack of continuity in resource provision throughout the season. Using molecular 
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techniques however, Knight et al. (2009) demonstrated a positive correlation in the 

amount of OSR (in a 1000 m radius) and the density of Bombus pascuorum (Scopoli) 

colonies. Stanley (2013) also demonstrated high numbers of bumblebee colonies using 

OSR fields, with as many as 880 using a single field. 

Although most studies have focused on bumblebees, studies on other pollinators, such 

as solitary bees have also drawn variable conclusions regarding the benefits of mass-

flowering crop cultivation. Holzschuh et al. (2013) demonstrated positive effects of 

greater OSR cultivation on populations of the solitary bee Osmia bicornis Linnaeus, 

both in the OSR field and in adjacent grassland habitats. The number of brood cells in 

trap nests was also 55% higher in grassland adjacent to OSR compared to isolated 

grassland (Holzschuh et al., 2013). Conversely, Montero-Castano et al. (2016) showed 

that, at the landscape scale, French Honeysuckle (Hedysarum coronarium Linnaeus, a 

fodder crop) had negative effects on generalist pollinators present in nearby semi-

natural habitats, competing with native plants for honeybee and wild bee pollination in 

the nearby native shrubland. This, again, is in contrast to a bumblebee study by Hanley 

et al. (2011) which demonstrated that when in flower, field bean increased bumblebee 

visits to wild margin plants compared to conventional wheat. It was also shown that 

relative bumblebee species abundances did not differ with proximity to a MFC. This in 

turn differs from the findings of Diekötter et al. (2010), who demonstrated apparent 

distortions of plant-pollinator interactions as increasing proportions of OSR at the 

landscape scale resulted in declines of long-tongued bumblebees likely due to indirect, 

disproportional, benefits to short-tongue bumblebees. Other studies looking at 

pollination outcomes, using single phytometers, have shown variable contrasting effects 

of MFCs; Cussans et al. (2010) for example compared the reproductive success of both 

birds-foot trefoil (Lotus corniculatus Linnaeus) and ground ivy (Glechoma hederacea 

Linnaeus) when planted next to MFCs and non-MFCs. Despite higher fruit set of L. 
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corniculatus in OSR margins compared to wheat, G. hederaceae seed set did not 

increase. Hanley et al (2011) state that the variability we see between studies may result 

from concentrating on only a single plant species rather than whole floral communities, 

as in their study. It is also worth considering that the effects of the MFCs may also have 

been influenced by management (Stanley and Stout, 2013), particularly given the 

evidence for negative effects of neonicotinoid treated OSR on wild bees, with the 

potential for future pesticide alternatives to be either more or less damaging (Woodcock 

et al., 2016). Nonetheless, regardless of the variable impacts of MFCs upon pollinators 

reported in the literature, their potential to play a strategic conservation role, and thus 

increase proportionally in the landscape, exemplifies the dynamic nature of agricultural 

land use, a landscape in flux due to policy, market demand and rotational cropping, with 

important implications for biodiversity. 

1.4 Agricultural Land Use Change 

As the land-share of agriculture increases, semi-natural habitats are being lost rapidly 

across the globe, with significant negative effects on biodiversity, ecosystems processes 

and services (Gonthier et al., 2014). In the United Kingdom, agriculture accounts for 

~57% of the island’s total surface area (Rae, 2017), where it has replaced species-rich 

semi-natural habitats such as peatlands, heathlands and unimproved grasslands (NEA, 

2011; Kahn et al., 2013). The ‘State of Nature’ report published in 2016 revealed that 

56% of the species studied (2137 of 3816) had declined in the UK between 1970 and 

2013 (Hayhow et al., 2016). Following the first report in 2013, Burns et al. (2016) 

highlighted two important drivers of biodiversity change; ‘agricultural management’ 

and ‘preceding climatic change’. Intensive ‘agricultural management’ was a key factor 

in biodiversity declines with primarily negative impacts for investigated taxa whilst 

‘preceding climatic change’ had mixed effects but remained the factor with the second 

greatest negative impact. Butterfly Conservation’s report, ‘State of the UK’s Butterflies 
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2015’, emphasises the likely role of agricultural and forestry land use change in the 

decline of many habitat specialist butterflies, and suggests the latitudinal differences in 

the status of wider countryside species may result from more prevalent land use change 

in southern England (Fox et al., 2015). The ‘Farmland Bird Index’, which monitors the 

state of 19 species, has similarly seen a 43% fall between 1970 and 1988 (NEA, 2011). 

Such data sets are some of the best long-term records available due to a long-established 

tradition of natural history recording in the UK. The concomitant declines in 

populations of such diverse taxa have been ongoing for centuries due to anthropogenic 

activities, often associated with agricultural land-use change. 

Increased demand for land to cultivate food crops is not a new phenomenon; between 

1940 and 1980 the cropped area in the UK increased by 40% (NEA, 2011). 

Furthermore, in recent decades the development of first generation biofuels has created 

a novel demand on land resources and renewable energy is expected to be one of the 

key drivers of future land use change (Manning et al., 2015; Santangeli et al., 2016). 

Tilman et al. (2009) succinctly summarised this as the ‘Food, Energy and Environment 

Trilema’.   

1.5 Climate Change and Renewable Energy 

In recent decades there have been sustained warnings from the scientific community of 

the urgent need to address anthropogenic climate change. Evidence set out in the fifth 

report of the Intergovernmental Panel on Climate Change (IPCC, 2014) shows that 

mean land and sea temperatures have increased by 0.85 °C between 1880 and 2012; 

there have been reductions in spring snow cover, glaciers have shrunk and ocean acidity 

has increased by 26%. The report’s authors state that the concomitant increase in 

anthropogenic GHG emissions (i.e. CO2, CH4, N2O and fluorinated gases) since pre-

industrial times is “extremely likely to be the dominant cause of warming since the mid-

twentieth century”.  
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Projections of future climatic change vary in severity but it is expected that global 

temperatures will increase under all emission scenarios. Representative concentration 

pathway (RCP) 2.6 (the lowest emission scenario) is expected to result in a temperature 

increase of between 0.3 °C to 1.7 °C by 2100 relative to 1986-2005 levels, whilst RCP 

8.6 (baseline/worst case scenario) is likely to see temperatures increase to between 2.6 

°C and 4.8 °C (IPCC, 2014). Such temperature increases, alongside factors such as 

further sea level rise and ocean acidification, are predicted to have negative 

consequences for humanity, especially for the poorest and most vulnerable, where 

problems such as food security and disease are likely to be exacerbated by a changing 

climate (IPCC, 2014; Myers et al., 2017). Similarly, evidence is already widespread for 

negative impacts on biodiversity with range contractions reported for many taxa, often 

as a result of population extinctions at lower latitudes and elevations (Parmesan, 1996). 

Species extinctions have likewise been reported for range-restricted species such as 

cloud-forest-dependent amphibians in Costa Rica (Pounds et al., 2006; Parmesan, 

2006). Differences in the rate of climate induced changes in phenology have also led to 

mismatches between predators and prey (Visser and Both, 2005), interacting plants and 

insect species (Hindle et al., 2015; Schenk et al., 2018) and even nesting bird phenology 

and farming practices (Santangeli et al., 2018). Likewise, taxonomic variability in 

climate induced range shifts (Parmesan and Yohe, 2003) has the potential to disrupt 

trophic interactions and biogeochemical cycling (Chivers et al., 2017). Such negative 

impacts on biodiversity, whilst important in their own right, will also have damaging 

effects on human health due to a loss or reduction in the ecosystem goods and services 

which it provides (Haines et al., 2006; Runting et al., 2017). Given that scenarios with 

higher atmospheric GHG concentration will result in greater negative effects for both 

humanity (Kovats et al., 2005) and biodiversity (Martay et al., 2017), it is imperative 

that action is taken to rapidly reduce emissions (Rockström et al., 2017). 
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In the UK and Europe, recent policy has aimed to stimulate a movement away from 

fossil fuels and towards more renewable forms of energy generation. Frameworks under 

the EU Renewable Energy Directive (RED, Council Directive 2009/28/EC) commit 

member states to collectively produce at least 20% of total energy consumption from 

renewables by 2020, expected to rise to 27% by 2030 (COM(2016)767/F2). The UK 

Climate Change Act 2008 (HM Government, 2008) concomitantly establishes a target 

of an 80% reduction in GHG emissions below 1990 levels by 2050 and 34% by 2020. 

This has since been followed by the release of ‘The Carbon Plan’ (HM Government, 

2011) detailing potential pathways to 2050 emission reductions and by the UK 

government’s ‘Bioenergy Strategy’ (DECC et al.,  2012), which highlights its approach 

and commitment to bioenergy to help fulfil these goals.  The recent Conference of the 

Parties in Bonn reaffirmed the international commitment of the 174 Parties (nations and 

territories) whom have ratified the Paris Agreement (United Nations, 2016), and so 

committed to pursuing efforts to limit temperature increases to 1.5 °C above pre-

industrial levels. Some governments have now begun to implement carbon tax or cap-

and-trade schemes in order to incentivise businesses to reduce emissions through 

economic drivers. Examples of such schemes are present or planned in nearly 40 

countries, including the nations of the European Union, China, India, Japan and regions 

of the US (World Bank, 2016). In order for the UK to meet its 2050 target, a carbon 

price trajectory of £33/tonne of CO2 was expected in 2020 rising to £78/tonne in 2030, 

the 2017 Budget currently sees the carbon price frozen at £18/tCO2 until April 2021 

however (Committee on Climate Change, 2015; Parliament, House of Commons, 2018). 

Nevertheless, these carbon emission penalties are aimed at stimulating investment in 

cleaner energy technologies (Aldy and Stavins, 2012).  

The Royal Commission on Environmental Pollution (2004) has suggested that by 2050 

as much as 12% of the UK’s energy (excluding transport) will be derived from biomass 
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alone. Bioenergy crops (BECs) are therefore expected to make a large contribution to 

the British renewable energy portfolio alongside other forms of biomass, such as by-

products of forestry and agriculture (Sims et al., 2006). The UK Biomass Strategy 

predicted that perennial energy crops will occupy some 350 000 ha by 2020 and provide 

278 PJ of energy (DEFRA, 2007). Additional drivers for bioenergy production include a 

desire for greater energy security as well as the acknowledgement that alternatives must 

be found to replace the finite reserves of coal, oil and gas. Furthermore, food production 

can also be decoupled from fluctuating fossil fuel prices which influence oil and 

fertiliser costs and thus, indirectly, affect food prices (Valentine et al., 2012). It is also 

suggested that bioenergy crop cultivation should stimulate the rural economy, allowing 

farmers to diversify from arable, reducing labour requirements, benefiting older and 

part-time farmers (Edwards et al., 2008; Valentine et al., 2012). 

1.6 Bioenergy and Biomass  

In order to meet future energy demand sustainably it has become evident that a diverse 

range of renewable energy technologies will need to be utilised and developed. Such a 

mix includes bioenergy as well as wind, solar, hydro-electric, tidal, and geothermal. The 

appropriate combination of fuels will vary between nations, dependant on factors such 

as climate and available land area (EASAC, 2012). 

Bioenergy is the conversion of biomass into energy carriers such as heat, electricity and 

transport fuels. Bioenergy can therefore be seen as the energy derived from biomass. 

Field et al. (2008) define biomass energy as, ‘any source of heat energy produced from 

non-fossil biological material’. Biomass can be utilised from a range of sources 

including agricultural and forest residues, organic municipal waste and energy crops 

(European Commission, 2017). Data on global final energy consumption shows that in 

2013 renewables accounted for 18% of energy demand compared to 38% from oil and 

only 2% from nuclear fuels (World Energy Council, 2016). Biomass is the predominant 
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source of this renewable energy (~77%), principally woody biomass. Woody biomass 

accounts for ~87% of all utilised biomass, although the sustainability of sources is 

variable as data encompass ‘traditional bioenergy’ sources which, when used 

inefficiently can lead to deforestation (IEA, 2009; World Energy Council, 2016). 

However in the UK, BECs still only account for a relatively small percentage of arable 

land, just over 2% in 2016 (DEFRA, 2017) with 53% of this land being used for 1st 

generation biofuel production for the road transport market. First generation biofuels 

consist of oil and starch rich crops that are principally grown for food and used to 

produce bioethanol and biodiesel. 

Bioethanol is produced from predominantly sugar and starch rich crops such as 

sugarcane (Saccharum spp. Linnaeus), maize (Zea mays Linnaeus) and wheat (Triticum 

spp. Linnaeus) using microbial fermentation (Rulli et al., 2016). Biodiesel is largely 

produced from oil rich crops such as soybean (Glycine max Linnaeus), oil palm (Elaeis 

guineensis Jacquin) and OSR using the chemical process of trans-esterification (Rulli et 

al., 2016). Global consumption of biofuels in 2013 was ~86 million tonnes with 

bioethanol accounting for 75.6% and biodiesel 24.4% (Rulli et al., 2016). In many cases 

first generation biofuels have had devastating consequences for natural environments 

and biodiversity due to direct and indirect land use change (ILUC) (Fargione et al., 

2008).  The European Union has been the biggest importer of palm oil derived biodiesel 

from Malaysia, Indonesia and Papua New Guinea (Rulli et al., 2016). It has already 

made attempts in 2012 to reduce environmental damage from palm oil cultivation in 

these nations by refusing biofuels produced on land of high biodiversity value 

(European Union, 2012). Biodiesel has a land footprint 100% that of bioethanol and the 

direct and indirect effects of production remain hard to verify (Hermele, 2014 in Rulli et 

al., 2016). 



34 
 

In the US, the Renewable Fuels Standard has encouraged the widespread cultivation of 

wheat and maize feedstock (EISA, 2007). Whilst the Renewable Energy Directive in 

Europe has similarly encouraged the cultivation of first generation crops alongside 

imports, with targets having been set for 10% of transport fuel to be renewable by 2020. 

In April 2015 a 7% cap was placed on food crop based biofuels for the transport sector, 

due to recognition of the damaging effects of ILUC, and followed by a European 

Parliament approved reform of the Renewable Energy Directive, recognising the need to 

reduce the proportion of food based biofuels in favour of advanced biofuels, principally 

waste & residues, and potentially second generation BECs (COM(2016)767/F2).  

This study focuses on second generation lignocellulosic bioenergy crops, ‘modern’ 

biomass, primarily grown for energy production and not used as food. These have 

benefits both over ‘traditional’ biomass and also the more widespread, first generation 

biofuels. Lower water consumption, reduced land footprint and less competition with 

food crops are suggested benefits of 2nd generation BECs (IEA, 2008), although, as 

pointed out by Fargione et al. (2008), these crops may still act as a possible driver of 

land clearance in the future if they are not grown on abandoned agricultural lands. 

However, if 2nd generation BECs are indeed grown on marginal agricultural lands, 

potential may still remain for rapid increases in their proportional land area, both in the 

UK and abroad. Perhaps even stimulated by targets to phase out combustion engines in 

favour of electric vehicles by 2040, following pledges by the UK, China, India, France, 

Germany, Norway, The Netherlands and eight states in the US (World Economic 

Forum, 2017). 

1.7 Lignocellulosic Bioenergy Crops: Cultivation and Management  

A wide range of 2nd generation lignocellulosic BECs have been considered as future 

sources of biomass energy. In temperate regions these crops are expected to be 
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Miscanthus x giganteus Greef et Deuter (herein: Miscanthus) and short-rotation coppice 

(SRC) crops such as willow (Salix spp. Linnaeus) that will be the focus of this study 

(Bauen et al., 2010; Hastings et al., 2014). This investigation is undertaken in arable 

areas of central England (East Midlands) and southwest England as these areas have 

received significant plantings with grants principally awarded to growers in arable 

regions (Natural England, 2008 in Haughton et al., 2009).  

1.7.1 Miscanthus  

Miscanthus x giganteus is a fast growing perennial rhizomatous grass which originates 

from Asia; a sterile hybrid of the two grasses M. sinensis Anderson and M. 

sacchariflorus (Maximowicz) Hackel It is a C4 grass and therefore has high 

photosynthetic and water use efficiencies. Long roots reaching depths of 2 m assist in 

water acquisition, reducing the likelihood of yield losses from water stress. However its 

rapid growth means higher water use than conventional crops (Heaton et al., 2010). 

Despite its C4 physiology, the grass is capable of growing at temperatures as low as 6°C 

and produces good yields in temperate climates such as the UK. This chilling tolerance 

means that unlike maize, a first generation biofuel crop and also a C4 grass, Miscanthus 

can take advantage of a longer growing season (Dohleman and Long, 2009). In 

England, yields average between 12-15 ODT (oven dried tonnes) ha-1 yr-1 once the crop 

is established (DEFRA, 2017).  Although preferring soils with a pH of 5.5-7.5, 

Miscanthus is tolerant of a wide range of pH and soil types. Additional factors 

important to crop yield include sunlight, temperature, water availability and site aspect.  

Miscanthus is a long-lived plant; the rhizome remains viable in the soil for 15-20 years 

before replanting becomes necessary. This in turn means tillage and soil disturbance are 

reduced. Once mature, the bamboo-like canes show impressive annual growth of 

between 2.5-3.5 m. In field trials in Illinois, biomass increase between June and August 

corresponded to 4.4% conversion of solar energy into biomass, one of the highest 
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recorded (Dohleman et al., 2012). Productivity and yields are much reduced in Europe, 

due to climatic factors, but the efficiency of the crop is clear.  

The canes are harvested annually and provide a regular source of income for the grower. 

In economic terms this is a key benefit over willow SRC, which tends to be harvested 

on a 3 year cycle (Rowe et al., 2009). Unlike conventional arable crops, Miscanthus has 

a low requirement for agrochemical inputs. The grass exhibits a high nitrogen use 

efficiency and recycles many nutrients back to either its rhizome or to the soil (as leaf 

litter) prior to harvesting in the winter/spring. It may be necessary to use a conventional 

non-selective cereal herbicide as a weed control prior to crop establishment in some 

instances however. This can be applied in the second year preceding new growth where 

weeds remain competitive. There were ~7000 hectares of Miscanthus grown on 

agricultural land in the UK in 2016, mainly grown in Yorkshire, the East Midlands and 

southwest region, this is down from a peak of ~9213 ha in 2009 (DEFRA, 2015; 

DEFRA, 2017).  

1.7.2 Willow Short-rotation Coppice (SRC) 

As with other SRC crops trialled in the UK, such as poplar (Populus spp. Linnaeus), 

willow is a fast growing tree species that may re-sprout from stools after harvest. 

Following removal of low yielding biomass during the initial establishment year, 

willow is typically coppiced on a 3 year rotation (DEFRA, 2017). Willow plantations 

therefore have lower disturbance than the annually harvested Miscanthus (DEFRA, 

2004). Cuttings are planted in spring and harvested in winter using conventional farm 

machinery. Harvested material is chipped and dried for use in dedicated biomass 

burners or for co-firing (Rowe et al., 2009). The crop is densely planted with ~15,000 

stools ha-1
, using varieties that have predominantly been developed from the osier shrub 

(Salix viminalis Linnaeus), with traits such as resistance to disease, erect growth habit 

and high yields selected for (DEFRA, 2004; Rowe et al., 2009). The plantations can 
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remain viable for up to 30 years before replanting becomes necessary. UK willow yields 

are expected to fall between 7 and 12 ODT ha-1 year-1 with annual rainfall requirements 

of 600-1000 mm per year being preferable (DEFRA, 2004).  

In Europe in 2009 the largest amount of SRC was grown in Sweden, with 15,000 ha 

under production. Italy had 6000 ha of predominantly poplar, Poland and the UK each 

had 3000 ha of mostly willow and Germany 1500 ha of mainly poplar (Dimitriou et al., 

2009). Recent figures from DEFRA (2017) show the area of UK arable land cultivated 

with SRC remained at ~3000 ha in 2016.  

Although numbers of studies are still low, some striking differences are appearing 

between these 2nd generation BECs and when related to either 1st generation BECs or 

traditional food crops. When compared to these altenative agricultural land uses, studies 

to date have documented predominantly positive or neutral effects of Miscanthus and 

willow SRC cultivation upon a variety of taxa. Densities of birds in hedgerows 

surrounding willow SRC are seen to be higher compared to arable and grassland for 

example, with higher numbers of winter migrants and more species using the fields 

(Sage et al., 2006). Sage et al. (2010) describe Miscanthus as having largely neutral 

impacts on birds. When comparing Miscanthus to winter wheat Bellamy et al. (2009) 

show seasonal variation in the effects of each crop upon birds, with benefits from 

Miscanthus in summer and winter but greater insect prey in wheat fields during the 

breeding season. Some negative effects may arise for birds preferring open farmland, 

however, such as skylark (Alauda arvensis Linnaeus), yellow wagtail (Motacilla flava 

Linnaeus) and lapwing (Vanellus vanellus (Linnaeus)), although abundances can be 

high in SRC following harvest (Sage et al., 2006).  

In rural areas, SRC is shown to provide a novel habitat that increases phytodiversity 

(Baum et al., 2012), with richer ‘weed’ vegetation reported in recently established 
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Miscanthus compared to reed canary-grass (Phalaris arundinacea Linnaeus) or arable 

fields (Semere and Slater, 2007b). Miscanthus also provides suitable margin habitats for 

mammals but numbers are seen to remain similar to both reed canary grass and 

conventional arable (Semere and Slater, 2007a). Studies to date have largely focused on 

birds or plants with limited research of other groups. However Rowe et al. (2013) have 

shown significantly more non-coleopteran arthropod predators in willow than arable 

whilst rove beetle (Staphylinidae) abundance was higher in willow but ground beetle 

(Carabidae) abundance unaffected by crop type.  

Conversion of semi-natural habitats to BECs is expected to have negative consequences 

however, with BEC monocultures more closely approximating conventional arable than 

complex biodiversity rich habitat (Rowe et al., 2009). Nonetheless, perennial energy 

crops (PECs) offer a potential opportunity to promote agricultural sustainability, 

enhancing regulation of key ecological processes (Rooney et al., 2009). Positive and 

benign effects of Miscanthus and largely positive effects of willow SRC, have led to the 

suggestion that PECs may be suitable for strategic planting in landscapes dominated by 

annual rotational cropping (Haughton et al., 2015), with potential inclusion in agri-

environment schemes (Sage et al. 2006).  

1.8 Bioenergy Crops: Biodiversity, Ecosystem Processes and Services 

Ecosystem services are the collective benefits that society obtains from ecosystems and 

a key justification of the benefits of conservation (Liss et al., 2013). The National 

Ecosystem Assessment (NEA, 2011) recognises four broad and inter-related categories 

of ecosystem services. 

- Supporting services (including soil formation and nutrient cycling) 

- Regulating services (including pollination, pest and disease regulation). 
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- Provisioning services (products obtained from ecosystems, including food, fibre, 

fuel and fresh water) 

- Cultural Services (including cultural identity, aesthetic appreciation and 

inspiration) 

The discussion here is directed towards those processes and services in Miscanthus and 

willow SRC that are the principle focus of this study: pollination, biogeochemical 

cycling (encompassing nutrient cycling and climate regulation) and decomposition. 

Despite the evidence for positive impacts on biodiversity, few studies have been carried 

out to investigate how ecosystem processes and services in 2nd generation 

lignocellulosic BECs differ from conventional agricultural land use (Rowe et al., 2013).  

1.8.1 Pollination Processes 

From an ecological standpoint insect pollination can be viewed as the biophysical 

transfer of pollen grains, a service which involves the processes of insect flower 

visitation, pollen collection and transport, pollen deposition onto conspecific stigmas 

and, if successful, pollen tube growth into the style (Willmer, 2011). Estimates of the 

success of this service can be inferred from measures of reproductive output (i.e. seed 

production and/or fruit set) which, at least in the context of crop yields, is a metric with 

a clear monetary value and, in the context of wild plants, vital to the development of 

viable progeny (Cussans et al., 2010).     

The decline of pollinating insects has attracted increasing concern regarding the 

provision of pollination services, making potential negative or positive impacts from 

future land use change an important area of investigation. Insect pollinators contribute 

to the yield of ~75% of crop species with an estimated value to agriculture in 2005 of 

€153 billion globally (Gallai et al., 2009). Despite its magnitude this is a conservative 

estimate and does not account for biofuel, ornamental flower pollination or pollination 
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of livestock crops (Gallai et al. 2009). Although commercial bee colonies are 

increasingly used as a management tool, pollination by wild insects provides a vitally 

important ecosystem service to a large number of crop and wild plants (Gallai et al., 

2009). 

To date there have been no direct attempts to specifically quantify pollination service 

provision in Miscanthus or willow SRC. Studies have instead focused on population 

parameters such as abundance, species richness and diversity, important components of 

pollination but not direct measures of pollination process or service provision. Studies 

in Ireland have compared pollinator populations in Miscanthus to those in conventional 

arable and a 1st generation BEC, OSR (Stanley and Stout, 2013). Responses of 

pollinator assemblages differed between the two BECs. Solitary bees benefitted from 

the cultivation of both BECs with higher abundances and species richness compared to 

wheat, whilst community composition differed between the two BECs. The authors 

suggest that elevated wildflower abundance may explain these trends. Investigation of 

trap nesting bees revealed higher numbers in Miscanthus than OSR whilst bumblebee 

abundance, species richness and nest searching activity was no greater in Miscanthus 

than any of the other crop types. Similarly, Lepidoptera and hoverfly abundance and 

species richness in Miscanthus did not differ to wheat and the authors posit that this 

may arise from the differing larval food preferences of these taxa. Lepidoptera were 

more abundant in Miscanthus fields than grass silage however, with differences in wild 

plant communities also documented between land uses. Overall, these studies 

demonstrate fairly neutral effects on pollinator taxa when changing from conventional 

arable to Miscanthus but highlight variability in the direction of response between 

different taxa, there is consequently a need to avoid using coarse taxonomic resolution 

when investigator pollinator assemblages.  
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Comparison of recently established Miscanthus (≤3 years) to an alternative 2nd 

generation BEC, reed canary-grass, suggests some benefits of Miscanthus upon 

invertebrate populations over alternative biomass BECs (Semere and Slater, 2007b). 

Although relevance to pollination is constrained due to a limited focus on ground 

beetles, butterflies and arboreal invertebrates (the latter principally at family level), it is 

shown that all three invertebrate groups were more abundant and diverse in Micanthus 

with greater diversity of wild plant species. Lepidoptera in Miscanthus were more 

abundant in both the cropped region (likely due to within-crop ‘weeds’) and margin 

region of the fields compared to reed canary grass. Similar to Miscanthus, a study of 

commercial willow SRC in Yorkshire showed increased butterfly abundance and 

species richness in the field margins and headlands compared to conventional arable 

(Cunningham et al., 2004) and grassland (Cunningham et al., 2006). The less intensive, 

more sheltered, wider headlands are suggested to drive these trends, providing good 

butterfly habitat, with numbers seen to increase in more established crops (Cunningham 

et al., 2004).  

In willow SRC, floral resources are seen to change throughout the harvest cycle, 

recently harvested crops providing disturbed sites, largely for annuals, with crop 

establishment resulting in a proportional increase perennial and invasive species 

(Cunningham et al., 2004). Although I concentrate on pollination services during the 

summer months this study, the willow crop itself is in flower during the spring, 

providing an important source of forage for pollinators at this time. In Germany Haß et 

al., (2012) showed that male willow flowers appear to be an important source of forage 

for early emerging bumblebees and oligolectic spring solitary bees such as Andrena 

clarkella (Kirby), Andrena vaga Panzer and Colletes cunicularius (Linnaeus), leading 

the author to recommend planting a high proportion of male plants, however given seed 

and nectar production by female flowers, entirely single sexed stands are unlikely to be 
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desirable for biodiversity generally. The benefit of multiple cultivars, due to variation in 

the time of anthesis, is also emphasised, and the authors suggest that willows should be 

favoured over alternative poplar SRC due to the predominantly wind pollinated nature 

of latter crop. Across the whole study (April 1st to 24th June 2010) Haß et al., (2012) 

record a respectable 29 bee species on the SRC, indicating the value of incorporating 

this crop into farmland landscapes. In another European study, in The Netherlands, 

Redderson (2001) demonstrate that catkin number increases with year since harvest 

whilst harvesting reduced catkin numbers to nil in the subsequent year, demonstrating 

the value of varying the harvest cycle for different regions of a given plantation, 

preventing a discontinuity in resources for spring pollinators. Redderson (2001) report 

few bees in their study but suggest that this largely results from an otherwise 

impoverished landscape and small plantation sizes (mean= 1.1ha). Across 

investigations, studies in both bioenergy crops suggest little benefit to particularly rare 

pollinators; for example butterflies in SRC tend to consist of common ‘browns’ and 

‘skippers’ such as meadow brown (Maniola jurtina Linnaues) and large skipper 

(Ochlodes sylvanus (Esper)) (Cunningham et al., 2004).  

1.8.2 Biogeochemical Cycling and Decomposition Processes 

Biogeochemical cycling is the process by which elements move through biotic 

(biosphere) and abiotic (lithosphere, hydrosphere, atmosphere) compartments of the 

Earth. Biogeochemical cycling has particular importance for ecosystem services such as 

climate regulation (Dennan et al., 2007) and soil nutrient status (Jobbágy and Jackson, 

2004), highly relevant in the context of anthropogenic climate change and farmland soil 

fertility. In this study, attention is given to patterns of soil elements and Bacteria under 

BECs with consideration of decomposition processes at the soil surface. Soil is a major 

reservoir of nutrients and yet many gaps still exist in our knowledge regarding the 

cycling of even abundant elements such as carbon, nitrogen and phosphorus (Quinton et 
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al., 2010). Land use change can have consequences for biogeochemical cycling due to 

its effect on both biotic and abiotic processes (Guo and Gifford, 2002). To date most 

studies in Miscanthus and willow SRC have focused on processes directly relevant to C 

and N cycling.  

Although the global warming potential of N2O (a by-product of incomplete nitrification 

and denitrification) is 298 times that of CO2, disparities in their atmospheric 

concentration result in a far greater contribution of CO2 to radiative forcing (+1.68 [1.33 

to 2.03 W m-2), greater in fact than all other GHGs combined (total forcing = + 2.29 

[1.13 to 3.33] W m-2; IPCC, 2014). Understanding how changing land use might alter 

carbon cycle processes relevant to atmospheric CO2 concentrations is clearly necessary. 

In terrestrial systems, soils are the most important pool of stored carbon, storing more 

globally than both terrestrial vegetation and the atmosphere combined (Averill et al., 

2014). The global soil organic carbon (SOC) pool is estimated to be ~1550 PgC, which 

is approximately double that of the atmospheric pool (~770 PgC) and 2.5 times the 

biotic pool (~610 PgC) (King et al., 2004).There is now a growing body of research 

seeking to understand the potential of soils to act as carbon ‘sinks’ (i.e. sites of net 

carbon storage as opposed to net loss, Smith, 2014) under differing land uses.  

In the UK >95% of land carbon stocks are in soils (Ostle et al., 2009). The 57% land 

share of agriculture in Britain (~74% in England; Rae, 2017) highlights the important 

contribution that agricultural land use may have  in controlling national GHG emissions, 

through effects on processes that control the accumulation, stability and composition of 

soil organic matter (SOM) (Batjes, 1996, Ostle et al., 2009, Averill et al., 2014). 

Although smaller in magnitude than the oceanic carbon pool, the short term labile 

nature of soil carbon adds to its importance (Batjes, 1996). Based on Countryside 

Survey (2007) data, arable and horticultural below-ground carbon stocks are the third 

highest (198 ± 19 million tonnes) of any broad habitat in the UK; only bog (>550 
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million tonnes) and improved grassland (274 ± 25 million tonnes) habitats have greater 

stores of soil carbon (Ostle et al., 2009). In addition, the low baseline carbon stock, per 

unit area, of arable and horticultural croplands in the UK (43 ± 0.5 tonnes ha-1 to 15 cm 

depth; Countryside Survey, 2007) presents a major opportunity for future improvements 

through changes in land use and management practices (Davidson and Janssens, 2006; 

Dondini et al., 2009). 

On average, British croplands are estimated to lose ~140 ± 100 kg C ha-1 yr-1 (Dawson 

and Smith, 2007) with analyses revealing arable soils as net carbon sources in 33 

additional European countries (Janssens et al., 2006). Conservation agricultural 

practices such as crop residue retention and no-till farming have been shown to increase 

soil carbon sequestration in Europe (Smith et al., 1998; Blanco-Canqui and Lal, 2007) 

and elsewhere (e.g. North America, Hollinger et al., 2005; South America, Bayer et al., 

2006 and Africa, Saber and Mrabet, 2002). Increasing the amount and quality of non-

farmed habitats such as hedgerows, woodland and field margins, is also a means of 

increasing C (as SOM) in farmed landscapes (Falloon et al., 2004; van Vooren et al., 

2018). Likewise, research by Guo and Gifford (2002) has demonstrated significant 

increases in soil carbon stocks with wholescale land use change from cropland to lower 

intensity pasture (+19%), plantation (+18) and forestry (+53%).  

CO2 release through soil respiration plays a major role in CO2 efflux and highlights the 

importance of decomposition processes for land use carbon balance. Decomposition is 

the breakdown of non-living organic material (detritus) into simpler compounds; this 

may result in immobilisation of nutrients (i.e. the accumulation of elements in biomass 

for biosynthesis or storage) or complete oxidation/mineralisation, whereby inorganic 

substances are released into the environment, where they are potentially bioavailable to 

plants and microbes. Although influenced by abiotic processes such as physical (i.e. 

leaching) and chemical (i.e. hydrolysis, photolysis) degradation, biodegradation is often 
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a major driver in the breakdown of organic material in many environments (Jenny, 

1961), with the biota responsible providing an important ecosystem service that can 

result in SOC accumulation. 

Soil invertebrates can have a considerable effect on decomposition rate (Chapin et al., 

2002). In the soil and litter layer soil animals are important for the fragmentation of 

litter  and microbes (Bacteria and fungi) have a major role in the transformation of 

molecules and elements into different forms, different strains having differing 

capabilities, with considerable redundancy likely contributing to the resilience of this 

ecosystem process (Kertesz and Frossard, 2015). Interactions between soil organisms 

(e.g. between consortia within microbial biofilms, between earthworms and microbes 

etc.) can also have implications for soil processes. As such, changes in land use are 

likely to pose differing pressures that affect survival, growth and reproduction of soil 

organisms and in turn the decomposition process (Chapin et al., 2002). Microbial 

predation by protozoa may be greater under certain land uses and for certain microbial 

species for example, influencing microbial community composition and even soil C and 

N turnover, due to high microbial concentration of these elements (Chapin et al., 2002). 

Furthermore, changes in soil disturbance through altered cultivation activity can 

influence oxidation of slowly decomposing SOM by microbes. Farming practices that 

reduce the intensity, frequency and depth of soil cultivation have therefore been 

proposed as one means to reverse carbon efflux (Ogle et al., 2005; UNEP, 2013).  

In some regions, such as the Po Valley in northern Italy, PECs have been grown with 

the duel aim of reducing carbon emissions and improving soil quality, tackling SOC 

losses resulting from intensive agriculture; sequestering carbon from litter, roots and 

harvest residues into SOC (Agostini et al., 2015). Cattaneo et al. (2014) used denaturing 

gradient gel electrophoresis (DGGE) to investigate the microbial communities present 

in 9-year-old Miscanthus and giant reed (Arundo donax Linnaeus) whilst comparing 
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them to two 40 year old arable cropping systems, continuous wheat and a wheat-maize 

rotation. The activities of three enzymes involved in soil carbon, nitrogen and 

phosphorus cycles (β-glucosidase, urease and alkaline phosphatase) were also 

investigated. Both bioenergy crops increased the activity of the enzymes, particularly in 

the topsoil (0-0.15 m) where carbon and nitrogen were most prevalent. The authors 

attribute this activity to reduced soil disturbance (i.e. tillage) in the perennial crops, 

highlighting the findings of King et al. (2004) who showed that under lower aeration 

(i.e. reduced cultivation) soil carbon storage increased due to lower microbial oxidation. 

Numerous studies have also shown that afforestation and no-tillage provide microbes 

with a large supply of nutrients in the form of root and leaf litter to the top soil layer, 

leading to greater microbial biomass (Mao and Zeng, 2010; Toenshoff et al., 2013). Due 

to fine roots primarily colonising the upper 10 cm of soil under fast growing tree-

plantations, microbes in top soil are also thought to benefit from root exudates (Heinsoo 

et al., 2009). Cattaneo et al. (2014) showed that organic carbon was positively 

correlated with enzyme activities, although surprisingly not β-glucosidase, and a 

significant but weaker correlation existed for total nitrogen. DGGE fingerprinting 

demonstrated that community richness was higher in perennial crops than annual, but no 

crop-linked variation in species diversity was recorded and no depth effect observed. 

The authors conclude that perennial grasses may represent a sustainable choice for soils 

depleted by intensive agriculture (Cattaneo et al., 2014).  

Furthermore, Schmitt et al. (2010) have also reported higher microbial biomass C under 

willow than popular clones. The authors suggest that lower lignin content and C/N ratio 

of willow leaves made them more degradable. Additionally, a study of willow SRC by 

Rowe et al. (2013) has demonstrated elevated soil surface processes with higher litter 

fragmentation rates in the PEC compared to cereals, an important aspect of SOC 

turnover rates. This is, again, attributed to the lower levels of tillage as well as reduced 
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pesticide use; lower pesticide is understood to benefit soil biota, increasing both soil 

faunal abundance and microbial activity (Curry et al., 2002; Minor and Cianciolo, 

2007). The authors also highlight a study by Makeschin (1994) who report higher 

earthworm and woodlice numbers in willow SRC plantations than in arable systems 

(but see Coates and Say, 1999), with willow SRC also having higher microbial biomass 

and soil faunal diversity compared to arable controls (Rowe et al., 2013). However, in 

contrast to willow, a study comparing Miscanthus and two other PECs (switchgrass and 

planted prairie) by Zangerl et al. (2013) found no difference in litter decomposition 

rates or arthropod abundance between PECs. Furthermore, the application of 

insecticide, which reduced arthropod abundance, did not result in differences in litter 

decomposition rates, inorganic nitrogen leaching or carbon- nitrogen ratios for any crop. 

Comparison of soil and epigeal invertebrate abundance by Bellamy et al. (2009) failed 

to find significant differences between Miscanthus and wheat for many taxa, although 

some were more abundant, for example, flies (Diptera), millipedes (Diploda), slugs and 

snails (Mollusca) were twice as abundant in Miscanthus and earthworm abundance 

significantly higher. 

In depth investigation into the effects of PECs on microbial nitrogen cycling have been 

carried out by Mao et al. (2011) in Illinois, focusing on the impact of Miscanthus and 

switchgrass (Panicum virgatum Linnaeus) in comparison to first generation maize 

(Triticum spp.) and tallgrass prairie. During the first two years of crop establishment 

differing microbial communities developed in the crops with each functional group 

responding differently to land use change. The authors investigated the quantity and 

diversity of key functional genes involved in nitrogen cycling, namely nifH, 

bacterial/archaeal amoA and nosZ. 16S rRNA genes were also studied. The quantities of 

the nitrogen cycling genes remained stable in all crops except fertilised maize. 

Cultivation of N-fertilised maize had the greatest effect on nitrogen cycling 
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communities with increases in the abundance of ammonia-oxidising bacteria (AOB; 

doubling in <3 months) and denitrifying bacteria, whilst the diversity of ammonia-

oxidising Archaea (AOA), archaeal denitrifiers and diazotrophs decreased. Significant 

changes also occurred in the structure of the denitrification community. The fact that 

maize was the only crop fertilised implicates nitrogen fertilisation as having a role in 

these changes and the authors point to a previous study by Okano et al. (2004) that 

showed the rapid and long term effects of nitrogen fertilisation on AOB. AOA are 

suggested to be responsible for the nitrification rate in this crop due to the significant 

correlation with the quantity of archaeal amoA (Mao et al., 2011). Under Miscanthus, 

the abundance of the genus Herbaspirillum Baldani et al. increased. These species are 

known to be endophytic diazotrophs which benefit from cultivation of C4 grasses (Mao 

et al. 2011). The authors suggest that root exudates released by Miscanthus may be the 

reason for populations of this genus being favoured. It is also suggested that only 

specific diazotrophs are enhanced by Miscanthus, rather than the whole community.  

A follow up study, Mao et al. (2013), investigated the effect of mature (established for 6 

years) bioenergy crops on soil microbial communities. Although differences existed 

between crops in terms of the compositions and quantities of the microbial communities 

and functional N-cycling genes present, site-to-site variation surpassed this and no 

single crop type converged on a typified species assemblage. However, similar to the 

previous study, the largest differences at each site were found between maize and the 

two perennial grasses (Mao et al., 2013). Positive effects of Miscanthus and switch 

grass cultivation were shown, with significantly higher abundance of the nifH gene and 

total soil N compared to maize, the authors concluding that cultivation of perennial 

grasses as a bioenergy feedstock improve soil nitrogen sustainability over maize, 

increasing N-fixing bacteria.  
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Previous models of the growth dynamics of the four crops investigated by Mao et al. 

(2011, 2013) also showed that cultivation of Miscanthus would result in greatest GHG 

reductions, with biological nitrogen fixation contributing to the crops N demand (Davis 

et al., 2010). Unsurprisingly, first generation N-fertilised maize was also shown to be 

the worst GHG emitter, with 956-1899 g CO2eq m-2 y-1 more emissions than the other 

bioenergy crops studied (Davis et al., 2010). Keymer and Kent (2014) have shown that 

in relation to recently established Miscanthus plants, ~16% of new plant nitrogen is 

likely to be derived from nitrogen fixation, even in conditions with non-limiting soil 

nitrogen. The authors suggest that breeding lines that maximise this trait could improve 

the nitrogen sustainability of this crop. Agricultural land is the dominant source of 

anthropogenic N2O emissions (van Groenigen et al., 2011); the nitrogen sustainability 

of Miscanthus feedstock is therefore an evident benefit over 1st generation BEC maize. 

The ability of Miscanthus to associatively obtain nitrogen will better enable it to tolerate 

low nutrient soils, perhaps unsuitable for other crops, and will reduce fertiliser inputs.  

Bioenergy crop cultivation along watercourses has further consequences for N cycling, 

reducing nutrient run-off from agricultural land (Börjesson, 1999). In a recent study, 

Ferrarini et al. (2017), investigated N-removal processes in willow and Miscanthus 

buffer strips of two different widths (5 and 10 m) along a soil-groundwater continuum; 

NO3-N was effectively removed from groundwater by the buffer strips (62%- 5m and 

80%-10m) and removal rate increased with elevated nitrate inputs from fertilised fields. 

Rhizosphere priming by the two crops stimulated microbial functioning by providing a 

bioaccessible source of dissolved organic carbon, leading to greater carbon in microbial 

biomass and microbial immobilisation of nitrogen (Ferrarini et al., 2017). Willow 

outperformed Miscanthus in terms of total and root biomass production, and willow 

harvesting resulted in greater nitrogen removal (the negative or positive connotations 

dependant on where and why the crops are grown). This may be useful when buffering 
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watercourse from groundwater nitrogen pollution, but not beneficial in terms of 

productivity on low fertility land. 

Although the nutrient requirements of willow are low compared to conventional arable, 

a study in Canada by Hangs et al. (2014) demonstrates that some inputs are likely to be 

necessary during the crops life cycle. Following a single coppice cycle of 4 years, 

deficits of 17, 39, 112, 271 and 74 kg ha-1 of N, P, K, Ca and Mg are reported for 

recently established plantations. Such studies investigating the response of a diverse 

range of soil nutrients to land use change are limited and there is a need for better 

understanding of the response of other elements, particularly in terms of bioaccessible 

concentrations relevant to soil biota.  

1.9 Project Aims  

Despite the growing influence of ecosystem services upon policy and decision making 

(Liss et al., 2013), there remain significant gaps in the understanding of how land use 

change from conventional arable to 2nd generation BECs may affect ecosystem 

processes and services (Manning et al., 2015). This study aims to begin to address gaps 

in the literature by investigating ecosystem processes in two commercial lignocellulosic 

BECs, Miscanthus and willow SRC, compared to rotational cereal crops, including 

patterns relevant to soil chemistry and bacterial communities.  

Outline of chapter content: 

Chapter 2: A study of the frequency of insect flower visitation (principally hoverflies, 

bumblebees and Lepidoptera) to wild plants in the margins of Miscanthus and willow 

fields. BECs are compared to adjacent and distant cereal controls, making it possible to 

investigate whether insect visitation in surrounding arable fields is locally enhanced or 

reduced by the cultivation of the two BECs.   
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Chapter 3: Following documentation of insect visitation patterns in chapter 2, seed-set is 

investigated as an indication of pollination success in Miscanthus and cereal control 

fields. Two morphologically distinct phytometers, Californian poppy (Eschscholzia 

californica Chamisso) and red clover (Trifolium pratense Linnaeus) are used alongside 

a common hedgerow plant, red campion (Silene dioica (Linnaeus) Clairville). Visitation 

rates to margin wildflower patches in Miscanthus are described for focal insect taxa. 

Due to the potential conservation value of MFCs, and following evidence of increased 

bumblebee visitation to margin wildflowers by Hanley et al. (2011), comparisons of 

seed-set are also presented for paired wheat and field bean (Vicia faba Linnaeus) crops 

in southwest England.  

Chapter 4: Soil chemistry is investigated in Miscanthus and willow and compared to 

cereal controls, focusing specifically on the extractability of 28 different elements that 

might indicate biologically relevant effects of PEC land use change on biogeochemical 

processes and soil fertility. Bacterial communities are investigated to establish whether 

broad differences occur between BECs and conventional cereal crops.  

Chapter 5:  Following investigation of soil element and microbial communities, and 

building upon previous investigations in willow SRC by Rowe et al. (2013), this chapter 

looks to discern the effect of Miscanthus cultivation on the decomposition process of 

litter fragmentation. Litter degradation rates in BECs are compared to conventional 

cereals in each season.  

Chapter 6: General discussion, bringing together findings across all chapters in the 

context of past research, outlining implications for ecosystem service provision, 

conservation, management and policy.  
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Chapter 2: Influence of bioenergy crops on pollinator activity varies with crop 

type and distance 
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2.1 Abstract 

Second-generation perennial energy crops (PECs) are generally correlated with 

increased biodiversity, compared to traditional annual crops, but experimental studies 

with adequate replication and controls are few. I expect pollinator visitation to 

wildflowers in crop margins to be augmented by PECs, but this process has not been 

tested. I tested this hypothesis in a 4 year study across multiple sites using two PECs 

which did not themselves constitute pollinator resources: Miscanthus x giganteus and 

willow short-rotation coppice. I recorded flower visits to PEC and cereal crop margins 

by three pollinator groups: hoverflies, bumblebees and butterflies/moths. Data on other 

flower visiting insects are also presented. Each PEC field was paired with two cereal 

fields, one adjacent to the PEC and one distant. I also measured floral resources, since 

crop-specific management seemed a likely means of influencing margin wildflowers 

and thus pollinator activity. My results add quantitative support to the suggestion that 

PECs should enhance ecosystem processes in agri-landscapes. However, benefits were 

highly context-dependent. Consistent enhancement of pollinator activity in margins of 

PEC fields was found for one species (willow) and not the other (Miscanthus). This 

arose from opposing trends for different pollinator taxa: Lepidoptera were more 

frequent flower visitors around Miscanthus than at cereal margins, while hoverfly 

flower visits were most frequent along margins of distant cereals. Results for willow 

were more consistent: flower visits were more frequent at willow than at cereal margins 

across all three focal pollinator taxa. Further, bumblebee and Lepidoptera species 

richness, Lepidoptera diversity, and preferred flowers were all higher in willow margins 

than cereal margins. Of the most frequent non-focal flower visiting taxa, Scathophaga 

stercoraria visits were significantly higher along distant cereal margins than the 

margins of Miscanthus or adjacent cereals, whilst Rhagonycha fulva visitation was 

significantly lower in distant cereals compared to willow and adjacent cereals. Network 
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parameters associated with plant-pollinator interaction indicated that willow networks 

were slightly more robust than cereals, whilst Miscanthus networks differed little to 

cereal controls. Future land-use practices should consider how PEC identity affects both 

target species and ecosystem processes. Tackling anthropogenic climate change through 

cultivation of willow, in particular, may yield local benefits for both wildflowers and 

pollinators, even if evidence for increased pollinator activity in the wider agri-

environment is limited. 

2.2 Introduction 

A global decline in insect pollinator abundance and diversity is well established and 

associated ramifications for crop and wildflower pollination widely debated (Potts et al., 

2010; Vanbergen, 2013; De Palma et al., 2016; Hallmann et al. 2017; but see Ghazoul 

2005). The impact of agricultural intensification on insect pollinators like bees, has 

received particular attention, driving major declines in both wild and managed species 

(Goulson et al., 2005; Biesmeijer et al., 2006; Vanbergen, 2013). Other pollinators are 

also faring poorly; European hoverfly communities are represented by fewer species 

(Biesmeijer et al., 2006) while European Lepidoptera have declined in abundance and 

distribution (van Swaay et al., 2008; van Dyck et al., 2009; Fox et al., 2013, 2015). 

Conservation actions to halt and reverse these declines are necessary, both to retain 

biodiversity and the key ecosystem service (ES) pollinators provide (Gallai et al., 2009; 

Goulson et al., 2011).  

Counter to historic trends, future land use changes could help reverse pollinator decline. 

Although the success of ‘pollinator-friendly’ agri-environment schemes (e.g. wildflower 

strips) are debated (Batáry et al., 2015), and further research necessary (Wood et al., 

2016), effects on pollinator communities and associated ES provision appear largely 

positive (McCracken et al., 2015). Organic farming has similarly been associated with 

benefits to pollinator communities (Holzschuh et al., 2007; Tuck et al., 2014), but the 
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likely contribution of organic farms to the global food supply remains doubtful (Seufert 

et al., 2012). Changes in conventional cropping systems may also contribute to 

pollinator conservation. The cultivation of mass-flowering crops (MFCs) such as 

oilseed rape (Brassica napus) and field bean (Vicia faba) has, for example, been linked 

to increased bumblebee abundance at the landscape-scale and more visits to wild 

flowers in the margins adjacent to the crop (Holzschuh et al., 2007; Hanley et al., 2011).  

As part of a global commitment to reduce greenhouse gas emissions, the cultivation of 

bioenergy crops (BECs) is now widely practised. In particular, so-called ‘second 

generation’ lignocellulosic BECs such as the fast-growing perennial grass, Miscanthus, 

and short-rotation coppice (SRC) species (principally willow and poplar) are widely 

grown throughout Europe and North America (Somerville et al., 2010). Although there 

is concern that perennial energy crops (PECs) may displace traditional food crops 

(Gelfand et al., 2013), it is widely held that PECs are locally beneficial for farmland 

biodiversity, due to the relatively low chemical inputs and disturbance regimes they 

require (Dauber et al., 2010; Rowe et al., 2011; Wiens et al., 2011; Bourke et al., 2014). 

In addition, key ecosystem processes such as decomposition and predation, are 

enhanced within the PEC compared to adjacent cereal crops (Rowe et al., 2013). Taken 

together, these findings have led to the suggestion that the strategic location of PECs 

could boost local pollinator abundances and thus benefit ecosystem service provision, 

enhancing ecosystem processes (EPs) such as flower visitation to margin wildflowers, 

both within the field and in the local arable landscape (Manning et al., 2015; see also 

Holland et al., 2015; Milner et al., 2016). 

As an important ES in the agri-environment, any benefits accruing to pollinators and 

pollination from the strategic cultivation of PECs are of considerable importance, not 

least because of widespread concerns about global pollinator declines. Consequently, 

there is a pressing need to understand how pollinator communities respond to PEC 
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cultivation (Rowe et al., 2013; Manning et al., 2015). Local pollinator spill-over from 

MFCs to adjacent field margin wildflowers (Hanley et al. 2011) offers a precedent to 

investigate whether PECs may similarly enhance  pollination processes to margin 

flowers,  both within the field and surrounding landscape. This hypothesis remains 

largely untested however. In this study I investigated the influence that Miscanthus and 

willow SRC cultivation had upon guild-specific pollinator visits to native plants in 

margins adjacent to the crop, and compared this to margins of traditional annual cereals 

in a replicated, paired design. Visitation within the PEC field is principally management 

driven rather than ‘spill-over’ of pollinators from the crops themselves, as the crops are 

either sterile (Miscanthus) or do not provide floral resources during the study period 

(willow). In addition, I investigated the potential for locally enhanced flower visitation 

in the surrounding landscape by comparing frequency of pollinator visits along the 

margins of adjacent and distant conventional cereal fields. It is understood that habitat 

modification (Tylianakis et al., 2007) and land use change (Weiner et al., 2014) can 

alter properties of insect interaction networks with potential effects on ecological 

functioning; (Valiente-Banuet et al., 2014) consequently I also compare PEC to cereals 

using a selection of indices that describe the architecture of insect plant visitation 

networks. All surveys were undertaken in England, United Kingdom. 

2.3 Materials and methods 

2.3.1 Study crop and sites 

Miscanthus x giganteus is a perennial grass of Asian origin; a sterile hybrid of M. 

sinensis and M. sacchariflorus. Despite its C4 physiology, Miscanthus produces good 

yields in temperate climates averaging between 12-16 ODT (oven dried tonnes) ha-1 in 

England and growth rates in excess of 2.5 m per year (DEFRA, 2007). The rhizome 

remains viable in the soil for 15-20 years, reducing tillage and soil disturbance. 

Moreover, unlike conventional arable crops, Miscanthus has a low requirement for 



57 
 

agrochemical inputs; high nitrogen-use efficiency enables nutrient recycling back to the 

rhizome or soil (as leaf-litter) prior to winter/spring harvest. Willow (typically Salix 

viminalis) SRC re-grows rapidly from stools over a typical 3-4year coppice cycle 

(DEFRA, 2004). Willow is densely planted with ~15,000 trees ha-1; an erect growth 

habit produces high yields (up to 12 ODT ha-1 year-1) for up to 30 years (DEFRA, 

2004).  

Surveys of crop margin visits by pollinators for Miscanthus centred on six locations in 

southwest England, and for willow SRC, five locations in central England; i.e. 

Nottinghamshire and Lincolnshire (Table 2.1; Plate 2.1). Each site comprised three 

fields (Fig. 2.1), a focal PEC, an adjacent cereal and a distant cereal situated a minimum 

of 920 m from the focal PEC or any other BEC or MFC (based on field centres); this 

distance is thought to minimise non-independence of mobile bumblebee pollinators 

(Knight et al., 2005). As far as possible, cereal fields in each ‘triplicate’ were matched 

with the focal PEC for margin characteristics, field area, slope, altitude and aspect and 

for the most part were represented by wheat (Triticum spp.) with barley (Hordeum 

vulgare Linnaeus) as the alternative where wheat was unavailable. Both crops are 

principally wind-pollinated, hence not themselves key floral resources, and represent the 

two most commonly cultivated crops in the UK (DEFRA 2015b). Investigation of 

Miscanthus and cereal controls involved fieldwork in 24 fields across 3 years (2012, 

2014 and 2015), whilst 22 fields were studied across 2 years (2013 and 2015) for 

comparison of willow and controls. During data collection it was established that 

treatments did not differ significantly in terms of relative land cover classes in the 

landscape (1 km radius), wind speed, cloud cover or temperature (Appendix 1- 10).  
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Table 2.1: Locations (approximate field centres) and characteristics of study sites in 

southwest and central England. Coordinates: WGS 1984. Information obtained using 

Google Earth (Google Earth, 2017). N, S, E and W are representative of cardinal 

directions. 

 

 

 

 

 

 

Year Location Crop Lat. Lon. Field Area (ha) Altitude (m) Aspect
Miscanthus 50° 28.330'N, 3° 47.621'W 12.6 95 SE

Adjacent Cereal 50° 28.532'N, 3° 47.487'W 20 101 SE
Distant Cereal 50° 26.144'N, 3° 47.016'W 5 133 SE

Miscanthus 50° 21.886'N, 4° 31.222'W 4.8 142 S
Adjacent Cereal 50° 21.916'N, 4° 31.118'W 4.4 145 S
Distant Cereal 50° 22.925'N, 4° 31.239'W 4.2 121 NW

Miscanthus 50° 33.124'N, 4° 51.373'W 3.8 44 SW
Adjacent Cereal 50° 33.240'N, 4° 51.334'W 5.6 53 SW
Distant Cereal 50° 32.434'N, 4° 51.050'W 5.5 17 NW

Miscanthus 50° 31.518'N, 4° 46.450'W 2.2 106 NW
Adjacent Cereal 50° 31.551'N, 4° 46.288'W 4.3 103 N
Distant Cereal 50° 31.529'N, 4° 44.517'W 6.1 100 SW

Miscanthus 50° 31.560'N, 4° 48.191'W 7.1 76 W
Adjacent Cereal 50° 31.560'N, 4° 48.024'W 7.9 75 SE
Distant Cereal 50° 31.021'N, 4° 49.055'W 7.8 42 SW

Miscanthus 50° 21.886'N, 4° 31.222'W 4.8 142 S
Adjacent Cereal 50° 21.916'N, 4° 31.118'W 4.4 145 S
Distant Cereal 50° 21.831'N, 4° 29.760'W 4.7 102 SE

Miscanthus 50° 33.124'N, 4° 51.373'W 3.8 44 SW
Adjacent Cereal 50° 33.240'N, 4° 51.334'W 5.6 53 SW
Distant Cereal 50° 33.226'N, 4° 50.177'W 2.9 18 NE

Miscanthus 50° 31.518'N, 4° 46.450'W 2.2 106 NW
Adjacent Cereal 50° 31.551'N, 4° 46.288'W 4.3 103 N
Distant Cereal 50° 31.380'N, 4° 44.462'W 4.3 100 W

Miscanthus 50° 25.704'N, 4° 37.887'W 5.6 113 SW
Adjacent Cereal 50° 25.857'N, 4° 37.483'W 7.1 134 NE
Distant Cereal 50° 25.811'N, 4° 35.418'W 2.6 163 NW

Miscanthus 50° 21.886'N, 4° 31.222'W 4.8 142 S
Adjacent Cereal 50° 21.916'N, 4° 31.118'W 4.4 145 S
Distant Cereal 50° 21.901'N, 4° 29.433'W 5.9 84 NE

Miscanthus 50° 33.076'N, 4° 51.233'W 5.4 47 SW
Adjacent Cereal 50° 33.100'N, 4° 50.914'W 9.3 55 SE
Distant Cereal 50° 33.226'N, 4° 50.177'W 2.9 18 NE

Miscanthus 50° 31.518'N, 4° 46.450'W 2.2 106 NW
Adjacent Cereal 50° 31.551'N, 4° 46.288'W 4.3 103 N
Distant Cereal 50° 31.380'N, 4° 44.462'W 4.3 100 W

St Minver, Cornwall

Wadebridge, Cornwall

2015

Pelynt, Cornwall

St Minver, Cornwall

Wadebridge, Cornwall

2014

Lostwithiel, Cornwall

Pelynt, Cornwall

Buckfastleigh, Devon

Pelynt, Cornwall

St Minver, Cornwall

Wadebridge, Cornwall

2012

Egloshayle, Cornwall
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Year Location Crop Lat. Lon. Field Area (ha) Altitude (m) Aspect
Willow 53° 15.122'N, 0° 49.430'W 8.18 17 SW

Adjacent Cereal 53° 15.089'N, 0° 49.257'W 7.35 21 S
Distant Cereal 53° 14.835'N, 0° 48.686'W 10.96 10 SE

Willow 53° 26.036'N, 0° 48.150'W 5.49 2 E
Adjacent Cereal 53° 25.898'N, 0° 48.098'W 8.93 2 E
Distant Cereal 53° 27.172'N, 0° 47.815'W 7.8 5 SE

Willow 53° 6.590'N, 0° 43.029'W 11.01 17 E
Adjacent Cereal 53° 6.557'N, 0° 42.898'W 7.82 18 S
Distant Cereal 53° 6.703'N, 0° 42.037'W 9.36 16 SE

Willow 53° 16.490'N, 0° 59.394'W 7.49 40 SW
Adjacent Cereal 53° 16.490'N, 0° 59.669'W 6.19 36 SW
Distant Cereal 53° 16.951'N, 0° 59.071'W 8.84 37 NE

Willow 53° 14.758'N, 0° 49.295'W 13.1 15 SW
Adjacent Cereal 53° 14.820'N, 0° 49.130'W 11.8 15 SE
Distant Cereal 53° 12.814'N, 0° 49.838'W 5.1 27 E

Willow 53° 26.036'N, 0° 48.076'W 8.8 2 E
Adjacent Cereal 53° 26.044'N, 0° 48.252'W 2.1 2 W
Distant Cereal 53° 27.172'N, 0° 47.815'W 2 5 SE

Willow 53° 6.590'N, 0° 43.029'W 11.1 17 E
Adjacent Cereal 53° 6.557'N, 0° 42.898'W 7.7 18 S
Distant Cereal 53° 6.015'N, 0° 42.597'W 13 14 SW

Willow 52° 55.840'N, 0° 54.436'W 4.6 30 NW
Adjacent Cereal 52° 55.946'N, 0° 54.436'W 6.2 30 NW
Distant Cereal 52° 56.489'N, 0° 54.342'W 14.2 26 NW

Gainsborough, Lincolnshire

Stapleford, Nottinghamshire

Whatton, Nottinghamshire

2013

Newark, Nottinghamshire

Gainsborough, Lincolnshire

Stapleford, Nottinghamshire

Retford, Nottinghamshire

2015

Newark, Nottinghamshire

 

 

 

 

  

Table 2.1 continued: Locations (approximate field centres) and characteristics of 

study sites in southwest and central England. Coordinates: WGS 1984. Information 

obtained using Google Earth (Google Earth, 2017). N, S, E and W are 

representative of cardinal directions. 
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>920 m 

Bioenergy Crop Adjacent Cereal Distant Cereal 

Potential enhancement of pollinator activity 

Figure 2.1: Triplicate experimental design. Figure shows field arrangement used at each 

site in both southwest and central England in order to determine potential local 

enhancement of flower visitor activity in the margins of cereal fields neighbouring 

bioenergy crops. 

 

Plate 2.1: Perennial energy crops (top) and cereal control crops (bottom). From top left 

to bottom right: willow SRC (Salix spp.); Miscanthus x giganteus, wheat (Triticum spp.) 

and barley (Hordeum vulgare) (Photographs: N. Berkley). 
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2.3.2 Pollinator surveys 

Investigation of pollinator activity along crop margins followed the methods outlined by 

Hanley et al. (2011) and Hanley & Wilkins (2015). For Miscanthus, 50 m × 2 m 

transects were set out along the centre part of opposing margins in each field, with 

equivalent margin aspect between the three crop fields comprising each site; 100 m × 2 

m transects were walked in SRC fields. Differences in transect length were purely for 

logistical reasons and consistent across control fields for each PEC. In southwest 

England (Miscanthus) field boundaries were comprised of established hedgerows 

dominated by native woody plants e.g., hawthorn (Crataegus monogyna Jacquin), 

English oak (Quercus robur Linnaeus),  blackthorn (Prunus spinosa Linnaeus), dog 

rose (Rosa canina Linnaeus), blackberry(Rubus fruticosus Linnaeus agg.), and gorse 

(Ulex europaeus Linnaeus) with a naturally colonising, diverse basal flora including 

cock’s-foot (Dactylis glomerata Linnaeus), foxglove (Digitalis purpurea Linnaeus), 

cleavers (Galium aparine Linnaeus), herb Robert (Geranium robertianum Linnaeus), 

hogweed (Heracleum sphondylium Linnaeus), creeping buttercup (Ranunculus repens 

Linnaeus), red campion (Silene dioica) hedge woundwort (Stachys sylvatica Linnaeus), 

and common nettle (Urtica dioca Linnaeus). Current UK agricultural policy requires a 

1m border between the field boundary and crop edge; for our fields this border was 

comprised of perennial herb and grass species typical of hedgerow margins. This 

border, plus an additional 1m extending into a point about half way into the hedgerow, 

formed the 2m width of our transects in SW England. In Nottinghamshire and 

Lincolnshire (SRC) field margins were dominated by hawthorn (C. monogyna). Species 

composition was similar to southwest England although thistles were a dominant 

component (e.g. spear thistle (Cirsium vulgare (Savi) Tenore) & meadow thistle (C. 

dissectum (Linnaeus) Hill)). Fields at Gainsborough did not contain hedgerows; 
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uncultivated field margins were therefore compared using 2m wide transects from the 

crop edge, delimited by ditches. 

Miscanthus transects encompassed walks in both the morning and afternoon between 

the hours of 09:00 and 16:00 on each of 3 or 4 separate occasions beginning late June, 

through July and August, on days favourable to pollinator activity (Goulson and Darvill 

2004). The longer willow transects were walked once per day between 10:00 and 18:00. 

Due to separation between sites, it was impossible to survey all fields in a single day, 

but it was ensured that fields within each triplicate were surveyed during the same day, 

with the relative order randomly assigned. 

We identified and recorded actively foraging insects (i.e. observed visiting an 

inflorescence) belonging  to three major pollinators groups, hoverflies, bumblebees and 

Lepidoptera (Plates: 2.2-2.4), together with the plants upon which they foraged. 

Generally, individuals were identified to species-level. However, due to the difficulty of 

separating workers of the subgenus Bombus s. str. (i.e. buff-tailed bumblebee (Bombus 

terrestris (Linnaeus)), white-tailed bumblebee (B. lucorum (Linneaus)), northern white-

tailed bumblebee (B. magnus Vogt) and the cryptic white-tailed bumblebee (B. 

cryptarum (Fabricius)) in the field (Williams et al. 2012), no attempt was made to 

distinguish between these species and throughout this group is collectively referred to as 

B. terrestris agg. Although not the study’s focus, insects outside the focal guilds were 

also recorded, except in central England in 2013. The limited taxonomic resolution of 

these ‘other taxa’ (Plate: 2.5) precluded the analysis of richness and diversity but 

patterns of flower visitation frequency are presented for highly recorded taxa. Small 

black flower beetles (Meligethinae Thomson) were excluded from analysis as they were 

localised to single plants but exhibited high abundance, likely to skew overall trends.  

Foraging insects were not captured, but because transects were linear and completed 

relatively rapidly, it is extremely unlikely that the same individual was recorded more 
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than once during each transect walk. A total of 564 insect visitation transects were 

undertaken. 

Immediately after completing insect surveys, I estimated the number of flowers of each 

plant species likely to be visited by pollinators along each transect to determine 

variation in floral resource availability. Estimates for total flower number were achieved 

by counting the number of flowers on 10 separate inflorescences of a given plant 

species and then to multiply this mean value by the estimated total number of 

inflorescences observed along the transect. For Apiaceae and Asteraceae, an umbel and 

a capitulum were each considered to be a single ‘flowering unit’. 
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Plate 2.2: Common butterflies found in English arable field margins. From top 

left to bottom right: comma (Polygonia c-album (Linnaeus)); small skipper 

(Thymelicus sylvestris (Poda)); speckled wood (Pararge aegeria (Linnaeus); 

small tortoiseshell (Aglais urticae (Linnaeus)); common blue (Polyommatus 

icarus (Rottemburg)) and brimstone (Gonepteryx rhamni (Linnaeus)) 

(Photographs: N. Berkley). 

Plate 2.3: Common bumblebee species found in English arable field margins. 

From top left to bottom right: common carder-bee (Bombus pascuorum 

(Scopoli)); buff-tailed bumblebee (Bombus terrestris); tree bumblebees 

(Bombus hypnorum (Linnaeus)); red-tailed bumblebee (Bombus lapidarius 

(Linnaeus)); vestal cuckoo bumblebee (Bombus (Psithyrus) vestalis (Geoffroy 

in Fourcroy)) and garden bumblebee (Bombus hortorum (Linnaeus)) 

(Photographs: N. Berkley). 
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Plate 2.4: Common hoverfly species found in English arable field margins. 

From top left to bottom right: Merodon equestris (Fabricius); marmalade 

hoverfly (Episyrphus balteatus (De Geer)); Sphaerophoria sp. Le Peletier & 

Serville; pellucid hoverfly (Volucella pellucens (Linnaeus)); Rhingia 

campestris Meigen and Syritta pipiens (Linnaeus) (Photographs: N. Berkley). 

 

Plate 2.5: Examples of additional flower visitors to flowers in English arable 

field margins. From top left to bottom right: solitary bees such as Colletes sp. 

Latreille; Empis tessellata Fabricius; broad centurion (Chloromyia formosa 

(Scopoli)); flesh fly (Sarcophaga sp. Meigen); honey bee (Apis mellifera) and 

yellow dung fly (Scathophaga stercoraria (Linnaeus)) (Photographs: N. 

Berkley). 
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2.3.3 Statistical analysis 

Following graphical and statistical (Shapiro-Wilk) consideration of normality and 

homogeneity of variance (Levene’s test), one-way ANOVA or Kruskal-Wallis tests 

were conducted to investigate ‘crop type’ effects. Where appropriate, non-normal data 

were Log10+1 transformed in preference to non-parametric analyses; Welch’s ANOVAs 

were run for normal but heteroskedastic data. It was not possible to use repeated 

measures analysis s because the crops present at some field sites differed between years 

(i.e. PECs were removed at certain sites or became unusable when cereal controls were 

rotated to alternative crops); sites with data across multiple years were therefore 

averaged across years for each site-crop combination, with either the mean proportion 

of flower visits, species richness, diversity or flower number acting as the replicate in 

the analyses. Tukey’s HSD and pairwise comparisons were used respectively for 

parametric and non-parametric post-hoc analyses. Shannon-Wiener Diversity indices 

were used as a measure of diversity for species level identifications only. Species 

richness data encompassed all unique taxa including those at higher resolution than 

species, when no overlap occurred with species level identifications. Analyses were 

carried out using SPSS (version 22, IBM Inc.). Generation and analysis of quantitative 

insect-plant interaction networks was carried out using the bipartite package (Dormann 

et al., 2009) in R (R Core Team, 2017). The following network indices were generated 

for PEC and distant cereal controls, connectance, generality, H2, interaction evenness, 

links per species, nestedness, specialisation asymmetry, vulnerability and web 

asymmetry (Dormann et al., 2009). For southwest data, t-tests were used to compare 

site indices for Miscanthus and distant cereal treatments with means used for sites 

visited in multiple years. Due to an absence of species level floral data in 2013, t-tests in 

central England only incorporated network data from sites visited in 2015. 
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2.4 Results 

In total, 7747 insects belonging to the three target taxa (hoverflies, bumblebees, 

Lepidoptera) were observed visiting flowers in the margins of the three crop types 

studied. Across treatments there were 52 and 55 insect ‘species’ (unique taxa) described 

for focal pollinator taxa in central and southwest England, respectively. For bumblebee 

and Lepidoptera pollinator guilds, species richness was significantly higher next to 

willow than along distant cereal controls. Shannon-Wiener indices also revealed that 

Lepidoptera diversity was significantly higher in the margins of willow than of adjacent 

and distant cereals respectively (Table 2.2). Miscanthus exhibited significantly higher 

Lepidoptera richness than distant cereals. However, no differences in species richness or 

diversity were seen between Miscanthus and cereal controls for any other taxa.  
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Of the three target insect taxa, the majority of individuals observed in southwest 

England (n= 2531 total flower visiting insects) were hoverflies (76%), followed by 

bumblebees (17%) and Lepidoptera (7%). In central England (n= 5,216 total flower 

visiting insects), hoverflies (49%) and bumblebees (35%) dominated, with Lepidoptera 

much less common (16%). Bumblebees represented the vast majority (88.2%) of bees 

for both regions and PECs, and all analyses of bees focus on this group only. 

Episyrphus balteatus was by far the most common of the hoverflies (62% of all 

observations), but the relative abundance of hoverflies in general (and this species in 

particular) varied considerably with respect to PEC type.  

The top five most visited plant species accounted for at least 50% of visits; often 

exceeding 80% of flower visits for some taxa in certain treatments (Appendix 11-16). In 

southwest England most visits were to hogweed (Heracleum sphondylium) (27.4%), 

whilst in central England most visits were to spear thistle (Cirsium vulgare) (20.3%). 

The most visited plants were not the most regionally abundant however; hedge bedstraw 

(Galium mollugo L.) dominated in southwest England with 64.5% of flowers and H. 

sphondylium had greatest floral abundance in central England, accounting for 15.3% of 

flowers.   

When all three pollinator taxa were considered together, cumulative margin flower 

visits were not seen to differ between Miscanthus and cereal controls, (F2,15= 3.262; P= 

0.067; Appendix 17). This was not the case between willow and cereals however, 

(F2,12= 20.256; P= < 0.001), with multiple comparisons demonstrating significantly 

higher pollinator flower visitation in willow when compared to both adjacent (P= 0.001) 

and distant (P= < 0.001) cereals, with no difference between controls (P= 0.903; 

Appendix 17). In order to determine if all three taxa exhibited a similar lack of response 

to Miscanthus, and to establish which taxa were driving the elevated flower visits in 

willow, further taxonomic breakdown of flower visitation was conducted.  
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2.4.1 Hoverflies 

A significant ‘crop type’ effect was found for flower-visiting hoverflies in Miscanthus 

field triplicates, (F2,15= 9.2; P= 0.002).  Multiple comparisons revealed significantly 

greater flower visits in the field margins of distant cereals than those of Miscanthus 

(Fig. 2.2a), there were no significant differences between Miscanthus and adjacent 

cereal margins or between cereal controls.  For willow, multiple comparisons revealed 

that a significant ‘crop type’ effect, (F2,12= 7.216; P= 0.009), arose due to greater 

hoverfly visitation in the PEC margins compared to both distant cereal controls and 

adjacent cereal controls with no difference between the two controls (Fig. 2.3a). 

2.4.2 Bumblebees 

Abundances of bumblebees actively visiting flowers was significantly different among 

willow and cereal controls (Fig. 2.3b, F2,12= 27.653; P= <0.001), but varied remarkably 

little between Miscanthus and cereal crops, (Fig. 2.2b, F2, 9.507= 0.832; P= 0.465).  

Pairwise testing across willow triplicates highlighted a more than three-fold significant 

increase in bumblebee visitation along SRC margins, compared to both adjacent- and 

distant cereals (Fig. 2.3b). B. terrestris agg. dominated bumblebee visits in all 

treatments (with 54.2% of visits). Red tailed bumblebees (B. lapidarius, with 14.9% of 

visits) and common carder bees (B. pascuorum, with 12.2% of visits) were relatively 

common, but patchily distributed.  

2.4.3 Lepidoptera 

Lepidoptera were more responsive to PEC cultivation than the other two guilds.  A 

significant ‘crop type’ effect was found in Miscanthus (Fig. 2.2c, F2,15= 10.508; P= 

0.001) and in willow (Fig.2.3c, F2,12= 108.387; P= < 0.001). For both willow and 

Miscanthus, Lepidoptera were significantly more abundant floral visitors along PEC 

margins than along margins of distant cereals. In willow, a significant difference 

additionally emerged between margins of willow and adjacent cereal fields.  In central 
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England, three species represented >45% of visits with meadow brown (Maniola jurtina 

(Linnaeus)) comprising 16.6%, small white (Pieris rapae (Linnaeus)) 15% and Aglais 

urticae 13.5% of Lepidoptera floral visits. Gatekeeper (Pyronia tithonus (Linnaeus)) 

had highest overall abundance in the southwest, accounting for 20% of flower visits. 

2.4.4 Other taxa 

A total of 8283 non-focal insect taxa were recorded visiting flowers, 5451 in 

Miscanthus triplicates across the years of 2012, 2014, 2015 and 2832 in willow field 

triplicates in 2015. Across all crop types and in all regions, most insects belonged to the 

orders Diptera, Coleoptera and Hemiptera. The most frequent visitor in willow 

triplicates were unidentified Diptera followed by Empis tessellata, the latter accounting 

for 50% of all non-syrphid dipterans and cumulatively both groups account for 69% of 

all non-focal taxa. Of the most frequent insect taxa accounting for 80% of visits, margin 

flower visitation frequency of common red soldier beetle (Rhagonycha fulva (Scopoli)) 

was significantly lower in distant cereals than willow and adjacent cereal (Table 2.3), 

visitation by other taxa did not differ significantly. In the southwest, unidentified 

Diptera were again most frequent but E. tessellata visitation is surpassed by R. fulva 

(18% of non-focal visits) and Scathophaga stercoraria (12% of non-focal visits). 

Flower visits by S. stercoraria were significantly higher in distant cereal controls 

compared to Miscanthus and adjacent cereals (Table 2.4), visitation did not differ 

significantly for other taxa contributing to the top 80% of visits.   
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2.4.5 Floral resources 

There were a total of 93 flowering plant species recorded along transects in  southwest 

England and 59 in central England. Floral availability did not vary between Miscanthus 

and cereal controls, (H2,15= 0.082; P= 0.96), but did differ significantly between willow 

and cereal controls, (F2,9= 9.001; P= 0.007). Post-hoc comparisons showed significant 

differences between both willow and distant cereal (P= 0.01) and willow and adjacent 

cereal (P= 0.016) with greater floral abundance in willow. Flowers of species important 

to focal pollinator guilds (i.e. the 2-8 plant species accounting for 80% of visits; 

Appendix 11-16) were more abundant in willow margins for flowers visited by 

bumblebees (F2,9= 11.259; P= 0.004) and Lepidoptera (F2,9= 11.401; P= 0.003), 

compared to adjacent (P= 0.025) and distant controls (P= 0.003) (Appendix 20; 26;27).  

Although non-significant, flower counts of plant species receiving 80% of hoverfly 

visits were 3 and 4 fold higher in willow than adjacent and distant cereals respectively 

(Appendix 25). Trends are similar for each pollinator group as similar subsets of plants 

were preferred across pollinator guilds. The dominant individual pollinator species for 

bumblebees (B. terrestris agg.) and for butterflies (M. jurtina) similarly had access to 

significantly higher abundances of their preferred flowers (C. vulgare; R. fruticosus; H. 

sphondylium; C. dissectum; Trifolium repens Linnaeus) in willow compared to adjacent 

and distant cereals (P= < 0.05; Appendix 23). Flowers highly visited by non-focal taxa 

did not differ in availability between crop types. 
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Figure 2.2: Mean (± standard error, S.E.) margin wildflower visits by target insect 

guilds across triplicate fields, Miscanthus x giganteus, adjacent- and distant-cereals, at 

sites in southwest England. Different letters indicate significant differences between 

treatment means (P < 0.05). NS= non-significant. 
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Figure 2.3: Mean (± standard error, S.E.) margin wildflower visits by target insect 

guilds across triplicate fields, willow short-rotation coppice and adjacent- and distant-

cereals, at sites in Nottinghamshire and Lincolnshire, central England. Different letters 

indicate significant differences between treatment means (P < 0.05). 
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2.4.6 Visitation networks 

Visualisation of visitation networks (Fig. 2.4-2.5) conveys the high frequency of visits 

by a subset of insect taxa to a subset of plant taxa; a pattern that is consistent across both 

PECs and their respective controls. Many of these taxa contribute a high proportion of 

interactions in all treatments, irrespective of region. E. balteatus (A24) and B. terrestris 

agg. (A16) dominate network activity whilst R. fruticosus agg. (B45) and Heracleum 

sphondylium Linnaeus (B32) receive universally high flower visits. The frequent insect 

visitors also tend to be highly generalist, visiting a large number of different plants, but 

nonetheless directing a high proportion of visits to only a small number of highly 

abundant taxa (i.e. B45 and B32). However, visual inspection of networks indicates that 

cereal controls are particularly dominated by visits from E. balteatus, whilst relative 

visitation in both the PECs is contributed by a larger number of insect species.  

Statistical analyses of network indices (Table 2.5) indicate a high similarity for most of 

the investigated measures of network structure. However, willow networks have 

significantly greater ‘links per species’ and are significantly more ‘nested’ (i.e. value 

closer to zero; Rodriguez-Girones and Santamaria, 2006) than cereal controls. 

Difference in ‘vulnerability’ (mean number of pollinators per plants) was marginally 

non-significant in the southwest (P= 0.056), being higher in Miscanthus compared to 

cereals. Furthermore, although non-significant, inverse trends in the number of plants 

species visited are seen between PECs, with more plants visited in willow than cereals 

but fewer plants visited in Miscanthus than cereals.   
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(a) 

(b) 

Figure 2.4: Flower-visitor (top level) and plant (lower level) visitation networks 

in Miscanthus x giganteus (a) and distant cereal (b) treatments. Networks 

incorporate focal taxa only (taxa identified above genus level also excluded). 

Data pooled from all transects and sites. Width of boxes indicates treatment 

specific relative visits per species, width of lines indicates interaction frequency. 

For legend see Appendix 31.  
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(a) 

(b) 

Figure 2.5: Flower-visitor (top level) and plant (lower level) visitation networks 

in willow short-rotation coppice (a) and distant cereal (b) treatments. Networks 

incorporate focal taxa only (taxa identified above genus level also excluded). 

Data pooled from all transects and sites. Width of boxes indicates treatment 

specific relative of visits per species, width of lines indicates interaction 

frequency.  For legend see Appendix 31. 
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2.5 Discussion 

When taken together, I found evidence that willow cultivation significantly increased 

pollinator flower visitation all focal guilds (hoverflies bumblebees and Lepidoptera), 

while Miscanthus had a positive effect only for Lepidoptera. However, these effects 

attenuated quickly with distance from the PEC.  For focal pollinator taxa, I found no 

evidence to support the hypothesis that PECs facilitate greater pollinator visitation in 

the local landscape; i.e. there was no instance where focal pollinator numbers along 

adjacent cereal margins were significantly higher than distant cereals. 

Cultivation of second generation BECs has been widely observed to have positive 

implications for biodiversity compared to conventional arable cropping systems (Rowe 

et al. 2011, 2013, Milner et al., 2016); my results generally corroborate this pattern. 

However, for focal taxa, I found no evidence to support the (largely untested) 

hypothesis that the increases in biodiversity associated with PEC cultivation would have 

concomitant benefits to EP provision in the surrounding landscape (Manning et al., 

2015). The nearly three-fold decline in the numbers of flower visiting hoverflies when 

going from the edge of the distant cereals to Miscanthus margins was particularly 

unexpected. My results contrast markedly with the neutral effect observed by Bourke et 

al. (2014) working on Miscanthus in Ireland. While regional differences in community 

composition may be important, i.e. tiger hoverfly (Helophilus pendulus (Linnaeus)) 

rather than E.balteatus dominated in Bourke et al.’s (2014) study, methodology also 

differed. Bourke et al. (2014) used pan traps (likely attractive to H. pendulus given its 

aquatic larvae), whilst I quantify abundance of insects specifically visiting flowers (an 

EP rather than a biodiversity metric).  

As floral resource availability varied little between Miscanthus and cereal margins in 

my study, other factors likely explain the differences in Lepidoptera and hoverfly 

abundance I observed in southwest England. One possibility for hoverflies is that there 
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are few major Miscanthus pests in Britain (DEFRA, 2007); aphid abundance has been 

shown to be particularly low (Semere and Slater, 2007b). It is possible that female 

hoverflies in particular, foraged in areas (i.e. cereal crops and margins) where aphid 

populations and thus larval brood sites were more abundant (Almohamad et al., 2007). 

Regardless of the underlying mechanism, lower hoverfly activity in Miscanthus implies 

not only a reduction in pollination services to margin plants, but perhaps diminished 

aphid biocontrol by aphidophagous hoverfly larvae (Tenhumberg and Poehling, 1995).  

Lepidoptera visitation, in contrast, was enhanced along Miscanthus margins, although 

the relatively low overall frequency of visits, even within the PEC margins, might 

suggest limited ES benefit, particularly as Lepidoptera often visit only a small number 

of preferred nectar plants (Jennersten, 1984). Since floral resource availability was 

unlikely to account for crop-specific variation in imago numbers, the variation in larval 

food plant abundance (i.e. uncut D. glomerata used by large skipper Ochlodes sylvanus) 

may explain these observations. Nonetheless, for a group of species suffering 

widespread decline in the agri-environment (Fox et al 2013, 2015); my findings 

corroborate other studies showing benefits of Miscanthus to Lepidoptera (Semere and 

Slater, 2007b). 

Generally thought to be widely involved in pollinator service provision (Garratt et al., 

2014), the limited response of bumblebees to Miscanthus cultivation observed here 

suggests that local enhancement of pollinator visitation in the agri-environment 

(Manning et al. 2015), or indeed wider conservation value of this crop to bumblebees, is 

unlikely (see also Stanley & Stout 2013). In contrast to Miscanthus, bumblebee 

abundance (in addition to Lepidoptera) was higher along willow SRC margins than 

either adjacent or distant cereals; although again, this did not enhance visitation in 

adjacent cereal fields. Given that I observed consistently more preferred (and total) 

flowers in willow SRC margins than cereal margins, the most parsimonious explanation 
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for increased pollinator visitation (and diversity) in willow is that insects were 

responding to higher floral resource availability (Sutherland et al. 2001; Pywell et al., 

2011; Hanley & Wilkins 2015). Several authors (Cunningham et al. 2004; Rowe et al. 

2011) have noted how the low chemical input and low disturbance regimes applied to 

woody PECs have a positive effect on associated plant communities. Remarkably 

however, aside from butterflies, to my knowledge, no previous study has attempted to 

examine how cultivation of woody SRC crops (e.g. willow or poplar) affects the flower 

visitation of other pollinator taxa compared with conventional arable crops. My data are 

therefore the first to underscore the importance of willow cultivation for hoverflies and 

bumblebees which likely benefit from elevated floral resource provision.  

Given the varied and distinct crop type differences seen for focal pollinator taxa, it is 

surprising that only a few of the frequently recorded non-focal insect taxa showed any 

significant difference in flower visitation between crops, though species specific 

variation may have been obscured by the coarse nature of some of the taxonomic 

groupings. Although less morphologically adapted for pollination compared to 

conventional pollinators such as bumblebees, many of the non-focal taxa remain likely 

to be fairly effective pollinators due to their high visitation frequency. Elevated R. fulva 

visitation in willow and adjacent cereals, when compared to distant cereals, therefore 

emphasises the potential local benefits of willow and provides the only evidence of a 

positive effect of PEC cultivation upon pollination process in the surrounding 

landscape. However few studies exist on the contribution of R. fulva to wildflower 

pollination, the species is thought to be an important pollinator of H. sphondylium  

(carrying significant amounts of pollen, Grace and Nelson, 1981) , and visitation data 

from this study certainly support this notion, with H. sphondylium accounting for ~70% 

of visits across willow triplicates in 2015.  Nonetheless, given the predominance of H. 

sphondylium visits, increased R. fulva visitation frequency recorded in and around 
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willow might therefore have a limited benefit for the wildflower community more 

generally, although C. vulgare accounted for approximately 12% of visits and  Conium 

maculatum Linnaeus, Jacobaea vulgaris Gaertner, Chaerophyllum temulum Linnaeus 

each accounted for 4% of visits, and thus may also benefit. R. fulva is known to feed 

upon pollen and nectar as an adult but also eats aphids and the larvae feed on epigeal 

invertebrates such as slugs and snails (van Emden, 2013), potentially providing an 

important contribution to biocontrol services. Conversely, reduced S. stercoraria visits 

in Miscanthus and surrounding cereals may have a negative effect on crop pests, 

although local livestock densities will likely be a far more important determinant of 

abundance/activity of this dipteran given its association with fresh cow dung (a single 

cow pat can produce several hundred flies, Blanckenhorn et al., 2010). Neverthetheless, 

the consequences of reduced S. stercoraria flower activity in Miscanthus might be 

expected to reduce pollination as both sexes take nectar, and the males are both large 

and hairy, and thus probable pollinators; however lower S. stercoraria activity may 

increase the number of flower visiting Dipteran prey, potentially countering or reversing 

decreases in S. stercoraria.  

Similar to findings by Stanley (2013), I show that indices describing flower-visitation 

networks in Miscanthus are generally similar to those of cereals, suggesting that 

network properties are fairly robust to land use change. However, for willow, some 

differences were discernible. For example, I find significantly higher ‘nestedness’ in 

willow than cereal networks, which may prove an added benefit of this particular PEC. 

‘Nestedness’ is thought to indicate more stable networks (Bascompte et al., 2003) and is 

generally understood to increase with greater complexity (i.e. more unique interactions). 

As such, it is not unexpected that ‘links per species’ is also significantly higher in 

willow, visually evident in the bipartite graphs and indicative of a more complex 

network. Although, Stanley (2013) did not find differences in vulnerability when 
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comparing Miscanthus to either winter wheat or grassland, they do find significantly 

greater numbers of flowering plants in Miscanthus networks which contrasts to the, 

marginally non-significant, but higher ‘vulnerability’ of Miscanthus networks and lower 

numbers of interacting plant species recorded in this study, although again, the latter is 

not in-itself significant. It is possible that these opposing trends may arise as a 

consequence of the notably species rich fields margins of Irish agroecosystems (Stanley, 

2013). The authors also find lower connectance in Miscanthus compared to wheat, a 

measure near identical in my analyses and, again, a possible outcome of the greater 

floral richness of Miscanthus networks not found in this study.  

Consequently, although I found limited evidence for the enhancement of pollination 

process over long-distances as a result of Miscanthus or willow PEC cultivation 

(Manning et al. 2015), willow offered considerable local benefits to the pollinator 

community. However I acknowledge that this study focuses on a single EP (flower 

visitation) and the consequences for plant reproduction (i.e. fruit/seed set) require 

further attention. Although the dominant flower visitors in this study are understood to 

be effective pollinators in many systems, future investigation of pollinator effectiveness 

(King et al., 2013) would also expand on my findings. In addition, to determine whether 

elevated bumblebee visitation seen in willow is a consequence of increased colony size 

or increased nest number, genetic analyses are necessary. Furthermore, while I 

explicitly set out to investigate whether PECs enhance pollinator flower visitation in 

adjacent cereal crops, I did not consider how the presence of the PEC at the landscape-

scale influenced overall pollinator numbers and thus pollinator service provision. In 

MFCs for example, a putative "dilution" effect has been evidenced at the landscape 

scale, as wild bee pollinators are widely dispersed over the large quantity of MFC floral 

resources (Holzschuh et al., 2011; 2016). Should PECs differ to MFCs in this regard, 

they may play a particularly important role in insect conservation when grown as an 
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alternative to mass-flowering biofuel crops, even when cultivated at high densities in 

the landscape. Nonetheless, from a conservation perspective, my findings suggest that 

willow crops, in particular, offer the potential to enhance farm-scale biodiversity, with 

positive effects evident for at least three threatened pollinator groups. Incorporation of 

willow SRC into conventional mixed farming systems may yet help to support 

pollination services to wild margin plants.   
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Chapter 3: Effects of a bioenergy crop and a mass-flowering crop on the seed set of 

field margin phytometers  
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3.1 Abstract 

Cultivation of perennial energy crops (PEC) and mass-flowering crops (MFC) has been 

shown to affect pollinator numbers. However research is necessary to determine the 

reproductive implications for field margin plants. Here I investigate seed set for patches 

of two planted phytometers California poppy (Eschscholzia californica) and red clover 

(Trifolium pratense) as well as a hedgerow wildflower, red campion (Silene dioica), in 

the PEC Miscanthus x giganteus and the MFC field bean (Vicia faba). Comparison of 

seed counts in Miscanthus to adjacent and distant cereal controls revealed no significant 

difference in seed set for any phytometer. Similarly, seed set of E. californica and S. 

dioica did not differ significantly between V. faba and wheat (Triticum spp.) controls. 

However seed set of T. pratense was significantly lower in V. faba fields. There was no 

evidence that flower visitation was driving trends, with no significant difference in 

visitation between crops for any planted phytometer species, and total recorded flower 

visits in fact higher in V. faba. In Miscanthus, cumulative Lepidoptera visitation rates to 

naturalised flower patches of S. dioica and Rubus fruticosus agg. were significantly 

higher than cereals. However visitation to individual plant species was not significantly 

different, indicating that increased flower visits may be too sparsely distributed across 

species to affect reproductive outcomes for individual species. Similarly, investigation 

of total pollinator (i.e. hoverfly, bumblebee, Lepidoptera) visitation rates revealed no 

significant difference compared to cereals.  Despite the need for further replication, 

these findings suggest neutral effects of Miscanthus cultivation for pollination process 

and potentially negative effects of field bean upon the reproduction of a low density 

bumblebee pollinated plant.  
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3.2 Introduction 

Pollination by wild pollinators is of direct value to humanity, improving the fruit-set of 

crop plants. Increased wild pollinator flower visits enhances fruit-set by twice the 

magnitude seen with equivalent increases in managed honeybees (Garibaldi et al., 

2013). Furthermore, many of these crop pollinators also pollinate wild plants, with as 

many as 87.5% of plant species dependent on animal pollination (Ollerton et al., 2011). 

Pollinators thus indirectly support the provision of ecosystem services provided by 

plants, including habitat for pest predators, reduced soil erosion and flood prevention 

(Kremen et al., 2007). Land use and management practices are understood to affect 

pollinator numbers (Herrmann et al., 2007); with potential consequences for pollinator 

service provision and wildflower reproduction in arable margins (Westphal et al., 

2003).  

Following variable trends in the frequency of flower visitation between different insect 

taxa in Miscanthus and cereal crops (chapter 2), and given the evidence of increases in 

the abundance of specific pollinating insect taxa in previous studies (Semere and Slater, 

2007b; Stanley and Stout, 2013), I hereby investigate implications for seed set of non-

crop margin plants in the perennial energy crop (PEC) Miscanthus (Miscanthus x 

giganteus). The widespread cultivation of Miscanthus in temperate climates confirms 

the potential for this PEC to become an increasingly abundant land use in the UK and 

abroad, including Europe, North America and its native Asia. To date, this is the first 

study to investigate the consequences of Miscanthus cultivation upon the reproductive 

success of margin plants.  

Miscanthus is a sterile wind-pollinated crop and so any influence upon pollinator 

abundance or activity principally arises from its morphology and unconventional, low 

intensity management. In contrast to PECs such as Miscanthus, mass-flowering crops 

(MFCs) provide a brief and highly concentrated abundance of flowers in the agri-
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environment and therefore, despite their conventional, intensive management, MFCs 

also have the potential to influence pollination service provision to margin plants. 

Understanding the impact of MFCs has particular contemporary relevance; globally, the 

area of crops dependent upon insect pollination has increased rapidly in recent years 

with consequences for pollination of crops and native plants (Aizen and Harder, 2009). 

MFC and co-flowering wild plants can display either facilitative or competitive effects 

on plant-pollinator interactions. This can occur through effects on either visitation rates 

or pollen transfer (Stanley and Stout, 2014), for example pollinators may spill-over 

from crop to margin flowers, or vice versa, potentially enhancing or decreasing overall 

visitation and pollination service provision. Studies of OSR (Stanley and Stout, 2014), 

sunflower (Helianthus sp. Linnaeus; Chamberlain et al., 2013) and mango (Mangifera 

sp. Linnaeus; Carvalheiro et al., 2012), for example, have shown shared pollinators 

between MFCs and co-flowering wildflowers. Facilitation of pollination occurs when 

increases in shared pollinators concomitantly result in increases in the transfer of 

conspecific pollen between stigmas. Conversely, deposition of heterospecific pollen 

may inhibit pollination, obstructing access of conspecific pollen to stigmas. 

Furthermore, interactions between pollinators might reduce overall visitation, for 

example aggressive interactions (i.e. contact, pollen theft) have been recorded between 

Apis mellifera and native pollinators, although there is currently little evidence for such 

aggression in MFCs (Geslin et al., 2017).  

Due to their high resource abundance, strategic planting of MFCs has been suggested as 

a potential means to benefit pollinators and the ecosystem services they provide 

(Westphal et al., 2003). Evidence of increased bumblebee densities around mass-

flowering oilseed rape (OSR) provides support for this hypothesis (Westphal et al., 

2009; Knight et al., 2009).  Nonetheless there still remains a need to better understand 

the implications of MFC floral resources upon the seed set of field margin plants 
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(Cussans et al., 2010). As such, in this study, I additionally investigate phytometer seed 

set in field bean (Vicia faba) crops with comparison to wheat controls. Hanley et al. 

(2011) has shown double the number of bumblebee visits to wildflowers in the margins 

of field bean when compared to wheat, this potential facilitation of pollination service 

provision provides the basis to investigate seed set in this particular MFC.  

To date, most MFC studies have focused on spring flowering OSR; field bean, in 

contrast has received limited attention, likely due to the considerably lower area under 

cultivation, at ~4% of UK farmed land (Hanley et al., 2011). Nonetheless, despite a 

41% decline in global field bean production, from 5.4 million tons in 1961-1962 to 3.2 

million tons in 1991-1993, production has since improved, increasing by 33% to 4.52 

million tons in 2008-2010 (Fouad et al., 2013) with a global land area of 2 million 

hectares in 2014 (Bailes et al., 2018). The UK remains in the top three global exporters 

of bean and a recent Anderson Report (Redman et al., 2015) for the John Innes Centre 

has suggested that pea and bean markets could potentially double in size in the near 

future. In addition, in some regions, where OSR is less frequent, such as southwest 

England, field bean can be a locally important MFC. The growing recognition of the 

need for more sustainable soil management practices is a further incentive for greater 

incorporation of field bean into crop rotations, as a representative of the Fabaceae this 

crop enriches the soil with slowly released N, mitigating the need for inorganic inputs.  

As field bean flowers later than spring-sown OSR, i.e. in mid-summer (June-August), 

semi-natural habitats contain more floral resources at this time and pollinator responses 

may therefore differ between these two seasonally distinct MFCs. Furthermore, in 

contrast to OSR, field bean also provides a concentrated abundance of flowers with 

long-tubed corollas that are principally only accessible to long-tongued bumblebees, but 

also attractive to nectar-robbing short-tongued bumblebees (Cussans et al., 2010; 

Garratt et al., 2014).  
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To investigate seed set in Miscanthus and field bean, I focus on the planted phytometers 

red clover (Trifolium pratense) and California poppy (Eschscholzia californica) as 

proxies for wildflower pollination. Each phytometer has morphologically distinct 

flowers and thus appeals to broadly different functional groups of pollinators. Both 

phytometers are self-sterile, the deep florets of red clover are understood to require 

long-tongued pollinators, principally bumblebees but also Lepidoptera and to a limited 

extent honey bees (Bohart, 1957; Peterson et al., 1960), whilst the large open flowers of 

California poppy are likely to be more dependent on smaller insect pollinators, capable 

of alighting upon them, such as Diptera (i.e. Syrphidae) and solitary bees. Given the 

lack of variation in bumblebee visits outlined in chapter 2, I hypothesise that seed-set of 

red clover will differ little between Miscanthus and cereal controls, whilst increased 

cumulative bumblebee visitation recorded by Hanley et al. (2011) will lead to increased 

seed set in bean compared to wheat fields. Furthermore, I hypothesise that the low 

hoverfly flower visitation recorded in Miscanthus fields in chapter 2 will result in 

reduced seed set of California poppy in relation to cereals, whilst seed set in bean fields 

will be similar to that of wheat, assuming little effect of bean upon non-bumblebee 

pollinators. I also investigate seed-set in the margin wildflower red campion (Silene 

dioica) which is pollinated by a vast array of insects and robbed by others (i.e. short-

tongued bumblebees). The overall similarity in cumulative pollinator visitation seen in 

Miscanthus-cereal comparisons (chapter 2) suggests that seed set may differ little 

between these crops, although minor increases in Miscanthus may occur due elevated 

Lepidoptera activity; whilst in bean greater bumblebee visitation may increase seed set.  
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3.3 Methods 

3.3.1 Phytometer Seed Set 

Two 0.5 m2 phytometer plots were set out in a single field margin of four Miscanthus 

and four spring field bean crops as well as their respective cereal control fields 

(Triticum spp. regards field bean and a mix of Triticum spp., Hordeum vulgare and oat 

(Avena sativa Linnaeus) regards Miscanthus) during June 2016. Miscanthus controls 

consisted of adjacent and distant cereals, following the experimental design used in 

Chapter 2, the study encompassed a total of 20 fields (Appendix 32). One phytometer 

plot consisted of red clover (Trifolium pratense) and the other California poppy 

(Eschscholzia californica). Plots at triplicate/paired sites were situated in margins with a 

similar aspect and spaced a distance of two metres apart. Ground layer vegetation was 

removed from an area ~ 1 m2 around plots and flowers from an additional 1m2 in order 

to limit the confounding influence of variation in local wild flower density upon 

pollinator visits (Sih and Baltus, 1987; Kunin, 1993). All patches were surrounded by 

chicken wire attached to bamboo canes in order to deter damage from mammalian 

herbivores. However this met with variable success and clover at Yarford adjacent 

cereal site required replanting as it was completely grazed by deer within 7 days. Clover 

plants also exhibited some mollusc damage at many sites despite use of slug pellets 

within the fenced area (Neudorff, Sluggo), mollusc damage was not excessive however 

and none was seen on California poppy. All phytometers used in the study were grown 

from seed sown 31st January (red clover) and 10th March (California poppy) in 

greenhouses. ‘John Innes Seed Sowing Compost’ was initially used before repotting in 

John Innes No.2 Potting on Compost on 19th March (Clover) and 19th - 26th April 

(California poppy). All developed plants were placed outside greenhouses in a sunny 

sheltered position one week before planting in the field to aid acclimatisation. All 200 

plants were planted out in the field between the 3rd and 7th of June, with the addition of 
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fresh ‘John Innes No.2 Potting on Compost’. Roots were not disturbed because of the 

sensitivity of California poppy to such disturbance. Due to a limited number of plants 

being ready to flower each patch consisted of five plants at different growth stages; one 

plant with well-developed flower buds, and so likely to flower within a few days, two 

plants had developed flower buds, likely to flower within a week and two had no flower 

buds. Fortunately this meant that there would be an ongoing floral display. Plants were 

arranged in a die like pattern of five with the most developed plant in the centre. All 

patches were watered upon planting and repeatedly on each visit over the following 

weeks, with addition of further slug pellets. Ideally potted plants would have been used, 

but this was initially seen as unfeasible due to the distance between sites, making such 

regular watering labour intensive. Nonetheless many clover plants struggled to establish 

and flowering was delayed and poor for some plants. California poppy, although more 

sensitive to physical disturbance and being very delicate to handle, faired far better due 

to its drought tolerance and apparent unpalatability to herbivores. Sites were regularly 

revisited and patches watered and weeded. As poppy seed pods developed and clover 

flowers senesced they were covered in breathable organza mesh bags (CraftPlanet) with 

elastic bands used to help secure them, this was intended to prevent seed loss but allow 

the seed to develop and ripen. Unfortunately farmers began to cut margins in late July 

and early August, with patches at Yarford Miscanthus and Lostwithiel Miscanthus 

being destroyed, fortunately some bagged seed pods could still be collected however. In 

order to prevent complete loss of samples, all remaining seed pods and senescing clover 

flowers were collected from all sites from the 3rd to the 6th of August, all bioenergy and 

MFC samples were collected on the same day as control fields. No seed had yet been 

released by any plants but most were well developed and assumed to contain the 

maximum number of seeds that would be produced. Seed pods were frozen at -20 °C 

upon returning to the laboratory, preceding determination of seed number.  
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Where present, seed pods were also collected from red campion (Silene dioica) growing 

in field margins. A minimum of 5 developing seed pods were bagged in each field using 

organza mesh bags and collected and frozen when ripe. Efforts were made to select 

flowers from different margin aspects at each site but this was not always possible 

because female plants were not always present in each margin and some were infected 

by the smut fungus (Microbotryum lychnidis-dioicae (DeCandolle) G. Deml & 

Oberwinkler). Investigation of collected red campion seed pods revealed that many had 

granivore damage from Lepidoptera larvae (e.g. Sideridis rivularis Fabricius) and red 

clover florets also regularly supported phytophagous larvae (likely weevil larvae, 

possibly Apion spp. Herbst).  Two bean fields (Merton and Sowton) did not contain any 

Plate 3.1: Red clover (Trifolium pratense) and California poppy (Eschscholzia 

californica) phytometers used for seed-set determination in the bioenergy crop 

Miscanthus x giganteus, the mass-flowering crop field bean (Vicia faba) and their 

corresponding cereal controls.  
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viable red campion pods which prevented statistical analyses of differences in bean and 

cereal seed set for this species.  

3.3.2 Insect visitation rates and margin floral transects 

Plots of each phytometer were surveyed for 20 minutes on four occasions between 

12/07/16 and 25/07/16 with the abundance of wild flowers estimated using two 50 m 

floral transects, one either side of the phytometer plots. Flower counts were estimated 

based on floral unit availability (see Methods chapter 2). All hoverfly and bumblebee 

flower visitors were recorded to at least genus level in the field with other taxa recorded 

to varying taxonomic resolution.  

Hoverfly, bumblebee and Lepidoptera visitation rates to red campion and bramble (R. 

fruticosus agg.) were also recorded in the hedgerows at Miscanthus and cereal sites for 

20 mins between 07/06/16 and 27/06/16.  Where flower density differed between 

patches, large patches were cut, achieving approximately similar flower numbers 

between sites and crop types, preventing treatment differences in patch size from 

biasing flower visitation rates between treatments.  

3.3.3 Statistical analyses 

T-tests were used to discern differences in seed counts between crop types for MFC 

bean and wheat fields. One-way ANOVA was run to compare clover seed-set in 

Miscanthus and cereal controls, however due to low replication of seed counts for 

poppy and red campion phytometers it was not possible to incorporate distant cereal 

treatments into these analyses and therefore Miscanthus and nearby cereals were 

compared using t-tests. Due to low visitation rates to phytometer patches, permutation 

tests were run to test for crop differences, using the ‘coin’ package in R (R Core Team, 

2017). ANOVA and Kruskal-Wallis tests were run on visitation rates to hedgerow 

species. Prior to analyses, normality (based on visual inspection and Shapiro-Wilk tests) 

and homogeneity of variance (based on sample variance and Levene’s test) were 
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investigated. Where treatment variances were unequal, tests assumed non-equal 

variance. Differences in margin wildflower counts excluded Galium mollugo as this 

species was only present in a few fields but disproportionally skewed trends due to high 

floral unit abundance. The small flowers likely provided limited resources to pollinators 

individually and therefore give an unrealistic impression in the availability of floral 

resources. This does not alter conclusions however and uncorrected data are presented 

in Appendix 33. 

3.4 Results 

3.4.1 Phytometer seed set  

Phytometer seed counts in Miscanthus fields (Fig. 3.1) were not significantly different 

from those in cereal fields for poppy (t5= 0.431; P= 0.685), red cover (F2,9= 0.62; P= 

0.941) or red campion (t4= 1.473; P= 0.215). However, mean red campion seed counts 

were 34.5% greater in Miscanthus fields than in adjacent cereal controls, the fact that 

this was non-significant emphasises the high variability of seed counts within 

treatments.  

Red clover flowers had significantly lower seed set in bean than wheat fields (Fig. 3.2; 

t6= 3.672; P= 0.01). However, there was no significant difference in poppy seed set (t6= 

0.403; P= 0.711) in bean fields compared to wheat. Low replication precluded statistical 

analysis of red campion seed set but graphical comparison (Fig. 3.2) indicates similar 

seed counts. 
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3.4.2 Insect flower visitation rates 

Both planted phytometers received low rates of insect visitation, a total of 57 visits were 

recorded across Miscanthus (16), adjacent (31) and distant (10) cereal controls and 32 

across bean (19) and wheat (13) controls. Visits to red clover were particularly low, 

with only 9 recorded across Miscanthus (1), adjacent (4) and distant cereals (4) and, 

similarly, only 11 across bean (7) and wheat (4) controls. No significant difference was 

seen in visitation between Miscanthus and cereal controls (P= 0.342) or between bean 

and wheat (P= 0.612). Poppy visits totalled 48 across Miscanthus (15), adjacent (27) 

and distant controls (6) with 21 visits across bean (12) and wheat (9). Again, no 

significant difference was seen in visitation between Miscanthus and cereal controls (P= 

0.808) or bean and wheat (P= 0.603).  

For naturalised red campion and bramble patches, visitation rates were greatest for 

bumblebees (accounting for 66%, 68% and 72% of cumulative visits in Miscanthus, 

adjacent and distant cereal respectively) followed by hoverflies (respectively 17%, 24% 

and 25%) and Lepidoptera (17%, 9% and 3%). When considering patches of both 

species, cumulative Lepidoptera visitation rates were significantly higher in Miscanthus 

compared to distant cereal fields (Table 3.1). However, visits from other focal taxa did 

not differ significantly between crops, nor when considering all three groups 

collectively.  

3.4.3 Margin wildflower abundance and species richness 

The availability of margin wildflowers was not significantly different between bean and 

wheat (t6= 0.849; P= 0.429, Appendix 36A) or between Miscanthus & cereal controls 

(F2,4.6= 0.812; P= 0.498, Appendix 36B). Furthermore, there was not seen to be any 

difference in species richness between bean and wheat (t6= 1.351; P= 0.225; Appendix 

37A) or Miscanthus and cereal controls (F2,9= 0.141; P= 0.871; Appendix 37B). 
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Similarly, floral diversity did not differ for Miscanthus (H(2,9)= 0.615; P= 0.735) or 

bean (t(6)= 1.167; P= 0.288) when compared to controls.  

Table 3.1: Mean, S.E. and statistical output of tests for difference in insect visitation 

rate to bramble (Rubus fruticosus agg.) and red campion (Silene dioica) patches at 

Miscanthus x giganteus and cereal control sites in southwest England, 2016.  

 

  

Test Crop Mean Visits (20 min-1) S.E. Output

Total Insect Visitation (Red Campion & Bramble) Micanthus 38.25 6.52

Near Cereal 26 3.54

Distant Cereal 32.25 8.82

Total Insect Visitation (Bramble ONLY) Micanthus 25.5 5.98

Near Cereal 16 3.24

Distant Cereal 22.25 6.70

Total Insect Visitation (Red Campion ONLY) Micanthus 12.75 3.68

Near Cereal 10 1.78

Distant Cereal 10 2.42

Hoverfly Visitation (Red Campion & Bramble) Micanthus 5.75 2.72

Near Cereal 6 1.83

Distant Cereal 7.75 1.93

Hoverfly Visitation (Bramble ONLY) Micanthus 2.75 1.38

Near Cereal 4.25 1.11

Distant Cereal 5.5 0.96

Hoverfly Visitation (Red Campion ONLY) Micanthus 3 1.78

Near Cereal 1.75 1.11

Distant Cereal 2.25 1.03

Bumblebee Visitation (Red Campion & Bramble) Micanthus 22.5 4.99

Near Cereal 17.25 4.01

Distant Cereal 23 6.65

Bumblebee Visitation (Bramble ONLY) Micanthus 16.25 4.33

Near Cereal 11.25 2.95

Distant Cereal 16.25 5.57

Bumblebee Visitation (Red Campion ONLY) Micanthus 6.25 1.65

Near Cereal 6 1.83

Distant Cereal 6.75 1.65

Lepidoptera Visitation (Red Campion & Bramble) Micanthusa 5.75 2.10

Near Cereala,b 2.25 0.75

Distant Cerealb 1 0.41

Lepidoptera Visitation (Bramble ONLY) Micanthus 0.75 0.48

Near Cereal 1.75 1.75

Distant Cereal 0.25 0.25

Lepidoptera Visitation (Red Campion ONLY) Micanthus 2.75 1.03

Near Cereal 2.25 0.75

Distant Cereal 0.75 0.25

H 2,9= 0.088; P = 0.957

H 2,9= 6.667; P = 0.036

H 2,9= 0.588; P = 0.745

F 2,4.592= 1.926; P = 0.201

F 2,9= 0.848; P = 0.46

F 2,9= 0.767; P = 0.492

F 2,9= 0.335; P = 0.724

F 2,9= 0.246; P = 0.787

F 2,9= 1.407; P = 0.294

F 2,9= 0.218; P = 0.809

F 2,9= 0.357; P = 0.709

F 2,9= 0.427; P = 0.665
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3.5 Discussion 

Similarity in seed set counts between Miscanthus and cereal fields suggests that 

cultivation of this PEC has little effect upon the outcomes of pollination service 

provision for margin plants. This finding complements trends in insect flower visitation 

presented in chapter 2, where no overall differences were found in the cumulative 

visitation frequency of hoverflies, bumblebees and Lepidoptera. Therefore, despite the 

differential effects this crop has on the abundances of specific flower visiting insect taxa 

(see chapter 2), I find only neutral effects for processes relevant to overall service 

provision.   

Visitation rates to red campion growing wild in the field margins did not differ 

significantly between Miscanthus and cereals for any of the three focal taxa. The only 

positive effect of Miscanthus upon a pollinator taxon occurs when Lepidoptera 

visitation rates to red campion are combined with bramble, another widely available 

margin plant. This supports the significantly higher Lepidoptera flower visitation 

recorded upon Miscanthus transects in chapter 2. However, the lack of significance 

when investigating visitation rates to each plant separately implies that elevated 

pollination service provision may have little consequence for individual species, with 

overall increases in visitation appearing sparsely spread across multiple plant species. 

Insect visitation rates to planted phytometers are difficult to interpret given the low 

absolute numbers of insect visits recorded in this study. However there is no evidence of 

elevated visitation in Miscanthus for red clover or Californian poppy and, although non-

significant, hoverfly visitation is in fact lower in Miscanthus, supporting transect trends 

reported for hoverflies in chapter 2. Likewise, data on floral resource availability did not 

differ between Miscanthus and cereals, supporting previous transect data (chapter 2), 

despite the inclusion of two unique fields sites in this study. Furthermore, there is no 

significant difference in floral richness and diversity between crop types. 
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Similar to Miscanthus, seed set of California poppy and red campion in bean fields did 

not differ significantly in comparison to wheat controls. This is perhaps predictable for 

California poppy as, in general, there was no a priori expectation for non-bumblebee 

flower visitors to benefit from field bean cultivation, given their inability to access its 

flowers (Garratt et al., 2014; although it was seen that bean plants often supported high 

aphid numbers, attractive to many hoverflies, personal observation). Conversely, red 

campion is likely to share some legitimate and illegitimate pollinators with field bean 

but I find no evidence of pollinator facilitation for this wild flower. However, in 

contrast to Miscanthus, seed set trends differed between field bean and cereal controls 

for red clover flowers, with reduced seed counts in field bean, suggesting an 

antagonistic effect upon this principally bumblebee pollinated wildflower. This trend 

does not conform to expectations of greater pollinator service provision that one might 

infer from the elevation in cumulative margin flower visits recorded by Hanley et al. 

(2011). Furthermore, these local findings also contrast with neutral effects on seed set 

documented for another MFC at the landscape scale; despite a decline in long-tongued 

bumblebees, Diekotter et al. (2010) found no effect of an increased proportion of OSR 

in the landscape upon the seed set of red clover. Findings are closer to those of 

Holzschuh et al. (2011) who showed that increase in the proportion of OSR in the 

landscape, from 5% to 15%, resulted in a 20% decrease in the seed set of co-flowering 

cowslip (Primula veris Linnaeus). However, comparison of local and landscape scale 

effects is likely to be of little value, for example Westphal et al. (2003) found elevated 

bumblebee density with extensive landscape scale OSR cultivation whilst failing to find 

field scale effects. Furthermore, due to differences in floral morphology, and thus 

pollinator assemblages (Garratt et al., 2014), any comparison of field bean and OSR 

also has limited relevance (Cussans et al., 2010). Field bean provides far fewer floral 

resources than OSR, the latter having >100 flowers per plant over a four week period, 
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with as many as 350,000-700,000 plants per hectare, and thus, most likely, a greater 

impact on plant-pollinator interactions (Geslin et al., 2017). In addition, the position of 

MFCs in pollination networks is seen to differ depending on the crop studied (Geslin et 

al., 2017), alfalfa (Medicago sativa Linnaeus) for example has a low degree whilst OSR 

is highly generalist (Pocock et al., 2012; Stanley, 2013).  

Although treatment differences were non-significant, total insect visitation was seen to 

be higher in bean than wheat for both planted phytometers, suggesting that low seed set 

is unlikely to have arisen from reduced insect visitation. However, visitation counts are 

so low in this study that interpretation of trends is of limited value, particularly given 

that many insect visitors may have been ineffective pollinators (i.e. there were few 

recorded bumblebees or Lepidoptera visits, personal observation). Based on these data, 

it is not possible to give a robust explanation for lower red clover seed set in bean fields. 

However, if it is assumed that effective pollinators are in approximately equal 

abundance in bean and cereal fields, and that as crypsis of wild flowers declines flower 

constancy declines (Goulson, 2010), one hypothetical explanation for lower seed set in 

bean could be that flower constancy is lower in cereal fields than bean. Lower crop 

height and the absence of crop flowers may result in effective pollinators being better 

able to locate margin flowers in cereal fields, resulting in greater seed set. Alternatively, 

reductions in red clover seed-set in bean fields may result from the clogging of clover 

stigmas due to increased heterospecific pollen deposition, a consequence of mutual 

pollinators being shared between both the crop and the phytometer (Morales and 

Traveset, 2008). This explanation must be somewhat more nuanced however, given that 

red clover patches in cereal fields will also receive heterospecific pollen, the phytometer 

patches being too small to support any individual pollinator in isolation, in both bean 

and cereal fields. Although long-tongued bumblebees are legitimate pollinators of field 

bean it is likely that illegitimate short-tongued bumblebees also benefited from field 
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bean cultivation, perhaps disproportionately so, leading to greater nectar robbing of 

clover phytometers in bean fields and thus resource depleted florets, less attractive to 

legitimate pollinators. 

There is no evidence that variation in the abundance of margin wildflowers influenced 

pollinator behaviour/activity between crop treatments. Bean and wheat floral 

abundance, species richness and diversity trends do not differ significantly, supporting 

floral transect trends reported by Hanley et al. (2011). The lack of difference seen in 

margin flowers between bean and cereal is not unexpected; to prevent pests and disease 

field bean is generally grown on a 5 year rotation (Finch et al., 2014) and therefore, at 

the field scale, for a given rotation, cereal management is likely to exert a greater 

selective pressure on margin flora than field bean.  

Across treatments, low insect visitation was seen for all phytometers, possibly the result 

of surveying in a largely biologically impoverished agricultural landscape; additional 

factors may also have contributed however. For example, red clover only appeals to a 

limited guild of pollinators, i.e. those adapted to accessing or robbing the deep florets. 

Additionally, although native, red clover was not naturally present in the field margins 

at any of the investigated field sites and the presence of only a single patch of this 

phytometer may have had low appeal to bumblebees, particularly given their large 

foraging ranges (Knight et al., 2009) and flower constancy behaviour (Goulson, 1994; 

also documented for Lepidoptera, see Goulson and Cory, 1993). It is probable that 

many bumblebees will have moved away from the dense field bean resource to high 

density wildflower patches for instance, overlooking or avoiding (i.e. neophobia, Rands 

and Whitney, 2010) the single, novel, patch of red clover (or sparsely distributed red 

campion).  If red clover flowers (or those of any other phytometer) had exceeded a 

certain threshold number, and/or density, findings may have differed. 
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Flower constancy has also been shown in hoverfly species (Goulson and Wright, 1998) 

which prefer more open flowers, it is therefore possible that small poppy patch sizes 

similarly failed to attract pollinators away from more abundant resources (i.e. Apiaceae) 

and so possibly explain the low visitation rates for this phytometer. For example, 

Sutherland et al. (2001) have shown that higher flower density results in greater 

hoverfly visitation in arable fields. Nonetheless, flower constancy to poppy patches was 

recorded for individual representatives of the genus Eristalis Latrielle who, likely 

attracted by the orange-yellow flowers (Sutherland et al., 1999), adopted highly 

territorial behaviour, often chasing away other prospective flower visitors (personal 

observation). These points emphasise the potential consequences that the choice of 

phytometer species (Hanley et al., 2011), the number of phytometer plants and the floral 

density of phytometer patches may have had upon experimental findings, both here and 

in other phytometer investigations. Larger, denser flower patches would likely have 

strengthened analyses of insect visitation rate data by attracting more pollinators for a 

given time period. Clearly this has logistical constraints and therefore it would also be 

sensible to increase duration of patch surveys in future studies. Alternatively, given the 

diel variation in activity of flower visiting species documented by others (Inouye et al., 

2015), a better means of understanding the peaks and troughs in foraging activity may 

be to cluster visitation rate surveys into distinct temporal periods, with a concomitant 

increase in survey frequency. 

Alongside pollinator visitation, seed set of entomophilous plants can be affected by 

numerous post-pollination processes (e.g. disease, climate factors and pre-dispersal 

granivory), as such, the crop specific seed set trends described here cannot be assuredly 

disentangled from the influence of other, confounding, factors. Data collection using a 

greater number of sites, and/or a greater number of years, would limit the statistical 

noise of such factors, strengthening confidence in discernible trends, time constraints 
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therefore place limitations on the robustness of statistical analyses. In addition, I do not 

distinguish between insect abundance/activity and population trends in this study, for 

either crop. However, unlike Miscanthus which is a longstanding feature of the 

landscape, field bean is an annual crop and therefore a single year of survey data is 

likely to purely reflect foraging activity and worker abundance, rather than population 

level trends. To detect population level effects in field bean, genetic analyses would be 

necessary in the year post flowering, with effects only likely to persist in the long-term 

if field bean is grown year on year in the local landscape.  

Nevertheless, as far as I am aware, this study is the first attempt to investigate seed set 

of wild margin plants in Miscanthus. Findings support those of chapter 2, with no clear 

benefit of Miscanthus for pollination processes. Apparent negative effects of field bean 

on clover seed set do not support the hypothesis of improved pollinator service 

provision to wild margin plants from the cultivation of this MFC. However, in order to 

ensure conclusions are robust, there remains a need for further study, with the inclusion 

of a more diverse array of phytometer species, a greater number of field sites and annual 

replication. 
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Chapter 4: The influence of two perennial energy crops upon soil element 

bioaccessibility and bacterial communities when compared to cereals  
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4.1 Abstract 

The effect of cultivating the perennial energy crops (PECs) Miscanthus x giganteus and 

willow short rotation coppice (SRC) upon the bioaccessibility of 28 elements, and the 

structure and composition of bacterial communities, was investigated in the topsoil (0-

15 cm depth) of four plantations and compared to cereal controls for both cropped and 

margin regions. Element bioaccessibility was investigated using a sequential extraction 

procedure (CISED). Community bacterial nucleic acids were extracted from the soil 

surrounding crop plants and from the centre of field margins. PCR was used to amplify 

16S ribosomal RNA and the amplicons subjected to denaturing gradient gel 

electrophoresis (DGGE), followed by fingerprint analyses. Prominent DGGE bands 

were excised and sequenced to determine the taxonomic identities of dominant bacterial 

populations. For all elements, extractable concentrations did not differ significantly 

compared to cereal controls for either PEC.  Similarly, no significant difference in the 

diversity of bacterial communities arose between treatments. Sequenced DGGE bands 

showed relatedness to genera of common soil bacteria, belonging to 21 families and 

three phyla (Actinobacteria; Firmicutes; Proteobacteria), including Actinomadura, 

Bacillus, Microvirga and Streptomyces. The DGGE fingerprint patterns were similar 

between PECs and cereal controls in both crop and margin regions, with no consistent 

treatment-specific clustering. Findings indicate that the cultivation of Miscanthus and 

willow SRC has little effect upon the bioaccessibility of elements or the structure and 

composition of bacterial communities in topsoil when compared to cereals.  
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4.2 Introduction 

Land use change has the potential to affect microbial communities and the ecological 

processes they regulate (Lauber et al., 2008), this can have important consequences for 

biogeochemical cycling and soil fertility (Post and Kwon, 2000). In agroecosystems, 

variation in soil disturbance (Lupwayia et al., 1998), chemical inputs (Bulluck III et al., 

2002) and crop identity (Grayston et al. 1998; Houlden et al., 2008) are some of the 

many factors that can impact microbial communities, with implications for the complex 

plant-microbe-mineral interactions taking place in soil. For example, differing 

management practices (i.e. soil cultivation) and differences in crop nutrient uptake may 

impact bioaccessible element concentrations, whilst the volume and composition of root 

exudates may  differ between crop species, leading to plant specific microbial 

communities in the surrounding soil (Bais et al., 2006). Furthermore, this interaction is 

reciprocal, soil microorganisms play an important role in the cycling of all major plant 

nutrients (Yao et al., 2000). Bacteria can modify soil chemistry for example, releasing 

extracellular peptides such as siderophores which bind elements and alter their 

bioaccessibility (Radzki et al., 2013), active microbial phosphate solubilisation can 

assist metal uptake (Richardson and Simpson, 2011), biosurfactants can increase the 

bioavailability of metals (Primo et al., 2015), and oxidation-reduction reactions can 

influence element mobility and bioaccessibility (Burgin et al., 2011). Some Bacteria, 

deemed growth-promoting-Bacteria, are even important in bioremediation due to their 

ability to increase element bioavailability to plants, and thus enhance uptake of toxic 

elements by hyperaccumulator plants (Glick, 2010).  

Given their high annual biomass production and fundamental differences in 

management when compared to rotational crops, such as cereals; cultivation of the 

perennial energy crops (PECs) Miscanthus x giganteus (herein: Miscanthus) and willow 

short rotation coppice (SRC; Salix spp.) may be expected to alter microbial community 
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structure and composition. Evidence for this comes from Cattaneo et al. (2014) who 

show greater community richness in Miscanthus compared to wheat, and by Truu et al. 

(2009) who show effects of willow SRC upon soil community structure and soil 

biological activity, when compared to land previously under agriculture.  

However, there are currently few studies investigating microbial communities or 

element cycling under BECs, and where available, most investigations are limited to the 

consequences of wastewater irrigation and remediation (Truu et al., 2009; Dimitriou et 

al., 2011) or restricted to carbon and nitrogen cycling (Davis et al., 2010; Mao et al., 

2013). Although topics of evident importance, there remains a need to investigate 

effects of PEC cultivation upon the geochemistry of a broader range of elements, and to 

consider possible implications for soil microbes. Understanding the effects of elements, 

such as metals, on the microbial metagenome at low, environmentally relevant, 

concentrations is poor even under conventional land uses (Sobolev and Begonia, 2008).  

Many of the elements yet to be investigated in PEC are vital for life whilst others are 

highly toxic. Moreover, whilst important in their own right, element availability can 

also have important consequences for the cycling other elements; for example, 

molybdenum or vanadium can act as a key component of the nitrogenase enzyme, and 

therefore play an important role in the process of nitrogen fixation, modifying the 

demand for fertiliser inputs. Increased bioaccessibility of these elements may therefore 

be expected to shift bacterial communities in favour of nitrogen fixers for example. 

Similarly, increases in the mobility/bioaccessibility of heavy metals (HMs), such as 

toxic chromium (i.e. chromate, CrVI), may be expected to increase the dominance of 

bacterial genetic variants that are tolerant, or resistant, to this heavy metal. Although the 

presence of heavy metals (HMs) within soils is principally related the natural 

weathering of parent material and anthropogenic activities (i.e. inputs of sewage sludge 

& fertiliser), plants and bacteria have the potential to alter the bioavailability of HMs 
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through biosorption, sequestration, and changes to soil chemistry (Abdu et al., 2017). 

Elevated HM concentrations are also understood to reduce microbial diversity, activity 

and population size (Abdu et al., 2017). In addition, increased HM bioaccessibility has 

the potential to affect plant mineral nutrition, influencing nutrient uptake (Marschner et 

al. 1986), with element solubility often explaining toxicity in soils (Rieuwerts et al., 

1998). Furthermore, as potentially toxic elements (PTE), any increases in the 

bioaccessibility of HMs to plants may also have important consequences for human 

health, potentially increasing uptake by food crops grown on the same land in the 

future.  

The aim of this study was therefore to improve understanding of element 

bioaccessibility in the soils of two novel, commercial, PECs when compared to annual 

cereals, and to establish the diversity, distribution and composition of microbial 

communities under these differing land uses. As fungi are understood to be less 

sensitive than Bacteria to HMs I focus on the latter group in this study. Element 

mobility and bacterial communities were investigated in soil samples collected from 

established crops in order to provide a more accurate reflection of long-term, field 

realistic, patterns that reflect bacterial communities which have had time to adapt to 

prevailing environmental conditions, whilst developing a soil chemistry more broadly 

reflective of the prevailing land use. The topsoil or ‘A horizon’ is the region of greatest 

biological relevance, as roots, animals and microbes are at greatest density in this layer 

(Alexander, 1961). Although both Miscanthus and willow SRC have deep roots the 

majority of root biomass is found in the top 30 cm of soil, as such, this section of the 

soil profile was the focus of this study. Furthermore, analysis of total soil element 

composition is likely to principally reflect the soils geologic origins (Rao et al., 2007); I 

therefore use a sequential extraction methodology in order to determine the 

concentrations of a series of elements when subject to extractants of increasing acidity. 
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Elements readily extracted at low acidity (i.e. the elements in the chemically active soils 

fractions, such as colloidal clays and organic matter) are likely to be both mobile and 

bioaccessible, and thus potentially bioavailable to soil organisms.  

4.3 Methods 

4.3.1 Soil collection     

Soil samples were collected between 22nd June – 3rd July 2015 from PECs, Miscanthus x 

giganteus and willow SRC, and nearby wheat (Triticum spp.) or barley fields (Hordeum 

vulgare). Miscanthus samples were collected from four sites in Cornwall and willow 

SRC samples collected from four sites in central England (Nottinghamshire and 

Lincolnshire) using the same fields and nearby cereal controls described for pollinator 

transect work in 2015 (Chapter 2, Table 2.1). Soil was collected from around the base of 

crop plants to a depth of 15 cm and placed into sterile, air-tight plastic containers 

(Wilko, Plymouth, United Kingdom). In Cornwall soil samples were collected from the 

central point of a north-south gradient running approximately central through each field. 

Margin samples were obtained 1 m into the southern margin. In central England 

samples were collected 5 m into the crop at central points along the west margin and 

from 1 m into the southern margin. The samples were collected at a shorter distance into 

the crop compared than Cornwall samples in order to limit damage to the cereal crops. 

DNA samples were stored at -20 °C using portable freezers following collection in the 

field, with permanent storage at -20 °C upon reaching the laboratory. 

4.3.2 Sequential element extraction 

The soils for metal analysis were subject to a sequential extraction procedure derived 

from the Chemometric Identification of Substrates and Elemental Distributions or 

CISED methodology (Cave and Wragg, 1997; Cave et al., 2004). Margin and crop soils 

were processed for each bioenergy crop field and nearby cereal. This resulted in 32 

samples, 16 from Cornwall (8 miscanthus & 8 cereals) and 16 from central England (8 
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willows & 8 cereals). Each sample was well mixed and dried to constant weight in acid 

washed glass beakers using an electric oven before being subsampled to produce 

triplicates for analysis. Using an acid rinsed mortar and pestle, soil aggregates were 

broken and stones removed. All soils samples were then sieved, using an acid rinsed 

sieve, to give 2g of soil with a particle size range of 125 to <149 µm and placed into 

sterile 15 ml polypropylene falcon tubes (Fisher Scientific, Loughborough, UK). Each 

replicate soil was then processed in the same manner. This involved sequentially 

washing the soil in extractant solutions of increasing acidity, followed by mixing using 

a vertical rotator (Grant-bio, PTR-60 Multi-Rotator, Grant Instruments, 

Cambridgeshire, UK) and finally centrifugation for 10 min at 2000 RCF (Harrier 18/80, 

MSE (UK) Ltd, London, UK) to elute the supernatant. Each soil replicate was subject to 

a total of fourteen extractant washes (Table 4.1) with soil material resuspended using a 

vortex (Vortex-Genie 2, Scientific Industries, Inc., Bohemia, NY) in-between washes. 

Mixed acids were prepared using concentrated HNO3 acid (S.G. 1.42 (>62%), Fisher 

Scientific, Loughborough, UK) and HCl acid (S.G. 1.18 (~37%), Fisher Scientific, 

Loughborough, UK) and diluted to concentration using ddH2O. All pipettes and 

volumetrics used in the preparation of acid reagents were dedicated CISED Class A 

glassware. Where applicable H2O2 (>30% w/v, Fisher Scientific, Loughborough, UK) 

was added to washes prior to rotation (Table 4.1). A total of 1428 elutions were 

collected (including tube controls) (Plate 4.1) with eluent volumes determined using 

dedicated Class A measuring cylinders. Eluents were subsequently processed using 

ICP-OES (Inductively Coupled Plasma Optical Emission Spectroscopy, iCAP 7000 

series, Thermo Fisher Scientific, Wilmington, DE). The 28 elements investigated, their 

limits of detection and their biological relevance are outlined in Table 4.2. Element 

concentrations were low, parts-per million (ppm) concentrations were therefore 
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converted to nanomole per gram equivalent (nmol g-1 eq.) soil concentrations, 

facilitating comparison of PEC and cereal treatments. 

4.3.3 Soil pH and soil characteristics 

Soil pH was determined using a 1:2.5 soil:solution mixture with 1 M KCl and measured 

using a pH meter with a glass electrode (FiveEasy™ FE20, Mettler-Toledo AG, 

Schwerzenbach, Switzerland). The pH meter was calibrated and samples centrifuged in 

order to settle sediment that might interfere with the pH reading of the supernatant. 

Although understood to be an average of 0.85 pH units lower than water pH (Kabala et 

al., 2016), KCl pH is thought to be a better measure of total available H+ concentration 

as it includes both active and reserve/exchangeable acidity. For broader comparability, 

1:5 H2O pH was calculated using the model presented in Kabala et al., (2016): pHH2O 1:5 

= -1.95 + 11.58*log10(pHKCl 1:2.5). Similarity in soil types and parent bedrock was 

established between PEC and cereal control fields using British Geological Survey data 

through the mySoil (British Geological Survey, 2018a) and iGeology (British 

Geological Survey, 2018b) applications. 
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Extractant Extractant 
volume (mL)

Volume H2O2 

(mL)
Water A 10 N/A
Water B 10 N/A
0.01 M A 10 N/A
0.01 M B 10 N/A
0.05 M A 10 N/A
0.05 M B 10 N/A
0.10 M A 9.75 0.25
0.10 M B 9.75 0.25
0.50 M A 9.5 0.5
0.50 M B 9.5 0.5
1.00 M A 9.25 0.75
1.00 M B 9.25 0.75
5.00 M A 9 1
5.00 M B 9 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Table 4.1: List of extractants as designated by their molar (M) acid 

concentrations and in the order sequentially applied to soil samples. ‘A’ 

refers to first wash and ‘B’ to the second wash using the same extractant 

concentration, i.e. ‘B’ concentration is equivalent to ‘A’. 

Plate 4.1: Falcon tubes (15 mL) containing mixed acid extractants 

following processing of soil samples collected in the crop and margin 

regions of Miscanthus x giganteus, willow short-rotation coppice and 

their respective cereal controls. Extractant solutions subsequently 

processed using ICP-OES for element analysis. 
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Table 4.2: Elements analysed, their ICP-OES limits of detection (LOD) and their 

biological relevance. LGV= Lower Guideline Value (source: MEF, 2007). 

Element LOD (ppm) Soil & Biological Relevance 

Aluminium (Al) 0.02 

A heavy metal/metalloid. A highly abundant soil 
element. Non-essential. Directly toxic (as soluble Al3+) 
to plants & most Bacteria in acid soils (< pH 5.5), due 
to competition with Fe & Mg & binding to DNA, 
membranes & cell walls. Increases soil acidity by 
removing hydroxide ions, acids produced by microbes 
can mobilise Al from minerals. Reduces availability of 
cations, particularly those of P & S.  

Antimony (Sb) 0.03 

Non-essential. Toxic at high concentration (rarely are 
soil concentrations high enough to effect plants or 
animals), potentially carcinogenic. Environmental Sb 
concentrations are low, soils average 0.3-8.6 mg/kg. 
Uptake by plants is proportional to soluble soil 
concentration, little is known about uptake mechanisms. 
LGV= 10 mg/kg.  

Arsenic (As) 0.03 

Occurs in soils as a trace element due to weathering of 
parent rock, mining & arsenical pesticides use. Arsenic 
is found in most plants, excessive levels disrupt enzyme 
function & phosphate flow. Microbes can increase As 
mobility in soils. Some microbes can tolerate & even 
respire As compounds. Microbial cycling can occur in 
both aerobic & anaerobic environments. LGV= 50 
mg/kg. 

Barium (Ba) 0.003 

Non-essential to terrestrial organisms. At fairly high 
abundance in soils but low mobility. Ba is toxic to 
plants at elevated levels but uptake is generally low. Ba 
compounds bind strongly to clay and readily precipitate 
with P & Mn compounds. Microbial action can release 
Ba2+. 

Beryllium (Be) 0.01 

Non-essential. Toxic metal that may interact with Ca 
and Mg and influence P uptake in plants, possibly 
replacing each other. Potential carcinogen. Plant uptake 
from soils interferes with uptake of similar minerals. 
Appears to accumulate in plant roots. Impairs plant 
growth and yield. High Be concentrations can reduce 
soil microbial biomass & nitrogen mineralisation & 
inhibit enzymes. 

Boron (B) 0.01 

Essential plant micronutrient. Mobile in soil, available 
to plants from soluble borate minerals and organic 
compounds. Leachable but fixed to minerals at high pH. 
Widespread deficiencies but toxic at elevated 
concentration. Many biological functions, reduces 
polarity of sugars, aiding movement across membranes. 
Contributes structural integrity to plant cell walls, 
facilitates synthesis of plant hormones & nucleic acids, 
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maintains the plasma membrane and metabolic 
processes. Boron concentrations in soil water > 1 ppm 
are toxic to plants. Soil microbes influence B 
availability through organic matter breakdown and B 
content of soil affects their activity. Most Bacteria and 
fungi do not require B but it is necessary for N2 fixation 
in cyanobacteria.  

Cadmium (Cd) 0.01 

Non-essential, no biological function. Heavy metal. 
Toxic. Natural sources (i.e. bedrock) and anthropogenic 
sources (e.g. sewage sludge, manure and phosphate 
fertiliser). Generally poorly mobile in soils, mobility 
increased with acidity. Many negative effects on 
microbes reported, < N-fixation, < biomass, <cellulose 
decomp., < urease, < phosphatase, < CO2 etc.  LGV= 10 
mg/kg. 

Calcium (Ca) 0.01 

Essential secondary plant nutrient, required in high 
amounts. Activates plant enzymes. Regulates plant 
nutrient transport. Calcium is important for Bacteria, 
including maintenance of cell structure, motility, 
transport and sporulation. Combats soil salinity.  

Chromium (Cr) 0.02 

A heavy metal. Present as chromite (CrIII low solubility, 
less toxic) and chromate (CrVI, soluble, highly toxic, 
mutagenic, teratogenic, carcinogenic) in the 
environment.  Some microbes show resistance to Cr & 
ability to detoxify. LGV= 200 mg/kg. 

Cobalt (Co) 0.02 

Essential micronutrient but toxic at relatively high 
concentrations. A heavy metal. Not essential for all 
plants. Needed by nitrogen fixing plants. LGV = 100 
mg/kg. 

Copper (Cu) 0.01 

Essential micronutrient but toxic at relatively high 
concentrations. A heavy metal. LGV = 150 mg/kg. 
Deficiencies lead to blind grain sites infected with 
ergot. 

Iron (Fe) 0.03 

Essential plant micronutrient. A heavy metal. Generally 
abundant in soils but poorly available. Important 
cofactor in plant enzymes & for chlorophyll formation. 
The interaction of plant-microbe-organic substance 
increase availability of FeIII for plants. Bacteria and 
plants bind iron extracellularly using siderophores and 
phytosiderophores respectively. Low Cu can lead to Fe 
deficiency. 

Lead (Pb) 0.1 

Naturally present in soil. No biological function. A 
heavy metal. LGV= 200 mg/kg. Little evidence of 
concentrations above LGV in European soils. Less toxic 
to Bacteria than other HM in culture media but 
concentrations as low as 1 ppm alter community 
diversity. Low mobility & long soil retention time. At 
high concentrations Pb sensitive strains are lost. Pb is 
rapidly bound by soil components.  

Magnesium (Mg) 0.003 
Essential plant macronutrient. Important constituent of 
chlorophyll and necessary for photosynthesis. High 
importance in cellular metabolism, activates plant 
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enzymes including those in glycolysis, stabilises genetic 
material and activates ATP. 

Manganese (Mn) 0.003 

Essential plant micronutrient. A heavy metal. Necessary 
for chloroplast development. Can replace Mg in various 
metabolic processes. May reduce disease susceptibility, 
including take-all in wheat. Bioaccessibility affected by 
bacterial oxidation. 

Molybdenum (Mo) 0.02 

Essential plant micronutrient. A heavy metal. 
Component of the microbial enzymes used in the 
nitrogen cycle. Acid soils (< pH 6.3) can have low Mo. 
Mo can be applied as fertiliser. Detrimental at high 
concentrations.  

Nickel (Ni) 0.02 
Essential plant micronutrient. A heavy metal. Needed in 
nitrogen metabolism, activating urease in plants. LGV= 
100 mg/kg.  

Phosphorus (P) 0.03 

Essential plant macronutrient. Under high demand by 
plants and microbes, vital for energy transfer (as a 
component of ATP), structurally integral to DNA, RNA 
and cell membrane phospholipids. Important in 
modifying enzyme activity by phosphorylation.  

Potassium (K) 0.05 

Essential plant macronutrient. Important in controlling 
stomata aperture, balancing anions, modifying enzyme 
activity involved in photosynthesis & respiration. High 
soil concentrations result in luxury consumption. 
Deficient plants are poor at synthesising starch, 
proteins, cellulose and susceptible to disease. 

Selenium (Se) 0.1 

Toxic metalloid but required by animals and some 
microbes at low concentration, accumulated by crops. 
Non-essential in plants. Chemical behaviour similar to 
S, concentrated in the major sulphide minerals. Little 
free selenide exists in aerobic soils below pH 9, 
elemental Se is non-bioavailable. Average soil 
concentrations are between 0.01 & 2 mg/kg. Oxidation 
state of Se is primarily controlled by microbes. 

Silicon (Si) 0.01 

Non-essential. Abundant in soil. Total Si typically 
ranges from 1- 30 mg/kg. Beneficial to plants, 
precipitates toxic metals, increases yields, strengthens 
cell walls & improves tolerance to frost & drought. 
Accumulates in plants, such as wheat, at levels 
comparable to essential macronutrients. Solubilised 
from silicate minerals by Bacteria and plant roots, 
releasing K & Si, reducing the need for K fertiliser. 

Sodium (Na) 0.01 
Necessary for regeneration of phosphophenol pyruvate 
in C4 plants such as miscanthus. Can substitute for K in 
some plants & performs similar functions. 

Sulfur (S) 0.03 

Essential plant macronutrient. Limited SO2 input with 
rain & organic S in manure. Important structurally in 
amino acids (cysteine & methionine), in enzymes 
involved in N uptake & production of proteins. 
Important for chloroplast formation and function. 
Microbes such as Thiobacillus Beijerinck transform 
sulfides to root available sulfates. Gypsum is also a 
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source of sulfates. 

Tellurium (Te) 0.03 

No known biological function. Toxic. Present at low 
concentrations (ppb) in environmnetal samples. 
Average soil content is 0.5-37.5 mg/kg, topsoil median 
is 0.03 mg/kg.. Low mobility. Oxidation state modified 
by Bacteria can affect toxicity. 

Thallium (Tl) 0.1 

Not found free in nature. Mostly associated with 
potassium or metal-sulfide ores. Highly toxic at trace 
levels. It interferes with K+ transport & proteins. Affects 
ATPase activity & transmembrane potential. Solubility 
increases with acidity. Plant uptake lower than soil 
concentrations, anthropogenic Tl shows greater uptake 
than geogenic Tl. Wheat accumulates. Barley 
accumulation highest in roots. Impacts on soil microbes 
little understood. 

Titanium (Ti) 0.01 

Beneficial to plants, aids in Fe acquisition, stimulates 
enzyme activity, increases chlorophyll content & 
photosynthesis, improves nutrient uptake. Greater plant 
uptake with lower pH.  

Vanadium (V) 0.01 

Required by some plants at low concentrations. A heavy 
metal. Can substitute for molybdenum, important in the 
nitrogen cycle. Mainly accumulates in plant roots. At 
high concentrations may be toxic. EC50 of microbial 
assays reported as 28-690 mg/kg & 18-510 mg/kg in 
plants. May inhibit phosphate metabolising enzymes 
and nitrification at high concentrations. LGV= 150 
mg/kg. 

Zinc (Zn) 0.01 

Essential micronutrient but toxic at relatively high 
concentrations; may cause gastrointestinal and 
immunological problems. Deficiencies may cause 
Rhizoctonia cerealis van der Hoeven infection in wheat. 
A heavy metal. Vital in many enzymes & DNA 
transcription. LGV= 250 mg/kg. Very little risk to food 
safety in Europe. 
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4.3.4 DNA extraction and PCR amplification 

Soils subsampled from the locations investigated for metal analysis were subject to 

Community DNA extraction using the FastDNA® Spin Kit for Soil (MP Biomedicals, 

Santa Ana, CA), producing 32 samples which were stored at -20 °C. A 177 bp DNA 

fragment was isolated from the V2 region of the small subunit rRNA gene of eubacteria 

using the primer set 341f and 518r. For each PCR reaction, 0.5ul of each primer (25 

pmol), 12.5 uL of DreamTaq® master mix and 9.5 uL of sterile nuclease free water 

(Thermo Fisher Scientific, Wilmington, DE) and 2 uL of template to make up a total 

volume of 25 mL. Prior to PCR, a Nano-Drop® Spectrophotometer ND-1000 (Thermo 

Fisher Scientific, Wilmington, DE) was used to confirm successful DNA extraction, 

furthermore, samples were diluted 10-fold with addition of 0.5 mg/mL bovine serum 

albumin (BSA; Sigma-Aldrich, St Louis, MO) due to initial issues with amplification. A 

GeneAmp® PCR System 9700 thermocycler (Applied Biosystems, Waltham, MA; 

Formerly: PE Applied Biosystems) performed  PCR amplification using the following 

touchdown conditions: 95°C for 5 min; 20 cycles of 94°C for 30 sec, 65 °C for 30 sec, 

72 °C for 30 sec; 12 cycles of 94 °C for 30 sec, 55 °C  for 30 sec, 72 °C for 30 sec with 

a final extension of 72 °C  for  5 min. PCR products were then visualised on a 1% 

agarose gel and processed using Nano-Drop (as above) in order to confirm 

amplification, determine concentrations and to check for contaminants.  

4.3.5 Denaturing gradient gel electrophoresis (DGGE) 

DGGE was performed using a Dcode™ Universal Detection System (Bio-Rad, 

Hercules, CA). A standardised concentration of the PCR product (120 ng) was loaded 

onto a 10% (wt/vol) acrylamide gel (acrylamide/bis solution, 29:1) containing a linear 

gradient ranging from 40% to 55% denaturant [17 M urea and 32% formamide], 

produced using a Model 475 Gradient Delivery System (Bio-Rad, Hercules, CA). The 

gels were run for 16hrs at 70 V and 60°C in 1 X TAE electrophoresis buffer (0.04 M 
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Tris-acetate 1mM EDTA, pH 8.5). The gels were stained in SYBR® Gold (Thermo 

Fisher Scientific, Wilmington, DE) solution for 25 min and rinsed in water for 5 min. 

Gels were imaged in a UV Transilluminator using ImageQuant D210 (Molecular 

Dynamics, Sunnyvale, CA). DNA bands were excised from the gel using a sterile 

pipette tip and placed into a sterile microcentrifuge tube containing 20 uL of sterile, 

nuclease-free water. The microcentrifuge tubes were kept at 4°C overnight to allow 

passive diffusion of DNA into the water and 2 uL of the eluted rRNAs were further 

amplified using the bacterial universal primers described above. Diffinity RapidTip® 

tips (Sigma-Aldrich, St Louis, MO) were then used to purify the PCR products which 

were subsequently diluted to 20- 80 ng/uL, a volume of 5 uL mixed with 5 uL of 

forward primer (5 pmol)  before being sent overnight to GATC Biotech AG (Konstanz, 

Germany) for sequencing.  

4.3.6 Statistical analysis 

4.3.6.1 Element bioaccessibility 

For each element, mean site concentrations were compared between the PECs 

(Miscanthus and Willow SRC) and their respective cereal controls using t-tests and, 

where applicable, Mann-Whitney U-tests. Separate investigation was made for ‘most 

bioaccessible’ concentrations (washes 1-4) and total CISED extractable (washes 1-14) 

concentrations.  

4.3.6.2 Bacterial Communities 

DNA fingerprints of the 16S rRNA banding patterns on the DGGE gels were 

normalised and subject to background subtraction, the gel images were then 

straightened, aligned, and then analysed to give a densitometric curve for each gel. 

Profile similarity was calculated by determining Dice’s coefficient for the total number 

of lane patterns and cluster analyses of the lane patterns were constructed. Lane 

diversity was calculated using Shannon-Wiener diversity indices. All processing and 



 

123 
 

analyses were conducted using BioNumerics software (version 7.6, Applied Maths, 

Sint-Martens-Latem, Belgium). 

4.3.6.3 Phylogenetic analysis 

Sequences were compared to GenBank using the BLASTn algorithm on the NCBI 

website (National Centre for Biotechnology: https://blast.ncbi.nlm.nih.gov/Blast.cgi). 

Percent identity of sequences to their nearest species match was carried out using 

MEGA software (Molecular Evolutionary Genetics Analysis version 7, Kumar et al., 

2015). Sample sequences and nearest matches were aligned using the Kimura 2-

parameter model with Gamma distribution and complete gap deletion.  
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4.4 Results 

4.4.1 Element bioaccessibility 

Comparison of mean CISED extracted element concentrations to published mean x-ray 

fluorescence (XRF) values, for English and Welsh soils, indicated that CISED 

extractable elements likely accounted for very low percentages of the total 

concentration of elements present in soil samples with heavy metal concentrations well 

below the lower guideline values presented in Table 4.2. Of the 28 elements, 7 (Be, Cd, 

Mo, Sb, Se, Te, Tl) had total CISED concentrations below their limit of detection. 

Where analysable, element concentrations differed little between fields under PEC 

cultivation or cereal cultivation, both in terms of bioaccessible concentrations (Table 4.4 

- 4.5) and total CISED concentrations (Table 4.6 - 4.7).  In fact, for 58% of comparable 

PEC-cereal contrasts, extractable element concentrations were more divergent in non-

cropped margin regions compared to the cropped area (Table 4.7; margin data- 

Appendix 38-41). Near significant differences were found for iron, magnesium and 

sodium; when compared to cereals, iron concentrations were lower in Miscanthus but 

concentrations of magnesium and sodium were higher, both in terms of the ‘most 

bioaccessible’ (pH 3 to ~ pH 7) and total CISED concentrations. Element mobility in 

willow SRC did not differ significantly to cereals for any element. Patterns of element 

extraction (i.e. the magnitude of element concentrations extracted for a given 

acidity/wash) were also highly similar between PECs and cereals, in both the cropped 

(Appendix 42-43) and margin regions. This is exemplified for manganese in Fig. 4.1; 

additionally, despite differences in the magnitude of extracted concentrations between 

regions, extraction patterns are remarkably similar between the two PECs and their 

paired controls.   
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Figure 4.1: Mean manganese concentration extracted in Miscanthus x giganteus (a) and 

willow short-rotation coppice (b) perennial energy crops and their respective cereal 

controls with each one of the 14 CISED washes. Error bars show standard error of the 

mean. 

0

1,000

2,000

3,000

4,000

5,000

6,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ex
tr

ac
ta

bl
e 

el
em

en
t (

nm
ol

 g
-1

 e
qu

iv
al

en
t) 

Extractant number 

Manganese 
Miscanthus
Crop
Cereal
Crop

0

500

1,000

1,500

2,000

2,500

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ex
tr

ac
ta

bl
e 

el
em

en
t (

nm
ol

 g
-1

 e
qu

iv
al

en
t) 

Extractant number 

Willow Crop

Cereal Crop

a) 

b) 



 

130 
 

Table 4.7: Mean percentage difference in soil element concentrations between two 

perennial energy crops (Miscanthus x giganteus and willow short-rotation coppice) and 

their respective cereal controls, split by field region (i.e. crop or margin). Grey 

highlights indicate elements where differences between crop types were greater in non-

cropped (i.e. margin) areas. < LOD = below Limit Of Detection. 

 

4.4.2 Soil pH 

Across soil samples, 1:5 H2O pH measures showed a slightly acidic pH between 5-7. 

However there was some variation between fields with pH values slightly alkaline for 1-

2 samples in specific regions at certain sites (e.g. Gainsborough, Appendix 44). 

Nonetheless, mean pH was similar between crop treatments, KCl pH averaging ~ pH 6 

(Appendix 45-46).   

Crop vs. Crop Margin vs. Margin Crop vs. Crop Margin vs. Margin
Al 17.67 50.97 41.76 61.69
As 125.48 < LOD 167.38 < LOD
B 65.15 78.37 84.61 49.44
Ba 61.76 46.91 54.38 46.89
Ca 25.68 15.34 24.73 27.33
Co < LOD < LOD < LOD < LOD
Cr < LOD < LOD 68.83 67.82
Cu 98.74 61.97 78.88 111.49
Fe 38.87 61.65 66.71 40.46
K 29.60 43.99 65.42 55.52

Mg 54.45 39.77 70.99 69.94
Mn 137.98 64.69 72.23 82.27
Na 41.76 29.62 67.28 42.68
Ni < LOD 118.07 110.10 55.27
P 94.20 112.00 42.56 33.94
Pb < LOD < LOD < LOD < LOD
S 41.91 41.31 65.56 59.22
Si 88.73 38.45 63.82 68.58
Ti 71.15 80.82 70.95 62.00
V < LOD < LOD 115.06 44.10
Zn 81.47 86.56 44.13 38.20

Element Miscanthus vs. Cereal Willow vs. Cereal
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4.4.3 Bacterial diversity 

Shannon-Wiener diversity did not differ significantly between Miscanthus and cereals 

for either the cropped or non-cropped region, furthermore bacterial diversity did not 

differ between different areas of the field when considering each crop in isolation, 

F3,12= 0.407; P= 0.751. Similarly, diversity did not differ significantly between willow 

and cereal controls for either the cropped or non-cropped region, or between different 

areas of the field when considering each crop in isolation, H3,12= 2.404; P= 0.493. 

4.4.4 Bacterial structure and composition 

To investigate changes in bacterial communities, cluster analysis of the DGGE 

fingerprint banding patterns were compared between treatments using UPGMA and 

Dice’s indices. No treatment specific clusters arose for any of the crop and field position 

combinations.   
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BLASTn comparisons for the 57 sequenced DGGE bands yielded 42 unique species 

level matches, 64.3% of which were affiliated with the Actinobacteria, 21.4 % the 

Proteobacteria and  14.3% the Firmicutes and 88.1% of sequences allied with four 

Orders, Actinomycetales (47.6%), Rhizobiales (16.7%), Bacillales (11.9%) and 

Micrococcales (11.9%).  

Table 4.8: Percent identity of Miscanthus x giganteus and cereal control DGGE band 

sequences in relation to the type strain of the closest species level sequence affiliation 

on the BLASTn database. 

 

  

Rf Related bacterial species Identity (%) GenBank accession no.
0.996 Microvirga aerilata 79.3 GQ421849
0.996 Microvirga arabica 78.3 JN989301
0.991 Actinomadura flavalba 81.2 FJ157185
0.946 Pseudolabrys taiwanensis 83.3 DQ062742
0.937 Rhodococcus zopfii 79.7 AF191343
0.937 Geodermatophilus tzadiensis 89 HE654545
0.933 Rhodococcus fascians 87.1 X79186
0.865 Gordonia malaquae 76.3 AM406674
0.857 Microvirga aerilata 83.9 GQ421849
0.798 Streptomyces nodosus 78.7 AF114033
0.776 Actinomadura namibiensis 80.8 AJ420134
0.749 Actinomadura sediminis 73.4 JF272484
0.731 Chelatococcus reniformis 75 KJ469373
0.695 Lacibacterium aquatile 84.1 HE795994
0.664 Streptomyces griseorubens 97.4 AB184139
0.588 Microvirga ossetica 90.7 KX576552
0.507 Mycobacterium smegmatis 75.4 AJ131761
0.457 Bacillus drentensis 83.6 AJ542506
0.372 Arthrobacter globiformis 75.8 X80736
0.368 Bacillus korlensis 76.9 EU603328
0.318 Corynebacterium renale 83.1 X81909
0.318 Bacillus megaterium 78.2 D16273
0.269 Mycobacterium smegmatis 75 AJ131761
0.251 Bacillus subtilis 77.9 AJ276351
0.206 Mycobacterium rutilum 80.7 DQ370011
0.184 Lacibacterium aquatile 88.2 HE795994
0.108 Gordonia polyisoprenivorans 69.4 Y18310
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Table 4.9: Percent Identity of willow short-rotation coppice and cereal control DGGE 

band sequences in relation to the type strain of the closest species level sequence 

affiliation on the BLASTn database. 

 

4.5 Discussion 

Because PEC and cereal treatments had similar pH, and soil types and bedrock were 

comparable between paired sites, it is reasonable to assume that had any changes in 

element bioaccessiblity or bacterial community parameters been recorded, they would 

have been principally driven by crop differences. However, when compared to cereal 

controls, the results presented here do not indicate any crop specific effect of cultivating 

either Miscanthus or willow SRC upon element bioaccessibility or bacterial 

communities.  

Rf Related bacterial species Identity (%) GenBank accession no.
0.991 Microvirga aerilata 90.2 GQ421849
0.915 Microlunatus phosphovorus 90 Z78207
0.891 Spirillospora albida 81.2 D85498
0.864 Microlunatus phosphovorus 84.3 Z78207
0.824 Microvirga aerilata 83.2 GQ421849
0.816 Spirillospora albida 78.1 D85498
0.801 Methyloceanibacter caenitepidi 89.1 AB794104
0.756 Friedmanniella sagamiharensis 80.5 AB445456
0.737 Dermacoccus nishinomiyaensis 79.4 X87757
0.71 Glutamicibacter nicotianae 93.4 X80739

0.661 Sphaerimonospora mesophila comb. nov. 82.5 AF002266
0.62 Chelatococcus daeguensis 93.2 EF584507

0.611 Microvirga aerilata 88.2 GQ421849
0.575 Clostridium algidicarnis 93.3 AF127023
0.489 Jatrophihabitans huperziae 89.2 KR184574
0.434 Allochromatium vinosum 70.5 AJ563291
0.389 Microbacterium testaceum 81.6 X77445
0.335 Gordonia malaquae 77.9 AM406674
0.33 Actinomadura namibiensis 80.4 AJ420134

0.267 Terribacillus saccharophilus 83.5 AB243845
0.262 Mycobacterium smegmatis 74.8 AJ131761
0.222 Chelatococcus reniformis 80.3 KJ469373
0.195 Jatrophihabitans huperziae 77.6 KR184574
0.181 Microbacterium esteraromaticum 76.1 Y17231
0.176 Thermomonospora chromogena 86.9 AF116558
0.131 Jatrophihabitans huperziae 90.1 KR184574
0.109 Actinomadura sediminis 76.3 JF272484
0.104 Streptomyces erumpens 71.3 AY999825
0.09 Micromonospora wenchangensis 75.1 JQ768361

0.072 Nocardia brasiliensis 78.3 AF430038
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Broad patterns of element bioaccessibility conformed to expectations derived from the 

literature, with low mobility elements such as barium showing low CISED extractable 

concentrations, whilst others, such as aluminium, exhibited relatively higher 

concentrations. The similarity in element concentrations and patterns of extraction 

across treatments provides a clear indication that extractable elements have similar 

mobility, likely associated with similar soil phases (i.e. specific minerals, organic matter 

or pore water) irrespective of the crop grown. 

Given that the PECS were cultivated on agricultural land in this study, the low absolute 

concentrations of heavy metals (HM) found in all treatments is not surprising, and many 

of the most toxic elements were undetectable using ICP-OES. Although there is a 

limited understanding of how most microorganisms respond to heavy metals (HM), it is 

understood that many are highly sensitive to their presence in soils (Giller et al., 2009). 

The universally low HM concentrations found in this study, and, importantly, the 

similarity between land uses, suggests that the HMs studied here are unlikely to pose 

differential stresses on microbial communities in the two investigated PECs, when 

compared to their cereal controls. If concentrations of HMs varied significantly between 

land uses it is possible, had toxicity thresholds been exceeded, that specific enzyme 

inhibition would have selected for declines in certain taxa, i.e. those with susceptible 

enzymes, and dominance of less sensitive taxa, with a probable reduction in diversity 

(Sobolev and Begonia, 2008). DGGE analyses confirm that this was not the case, with 

similar community diversity, and cluster analysis revealing overlapping, non-discrete, 

bacterial communities under the different land uses (i.e. soils under PECs were often 

more similar to non-cropped regions, or even cereal controls, than conspecific PECs). 

As such, potentially toxic elements (PTE), in the form of the HMs studied here, do not 

appear to be differentially affecting the diversity or structure of bacterial communities 
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under the different crop types. Furthermore, Actinomycetes have been shown to be 

particularly sensitive to HMs (Hayat et al., 2002), their dominant affiliation to 

sequenced DGGE bands therefore further emphasise that cultivating these two PECs has 

little affect upon HM bioaccessibility.  

Despite similar extractable element concentrations, and similar soil types and soil 

bedrock (for paired sites), variability in bacterial community structure within each of the 

crop treatments (i.e. PEC or cereal) supports the idea that site-specific edaphic factors 

played a greater role in determining bacterial community structure than the identity of 

the crop grown. This contrasts to the apparent PEC-specific effects on nitrogen cycling 

activity when compared to 1st generation BEC maize, reported by Mao et al. (2013); 

although the authors found no difference between the three 2nd generation PECs studied. 

In addition, tillage of rotational wheat has been shown to reduce bacterial diversity in 

comparison to no-till (Lupwayia et al., 1998), given the lack of soil disturbance under 

the established PECs, the similar diversity measures presented here are therefore 

unexpected. However, Cattaneo et al. (2014) also failed to find differences in Shannon-

Wiener diversity for Miscanthus or giant reed (Arundo donax) when compared to 

rotational crops in Italy, although the authors report that community richness was higher 

in PECs. Nevertheless, results do correspond to the findings of studies more broadly 

relevant to land use effects on bacterial communities. For example, in Colarado, Lauber 

et al. (2008) demonstrated that different land use types did not harbour distinct fungal or 

bacterial communities; soil pH was in fact the best predictor of bacterial community 

composition, and fungal communities were determined by nutrient status. Similarly, 

Fierer and Jackson (2006) also found pH to be the main driver of bacterial richness and 

composition using 98 samples from across the Americas. Furthermore, in a nation-wide 

survey of UK soils (> 1000 samples) pH has been shown to influence both bacterial 
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alpha- and beta-diversity (Griffiths et al., 2011). In this study pH was similar between 

paired PEC-cereal fields, and mean site pH near identical across treatments, however, 

not unexpectedly, variation was recorded between sites. Effects of PEC upon bacterial 

communities, and extractable element concentrations, may therefore be masked by more 

influential site-specific factors such as pH.  

Although the structure of bacterial assemblages were inconsistent between crop types, 

investigation of sequences derived from dominant DGGE bands, did not indicate any 

particularly novel taxa across treatments, with sequences affiliated to common soil 

bacteria. For example, members of the Actinobacteria were well represented and 

included 8 genera understood to be widespread in soil. Many Actinobacteria are 

saprophytes important in the decomposition of organic material including recalcitrant 

plant residues such as lignocellulose as well as the decomposition of stover. Similarly, 

Bacillus spp. are ubiquitous, both in bulk soil as well as the rhizosphere of many plants, 

endospore formation facilitating their survival under a wide range of climatic 

conditions.  

The value of DGGE is that it provides a cost-effective method to investigate broad 

patterns associated with microbial communities, however in comparison to next 

generation sequencing techniques (NGS) it provides limited coverage. Future study 

using NGS could provide a precise inventory of species assemblages, perhaps revealing 

more subtle shifts in bacterial communities not evident using fingerprint analyses. 

Furthermore this investigation was limited to Bacteria; it is possible that fungi may 

show a greater response to PEC cultivation, as such, there remains a need to better 

understand the consequence of PEC cultivation for fungal communities and the 

processes they control. For example, fungi are considered important in lignocellulose 
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degradation, the high lignocellulosic residue inputs under these PECs may therefore 

have important consequences for the structure and composition of fungal communities. 

In order to better relate data collected on both soil Bacteria and soil element mobility in 

this study, bacterial communities were only investigated in samples corresponding to 

those obtained for processing by CISED methodology. Due to the time intensive nature 

of running the sequential extraction procedure on sample triplicates there were 

limitations on the number of samples it was feasible to process, however it is recognised 

that in future studies increased sample sizes are preferable particularly given the high 

variability in extractable element concentrations between fields under the same crop 

treatments (i.e. PEC or cereal).  

This study was an exploratory investigation, facilitating the determination of 

generalisable, field relevant patterns of element mobility, and bacterial community 

structure and composition, collection of soil samples in this study was fairly coarse, 

with samples in the cropped region encompassing both bulk and rhizosphere soil. If soil 

samples had been constrained to the rhizosphere, i.e. the 2 - 80 mm zone directly 

surrounding the roots (Koo et al., 2005), it is possible that element mobility and 

bacterial community structure and composition would have differed more notably 

between the PEC and cereal treatments. However, if changes to element mobility are 

rapidly reversed outside of the rhizosphere, focusing on such a limited portion of the 

soil would have conveyed little information on consequences of land use change for 

biodiversity and soil biogeochemistry at the field scale, which I show here to be 

minimal in regards to the topsoil.  
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Chapter 5: Seasonal leaf litter decomposition rates in the perennial energy crop 

Miscanthus x giganteus with comparison to cereals  
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5.1 Abstract 

Leaf litter decomposition processes have importance for soil fertility and climate change 

mitigation. However, there is currently limited understanding of how land use change to 

perennial energy crops may influence decomposition processes when compared to 

conventional arable. In this study I investigate the effect of Miscanthus x giganteus 

cultivation upon the breakdown of Urtica dioica leaf litter in the crop and margin 

regions of Miscanthus and cereal controls. Litter bags were placed upon the soil surface 

to specifically investigate the effects of land use change upon meso-microfauna 

fragmentation activity, with assays carried out for a two week period in each season. 

When compared to cereals, Miscanthus significantly increased winter decomposition 

rates, with mass loss comparable to that of the non-cropped field margins. During spring 

assays, rates of decomposition were reduced under both crops in comparison to field 

margins whilst, across treatments, decomposition rates were significantly greater during 

autumn assays when compared to other seasons. However, no significant difference in 

decomposition was found between Miscanthus and cereals during spring, summer, 

autumn or cumulatively across assays. Nonetheless, when compared to cereals, this is 

the first study to report elevated rates of meso-microfaunal leaf litter breakdown under 

Miscanthus during the winter months, such crop specific variation suggests that 

Miscanthus cultivation may have important consequences for decomposition processes 

over the crop’s lifespan, when compared to annually rotated cereals.   
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5.2 Introduction 

Decomposition is essential for the biogeochemical cycling of elements and for the 

maintenance of soil fertility. In terrestrial systems, the decomposition of litter from 

plants (i.e. leaves, twigs and bark) is an important component of global carbon and 

nitrogen budgets (Aerts, 1997; Yang et al., 2004) and described by Kuzyakov (2006) as 

one of the five main biogenic sources of soil CO2 efflux. The decomposition of abscised 

leaves is also particularly important in crop systems, recycling nutrients back to the soil 

and so reducing nutrient offtake at harvest. In addition, whilst a source of soil organic 

carbon (SOC), the litter layer is itself an important reservoir/sink of carbon rich organic 

material.  Therefore factors that influence litter decomposition processes have important 

implications for carbon sequestration and climate change mitigation.  

Land use change from conventional cereals to perennial energy crops (PECs) has the 

potential to alter decomposition processes due to dissimilarities in crop morphology and 

management practices, including differences in harvest cycles, microclimate conditions 

and potentially the volume and composition of root exudates entering the soil (Técher et 

al., 2011; Hromádko et al., 2014). In particular, Miscanthus x giganteus and willow 

short-rotation coppice (SRC; Salix spp.) crops exhibit regrowth from rhizomes or stools 

respectively, and thus there is a consequential reduction in soil disturbance throughout 

their lifecycle. Evidence from studies on no-tillage systems (Ogle et al., 2005) has led to 

the suggestion that PECs may reduce aerobic microbial mineralisation and so slow 

decomposition processes occurring within the soil, leading PEC soils to act as net 

carbon sinks, with greater SOC stocks than conventional systems (Hansen et al., 2004). 

Prior to incorporation into the topsoil, plant litter is subject to breakdown by physical 

and chemical processes and through biotic degradation by soil animals. When 
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investigating the breakdown of common nettle (Urtica dioca) litter at the soil surface, 

Rowe et al. (2013) reported elevated decomposition in willow short-rotation coppice 

(SRC) when compared to wheat, providing support for differential effects of PEC 

plantations upon soil surface decomposition, and thus underscoring the need for further 

studies in additional PEC systems. To date, there has been no comparative investigation 

of litter decomposition processes in Miscanthus in relation to conventional arable crops 

such as cereals.  

Soil microbes and invertebrate communities are understood to play an important role in 

decomposition with the meso-microfauna in particular contributing to the process of 

litter fragmentation (Wang et al., 2009). As such, following the work of Rowe et al. 

(2013), I hereby investigate whether the rate of U. dioica litter decomposition differs 

between Miscanthus and cereal crops using a litter bag methodology, specifically 

investigating the role of the meso-microfauna by imposing body size constraints on 

litter accessibility. Due to seasonal differences in crop morphology and management, I 

undertake assays in each season, in both cropped and non-cropped field regions, over 

the course of a year.  

 

  



 
 

144 
 
 

5.3 Methods 

5.3.1 Field assays 

To facilitate comparison between studies, methods largely follow those of Rowe et al. 

(2013). Leaf litter bags (170 mm x 100 mm) were placed in both Miscanthus and nearby 

cereal fields. Paired field site locations are described in Table 5.1 and soil properties in 

Appendix 47. Bags had a 1 mm mesh size and were made of nylon (Plymouth City 

Market, Colleens City Fabrics), sown on 3 sides using cotton fabric and the opening 

rolled closed and securely cable tied, allowing only meso- and microfauna access to the 

litter. Common nettle (Urtica dioica Linnaeus 1753) leaves were used to provide a 

single standardised tissue that would realistically occur within the field margins at all 

sites (personal observation, Rowe et al., 2013). Leaves were collected from the field 

margins of an arable site in Cornwall (50°25.7800'N, 4°35.530'W). Following overnight 

wilting (to reduce sting cell activity), leaves were cut into 2 cm2 sections to standardise 

size. Diseased, senescing and damaged leaves were discarded. Cut leaf sections were 

dried for 24 h at 60 °C and 2 g added to each litter bag. Litter bags were placed on the 

soil surface at ten locations within each of 8 fields using 2-3 metal tent pegs, 5 within 

the cropped area and five within the margins. Four bags were placed 20 m into the 

cropped region at points directly North, East and South of the field centre with four 

bags placed in the margins (~ equidistant from the crop and hedgerow) at corresponding 

positions and one in the southwest corner of each field. Litter bags were left in situ for 

two weeks before being collected. This time period allowed for an appreciable fall in 

mass without complete breakdown of material from all bags. For each Miscanthus and 

cereal field pair, bags were deployed and collected on the same day, and all 

deployments were completed within two days. Upon collection, bags were removed 

from the field and placed into paper bags to prevent litter loss during transport. Despite 
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placement of 80 bags during each trial, there were variable bag losses in each season 

(likely due to mammal or bird damage). In the laboratory, litter was separated from any 

extraneous material and dried for 24 h at 60 °C to establish mass loss over the two week 

trial. The experiment was repeated four times to test for seasonal differences in 

decomposition, autumn (1st-16th November), winter (28th December- 12th January), 

spring (12th - 27th May) and summer (4th - 19th July).  
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Location Crop Lat. Lon. Field Area (ha) Altitude (m) Aspect

Miscanthus 50° 30.290'N, 4°41.1850'W 1.9 210 NW

Adjacent Cereal 50° 30.365'N, 4°41.1180'W 6.2 216 N

Miscanthus 50° 25.704'N,  4° 37.887'W 5.6 113 SW

Adjacent Cereal 50° 25.857'N,  4° 37.483'W 7.1 134 NE

Miscanthus 50° 21.886'N,  4° 31.222'W 4.8 142 S 

Adjacent Cereal 50° 21.620'N, 4°31.110'W 4.5 131 NE

Miscanthus 50° 33.076'N,  4° 51.233'W 5.4 47 SW

Adjacent Cereal 50° 33.240'N,  4° 51.334'W 5.6 53 SW 

Coldrenick, Cornwall

Lostwithiel, Cornwall

Pelynt, Cornwall

St Minver, Cornwall

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3.2 Statistical analyses 

 

 

Plate 5.1: Leaf-litter decomposition bags situated within the cropped region of 

wheat (Triticum spp.) (May 2016).  

 

Table 5.1: Location, grid references (approximate field centres) and characteristics of 

leaf-litter decomposition study sites in southwest England, 2016-2017. Coordinates: 

WGS 1984. Information obtained using Google Earth (Google Earth, 2017). N, S, E 

and W are representative of cardinal directions. 
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Prior to all analyses, investigation of normality (graphical, Shapiro-Wilk) and 

homogeneity of variance (graphical, Levene’s test, comparison of minimum and 

maximum variance) of residuals was undertaken, with Log10+1 transformations used for 

non-normal data and Welch’s ANOVA run for normal but heteroscedastic data. Mean 

percentage remaining mass, at the level of ‘site-season-crop-field position’, comprised 

the response variable in the analysis. For each season, it was necessary to separately 

investigate effects of crop type (i.e. Miscanthus or cereal), field position (i.e. cropped 

region or non-cropped region) and crop*field position interaction upon percentage 

remaining litter mass using 2-way ANOVAs. This arose as a result of heteroscedasticity 

preventing all main effects and interaction effects being testable using a single model 

and, similarly, led to two-way ANOVA’s being implemented for overall analysis of the 

main effects of crop type and field position as well as the crop*field position interaction 

upon percentage remaining litter mass across seasons, with one-way ANOVAs and 

Welch’s ANOVA necessary to investigate season and site effects when combining crop 

and field position treatments. Where interactions were significant, simple main effects 

tests were undertaken. Analyses were carried out using SPSS (version 22, IBM Inc.).   
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Winter 

Figure 5.1: Interaction between crop type (Miscanthus x giganteus or cereal) and field 

position (crop or margin regions) upon the mean winter percentage remaining common 

nettle (Urtica dioica) leaf litter at sites in southwest England, 2016. Error bars show ±1 

S.E. * = significant simple effect, α= 0.05. 

5.4 Results 

During winter assays there was a significant interaction of crop type (i.e. Miscanthus or 

cereal) and field position (i.e. cropped region or margin region), F1,12= 4.924; P= 0.047. 

This arose as fragmentation of litter in Miscanthus differed little between crop and 

margin regions, F1,12= 0.002; P= 0.97, whilst in cereals winter decomposition was 

notably reduced in the cropped area of the field (Fig. 5.1) leading to differences in rates 

of mass loss between crop types in the cropped region of the field, F1,12= 9.605; P= 

0.009.   
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In addition, during spring, there was seen to be a significant effect of field position, with 

greater decomposition in field margins, F1,12= 5.309; P= 0.04 (Fig. 5.2), and across 

treatments a significant difference occurred between seasons,  F3,30.751= 15.645; P= 

<0.001, with autumn decomposition significantly higher than all other seasons (Fig. 

5.3i). No difference in mass loss arose between sites, F1,62= 0.288; P= 0.594, and 

cumulatively (i.e. across seasonal assays), no difference in mass loss was seen with no 

significant interaction of crop and field position across seasons, F1,62= 0.288; P= 0.594. 

Similarly, for all seasons decomposition in cropped and margin regions did not differ 

when considering both crops collectively, F1,62= 1.094; P= 0.3 (Fig. 5.3ii), and litter 

breakdown rates were non-significant between crops when considering both field 

regions and all seasons, F1,62= 1.458; P= 0.232 (Fig. 5.3iii).  
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    Spring 

Summer 

Autumn 

B 
A 

Figure 5.2: Spring-autumn specific percentage dry weight of common nettle (Urtica 

dioica) leaf-litter after two weeks of field exposure, split by crop (Miscanthus x 

giganteus or cereal) and field position (crop or margin). Error bars show ±1 S.E. 

Different letters denote significant difference between treatments following Tukey 

post-hoc tests, α= 0.05. NS= Non-significant. 
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Figure 5.3: Comparison of mean percentage dry weight of common nettle (Urtica dioica) 

leaf-litter between (i) seasons, (ii) field positions and (iii) crop types, following two weeks 

of exposure in the field. Error bars show ±1 S.E. Different letters denote significant 

difference between treatments following Games-Howell post-hoc tests, α= 0.05. NS = 

Non-significant. 
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5.5 Discussion 

Rates of leaf litter breakdown showed significant variation between PEC Miscanthus 

and cereal controls during the winter, with reduced litter breakdown under cereals. 

Differences in decomposition rates were specific to the cropped region with mass loss in 

margin regions near identical between crop types. This crop specific effect suggests that 

Miscanthus cultivation is likely to alter decomposition processes when replacing cereal 

crops, particularly given the PECs long, 15-20 year, lifespan. Despite leaf abscission in 

late summer, Miscanthus remains unharvested until spring whereas cereal crops are 

harvested between mid-July and mid-September. Given the height of Miscanthus 

stands, the visual contrast to the stubble of cereal fields during the winter is starkly 

apparent, potentially affecting microclimate conditions, thus providing a possible 

explanation for the differences in rates of decomposition recorded here, i.e. the soil of 

cereal fields are likely less buffered to climate and weather variables throughout the 

winter months. 

The presence of Miscanthus leaf-litter and cereal residues help to retain moisture in 

each crop respectively, however the tall stands of Miscanthus likely provide a more 

sheltered microclimate, potentially favouring decomposition processes by increasing 

decomposer and detritivore activity. The extremely dense litter layer is also likely to 

have resulted in elevated temperatures when compared to more exposed cereal soils, 

where comparatively little organic material is left in the field. This is supported by the 

findings of Kucharik et al., (2013) in the US, who demonstrated that varying thickness 

of Miscanthus straw by 1-5 cm increased temperatures by 2.5°C to 6°C at 10 cm soil 

depth. When compared to cereals, inputs of Miscanthus residues are consistently higher 

throughout the year; however they are likely to be most important during the winter due 
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to recent inputs from leaf-fall and as a consequence of lower average and minimum 

temperatures. The greater exposure of cereal soils may therefore explain the reduced 

winter decomposition when compared to Miscanthus. 

The process of spring harvesting is an unusual aspect of Miscanthus management but 

despite potentially having an indirect effect upon winter decomposition, there was no 

evidence for a direct effect upon rates of litter breakdown in spring. Although spring 

specific differences in litter decomposition were documented between litter bags 

situated in different field positions/regions (i.e. cropped and non-cropped areas), these 

differences occurred across both crops, with greater litter breakdown in field margins. 

This may have arisen due to reduced vegetation cover in cropped areas, with cereals yet 

to fully develop and Miscanthus stems having been recently harvested. Nevertheless, 

the absence of crop specific differences in mass loss therefore suggests that Miscanthus 

harvesting has little effect on initial spring decomposition processes when compared to 

cereals.   

Similarly, summer assays also failed to indicate any variation in decomposition between 

crops. These results contrast to increases in the decomposition of U. dioica litter 

described by Rowe et al. (2013) in another PEC, willow SRC, when compared to 

barley, and assayed for the influence of both macro- and meso-microfuana activity. 

Rowe et al. (2013) report elevated decomposition rates in willow when compared to 

controls,  although, similar to summer Miscanthus, decomposition rates do not differ 

across field regions (i.e. headland or cultivated area), and no interaction between field 

position and land use is recorded. However, as stated, trials conducted by Rowe et al. 

(2013) relate purely to the summer months, so it is not possible to determine whether 

such trends would be found for willow in other seasons, or across seasons, when 
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compared to the Miscanthus data presented here. Nonetheless, for summer data, trends 

in litter decomposition between the two PECs and their cereal controls may be validly 

compared.  

Considering that decomposition rates in the winter ‘Miscanthus-cereal’ comparison are 

specific to the crop region, whilst differences between the summer ‘willow-cereal’ 

comparison are reported in both cropped and non-cropped regions, it therefore appears 

likely that different mechanisms are driving decomposition processes in each of these 

season-specific comparisons. In willow, the attribute(s) of cultivation which increases 

the rate of decomposition might therefore be shared between both headland and 

cultivated regions of the fields or decomposition rates may be driven by different factors 

within each region, leading to similar outcomes upon decomposition processes. 

Alternatively, highly mobile decomposers, which benefit in one region of the field, may 

spill-over to neighbouring regions, enhancing decomposition processes in both areas. 

Regardless, it appears likely that PEC specific factors affecting summer decomposition 

rates in willow SRC are different to those occurring in winter Miscanthus.    

Rowe et al. (2013) suggest that elevated litter decomposition in summer willow fields is 

likely to have resulted from elevated detritivore and decomposer activity, with 

Makeschin (1994) having reported that willow SRC supports higher numbers of 

earthworms and woodlice than arable, with generally higher microbial biomass and soil 

faunal diversity. By contrast, in Miscanthus, Zangerl et al. (2013) directly investigated 

the decomposition process for three grass PECs (Miscanthus, switch grass and planted 

prairie) in Illinois and found no effect of invertebrates on rates of decomposition. The 

authors compared the decomposition of insecticide treated BEC litter to untreated litter 

and found no effect upon remaining litter mass, inferring little impact of invertebrates 
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on decomposition process in Miscanthus plantations. This casts doubt on the relative 

contribution of invertebrates and abiotic factors upon litter breakdown in Miscanthus in 

this study when compared to cereals. However, methodological limitations constrain the 

interpretation and representativeness of Zangerl et al.’s findings in relation to the data 

presented here. For instance, assays were conducted in small plots (0.7 ha) of recently 

established Miscanthus with litter placed in bottomless trays, and hence only likely to 

be accessible to below ground invertebrates (trays were 5 cm in height and covered with 

a fiberglass mesh screen of an unspecified mesh size). As far as I am aware, no other 

studies have investigated decomposition processes in Miscanthus. However, in a study 

investigating invertebrates in Miscanthus by Bellamy et al. (2009), significantly lower 

winter abundances of earthworms were recorded in pitfall traps compared to wheat, 

with no difference in the abundance of Collembola and Acari, two taxa clearly capable 

of accessing the litter bags used in this study. However, although non-significant, 

Myriapoda and Mollusca (slug and snail) abundances in Miscanthus were nearly double 

those in wheat, indicating a rather mixed taxonomic response of epigeal and endogeal 

inverterbrates to Miscanthus, despite broadly similar cumulative counts (i.e. total 

invertebrate abundance).  

Despite the short duration of the field experiments in this investigation, fungi and 

bacteria likely played at least some role in litter decomposition because leaf-litter inputs 

were partially fragmented upon placement in the field (i.e. cut to a standardised size, 

comparable to Rowe et al., 2013). This cutting allows microbes to by-pass the cuticle 

and access the leaf interior without having to first wait for fragmentation activity. It is 

therefore possible that enhanced litter breakdown in winter Miscanthus arises from 

increased microbial activity. Nonetheless, the proportional influence of microbial 
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activity on decomposition cannot be ascertained and invertebrate fragmentation is 

presumed to be the predominant driver of mass loss. Although invertebrate populations 

were not specifically surveyed in this study, it was seen that millipede and slugs were 

regularly present within litter bags (personal observation), organisms understood to be 

effective at litter fragmentation and the taxa reported to show elevated abundance by 

Bellamy et al. (2009). The presence of millipedes (predominantly classed as 

macrofauna) demonstrates that it is erroneous to assume that constraining mesh size 

produces consistent and universal limitations upon the taxonomic identity of 

invertebrates accessing the litter-bags, both here and in other studies. Variation in body 

size that occurs during the ontogeny of many species (i.e. earthworms) also makes clear 

that it would be unsubstantiated to assume complete exclusion of many other taxa 

typically classified as macrofuana.  

As temperature is understood to be one of the key factors determining decomposition 

rates (Anderson et al., 1991; Hobbie, 1996), variation in the mass loss of litter between 

seasons is not unexpected. Previous studies have shown that decomposition processes 

(i.e. microbial respiration/organic carbon mineralisation) are greatest in the summer 

months when temperatures are highest (Chapin et al., 2002). In this study, 

decomposition is also seen to increase in the summer months when compared to spring 

and winter, however autumn is the only season to show significantly greater mass loss, 

exceeding that recorded in all other seasons. The greater decomposition in autumn is 

difficult to explain through temperature (i.e. autumn is neither the warmest or coldest 

month) and explanations are purely speculative. Nonetheless it is possible to propose 

hypotheses. For example, rather than temperature dependence, greater autumnal mass 

loss may instead result from stimulation of detritivore and decomposer activity, due to 
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increased litter inputs during late summer and early autumn, following leaf-fall in 

Miscanthus and harvest residue inputs in cereal controls. In addition, this study focuses 

on litter fragmentation rates which are likely to be principally governed by animal 

activity (i.e. meso- and microfauna), rather than microorganisms. As many epigeal and 

soil animals are dependent upon moist environments, periods of reduced soil moisture 

during the summer months may have limited the effects of heightened temperatures that 

are understood to stimulate microbial activity, with increased moisture potentially 

benefiting litter fragmenting animals in the autumn, when temperatures are still 

relatively high. 

I do not investigate post-fragmentation processes in this study, and it would be 

interesting to establish whether microbial mineralisation activity is enhanced under 

winter Miscanthus. The focus on the combined effects meso-microfauna activity and 

abiotic factors is a limitation of the study. As such, further studies incorporating 

macrofauna are necessary for a more holistic understanding, with the interactions 

between soil organisms likely playing an important role in ecosystem functioning. 

Nonetheless, I show that during the winter, fragmentation of nutrient rich, readily 

degradable, O horizon, leaf-litter differs between Miscanthus and conventional cereal 

crops, indicating that initial abiotic and meso-microfauna decomposition processes are 

altered by cultivation of PEC Miscanthus.   
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Chapter 6: General Discussion 
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6.1 Introduction 

Agriculture accounts for ~40% of land area globally (Foley et al., 2005); the scale and 

intensity of production are substantial contributors to the ecological footprint of 

humanity, placing a major strain on the Earth’s biosphere. Over the next century, the 

pressures placed on agriculture systems will increase further, with human population 

growth set to generate greater demand for food and energy, placing further stress on the 

Earth’s biocapacity. In addition, as a result of anthropogenic activity, this will occur 

against the backdrop of a rapidly changing climate. Agriculture is currently a net 

contributor to greenhouse gas (GHG) emissions, future changes to agroecosystems must 

therefore limit the carbon footprint of the industry and, where possible, counter 

emissions, through use of land as a carbon sink and/or by providing sources of 

renewable, low carbon, energy. Furthermore, current agricultural practices are widely 

recognised to have had detrimental impacts on biodiversity, the retention of which is 

vital to the functioning of healthy ecosystems, with rapid declines having been reported 

in diverse taxa. As such, it is imperative that changes in land use and management 

practices that take place in the forthcoming decades not only reduce negative impacts on 

biodiversity but, moreover, improve conditions, both for biodiversity and the services it 

provides.  

In this thesis I aimed to advance understanding of how current and future changes in the 

agri-environment might affect the provisioning of ecosystem services (ES), studying not 

only patterns of biodiversity but, importantly, some of the key processes involved in 

service provision, in particular, those relevant to pollination and decomposition. I 

principally focus on the effects of cultivating two lignocellulosic bioenergy crops which 

present an emergent, novel land use, both in England and in temperate regions globally 

(Haughton et al., 2009). I accomplished this through a combination of field 
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observations, field experiments, soil chemical analysis and microbial fingerprint 

analysis. In chapter 2 I explore trends in the frequency of insect visits to wildflowers in 

the margins of two perennial energy crops (PECs), Miscanthus x gigenteus and willow 

short-rotation coppice (SRC, Salix spp.), when compared to the conventional cereals 

that they might replace. I also investigate whether pollinator visitation to margin 

wildflowers in cereals surrounding PECs differs to those at greater distance, examining 

effects on species richness and diversity as well as the availability of floral resources. 

Additionally, for PECs and isolated cereals, I compare the structure of plant-pollinator 

networks. In chapter 3 I use a selection of phytometers to examine whether seed-set 

differs in the field margins of Miscanthus when compared to cereals, exploring the 

impact of Miscanthus cultivation upon plant reproduction. I also compare phytometer 

seed-set in field bean to wheat fields, the former a mass-flowering crop (MFC); farm 

scale cultivation of field bean is understood to increase bumblebee visitation to margin 

wildflowers (Hanley et al., 2011), as such, the crop was investigated for its potential 

conservation benefits for wild plants. I also compare visitation rates of insects visiting 

phytometers and native wildflower patches in Miscanthus and cereal controls. In 

Chapter 4 I study patterns of element bioaccessibility for a broad range of soil elements 

that present important metabolic or toxicological implications for plants and soil 

Bacteria; I compare extractable element concentrations as well as patterns of element 

extractability in the soils of Miscanthus and willow SRC to adjacent cereals. 

Furthermore, I compare the structure and diversity of bacterial communities under 

cereal controls to those of the PEC soils. Lastly, in Chapter 5, I investigate soil surface 

litter decomposition, specifically seasonal litter fragmentation rates using a litter-bag 

approach. This final chapter is a synthesis of my key findings in the context of existing 

research; I also highlight the relevance of findings for ecosystem service provision, 
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conservation, and management and policy, and present a discussion of methodological 

limitations and potential areas for future research.  

6.2 Summary and Synthesis 

6.2.1 Insect wildflower visitation, species richness and diversity 

Differences in crop morphology and management practices between PECs and 

conventional cereals have the potential to differentially affect plant and pollinator 

populations and therefore plant-pollinator interactions. Past studies focusing on 

biodiversity metrics (i.e. abundance, species richness and diversity) have shown either 

positive or neutral effects for investigated insect taxa when compared to annual rotation 

crops (Dauber et al., 2010). However, aside from a Miscanthus  study in Ireland (i.e. 

Stanley and Stout, 2013; Bourke et al. , 2014), most studies have either focused on 

butterflies (Haughton et al., 2009), invertebrates in the PECs themselves (Sage and 

Tucker, 1997; Redderson, 2001) and/or reported general patterns for coarse taxonomic 

groups of insects (Cunnigham et al., 2004; Semere and Slater, 2007b); to my 

knowledge, no study in the primary literature has directly investigated effects on the 

processes involved in pollination service provision to wild margin plants, neither in 

Miscanthus or willow SRC. In chapter 2 I demonstrate that effects of PEC cultivation 

on visitation frequency were highly context dependent, with only willow exhibiting 

consistent enhancement of flower visitation by all three key pollinating taxa (i.e. 

hoverflies, bumblebees and butterflies/moths). For bumblebees and Lepidoptera, taxa 

specific trends in pollinator  flower visitation found in Miscanthus correlate with 

patterns of abundance reported in the literature, with Semere and Slater (2007b) and 

Haughton et al. (2009) having reported elevated butterfly abundance and Bourke et al., 

(2014) having described neutral effects upon the abundance of bumblebees. Conversely, 
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the negative effect of Miscanthus on hoverfly flower visitation was unexpected and in 

contrast to neutral effects on abundance reported by Bourke et al. (2014) who found 

little difference in pan-trap counts of hoverflies between Miscanthus and cereals. 

However, pan traps may have attracted hoverfly species not reflective of the flower 

visiting assemblages, including non-aphidophagous hoverflies, such as those seeking 

aquatic oviposition sites or territories. In addition, Bourke et al. (2014) show that 

hoverflies are particularly affected by landscape context, which may have been 

regionally distinct (i.e. differing between the agri-environments investigated in Ireland 

and England), and thus leading to the dissimilar land use trends for this insect taxa 

between studies. However, the authors do record negative effects on a non-pollinating 

taxa, carabids (but see Semere and Slater, 2007b), and suggest that lower aphid 

abundance may have driven this trend, a suggestion equally applicable to 

aphidophagous hoverflies that are seen to dominate transect counts in this study. 

Hoverflies, bumblebees and Lepidoptera are recognised as some of the most important 

pollinating insect taxa and variation in flower visitation trends between the two PECs, 

with regards to cereals, could have particularly important implications for ecosystem 

service provision. The visitation rate data to red campion and bramble patches presented 

in chapter 3 also adds support to the transect data. Lepidoptera visitation rate to flower 

patches is seen to be significantly higher when considering both wildflowers whilst, 

although non-significant, hoverfly visitation rates were lower in Miscanthus. However, 

despite a slight indication of increased Lepidoptera visitation in cereals surrounding 

Miscanthus I find no statistical evidence that either PEC positively affects focal 

pollinator visitation in adjacent cereal fields. Nevertheless, at the field scale, increased 

bumblebee and Lepidoptera species richness and Lepidoptera diversity in willow, as 

well as enhanced Lepidoptera species richness in Miscanthus, suggest benefits of PEC 



 
 

163 
 
 

cultivation, for these taxa, beyond that of increased pollinator activity. In addition, 

despite the neutral effects of both PECs upon broad taxonomic groups of non-focal taxa, 

this study is the first to report the distinctive responses of the frequent flower visitors 

Scathophaga stercoraria and Rhagonycha fulva. S. stercoraria visitation was reduced in 

Miscanthus and R. fulva visitation enhanced in willow, with the increased R. fulva 

visitation in cereals adjacent to willow being particularly noteworthy, indicating 

benefits beyond the PEC field not seen for other taxa.  

6.2.2 Floral resource 

Past investigations have indicated positive effects of cultivating both willow and 

Miscanthus upon wild plants, both within the crop as well as in the non-cropped 

headlands and margins (e.g. greater plant species richness in Miscanthus (Bourke et al., 

2014) and both increased species richness and unique species assemblages in willow 

(Baum et al., 2012)). However, additional studies in Miscanthus (Dauber et al., 2015) 

and willow (Fry and Slater, 2008) have also shown that more mature plantations exhibit 

a decrease in floral biodiversity compared to patchier, recently established plantations. 

For example, for Miscanthus fields yielding 9.8 t d.m. ha-1 yr-1, Dauber et al., (2015) 

found no difference in plant species richness compared to data on wheat fields collected 

in the same region. Although I do not investigate within-crop flora in this study, the 

dense height of the well-established Miscanthus sites may provide a related explanation 

(i.e. light penetration) for the neutral effects of the PEC upon margin wildflower 

availability, species richness and diversity; dense vegetation may have shaded out many 

of the hedgerow plants and also visually obscured them from foraging pollinators, with 

margin encroachment of the crop discernible at many of the sites, but not seen in the 

wider willow margins. In addition, similar to patterns of visitation by focal pollinator 

groups, distinct differences are seen for trends in flower availability between 
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Miscanthus and willow. Willow cultivation increased flower abundance whereas 

Miscanthus had no effect on flower number in comparison to cereals. Furthermore, 

when compared to an alternative PEC, reed canary-grass (Phalaris arundinacea), 

Clapham and Slater (2008) report lower weed community species richness in 

Miscanthus, providing further balance to the argument that the impacts of Miscanthus 

on native wild plants may be limited and inconsistent. The neutrality of Miscanthus 

cultivation upon flowering plants is further substantiated by the similar phytometer seed 

counts when compared to cereals. Data presented on seed set in chapter 3 suggest that 

neither Miscanthus nor mass-flowering field bean improve seed-set of field margin 

phytometers; floral counts and species richness and diversity of margin wildflowers was 

also comparable between bean and wheat controls, with red clover seed-set reduced in 

bean fields.  

6.2.3 Plant-pollinator networks 

An ever increasing variety of indices are now available to describe parameters 

associated with mutualistic plant-pollinator networks. However, where parameters 

differ, tangible implications for pollinator and plant communities remain little 

understood. Nevertheless certain measures are thought to indicate greater network 

stability and robustness to anthropogenic or environmental perturbation. In the first 

study to attempt to compare network properties between willow SRC and cereals I 

found notable differences in network parameters, willow networks exhibited 

significantly greater ‘nestedness’ and ‘links per species’ when compared to cereals, 

indicating more complex and therefore more stable networks. In contrast, and similar to 

Stanley (2013), indices were similar between Miscanthus and cereal controls indicating 

neutral effects upon network parameters when replacing cereals with this PEC. Network 

vulnerability was only marginally non-significant however and higher in Miscanthus, a 
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possible indication of a slight reduction in the stability of Miscanthus networks, 

although inclusion of additional field sites would be necessary to clarify this. 

6.2.4 Soil elements and bacterial communities 

Despite numerous studies on soil carbon processes there has been limited investigation 

of how PECs influence trace element availability or the structure and composition of 

soil microbial communities. In chapter 4 I find no evidence that cultivation of 

Miscanthus or willow leads to differences in the bioaccessibility of an array of elements 

that have the potential to have important consequences for plant health and bacterial 

communities. Bacterial populations also failed to converge on typical crop-specific 

assemblages with no discernible impact on diversity.  

6.2.5 Decomposition 

Investigation of above ground ecosystem processes in PECs are limited, however 

research by Rowe et al. (2013) demonstrated higher summer decomposition rates in 

willow SRC compared to cereals. In this study, using a similar methodology,  I also 

report marked differences in the decomposition rates between the cropped areas of the 

PEC Miscanthus when compared to cereals, with reduced litter breakdown in the 

harvested cereal fields during the winter but decomposition rates in Miscanthus 

remaining comparable to non-cropped regions. However, in contrast to the findings of 

Rowe et al. (2013) in summer willow SRC, I find no evidence of enhanced 

decomposition during the spring, summer or autumn (at least in terms of meso-

microfaunal activity), with rates of litter breakdown similar between land uses.  

6.3 Ecosystem service and conservation relevance  

There is a growing recognition of the value of nature, both intrinsically (Batavia and 

Nelson, 2017) and in terms of the benefits derived by humanity (Guerry et al., 2015), 
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this is coupled with an improved understanding of the role that land use change may 

have upon biodiversity and the services it provides (Foley et al., 2005). This has 

particular relevance for pollinators. Where adequate data are available (i.e. north-

western Europe and North America) pollinators are seen to be faring poorly with similar 

trends having also been shown for insects more generally (Hallman et al., 2017), and 

regional declines expected in additional areas due to widespread evidence of local 

declines (IPBES, 2016). The low intensity management of PECs has been suggested to 

benefit biodiversity generally and, where investigated, evidence suggests that effects are 

principally neutral or positive, benefiting pollinating insects such as butterflies (Semere 

and Slater, 2007b), solitary bees, and trap nesting bees and wasps (Stanley and Stout, 

2013). Here I find evidence that pollinator populations in willow SRC are likely to 

benefit from its cultivation given their enhanced activity in field margins, as well as 

greater species richness and diversity. Insect flower visitation is a key process involved 

in pollination, increased flower visits by all three dominant pollinator taxa therefore 

suggests reproductive benefits to margin wildflowers through enhanced service 

provision. The higher flower counts recorded in willow also adds support, potentially 

arising from increased pollination and/or a reduction in management intensity. 

However, because flowering plant communities did not become more complex, with 

similar species richness and diversity between willow and cereals, it appears unlikely 

that willow margins provide novel plant niches. Landscape context could hinder 

colonisation by plant propagules however, willow PEC plantations in less biologically 

impoverished landscapes might therefore support greater plant diversity; and active 

introductions might also assist.  

As outlined above, the relationship connecting structural attributes of pollination 

network to ES provision is poorly understood. The conservation value of differences in 
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network structure between PECs and cereals is thus difficult to ascertain without further 

development of this field (Tylianakis et al., 2008). Nevertheless, indication of increased 

robustness of willow networks would appear to suggest that pollinator visitation 

processes in this PEC are less susceptible to perturbation, with presumed conservation 

benefits for both flowering plants and flower visiting insects, as well as enhancement of 

the process of flower visitation itself, potentially increasing ES provision.  

The divergent trends outlined in Miscanthus compared to willow suggest that the 

conservation value of the former PEC is, at best, mixed for pollinating insects. 

Significant increases recorded in Lepidoptera flower visitation are not expected to have 

major implications for the provision of pollination service, given the relatively low 

number of visits recorded, and thus the crop’s value for diurnal Lepidoptera 

conservation, although positive, also remains limited. Reduced hoverfly activity 

suggests pollination by hoverflies is likely adversely affected by Miscanthus and raises 

concerns that pest control may also be reduced, although potentially ameliorated by, and 

a response to, a reduction in pest pressure. Negligible effects on bumblebees supports 

past studies, which report no impacts on overall abundance and no increases in nest 

searching activity when compared to cereals, indicating that Miscanthus has little 

relevance to bumblebee conservation and is unlikely to enhance bumblebee pollination 

service provision to wild plants (Stanley and Stout, 2013). In contrast to willow, the 

increased vulnerability of Miscanthus networks suggest that plant-pollinator interactions 

are less robust when compared to cereals and therefore consequences for pollination 

service provision, and conservation, may prove negligible or even negative.  

Neither PEC positively affected flower visitation by focal pollinator taxa in surrounding 

cereal fields, indicating that, at the farm scale, both crops have limited implications for 
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the enhancement of plant/pollinator conservation or ES provision beyond the field. 

Though, for willow, cereals margins may be less likely to attract pollinators away from 

the PEC due to their comparatively intensive management; therefore if insects do indeed 

spread out from the plantations, they may simply overlook cereals in favour of more 

rewarding habitats (i.e. semi-natural habitats and, potentially, MFCs). Investigation of 

less intensive and/or flower rich habitats surrounding PECs may therefore indicate 

localised enhancement of pollinator activity, as pollinators may be shared between land 

uses offering complementary or alternative resources. Nonetheless, the neutral effects 

on flower visitation in adjacent cereals surrounding both PECs directly opposes 

suggestions posited by Manning et al. (2015) that PECs may enhance service provision 

in the surrounding agricultural landscapes, at least in terms of pollination by the three 

focal pollinator taxa. However, enhanced R. fulva flower visits in cereals adjacent to 

willow does offer some support to the suggestions of Manning et al. (2015) with 

potential enhancement of both pollination and biocontrol services, indicating the value 

of investigating a wider range of species. 

Despite the benefits willow provides for plants and focal pollinator taxa, and which 

Miscanthus provides for diurnal Lepidoptera, there is little evidence that either crop 

supports rare or endangered species. This is not unexpected as the plantations studied 

are located in a mixed farming landscape that tends to support a reduced flora and fauna 

compared to other land uses (Altieri, 1999). Furthermore, data do not encompass all 

species, rarer species are less likely to have been observed on transects and it is certain 

that flowering willow will itself attract a different assemblage of pollinators in the 

spring, whilst potentially supporting the larvae of rarer non-flower visiting insects that 

were not recorded in this study. Nevertheless, for summer flower visiting insects the 

conservation value of willow arises as a consequence of the crops ability to benefit 
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common species when compared to conventional cereals; given widespread declines in 

insect biomass, keeping common species common remains an important objective 

(Gaston, 2010). Furthermore, in terms of ES provision, it is likely to be the most 

frequently recorded (and efficient) species that make the greatest contribution to service 

provision (Bommarco et al. 2013). 

Alongside differences in pollinator flower visitation, I find evidence that Miscanthus is 

likely to have consequences for the provisioning of another ES when compared to 

cereals. Elevated rates of litter mass loss in Miscanthus during the winter may have 

implications for decomposition processes, particularly given the crop’s long lifespan. 

However across the large number of soil elements investigated, I find no indication that 

either of the two PECs will affect element bioaccessibility, with indirect effects upon 

bacterial communities likely to be minimal given the similarity in bacterial community 

diversity and the absence of unique assemblages between crop treatments. Site variation 

in edaphic soil properties is therefore likely to be a greater determinant of bacterial 

community parameters under both PECs and cereals. Soil data therefore indicate that 

nutrient cycling and biogeochemical processes will be little altered by either PEC when 

compared to cereals. Such patterns are in line with recent investigation of soil carbon 

processes undertaken in willow and Miscanthus which, using an improved methodology 

to previous studies, casts doubt on expectation of increased carbon sequestration under 

the two PECs, with no significant difference in soil C when compared to either 

grassland or arable (Rowe et al. 2016).  

In summary, I show that willow cultivation, in particular, is likely to lead to farm scale 

benefits for pollinator conservation and provision of pollination service, but mixed 

effects may arise for Miscanthus. Largely neutral effects are found for MFC field bean, 
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but with the possibility of negative effects on reproduction of some margin plants. 

Meso-microfauna decomposition processes are likely to be affected by Miscanthus 

cultivation during the winter but there is no indication of differing patterns in soil 

element accessibility or bacterial communities between land uses.  

6.4 Methodological Considerations 

This study encompassed a range of scientific fields, including pollination, soil 

chemistry, soil microbiology, and decomposition. This interdisciplinary investigation 

therefore required diverse methodologies. Here I discuss the methods used to 

investigate the effect of PEC and MFC land use change upon patterns and processes 

relevant to provision ecosystem services, with a focus on methodological limitations 

where they exist. 

When surveying pollinating insects it is generally accepted that application of multiple 

methods is preferable, as I focus specifically on insects visiting flowers in this study 

methodology was constrained to direct observations. Passive sampling techniques (i.e. 

pan traps or trap nests) were unsuitable as they would have conveyed the abundances of 

all trapped insects, many of which may have little relevance to pollination service 

provision, with species perhaps favouring either PEC plantations or cereals due to 

features such as desirable nesting habitat, suitable oviposition sites, or favourable 

microclimate conditions, factors unrelated to wildflower pollination.  

The observational nature of transects places limitations on the representativeness of 

species richness and diversity measures, with species level identifications of briefly 

encountered, morphologically similar species (i.e. Syrphus sp. Fabricius), difficult to 

distinguish in the field.  However, in most circumstances active sampling on transects 

using a net was considered undesirable due to the likelihood of disturbing as yet 
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unrecorded insect visitors on surrounding plants (consider hoverfly activity on Apiaceae 

for example). Related to this, without actively capturing flower visiting bumblebees of 

the Bombus sensu stricto subgenus it was not possible to determine the species identity 

as identification is reliant on genetic analyses. However, such bumblebee species may 

have different ecological preferences and respond differently to PEC cultivation not 

discernible in this study (Stanley, 2013).  In addition, as mentioned above, transects 

were only undertaken in the summer months when wildflowers in field margins are 

most abundant, however flower visitation to willow crops in spring remained 

unconsidered. 

Hedge cutting, granivory and disease pressures, adversely affected the phytometer seed 

set experiment. Loss of samples could have been better tolerated had the experimental 

design included a greater number of sites, a greater number of planted phytometers per 

site, multiple years of data collection, and a larger number of phytometer species. 

Nonetheless, for a single researcher, this was not feasible within the time constraints of 

the project.  

Use of microbial fingerprint techniques such as DGGE is a cost effective means of 

investigating microbial communities. DGGE rapidly provides an overview of microbial 

biodiversity. Nonetheless this technique has its limitations, (i.e. it is largely qualitative 

technique and can suffer from issues with reproducibility) and more advanced high 

throughput techniques would have provided greater sequence information, potentially 

revealing more subtle changes in community structure.  

6.5 Further Research  

Given reported variation in the effectiveness of different pollinator taxa when 

depositing pollen upon plant stigmas (King et al., 2013), measures of pollinator 
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effectiveness, particularly for moderate-highly frequent flower visitors, would 

strengthen understanding of the contribution made by specific taxa to ES provision. 

Such data would bridge the gap between flower visitation and reproductive outcomes 

(i.e. seed/fruit set).  The focal taxa studied in this investigation are already understood to 

be important pollinators but effectiveness for a given plant and in a given context (i.e. 

network) requires further research, with even greater relevance for non-focal taxa whose 

contribution to pollination is less understood.  Furthermore, there also remains a need to 

establish whether measures of plant reproductive success differ between margin 

wildflowers in willow SRC when compared to cereal controls, and future investigation 

of seed set should seek to address the issues outlined in chapter 3, incorporating a 

greater number of flower patches and plant species for example.  

In addition, the lower hoverfly visitation in Miscanthus fields and the lower carabid 

abundance reported by Bourke et al. (2014) suggest that investigation of aphid 

abundances in the margins of both PECs and cereals could help to explain trends. 

Although non-significant, the decline in the absolute abundance of hoverflies in cereals 

adjacent to Miscanthus may indicate lower aphid numbers on the cereal crops 

themselves and surveys comparing aphid pressure upon cereals that are adjacent and 

distant from PECs is also worth studying.  

Although Bourke et al. (2014) have investigated impacts of landscape context on local 

Miscanthus biodiversity (demonstrating both independent field scale effects and, for 

some taxa, additive effects on species richness, diversity and abundance), inclusion of 

PECs into agricultural landscapes may be expected to have variable effects at the 

landscape scale, dependent on their relative proportion in the landscape; likely 

increasing landscape heterogeneity at low density but rendering landscapes homogenous 
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at high density. This considered, there remains a need for landscape scale studies, both 

on biodiversity and ES. Limited cultivation in the UK means that these studies must 

necessarily occur in European nations with greater areas under cultivation.  

Increased landscape homogeneity may occur in the future if PEC cultivation becomes 

not only widespread, but due to economic drivers, a concentrated locally dominant land 

use. Such developments emphasise the need to consider PEC impacts at far larger 

scales. For instance, competition with food crops currently remains virtually as relevant 

for PECs as it does for 1st generation biofuel crops. Imported biomass is currently the 

dominant source of biomass combusted in the UK (Haughton et al., 2009; Dauber et al., 

2010). In the United States there is evidence of increased pressures on important 

biodiversity habitats due to wood harvesting from forests, whilst forests on marginal 

soils may be lost in order to produce purpose grown feedstocks (Tarr et al., 2017) as 

producers seek to meet biomass demands from the UK and Europe (~ 4.6 million 

tonnes, Dale et al., 2017); an undesirable outcome for conservation and ecosystem 

services at an international level. The reason for UK dependency on imports arises, in 

part, from the limited and disparate uptake of PECs nationally, hindering the ability of 

energy providers to cost effectively acquire biomass from national sources. An in-depth 

discussion of the reasons for limited PEC cultivation are beyond the scope of this 

investigation but include factors such as farmer uncertainty (on a range of issues, cost, 

yields, prices, biodiversity impacts; Sherrington, 2008) and, in many regions, limited 

demand for biomass by energy providers (Devon grower, personal communication). 

The latter is a possible outcome of frequent changes in policy stance (and thus market 

uncertainty) and exemplified by variable contribution of co-fired biomass to meeting 

renewable obligation requirements and, recently, the cessation of subsidy incentives. 

Acknowledgement by the EU of potentially negative effects of indirect land use change, 
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including subsequent amendments to policy, is certainly unlikely to have encouraged 

uptake. As such, the landscape, national and international scale implications of PEC 

cultivation upon ecosystem services and conservation may well prove the dominant 

factor constraining the proportion of land under PEC production over the coming 

decades. However, it is worth considering that the demands currently placed by food 

crops on land resources are greatly exacerbated by market demand, and policy 

incentives, that encourage inefficient methods of food production, particularly in 

developed nations (Clark and Tilman, 2017; Shepon et al., 2018); in the long-term, 

efforts to improve the efficiency and sustainability of food production could therefore 

help to alleviate the conflict between land use for energy, food and biodiversity.  

6.6 Conclusions, management and policy relevance 

To date, limited attention has been given to the potential effect of PEC cultivation upon 

the ecosystem processes necessary for the maintenance of ecosystem service provision. 

This thesis presents evidence for differential effects of PEC cultivation upon ecosystem 

processes relevant to pollination and decomposition services. Here I outline some of the 

implications for management and policy.  

In terms of pollination process, the consequence of replacing common rotational crops 

such as cereals with PECs is highly specific to the PEC cultivated (chapter 2). Willow 

SRC has almost exclusively positive impacts upon both pollinators and plants taxa. 

However impacts of Miscanthus were variable, encompassing positive, neutral and 

negative effects on pollinators and no clear benefit to plant communities. Furthermore, 

there is no suggestion that Miscanthus benefits the reproduction of margin plants 

(chapter 3), suggesting, that, for margin wildflowers, inclusion of this crop under any 

future agri-environment scheme would be ineffectual. Similarly, the apparent negative 
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effects of MFC field bean on red clover flower patches suggests that some margin 

plants may in fact be adversely affected by incorporation of this crop as a conservation 

measure. These findings have significance for land managers and spatial planners, 

especially where there is an ambition to improve the conservation value of agricultural 

landscapes; in particular, willow SRC may prove an important refuge for pollinators and 

plants. The comparison here is limited to cereals however, and transitioning from other 

land uses may produce dissimilar trends, with detrimental impacts almost certain if 

semi-natural habitats are replaced (Rowe et al., 2009). Low disturbance semi-natural 

habitats often support scarce and rare species; I find no evidence that either PEC 

benefits rare flower-visiting insects or margin plants species in this study (chapter 2). 

Beyond the PEC field there is little evidence of enhanced insect flower-visitation for 

either willow SRC or Miscanthus (chapter2), at least at the field scales investigated 

here. Despite its local value, willow SRC may therefore be unlikely to benefit 

wildflowers in surrounding cereal fields. PECs would thus prove unsuitable as a 

management prescription where elevated pollination service provision in wider 

landscape is desirable (Manning et al., 2015) and where cereals are prevalent. The 

increase in meso-microfauna decomposition rates under Miscanthus (chapter 5) has the 

potential to affect biogeochemical and nutrient cycles, although, without further 

investigation, the consequences for management and policy are unclear. Given that 

Miscanthus cultivation had no evident influence upon bacterial populations or element 

bioaccesibility (chapter 4), between-site variation in edaphic factors are likely to prove 

of greater relevance to farmers and land managers in this regard. 
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Conclusion: No significant difference between crop treatments (bioenergy crop, 

adjacent cereal, distant cereal) is seen for any recorded environmental variable, it is 

therefore assumed that variation in transect temperature, cloud cover and wind speed 

did not bias results for data collected in either southwest England or central England in 

2015 or for land cover classes in any year (southwest: 2012, 2014, 2015; central 

England: 2013, 2015).  

Notes on statistical analyses of environmental variables: 

The individual transect data for the environmental variables described above (i.e. 

temperature, cloud cover, wind speed) are considered to be unique replicates in the 

analyses because they are not specifically dependent on crop treatment. Environmental 

conditions recorded upon any one transect cannot be considered to be influenced by the 

crop for the data shown here, environmental measures were simply taken in order to 

clarify that they were broadly similar across treatments when pollinator surveys were 

conducted. If any association had been found between crop type and environmental 

variables then this would imply a potential source of bias that may have confounded 

crop treatment effects on pollinator visitation. I do not find any difference in 

environmental variables (including variation in percentage land cover) between crop 

treatments, indicating that my conclusions are robust. One might argue that variation in 

shelter provided by the different crop treatments may vary between crop types and so 

influence these environmental measures, evidently this cannot be the case for cloud 

cover but may be true of wind speed or temperature. In the context of this study 

however, wind speed was a general indicator of wind speed/intensity in the local 

environment (i.e. field) and influence of the crop at small scales cannot be ascertained 

from this data, it may be that for at heights < 2m for example, wind speed may be lower 

in Miscanthus fields, this cannot be established from our data however given its 
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resolution. Similarly it is not possible to establish whether crop shelter influenced 

temperature because temperature was only recorded at one location on the transect and 

would have had to have been recorded, simultaneously, away from the influence of the 

crop (or any landscape features) if a shelter effect was to be investigated, I do not have 

this data and so cannot draw any conclusions on this point. An additional justification 

for use of individual transect data as replicates arises from the fact that site averages 

would be unsuitable for wind speed measures because these data are ordinal and 

averages would therefore offer limited interpretation.  
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 Appendix 31: Flower visitation network legend  

Taxa Code Taxa Code
Aglais io A1 Angelica archangelica B1
Aglais urticae A2 Arctium minus B2
Anthocharis cardamines A3 Ballota nigra B3
Aphantopus hyperantus A4 Bellis perennis B4
Aricia agestis A5 Bryonia alba B5
Autographa gamma A6 Calystegia sepium B6
Baccha elongata A7 Cardamine flexuosa B7
Bombus hortorum A8 Centaurea nigra B8
Bombus hypnorum A9 Chaerophyllum temulum B9
Bombus lapidarius A10 Chamerion angustifolium B10
Bombus pascuorum A11 Cirsium arvense B11
Bombus pratorum A12 Cirsium dissectum B12
Bombus ruderatus A13 Cirsium vulgare B13
Bombus sylvarum A14 Clematis vitalba B14
Bombus sylvestris A15 Clinopodium vulgare B15
Bombus terrestris agg. A16 Conium maculatum B16
Bombus vestalis A17 Convolvulus arvensis B17
Brachypalpoides lentus A18 Crataegus monogyna B18
Chrysogaster solstitialis A19 Crepis spp. B19
Criorhina floccosa A20 Digitalis purpurea B20
Depressaria daucella A21 Epilobium hirsutum B21
Epistrophe eligans A22 Epilobium leptophyllum B22
Epistrophe grossulariae A23 Eupatorium cannabinum B23
Episyrphus balteatus A24 Filipendula ulmaria B24
Eristalis sp. A25 Galeopsis tetrahit B25
Eupeodes sp. A26 Galium mollugo B26
Gonepteryx rhamni A27 Geranium columbinum B27
Leucozona glaucia A28 Geranium dissectum B28
Leucozona lucorum A29 Geranium robertianum B29
Macroglossum stellatarum A30 German chamomile B30
Maniola jurtina A31 Heracleum mantegazzianum B31
Melangyna umbellatorum A32 Heracleum sphondylium B32
Melanostoma scalare A33 Hieracium spp. B33
Meligramma cincta A34 Impatiens glandulifera B34
Meliscaeva cinctella A35 Jacobaea vulgaris B35
Myathropa florea A36 Lapsana communis B36
Ochlodes sylvanus A37 Ligustrum vulgare B37
Pararge aegeria A38 Lonicera periclymenum B38
Pieris sp. A39 Myosotis arvensis B39
Platycheirus sp. A40 Oenanthe crocata B40
Polyommatus icarus A41 Potentilla reptans B41
Pseudopanthera macularia A42 Ranunculus repens B42
Pyronia tithonus A43 Rosa arvensis B43
Rhingia campestris A44 Rosa canina B44
Scaeva pyrastri A45 Rubus fruticosus agg. B45
Sericomyia silentis A46 Sambucus spp. B46
Sphaerophoria sp. A47 Silene dioica B47
Synanthedon myopaeformis A48 Silene latifolia B48
Syritta pipiens A49 Sisymbrium officinale B49
Syrphus sp. A50 Solanum dulcamara B50
Thymelicus sylvestris A51 Sonchus spp. B51
Tyria jacobaeae A52 Stachys sylvatica B52
Vanessa atalanta A54 Stellaria graminea B53
Vanessa cardui A55 Taraxacum officinale agg. B54
Volucella bombylans A56 Teucrium scorodonia B55

Trifolium campestre B56
Trifolium dubium B57
Trifolium repens B58
Tripleurospermum inodorum B59
Unidentified Species 1 B60
Unidentified Species 2 B61
Urtica dioica B62
Veronica chamaedrys B63
Vicia cracca B64
Vicia sativa B65

Flower Visitor Plant
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Appendix 44: Salt (1:2.5 KCl) and international ISO standard water (1:5) pH of soil 

samples in bioenergy crop (Miscanthus x giganteus or willow short-rotation coppice) 

and cereal controls (wheat (Triticum spp.) or barley (Hordeum vulgare) in cropped and 

margin regions of each field. 

Site Crop Field 
Position Salt pH H2O pH 

Lostwithiel Miscanthus Crop 4.51 5.63 
Pelynt Miscanthus Crop 5.61 6.72 

Wadebridge Miscanthus Crop 6.43 7.41 
St Minver Miscanthus Crop 5.05 6.19 

Lostwithiel Miscanthus Margin 4.26 5.34 
Pelynt Miscanthus Margin 4.83 5.97 

Wadebridge Miscanthus Margin 6.1 7.14 
St Minver Miscanthus Margin 5.82 6.91 

Lostwithiel Cereal Crop 4.27 5.35 
Pelynt Cereal Crop 5.18 6.32 

Wadebridge Cereal Crop 5.22 6.36 
St Minver Cereal Crop 6 7.06 

Lostwithiel Cereal Margin 4.08 5.12 
Pelynt Cereal Margin 4.96 6.10 

Wadebridge Cereal Margin 5.17 6.31 
St Minver Cereal Margin 5.44 6.57 
Newark Willow Crop 6.14 7.18 

Gainsborough Willow Crop 6.77 7.67 
Stapleford Willow Crop 4.77 5.91 
Whatton Willow Crop 5.86 6.94 
Newark Willow Margin 5.86 6.94 

Gainsborough Willow Margin 6.41 7.39 
Stapleford Willow Margin 5.05 6.19 

Whatton Willow Margin 6.97 7.81 

Newark Cereal Crop 5.36 6.49 
Gainsborough Cereal Crop 7.17 7.96 

Stapleford Cereal Crop 5.75 6.85 
Whatton Cereal Crop 6.08 7.13 
Newark Cereal Margin 5.6 6.71 

Gainsborough Cereal Margin 7.09 7.90 
Stapleford Cereal Margin 4.52 5.64 
Whatton Cereal Margin 5.48 6.61 
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