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Abstract 

This thesis introduces three new feature selection methods based on sequential orthogonal search 

strategy that addresses three different contexts of feature selection problem being considered. 

The first method is a supervised feature selection called the maximum relevance–minimum 

multicollinearity (MRmMC), which can overcome some shortcomings associated with existing 

methods that apply the same form of feature selection criterion, especially those that are based 

on mutual information. In the proposed method, relevant features are measured by correlation 

characteristics based on conditional variance while redundancy elimination is achieved according 

to multiple correlation assessment using an orthogonal projection scheme. The second method is 

an unsupervised feature selection based on Locality Preserving Projection (LPP), which is 

incorporated in a sequential orthogonal search (SOS) strategy. Locality preserving criterion has 

been proved a successful measure to evaluate feature importance in many feature selection 

methods but most of which ignore feature correlation and this means these methods ignore 

redundant features. This problem has motivated the introduction of the second method that 

evaluates feature importance jointly rather than individually. In the method, the first LPP 

component which contains the information of local largest structure (LLS) is utilized as a 

reference variable to guide the search for significant features. This method is referred to as 

sequential orthogonal search for local largest structure (SOS-LLS). The third method is also an 

unsupervised feature selection with essentially the same SOS strategy but it is specifically 

designed to be robust on noisy data. As limited work has been reported concerning feature 

selection in the presence of attribute noise, the third method is thus attempts to make an effort 

towards this scarcity by further exploring the second proposed method. The third method is 

designed to deal with attribute noise in the search for significant features, and kernel pre-images 

(KPI) based on kernel PCA are used in the third method to replace the role of the first LPP 

component as the reference variable used in the second method. This feature selection scheme is 

referred to as sequential orthogonal search for kernel pre-images (SOS-KPI) method. The 

performance of these three feature selection methods are demonstrated based on some 

comprehensive analysis on public real datasets of different characteristics and comparative 

studies with a number of state-of-the-art methods. Results show that each of the proposed 

methods has the capacity to select more efficient feature subsets than the other feature selection 

methods in the comparative studies. 
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Chapter 1                           

Introduction 

1.1 Introduction 

This chapter presents an overview of the research conducted. It starts with a discussion of the 

motivation of the research to highlight the research problems. Then, objectives of this research 

are established. This chapter also allocates a section to preview the contribution of the research 

to the world of knowledge. The publications as outcomes of the research also have been listed. 

This chapter ends with a description of the overall thesis organisation. 

1.2 Motivation 

The birth of the Industrial Revolution has brought forward technological advances to the world 

and has thus motivated the industrial productivity to growth vividly (Gerbert, et al., 2015). As 

the world is currently moving towards the fourth wave of technological advancement, digital 

industrial technology has become the main essence and attracted considerable attention in 

recent years from numerous parties including policy-makers, practitioners, research 

communities as well as government organisations. This era is penned as Industrial Revolution 

4.0 (Gerbert, et al., 2015) which is often simply noted as Industry 4.0. The route to the Industry 

4.0 has been focused on nine foundational technology advances, more specifically referred as 

Industry 4.0 Technology Pillars as shown in Figure 1.1. 

Notice that one of the pillars is “big data and analytics”. The two key components, big 

data and analytic, that become the basis for the pillar are really two different things but they 

are intertwined. As the two teamed up and worked together, they then brought a new discipline 

known as big data analytics that is increasingly becoming a trending practice by many 

organisations with a primary goal to gain useful information from big data (Sivarajah, et al., 

2017). The potential of big data is evident from the fact that among the highest paid jobs in the 
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world are related to big data (Bennett, 2017). According to a Glassdoor report, data scientist 

career was ranked as the number one best job in the United States for 2018, meanwhile it is the 

sixth best job in the UK in 2017 (Glassdoor Inc., 2018). Because there are still enormous sets 

of untapped big data in the industrial world, they thus offer valuable information with many 

new opportunities that are beneficial in aiding practitioners to have sound understanding about 

certain activities or processes. According to O'Donovan et al. (2015), big data analytics will 

provide significant help to the industrial community to optimize the quality of a production, 

perform better operations, acquire excellent services and most importantly support accurate 

and timely decision-making.  

 

  Figure 1.1:  Nine Technological Pillars of Industrial Revolution 4.0 (Gerbert, et al., 2015). 

Big data stored in any information system including but not limited to industrial related 

databases require special methods for processing and analysing before the data can be used to 

assist decision making. Under such a circumstance, there is a demand to automate the process 

intelligently and use each massive dataset as a source to extract useful information (Bhadani & 

Jothimani, 2016). Among the tools that can be utilized to meet the requirement is data mining.  

Data mining can be defined as a process of discovering useful patterns from a large 

amount of data (Witten & Frank, 2005). It has been applied successfully in many different 

fields such as retail industry, marketing, banking, healthcare, science and engineering. 
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However, mining scientific data is often different from mining business or commercial data. 

According to Sivarajah et al. (2017), data analysis problems for science and engineering fields 

are more complex and therefore require more specific solutions. Hence, special attention must 

be given to the unique requirements of scientific datasets and related issues need to be 

addressed accordingly. 

One of the most complex natures that receive considerable attention among researchers 

is the explosive growth in sizes of datasets with millions to billions of records. Remarkable 

innovation and advancement in data storage have made collecting and saving such tremendous 

amount of data more feasible. While massive datasets can be utilized as a source to mine 

interesting information, the analysis accuracy and efficiency could become intractable due to 

the high dimensionality. Although there are methods that can be used to construct predictive 

models from high dimensional data with high accuracy (Breiman, 2001), data analysis in lower 

dimensional space is still desirable in many applications since modelling high dimensional data 

is more likely too computationally expensive. In many applications, the analysis of big data 

can be performed in a reduced dimensional space and the resulting performance can be even 

better than that obtained from using the original datasets (Zhang, et al., 2009; Wang, et al., 

2012; Likitjarernkul, et al., 2017) because the original feature space may contain a large 

number of irrelevant and redundant features. Hence, it is desirable and sometimes crucial to 

identify and remove these insignificant features so that learning from data become technically 

more effective. This can be done via dimensionality reduction which can be achieved by two 

different strategies, namely, feature extraction and feature selection.   

In feature extraction approaches such as principal component analysis (Wold, et al., 

1987) and linear discriminant analysis (Balakrishnama & Ganapathiraju, 1998), new features 

are constructed from the original features to form a new reduced dimensional space by 

combining or transforming the original features using some functional mapping. Although the 

new features in the new reduced dimensional space are related to the original features, the 

actual interpretation of the original features and hence the relation to the original system 

variables is completely lost in most cases. This drawback should be taken into account when 

considering dimensionality reduction since the actual interpretation may be important to 

understand the learning process that generates the new feature space (Somol, 2010). Feature 

extraction also often associated with computational inefficiency despite the fact that it may 

significantly reduce dimensional space since the new constructed features are based on 
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transformation that involves all original features including irrelevant and redundant features.   

Nevertheless, its main advantage over feature selection is in the fact that no information from 

the original features is wasted or lost in the dimensionality reduction process (Yang, et al., 

2010). This fact further offers another advantage of feature extraction approach in that the 

reduced dimensional space, in general, have more compact representation of the original 

features than the feature selection approach (Gao, et al., 2017).  

Unlike feature extraction which attempts to create new features based on all original 

features, feature selection is an approach which requires a selection of the most significant 

subset of features to a targeted concept by removing redundant and irrelevant features (Wei & 

Billings, 2007). These redundant and irrelevant features can be ignored because they give very 

little or no unique information for data analysis and modelling (Hira & Gilles, 2015). Moreover, 

in many cases, the presence of irrelevant and redundant features can only make data analysis 

and modelling more complicated without increasing accuracy. Since feature selection does not 

alter the actual interpretation of any feature involve, it has the advantage of being able to 

facilitate the understanding of what really generates the new feature space and significantly 

benefit future analysis. Commonly used feature selection methods include Fisher score 

(Jaakkola & Haussler, 1999), Relief (Kira & Rendell, 1992), minimal-redundancy-maximal-

relevance (mRMR) (Peng, et al., 2005) and Laplacian score (He, et al., 2006), to name a few. 

In contrast to feature extraction, the feature selection approachis perceived as having a lower 

flexibility in finding a reduced feature space, particularly when the best low-dimensional 

feature set for a certain data mining task should not only consists of original features (Zhang, 

et al., 2008). 

Much of the early work on feature selection focused on choosing relevant features. But 

later, when the existence and effect of redundant features have been discovered, many have 

been directed to deal with both relevant and redundant features in the selection process. Feature 

redundancy was defined in some explicit or inexplicit manner, highlighting the need to remove 

redundant features (John, Kohavi, & Pfleger, 1994; Pudil, Novovicova, & Kittler, 1994; Koller 

& Sahami, 1996; Kohavi & John, 1997; Hall, 1999). For example, in Koller & Sahami (1996), 

the Markov Blanket filtering process was utilized to form the definition which highlights that 

a redundant feature removed earlier remains redundant when other features are removed. A 

more concrete definition of feature redundancy was given in Yu & Liu (2004), which considers 
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an optimal feature subset is the one that essentially contains all strongly relevant features and 

also weakly relevant but non-redundant features.   

The concept of mutual information has been widely employed as an evaluation criterion 

for choosing a set of relevant and non-redundant features. Some of the most prominent 

examples include the criteria proposed by Battiti (1994), Kwak & Choi (2002a) and Peng et al. 

(2005). Mutual information is preferable as an evaluation criterion over the correlation function 

for many proposed feature selection methods because of its ability to measure arbitrary 

dependence relationships between two features (Li, 1990; Battiti, 1994). The method is not 

only limited to numerical features, but also applies to symbolic features consisting of discrete 

categories (Li, 1990). These two advantages made the mutual information based criterion to be 

seen as a more universal and robust measure.  

Despite the aforementioned advantages, the mutual information criterion also has a few 

notable drawbacks. Mutual information computation is straightforward for discrete 

(categorical) random variables where an exact solution can be obtained easily. However, for 

continuous random variables which are frequently encountered in mutual information 

computations, it is difficult to gain the exact solution since the computation of the exact 

probability density functions (pdfs) is impossible (Kwak & Choi, Input feature selection for 

classification problems, 2002a). Hence, an estimation of the mutual information is required and 

different methods can be employed. Among the possible methods are histogram-based 

(Moddemeijer, 1989; Haeri & Ebadzadeh, 2014; Jain & Murthy, 2016), kernel density 

estimation (Moon, Rajagopalan, & Lall, 1995), k-nearest neighbour (Kraskov, Stogbauer, & 

Grassberger, 2004; Gao, Oh, & Viswanath, 2017), Parzen window  (Kwak & Choi, Input 

feature selection by mutual information based on Parzen window, 2002b; He, Zhang, Hao, & 

Zhang, 2015) B-spline (Daub, Steuer, Selbig, & Kloska, 2004), adaptive partitioning (Fraser 

& Swinney, 1986; Darbellay & Vajda, 1999); and fuzzy-based (Yu, An, & Hu, 2011; Hancer, 

Xue, Zhang, Karaboga, & Akay, 2015) approaches. These estimation methods typically 

involve some pre-set parameters whose optimal values heavily depend on problem 

characteristics. Parameter settings could possibly be the major source of large estimation errors 

but still the parameters are often assigned with arbitrary values because there is no clear-cut 

rule provided (Williams & Li, 2009). In addition, there are so many available options for the 

mutual estimation calculations. Therefore, the efficiency of a feature selection approach greatly 

relies on the method applied. 
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A frequently used criterion for dimensionality reduction is to identify features with the 

highest capability to preserve the manifold structure. Such a criterion has gained widespread 

attention since in many cases of interest, the recorded data are concentrated around a low 

dimensional manifold (submanifold) which is embedded in a high dimensional ambient space. 

The popular methods that use this criterion include principal component analysis (Wold, 

Esbensen, & Geladi, 1987), linear discriminant analysis (Izenman, 2013; Xanthopoulos, 

Pardalos, & Trafalis, 2013), Laplacian eigenmap (Belkin & Niyogi, 2003), locally linear 

embedding (Roweis & Saul, 2000), locality preserving projection (LPP) (He & Niyogi, 

Locality preserving projections, 2004) and Laplacian score (He, Cai, & Niyogi, Laplacian score 

in feature selection, 2006). The first two reduce the dimensionality based on global manifold 

structure preservation while the last four are based on local manifold structure preservation.  

The term structure preservation in dimensionality reduction conceptually refers to the  

scheme to maintain major structural characteristics when mapping the data from high 

dimensional space to low dimensional space. Technically, the quality of structure preservation 

can be measured based on the preservation ability in terms of keeping connective similarity 

among sample points in high dimensional space to sample points in low dimensional 

representation.  

Local structure preservation techniques, as its name implies, emphasize preserving the 

underlying local structure within the neighbourhood around each data point. Geometrically, 

such approaches try to retain the nature structure of the close-distance points in the original 

high dimensional space to a low dimensional representation. While global approaches may also 

involve preserving local structure, they are different from local techniques in that they attempt 

to preserve geometric data structure of faraway points in the high dimensional space to a low 

dimensional space. PCA serves as a good example of global techniques, which is solely based 

on global structure preservation, while LDA would be a simple example that preserves data 

structure at both orientations.  

PCA is an unsupervised feature extraction approach that aims to find mutually 

independent projections in the directions where maximum variance of the data lies, which 

essentially reveals the global manifold structure of the data space. Though this approach may 

give optimal data representation, it may not be able to provide optimal solution in the 

classification context. LDA overcomes this problem in supervised mode with the main idea 

being to find projections that achieve optimum class discrimination in a setting where samples 
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from different classes are well separated as far as possible whereas samples from the same class 

are scattered together as close as possible. Specifically, these projections are obtained based on 

an objective function that maximizes the ratio of between-class variance to the within-class 

variance.  

Locality-based structure preservation techniques has gained considerable attention 

recently and demonstrated to be a successful strategy for dimensionality reduction in many 

learning tasks such as classification, clustering and visualization. The basic assumption of this 

technique is based on a simple geometric intuition that two data points tend to share the same 

characteristic (or class) if they are sufficiently close to each other. This assumption then leads 

to a key concept that any two close points in the original feature space should remain close in 

a reduced dimensional space. Owing to the fact that the technique relies on geodesic data 

structure, a nearest neighbour graph is constructed to model the proximity relation between 

data points and thereby discovers the intrinsic local manifold structure hidden in the high 

dimensional space. The technique has the advantage of relatively less affected by outliers since 

only local distances are considered which helps to prevent overfitting (Belkin & Niyogi, 2003). 

As data may reside on or close to a nonlinear submanifold structure, various nonlinear locality-

based structure preservation methods were suggested in the literature, among which the most 

popular ones are locally linear embedding (Roweis & Saul, 2000), Isomap (Tenenbaum, De 

Silva, & Langford, 2000), and Laplacian eigenmap (Belkin & Niyogi, 2003). Though 

remarkable performance can be achieved by these nonlinear methods, their nonlinear property 

can only be achieved at the price of high computational cost.  

 Moreover, these nonlinear methods do not allow any new test point to be mapped into 

an existing reduced-dimensional space in a straightforward manner. An extension method is 

therefore required to evaluate the map of a new test point and in this case only estimation of 

the mapping can be performed (Maaten, Postma, & Herik, 2009). Since error in the estimation 

may occur, the embedding of new test points may not appropriately reflect the submanifold 

structure accordingly. Thus, how to map new points into an existing reduced-dimensional space 

still remains an issue.  

Driven by the strength of locality-based geometrical approach as well as the 

aforementioned nonlinear method deficiencies, LPP emerged to provide a linear version of the 

Laplacian eigenmap. Although LPP is linear, it shares certain useful common properties of the 

nonlinear methods due to the fact that LPP adopts the same variational principle as for the 



 

8 
 

Laplacian eigenmap. This enables LPP to discover the nonlinear manifold structure of the data 

to some extent. Unlike the nonlinear methods that yield mappings which are defined only on 

training data points, LPP comes with a solution where its mapping is defined everywhere, 

thereby allows any new test point to be placed naturally into the reduced dimensional space.  

Note that all the aforementioned local manifold structure preservation methods (except 

Laplacian Score) are designed for feature extraction. Yet, these methods have also been applied 

to feature selection context (Zhao, Lu, & He, 2008; Sun, Todorovic, & Goodison, 2010; Shang, 

Chang, Jiao, & Xue, 2017; Yao, Liu, Jiang, Han, & Han, 2017). As mentioned earlier, global 

techniques include either preserving the global structure of data alone or preserving both global 

and local structures simultaneously. Even so, there has been a growing interest in global 

manifold structure preservation methods which integrate both global and local information for 

feature selection. Recently reported studies in this field can be found in Zhang et al. (2011); 

Ren et al. (2012); Shu et al. (2012); Yu (2012) and Tong & Yan (2014). Interestingly, however, 

an important discovery made by Liu et al. (2014) revealed that preserving the local structure is 

more critical than preserving the global structure when feature selection is considered in 

unsupervised setting. 

Real world data are rarely perfect because of numerous reasons such as faulty 

measuring device, error in data collection, inaccurate source or non-reporting information (e.g. 

missing data values). All these contributing factors to  data imperfection  creates a form of data 

known as noisy data.   

Effectively handling noisy data is crucial for a classification task since the presence of 

noise may severely degrade the predictive accuracy and even slow down the construction of a 

classifier model (Zhu & Wu, 2004; Saez, Galar, Luengo, & Herrera, Analyzing the presence 

of noise in multi-class problems: alleviating its influence with the one-vs-one decomposition, 

2014; Wickramasinghe, 2017). Such negative impacts on performance usually happen because 

data corrupted by noise could bring new unnecessary and false-data patterns. For instance, 

when a high-level noise is present, an additional data cluster is formed or perhaps on the other 

way round, the extracted pattern will suffer loss of important data clusters (Saez, Galar, 

Luengo, & Herrera, Analyzing the presence of noise in multi-class problems: alleviating its 

influence with the one-vs-one decomposition, 2014). Thus, managing noisy data is desired and 

one feasible solution to this problem is  to perform a pre-processing step which specifically 

aims to enhance the data quality before a classifier is built. 
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In data mining research, there are two categories of noise, namely, class noise and 

attribute noise (Garcia, Luengo, & Herrera, 2016). Class noise refers to corruptions present in 

the class attribute which occur when instances are assigned with wrong class labels or when 

identical instances are recorded with different class labels. Meanwhile, attribute noise refers to 

errors or corruptions present in one or more values of the input attributes (or features) of the 

data instances. Generally, managing attribute noise is more complex than class noise. The 

rationale behind this should be easily understood as attribute noise may distort multiple values 

of an instance but class noise only corrupt one value, if any. Owing to the same rationale, it is 

not a good idea to handle noisy data by removing instances containing noise in only some of 

the attributes while there are still many remaining attributes carrying useful information. In this 

particular problem, feature selection is seen as an alternative solution to lead the data towards 

a finer quality. 

Since data mining started to gain its popularity in 1990s, feature selection and noisy 

data have been well studied separately but little is known about the interaction between them. 

It is only recently that the combination of the two has been empirically investigated. However, 

among the efforts considering noisy data in feature selection, many have been directed to 

address the problems of class noise (Altidor, Khoshgoftaar, & Van Hulse, 2011; Shanab, 

Khoshgoftaar, Wald, & Napolitano, Impact of noise and data sampling on stability of feature 

ranking techniques for biological datasets, 2012; Shanab, Khoshgoftaar, & Wald, Evaluation 

of wrapper-based feature selection using hard, moderate, and easy bioinformatics data, 2014; 

Zhao Z. , 2017) because literature findings have shown that the effect of class noise is more 

detrimental than attribute noise in the classification context (Quinlan, 1994; Zhu & Wu, 2004; 

Nettleton, Orriols-Puig, & Fornells, 2010; Saez, Galar, Luengo, & Herrera, Tackling the 

problem of classification with noisy data using multiple classifier systems: analysis of the 

performance and robustness, 2013). Despite the fact that class noise is more harmful than the 

attribute noise, the empirical study conducted by Zhu & Wu (2004) revealed that class noise at 

some points could be more critical to learning classifiers.  While many  efforts have been made 

for dealing with class noise, research on handling attribute noise has not made considerable 

progress. The report by Zhu & Wu (2004) even highlighted that the class attribute of real-world 

data, in truth, is typically much cleaner than the input attributes. Accordingly, attribute noise 

deserves wider attention than it is currently receiving. 
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Over the past few decades, there has been a lot of interest on kernel methods in various 

learning systems for analysing nonlinear patterns. The basic idea of kernel methods is to map 

nonlinear data that is linearly inseparable in the original input space  to a higher dimensional 

(possibly infinite) feature space where linear separations (or relations) can be achieved. Since 

the linear geometry of the data in the feature space is embedded in dot products between data 

instances, the mapping from the original data space to the feature space does not have to be 

performed explicitly but just needs some defining form of dot products in the original input 

space. This nonlinear mapping strategy is the so called ‘kernel trick’, which is the essence of 

the kernel methods. Taking into advantage of this kernel trick implies that the coordinates of 

the data in the feature space are not required. Kernel methods are preferable to other nonlinear 

methods because they do not involve any nonconvex nonlinear optimization procedure but 

merely require solution for the eigenvalue problem (Kwok & Tsang, 2004), thus  the risk of 

being trapped in local minima can be avoided. This special feature, along with the brilliant idea 

of kernel approach, have led to many significant research advances such as kernel principal 

component analysis (kernel PCA) (Scholkopf & Smola, 1997), kernel discriminant analysis 

(Mika, Ratsch, Weston, Scholkopf, & Mullers, 1999a; Liu, Lu, & Ma, 2004; Zheng, Lin, & 

Wang, 2014), kernel-based clustering (Camastra & Verri, 2005; Yin, Chen, Hu, & Zhang, 

2010; Tzortzis & Likas, 2012; Kang, Peng, & Cheng, 2017) and kernel regression (Blundell & 

Duncan, 1998; Yan, Zhou, Liu, Hasegawa-Johnson, & Huang, 2008; Brouard, Szafranski, & 

d’Alché-Buc, 2016).  

It is not exaggerate to claim that kernel PCA is one of the most influential kernel-based 

methods for data dimensionality reduction reported in the literature. Kernel PCA was originally 

introduced by Scholkopf & Smola (1997) as a nonlinear feature extraction method  to overcome 

the drawback of PCA which can only find linear structure in the data as mentioned earlier. 

Kernel PCA mimics the underlying concept of PCA but it applies the same linear scheme in 

the feature space instead of in the input space. Since its introduction, there has been a great 

deal of attention given to expand the approach for a variety of applications such as image 

processing (segmentation/face recognition) (Schmidt, Santelli, & Kozerke, 2016), process 

monitoring (Zhang, An, & Zhang, 2013; Reynders, Wursten, & De Roeck, 2014; Jaffel, 

Taouali, Harkat, & Messaoud, 2017), fault detection (Choi, Lee, Lee, Park, & Lee, 2005; Navi, 

Davoodi, & Meskin, 2015), and forecasting, just to name a few. 
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While the nonlinear mapping from the input space to the feature space in the kernel 

PCA has been a very useful concept for many applications, the reverse mapping from the 

feature space back to the input space is also of practical interest. The results of this reverse 

mapping are called pre-images. Knowing the fact that pre-images of kernel PCA are very useful 

for pattern denoising (Abrahamsen & Hansen, 2011; Mika, et al., 1999b; Zheng, et al., 2010; 

Li, et al., 2016), it is thus relevant to explore their potential for feature selection in the presence 

of noisy data.  

1.3 Research Objectives 

Based on the above detailed discussion, it is interesting to explore the followings opportunities 

that may enhance existing feature selection methods: 

1. Application of non-mutual-information based criteria to measure feature 

relevancy and redundancy. 

2. Utilisation of local data structure based on locality preserving projection to guide 

an unsupervised feature selection. 

3. Exploitation of denoised patterns by kernel pre-images for feature selection from 

data with attribute noise. 

These opportunities were explored in this research and new feature selection methods 

are proposed. These new methods can overcome some issues associated with existing methods 

and are more reliable in a way that they can find better or competitive feature subset for many 

real applications.  

In Wei & Billings (2007), a forward orthogonal search (FOS) algorithm was introduced 

for feature selection and ranking. In the algorithm, features are selected by maximizing the 

overall dependency (MOD) between features where the primary objective is that the overall 

features in the original measurement space should be adequately represented by the selected 

feature subset. The hill-climbing search strategy with a straightforward measurement criterion 

makes the FOS-MOD algorithm conceptually simple and easy to implement. Although the 

algorithm may not always find optimal subset as the search is non-exhaustive, it is proven that 

the feature selection method is efficient enough to be employed for dimensionality reduction. 
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In the new methods to be proposed, the principal idea of the FOS-MOD approach is 

further developed and adapted to improve feature selection performance. Detailed discussions 

are given in the chapters to come.  

1.4 Research Contributions and Publications 

This research has made clear contributions to knowledge by exploring the three research 

opportunities mentioned earlier where each of which leads to a new feature selection method.  

Specifically, the contributions of the thesis are detailed as follows:   

1. The maximum relevance-minimum multicollinearity (MRmMC) method for 

feature selection  

The MRmMC method addresses the issues concerning the existing maximum 

relevance-minimum redundancy methods, especially those which are based on 

mutual-information theory. This method can be seen as an alternative relevancy-

redundancy criterion for feature selection that avoid mutual-information based 

approach. Unlike mutual information based approach, this feature selection method 

has the advantage of not involving any pre-defined parameters, thereby eliminating 

any uncertainty and allowing consistency in the feature selection results.    

2. The sequential orthogonal search for local largest structure (SOS-LLS) 

method for feature selection 

The SOS-LLS method is meant to utilised the information of the local data structure 

as a measurement criterion in which the special characteristics offered by locality 

preserving projection will be employed. The approach is different from the other 

state-of-the-art feature selection methods that also utilised local data structure 

information as it is not just utilised purely local data structure information for the 

selection criterion but it also evaluates feature importance jointly to take into 

account feature redundancy rather than individually.  

3. The sequential orthogonal search of kernel pre-images (SOS-KPI) feature 

selection for noisy data   

The idea of SOS-KPI method is to consider a research gap concerning data with 

noise where in particular, very limited research works have been emphasized on 
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selecting features from data contaminated with attribute noise compared to the 

class noise. Since this feature selection is mainly intended to look at the 

effectiveness of considering the attribute noise and class noise is assumed as not 

available, the approach is therefore developed in unsupervised manner.  

Several publications have been produced through the course of the research: 

1. Azlyna Senawi, Hua-Liang Wei and Stephen A. Billings, 2017. A new maximum 

relevance-minimum multicollinearity (MRmMC) method for feature selection and 

ranking. Pattern Recognition, Vol 67, pages 47-61. 

(https://doi.org/10.1016/j.patcog.2017.01.026). [Impact Factor (2016): 4.582; 

Number of citations (Google Scholar): 11] 

2. Azlyna Senawi, Hua-Liang Wei and Stephen A. Billings. Unsupervised feature 

selection based on local largest structure preservation. To be submitted to IEEE 

Transactions on Pattern Analysis and Machine Intelligence. 

1.5 Organization of the Thesis 

The thesis contains six chapters. The remaining five chapters are briefly summarized below.  

In Chapter 2, the basic notions of feature selection is discussed in detail; these are 

important to fully understand  associated specific topics. A theoretical review of the orthogonal 

transformation, as the pillar of the research, is also presented. 

Chapter 3 is particularly focused a new relevancy-redundancy feature selection method, 

called the maximum relevance-minimum multicollinearity (MRmMC) feature selection 

method. Prior to the introduction of MRmMC, the deficiencies of the existing maximum 

relevance-minimum redundancy methods are analyzed to help the understanding of what are 

the forces that motivate the new method.  

In Chapter 4, another new method which is referred to as sequential orthogonal search 

for local largest structure (SOS-LLS) is proposed; it is meant to utilise the underlying local 

geometrical structure in data. This chapter is preceded with a brief but concise discussion on 

the power of local structure that inspired the proposed method, followed by a review on related 

works which include a comprehensive discussion of locality preserving projection (LPP) to be 
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utilised to detect significant features in SOS-LLS. The proposed SOS-LLS method is then 

presented theoretically and evaluated experimentally. 

Chapter 5 presents the third feature selection method, which is referred to as the 

sequential orthogonal search of kernel pre-images (SOS-KPI) method. As this method deals 

with noisy data, a brief discussion on  two categories of noise in data mining is given at the 

beginning of the chapter to highlight the motivation for the SOS-KPI method.  

Chapter 6 gives the overall research summary and conclusion, followed by some future 

research directions.   

1.6 Summary 

This chapter has discussed the research background and specified the research objectives to be 

achieved. The contribution of the research to knowledge  has also been highlighted.  

In the next chapter, the basic notion of feature selection will be discussed. 
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Chapter 2                                      

Feature Selection and Forward 

Orthogonal Search 

2.1 Introduction 

This chapter is mainly reserved for a comprehensive discussion on feature selection necessity, 

concepts, procedures and approaches. The discussion also includes reviews on past and recent 

feature selection strategies. A theoretical review of the orthogonal transformation which is a 

part of the key strategy for each of the new feature selection methods to be proposed is also 

provided.  

2.2 Feature Selection Objectives 

Basically, the objectives of feature selection are (a) to improve data mining performance, (b) 

to speed up data mining algorithms, (c) to facilitate learning for domain experts about the data 

generated, and (d) to provide more cost-effective future data collection (Guyon & Elisseeff, 

2003).  

Usually, not all of these goals can be successfully achieved in a proposed feature 

selection method. Some methods only cater for one or two of them and some even tried to reach 

all the three goals. When a method tries to meet an objective, it is often that the others are likely 

need to be compromised. This will be explained further later on.  
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2.3 Basic Concepts 

Assume that there are a total of M original features in a dataset. Feature selection refers to a 

process of searching an optimal or suboptimal subset of m features from the M  features 

(Abandah & Malas, 2010). The resulting feature subset from the process should essentially 

leads to performance improvement or at least with minimal performance degradation as much 

as possible for the task under consideration. 

 

  

 

 

 

Figure 2.1:  Four basic steps of a feature selection method (Dash & Liu, 2003). 

Referring to Figure 2.1, a feature selection method is a composition of four basic steps 

(Dash & Liu, 2003): (1) feature subset generation, (2) feature subset evaluation, (3) stopping 

search decision and (4) results validation. Feature subset generation is a searching procedure 

that generates possible optimal/suboptimal subsets of features for evaluation by employing 

certain search strategy. The potential of every generated subset to be chosen is then evaluated 

either by using an independent or dependent criterion. Feature subset generation and evaluation 

processes are repeated until a subset that satisfies the imposed selection stopping criterion is 

met. After the best feature subset is obtained, a validation step is made using a test dataset by 

comparing the feature selection method constructed with other well established or competing 

methods. 
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2.4 Feature Subset Generation 

There are two key concepts for feature subset generation: the search starting point(s) and the 

search strategy.  

2.4.1 Search Starting Point 

The search for the most significant feature subset may start with an empty set of features, a full 

set of features or a random subset of features. The search starting point(s) will determine the 

search direction (Liu & Yu, 2005). If the search starts with an empty set and the most significant 

features are progressively added to the set, it means that a forward selection approach is 

applied. Instead, if the search starts with a full set of features and the least significant features 

are progressively removed, a backward selection approach is adopted. An option to forward 

and backward selections is the bidirectional selection which is a simultaneous search approach 

of forward and backward selections. Meanwhile, if the search begins with a random subset of 

features, it can either proceed using any search direction discussed previously or continues with 

random features addition (or removal).  

Assuming that there is no prior knowledge about which features contribute to optimal 

feature subset, there is no difference in searching capability between forward selection and 

backward selection for most problems (Caruana & Freitag, 1994; Aha & Bankert, 1996; Liu & 

Motoda, 2012). In other words, applying forward direction will find optimal/suboptimal feature 

subset as fast as using backward direction. However, employing bidirectional selection by 

holding the same assumption renders a faster result than using single directional search. This 

appears to be true since bidirectional selection starts searching from both end directions and 

the search will stop in one side of the directions before the other direction does. 

2.4.2 Search Strategy 

After the search starting point has been determined, the next step is to decide a search strategy 

to be used. An exhaustive search for the best subset when there exist M2 candidate subsets is 

impractical for large M and even with a moderate M since it is too time consuming. Hence, 

different search strategies are used in feature selection algorithms and mostly render 
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suboptimal solutions.  The search strategies can be categorized into three main groups, namely 

complete search, sequential search and random search. 

a) Complete search. A complete search warrants the acquisition of an optimal feature 

subset. An exhaustive search obviously falls into this category and it is best used when 

number of original features M of a dataset is small. Nevertheless, a search does not 

necessarily to be exhaustive in order for it to be complete. The non-exhaustive complete 

search strategy offers a more intelligent approach which just requires a smaller number 

of competing candidate subsets for evaluation. The optimality condition is assured as 

the approach is developed to have an ability to retrace evaluation of prior subsets (Dash 

& Liu, 1997). The most prominent example is the branch and bound (B&B) method 

(Narendra & Fukunaga, 1977). Generally, other complete search methods proposed 

after that such as best first search (Xu, et al., 1988) are an adaptation of B&B. 

b) Sequential search. A sequential search is applied when one feature is added or removed 

progressively using a certain search direction. Also known as hill-climbing or greedy 

search, this type of search strategy is considered as having simple search structure 

although it may not be able to find optimal subset due to its incomplete search condition. 

Two simplest forms yet still popular sequential search are sequential forward selection 

(SFS) and sequential backward selection (SBS). SFS begins the search with an empty 

set and one feature is added iteratively whereas SBS begins with a full set of features 

and one feature is removed for each step of iteration. Instead of adding or removing one 

feature at a time, an alternative way of applying a sequential search is by using ),( qp

sequential search (PQSS) that iteratively add (or remove) p  features and then remove 

(or add) q  features with qp   (Dash & Liu, 1997). PQSS is an attempt to 

accommodate SFS and SBS deficiencies which fail to re-evaluate the goodness of a 

feature after being added/removed by having some backtracking abilities. The idea of 

PQSS was then extended with floating-based search concept and led to the introduction 

of two more popular sequential search methods: sequential forward floating search 

(SFFS) and sequential backward floating search (SBFS) (Pudil, et al., 1994). Both 

methods try to identify significant features by allowing dynamic number of features 

added or removed in the searching process. Among all methods in sequential search 

family, sequential floating-based search was found to be the best option (Pudil, et al., 
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1994; Somol, et al., 1999); although it is just limited to small and medium size of search 

space (Kudo & Sklansky, 2000). 

c) Random search. Several feature subsets can be obtained as solutions to a feature 

selection problem using this search strategy. Also called as nondeterministic search 

strategy, the search begins from a subset selected at random. The search will then 

continue with subsets generated based on sequential search strategy as proposed in 

random-start hill-climbing and random mutation hill climbing (RMHC-PF1) (Skalak, 

1994) methods. The sequential search procedure alone is irreversible to rectify poor 

features being added or good features being removed in the early phase of the search 

procedure. Therefore, random search enables sequential search to begin the search with 

a more significant starting point. A random search may also continue with subsets 

obtained in a totally random style using for example the Las Vegas Algorithm (Liu & 

Setiono, 1996a; Liu & Setiono, 1996b; Liu & Setiono, 1998). Another random strategy 

that can be used for feature selection is the evolutionary-based approaches. Inspired by 

the biological evolution and/or collective behaviour of species in nature, it has recently 

started gaining attention in the feature selection research due to its capability to give 

comparable performance with lower computational time. Two notable approaches are 

genetic algorithms (Siedlecki & Sklansky, 1989; Yang & Honavar, 1998) and particle 

swarm optimization (Lin, et al., 2008; Unler & Murat, 2010; Moradi & Gholampour, 

2016; Mafarja & Mirjalili, 2017). The randomized search design of all approaches 

preventing the search being trapped by local optima (Liu & Motoda, 2007) and also 

identify interdependencies between features (Liu & Setiono, 1996a; Pradhananga, 

2007). However, this search strategy requires values for some control parameters 

involved to be decided appropriately in advance. Poor values assigned to these 

parameters could lead to suboptimal results as the optimality of the final feature subset 

depends on the choice of values assigned to different parameters involved.  

Basically, the choice of a search strategy is a trade-off between optimality and 

computational efficiency. Table 2.1 shows a comparison of search strategies in terms of 

optimality and computational efficiency which serve as a brief guideline for choosing an ideal 

search strategy.  
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Table 2.1:  A comparison of different search strategies. 

Search 
strategy 

Optimality Computational efficiency 

Complete The attainment of an optimal subset is guaranteed Slow 

Sequential 
May not be able to find an optimal subset since it 
does not visit all possibilities from the search space 

Generally faster than complete 
search 

Random 
The optimality subject to the determination of 
appropriate values for the parameters involved 

Generally faster than complete 
search 

All optimal methods can be expected considerably slow for high dimensional problems 

(Somol, et al., 2010). Therefore, it is often preferable for many high dimensional problems to 

employ the suboptimal methods that compromise subset optimality for better computational 

efficiency. In cases where time is not a constraint to gain optimal solution, complete search 

strategy should be employed.  

Other than the search strategy factor, there are many other factors must be considered 

in choosing or designing a feature selection method. A comprehensive discussion on this can 

be found in Liu & Yu (2005).  In the next section, another dominating factor is discussed.  

2.5 Feature Subset Evaluation Criteria 

Feature subset evaluation is a process to decide whether a feature should be included in or 

excluded from a feature subset for final selection. The process is performed by evaluating the 

quality of every possible feature subset generated using an evaluation criterion. Different types 

of criteria can be used for the evaluation. However, one criterion may not necessarily give the 

same optimal subset as that generated by another criterion.  

Choices of evaluation criteria can be categorized into two broad categories which are 

independent criteria and dependent criteria (Dash & Liu, 1997; Dash & Liu, 2003; Liu & Yu, 

2005). Essentially, a criterion is categorized as either one of the two categories according to its 

evaluation dependency on mining algorithms. Independent criteria such as distance measures 

(Parthalain, et al., 2010; Banka & Dara, 2015), dependency measures (Mitra, et al., 2002; Das, 

et al., 2014; Jain, et al., 2018), information measures (Peng, et al., 2005; Hoque, et al., 2014; 

Che, et al., 2017) consistency measures (Dash & Liu, 2003; Shin & Miyazaki, 2016) and 

margin-based measures (Kira & Rendell, 1992; Gilad-Bachrach, et al., 2004; Chen, 2016) 
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evaluate a feature subset by merely utilizing hidden characteristics lying on training data, 

without being tied to any mining algorithm. Whereas subset evaluation based on dependent 

criteria requires a mining algorithm specified in advance and relies entirely on the mining 

algorithm performance. In other words, the measurement used to evaluate the quality of a 

selected feature subset is the same indicator used to measure the mining performance.  

Typically, independent criteria are used in filter models while dependent criteria are 

used in wrapper models. When the two types of criteria are used together then feature selection 

is integrated in a hybrid model. Therefore, different types of evaluation criteria distinguish 

different feature selection models. 

2.6 Feature Selection Models 

Existing feature selection methods can be broadly categorized into three classes: filter, wrapper 

and hybrid. These are briefly discussed below.  

2.6.1 Filter Model 

Feature subset selection with a filter model is independent of specific mining algorithms as the 

search is based on the subset relevance to the targeted evaluation criterion (i.e., independent 

criterion). Hence, filter model is not affected by any bias caused by the mining algorithm and 

is usually computationally fast. The independent property also implies feature selection has to 

be carried out just once because the result can be used for different mining algorithms. In 

addition, filter model is also considered as having simple search structure and thus relatively 

easy to understand in comparison with other feature selection models. With all these 

advantages, it is not surprising that filter model is often preferred in real applications.  

Despite all the advantages, feature subset selected by the filter model may not lead to 

an optimal mining performance since feature selection is done without taking into account the 

mining algorithms properties. Basically, there are two different approaches of filter model. One 

is called the univariate filter approach where the relevance score of each individual feature is 

evaluated and features having low-scores are removed, therefore, ignoring feature 

dependencies which possibly render performance degradation. Most proposed filter techniques 

use this approach (Saeys, et al., 2007) because of its computational efficiency. Another 
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approach called multivariate filter where feature dependencies are taken into consideration to 

cope with the problem of ignored feature dependencies in univariate filter. 

2.6.2 Wrapper Model  

In contrast to the filter model which selects feature subset relevant to the targeted evaluation 

criterion, the wrapper model selects a feature subset which is relevant to a predetermined 

mining algorithm. The mining algorithm is used as a black box to evaluate the quality of each 

candidate feature subset in order to find the best feature subset. This means that wrapper model 

performs feature selection based on mining performance level in which a feature subset is 

selected when mining algorithm shows an optimal performance while taking into account 

feature dependencies in the feature selection procedure. As a result, the feature subset selected 

using the wrapper model will give higher mining performance than the filter model since the 

wrapper model is designed to search feature subset that is particularly tailored to the employed 

mining algorithm. For the same reason, however, rendering the feature subset obtained by the 

mining algorithm is unlikely to be suitable for use with other mining algorithms. Besides, the 

wrapper model is computationally slower when compared to the filter model since the mining 

algorithm of the wrapper model has to perform its task repeatedly until the final feature subset 

that gives maximum mining performance is found. This explains why the filter model is 

preferable than the wrapper model in handling large feature space problems. 

2.6.3 Hybrid Model 

The hybrid model emerged with an aim to combine the advantages possessed by both the filter 

and wrapper models. The model applies both an independent measure and a mining algorithm 

to measure the quality of each feature subset in the search space. Since mining performance is 

used as a guideline to stop the search, feature selection results based on the hybrid model is 

therefore specific to the mining algorithm employed. Consequently, the selected feature subset 

may not fit well with other mining algorithms and hence the hybrid model suffers the same 

problem as in the wrapper model. 
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2.7 Supervised and Unsupervised Feature Selection 

In feature selection problems, the class of the data can be labelled or unlabelled. Corresponding 

to this classification, there are two categories of feature selection research: supervised and 

unsupervised feature selection. Comprehensive discussions on these categories of feature 

selection can be found from Huang et al. (2006) and Liu & Motoda (2007).  

In supervised feature selection, with all or sufficiently large of the class labels are 

available, the relevance of the features are measured based on the relationship between features 

and the class labels. The feature selection objective is clear where a subset of the original 

features that induces the most accurate classier in which the class labels are well separated will 

be selected.  

Without the class labels in unsupervised feature selection, different approaches are used 

to evaluate the relation between features by analysing other possible aspects of the data such 

as discriminative power to find different clusters or groups in data. In contrast to supervised 

feature selection, the objective of unsupervised feature selection is less clear since the class 

labels are not exist to facilitate learning about the data being considered. This limits the learning 

ability of unsupervised feature selection methods in order to identify patterns lie in a dataset 

and consequently may also affects the choice of feature subset that is expected to represent the 

original features. The problem becomes more complicated if the actual number of clusters is 

unknown prior to training. 

When the class labels are just available for only small part of the dataset then semi-

supervised feature selection may be used as an option for dimensionality reduction. Semi-

supervised feature selection can be considered as a special form of unsupervised learning. In 

this feature selection scheme, the small amount of data labelled is utilized because the 

availability of the labelled instances is considered as significant to guide unsupervised feature 

selection. 

Generally, much of the feature selection research focused on supervised feature 

selection (Guyon & Elisseeff, 2003). Thus, unsupervised feature selection comparatively can 

be considered as new research areas. However, unsupervised feature selection research is 

increasingly gaining attention as more and more unlabelled and partially labelled datasets exist 

in real applications (Pedrycz, 1986).  
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2.8 Orthogonal Transformation 

An orthogonal transformation T  of any vector dRx  is a linear transformation that preserves 

the length of the vector. The transformation can be expressed as follows: 

 ddd RRRT  x:  (2.1) 

where the transformation space is also dR .  The transformation not only preserves the length 

of the vectors but also the angles between them.   

Considering a matrix ],,,[ 21 nxxxP   representing n  variable vectors, an 

orthogonal transformation (or also mention as orthogonalization) is performed on P  by 

decomposing it into 

 QRP   (2.2) 

where ],,[ 21 nqqqQ   is an orthonormal matrix with n  orthogonal vectors such that 

nIQQ T  and R  is an upper triangular matrix.  

Several orthogonalization methods can be employed to perform the QR   

decomposition include classical Gram-Schmidt (CGS), modified Gram-Schmidt (MGS), 

Householder reflections and Givens rotation. The MGS orthogonalization is more popular than 

the CGS for practical application since it has better numerical stability, which means it is less 

affected by rounding errors (Bjorck, 1994; Yokozawa, et al., 2006). However, when compared 

to Householder reflection orthogonalization, the MGS orthogonalization is numerically less 

reliable. Unlike the Gram-Schmidt method that produces orthogonal vectors at each iteration 

step, the orthogonalization by Householder reflection only generates the orthogonal vectors at 

the end of the procedure. This causes only the Gram-Schmidt type method can be used when 

the orthogonalization needs iterative transformation.  

The orthogonal transformation can be used for feature selection because of three 

notable advantages as described below:  

(1) The transformed variables nqqq ,, 21   and the original variables nxxx ,,, 21    

are one to one mapping where every kq  in the new space retains the length of its 

corresponding kx . This gives an advantage for formulation of a feature selection 
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method as it provides the basis for preserving the physical interpretation of the 

original variables in the transformed variables.  

(2) The fundamental concept lies behind the transformation scheme is simple and the 

orthogonal variables computation is even straightforward but can still produces 

robust results (the meaning of robust results here is related to the third advantage 

explained next).  

(3) The most notable is its ability to minimize ill-conditioning effects, that is, the 

capacity to make the transformed variables less sensitive to noise or small errors 

contained in data. This particular trait allows the transformed matrix Q  to inherit 

the main structure of matrix P  as much as possible.  

2.9 Summary 

In summary, this chapter discusses the fundamental ideas of feature selection. A typical feature 

selection method involves four basic steps: feature subset generation, feature subset evaluation, 

stopping search decision and result validation. There are two key concepts for feature subset 

generation, namely, the search starting point(s) and the search strategy. In principle, search 

strategy and evaluation criterion are two critical factors in designing a feature selection method. 

Type of evaluation criterion being used in the search for the best feature subset also determines 

the class of feature selection model which can be filter, wrapper or hybrid.  
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Chapter 3                                              

A New Relevancy-Redundancy Method 

for Feature Selection and Ranking 

3.1 Introduction 

This chapter presents the first feature selection method to be proposed which is of filter model 

with a new measurement criterion named as maximum relevance-minimum multicollinearity 

(MRmMC). The criterion being used is a new type of relevancy-redundancy criterion that 

objectively overcomes some issues associated with existing state-of-the-art criteria. In the 

proposed method, relevant features are measured by correlation coefficient based on 

conditional variance whereas redundant features are quantified based on multiple correlation 

assessment using an orthogonal transformation scheme.  

The presentation of the proposed method is preceded with Section 3.2 where a brief 

introduction to the concepts of feature relevancy and redundancy is given. Next, Section 3.3 

provides a comprehensive discussion of the existing relevancy-redundancy criteria in which 

the issues associated with them are also pointed out. Section 3.4 is mainly reserved for a 

comprehensive discussion on how feature relevancy can be assessed by means of conditional 

correlation. Section 3.5 presents the idea of feature redundancy assessment by utilising the 

concept of multicollinearity. The description also includes the interrelation of multicollinearity 

and squared multiple correlation coefficient, as well as how the coefficient can be used to 

quantify feature redundancy. A new feature selection criterion that tries to optimize both 

feature relevancy and feature redundancy is then introduced in Section 3.6. Section 3.7 gives 

details of the experimental setup and the procedure used in order to show the efficacy of the 

proposed method. The empirical results and extensive discussion are given in Section 3.8, 

followed by summary for the chapter in Section 3.9. 



 

27 
 

3.2 Relevancy and Redundancy 

The concepts of feature relevancy and feature redundancy are translated and expressed by 

means of certain feature relationships in feature selection methods. The relevance of a feature 

is measured by evaluating its relationship with the target class label, while the redundancy of 

a feature is measured by its relationship with other features in the currently selected feature 

subset.  

3.3 Related Work 

Many feature selection methods in the literature use mutual information to measure feature 

relevancy and redundancy. In Battiti (1994), features are ranked according to their mutual 

information with respect to the class label and also with respect to the previously selected 

features. The mutual information based feature selection (MIFS) method proposed by Battiti 

(1994) follows hill climbing selection scheme and chooses the next best feature that maximizes 
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where ),( iI fc  denotes mutual information between class label c  and candidate feature vector 

if  while ),( ijI ff  denotes mutual information between previously selected feature jf  which 

have been accumulated in subset S and candidate feature if . The parameter   is a user 

predefined value that will control the importance of redundant features. The larger the value, 

the more the measurement criterion will remove redundant features.  

A variant of the MIFS method called the MIFS-U (Kwak & Choi, 2002a) emerged later 

to overcome the MIFS limitation which does not reflect relationships between feature and class 

label properly in its redundancy term if   is set too large. The MIFS-U approach brought a 

slight change to the right-hand side term so that the MIFS criterion becomes 
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where )( jH f  is the entropy of jf . However, the MIFS-U approach is limited for uniformly 

distributed information. 

As the number of features to be selected increases, the right-hand side term becomes 

incomparable with the left-hand side term for both MIFS and MIFS-U methods due to 

magnitude expansion of the right-hand side term (Estevez, et al., 2009). Because of this 

problem, the methods may be forced to select and prioritize irrelevant features rather than 

relevant and/or redundant features. Another problem with both methods is that their optimal 

solution depends on the value assigned to   with optimal  ’s being considered subject to data 

structure. Hence, no specific guided rule was given on how to choose parameter . Apparently, 

a user may need to try different values before an optimal or acceptable suboptimal solution can 

be obtained. 

The issue of incomparable terms in MIFS and MIFS-U methods mentioned earlier was 

overcome in the minimal-redundancy-maximum relevance (mRMR) feature selection criterion 

(Peng, et al., 2005) by substituting   with reciprocal of the subset S cardinality, ./1 S  This 

will prevent the cumulative sum of the second term from having an excessive value in the 

expansion at any number of feature subsets to be considered which then lead to two equivalent 

terms for comparison.  The mRMR criterion maximizes 

 



S

ijii

j

I
S

IJ
f

fffcf ),(
1

),()( . (3.3) 

In Ding & Peng (2005), another form of relevancy-redundancy measurement criterion 

similar to the three criteria discussed above (i.e., MIFS, MIFS-U and mRMR) was introduced 

particularly for continuous variables. This criterion, referred to as the F-test correlation 

difference (FCD), does not involve the calculation of mutual information. It selects the next 

best feature that maximizes 
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where ),( iF fc  is the F-test statistic (or t-test statistic if two-class classification task is 

considered)  comparing feature if  and the class label c  whereas ),( ijr ff  can be chosen to be 

Pearson correlation coefficient, Euclidean distance or any other appropriate measure. One 
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problem with the FCD criterion is that the first term (F-test statistic) is not comparable with 

the second cluster of terms (redundancy terms) as they have different range of magnitude. The 

F-test statistic can take any positive value, while the value of redundancy coefficient ranging 

from zero to one. As a consequence, the F-test value may dominate the optimization criterion 

and reduce the impact of the second cluster of terms. 

This chapter presents a new alternative relevancy-redundancy criterion for feature 

selection, which is designed to take advantage of the idea of both the mRMR and FCD criteria, 

and meanwhile avoid the drawback of the two methods inherited from the original MIFS 

algorithm introduced in Battiti (1994). It is known that MIFS has a drawback in that its 

performance relies on the choice of the parameter   for controlling and penalising the 

redundancy; the optimal choice of the parameter  , however, strongly depends on the problem 

to be solved (Estevez, et al., 2009). The proposed criterion is different from the two criteria in 

that it does not require any pre-specification or determination of thresholds for parameter 

settings. In the proposed method, relevant features are measured using conditional variance 

(Wang, et al., 1994) while redundancy elimination is achieved through multiple correlation 

assessment using an orthogonal projection scheme (Whitley, et al., 2000). The combination of 

these methods was motivated by the requirement to form a robust criterion that allow a 

comparable evaluation of feature relevancy and redundancy, yet avoiding mutual information 

based approach. Unlike mutual information based feature selection, the proposed method has 

the advantage of not demanding any control parameters, thus preventing any uncertainty 

associated with the method and providing consistency in the results.  

3.4 Feature Relevancy Assessment 

While many powerful feature selection methods were proposed in the literature to tackle 

various issues, relatively less and limited work has been done to assess the correlation between 

discrete (nominal) and continuous (quantitative) features directly. The majority of the 

prominent correlation measures were specifically designed for use either between two features 

of the same data type or between continuous and ordinal features.  

The point-biserial correlation coefficient (Tate, 1954) is the most popular measure 

suggested when one feature is discrete while the other one is continuous. Yet the measure can 

only be used when the discrete feature is dichotomous or possibly be made dichotomous which 
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is not always the case for many applications. An effort was made in Wang et al. (1994) to fill 

this gap where a correlation measure between discrete and continuous features based on the 

underlying properties of marginal and conditional expectation and variance was introduced. 

The measure was adopted as part of the evaluation criterion for the feature selection approach 

that is specific to address some problem in mineral resources domain. In Jiang & Wang (2016), 

an efficient correlation measure based filter (ECMBF) algorithm was proposed for the 

assessment of both feature relevancy and feature redundancy for more general applications. 

The ECMBF algorithm requires two predefined parameters, to distinguish weak 

irrelevance/relevance and redundancy, respectively. The choice of the two parameters can 

significantly affect the quality of the selected feature subset. This is probably the main 

disadvantage of the algorithm. Another drawback of ECBMF is that the assessment of the 

redundancy of each candidate feature is independent of the current selected features.  In this 

study, an alternative approach is desired to overcome these drawbacks. The proposed 

correlation based method uses two measures that simultaneously evaluate features’ dependency 

and redundancy, based on which ‘best’ features are selected using a sequential forward 

algorithm. The proposed method in this chapter is different from other types of filter 

approaches for example the Fisher score based methods (Gu, et al., 2012).          

In this study, the potential of the correlation measure proposed in Wang et al. (1994) is 

exploited; it will particularly be used to assess feature relevance. Towards better understanding 

the reliability of this correlation measure, its theoretical properties and conditions will be 

discussed first in detail.  

Let X  represent a quantitative random variable and Y  represent a nominal random 

variable with some possible outcomes iy . If every outcome iy  is described by a certain 

probability )( iyYP   then the marginal expectation (Grimmett & Welsh, 2014) (also known 

as the expected value of )X  symbolized by )(XE , is given by 

  
iy

ii yYXEyYPXE )|()()(  (3.5) 

where )|( iyYXE   denotes the conditional expectation of X  given iyY  . It can be shown 

from this definition that the expected value of the conditional expectations, denoted by

)]|([ YXEE , is )(XE , that is 
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 )]|([)( YXEEXE  . (3.6) 

Marginal variance of the random variable X  is defined as 

 222 )]([)())]([()(Var XEXEXEXEX  . (3.7) 

Analogous to equation (3.7) the conditional variance of X  given iyY   is  

 ))]|([)|()|(Var 22 YXEYXEYX  . (3.8) 

Note that )|(Var YX  can be considered as a random variable, thereby theoretically permits the 

computation of its expected value as 

 })]|([)|({)]|([Var 22 YXEYXEEYXE  . (3.9) 

Based on the additive law of expectation, the equation (3.9) can be rewritten as  

 ))]|(([)]|([)]|([Var 22 YXEEYXEEYXE  . (3.10) 

Applying the relationship given by (3.6) to the first term at the right-hand side of (3.10) 

yields 

 ))]|(([)()]|([Var 22 YXEEXEYXE  . (3.11) 

Next, it is of interest to consider the variance of the conditional expectation, marked by

)]|([Var YXE . Using the marginal variance definition given in (3.7), )]|([Var YXE  can be 

expressed as  

 22 ))]|(([))]|(([)]|([Var YXEEYXEEYXE  . (3.12) 

Applying (3.6) in (3.12) implies 

 22 )]([))]|(([)]|([Var XEYXEEYXE  . (3.13) 

Then adding (3.11) to (3.13) gives  

 22 )]([)()]|(Var[E)]|([Var XEXEYXYXE  . (3.14) 
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Notice that the right-hand side of equation (3.14) is equal to )(Var X  as stated in (3.7). 

Hence, the following relationship is obtained: 

 )]|([Var)]|(Var[)(Var YXEYXEX   (3.15) 

which is well known as the law of total variance. A special case of the law is 

0)]|([Var)]|(Var[)(Var  YXEYXEX . This biconditional implication is true when 

every conditional expectation given iyY   is equal to the marginal expected value. Since 

variances can never be negative, it is apparent that )]|(Var[)(Var YXEX   and

)]|([Var)(Var YXEX  .  

From equation (3.15) it can be observed that the overall variability of a random variable 

X consists of two components. One component is the expected value of the conditional 

variance, )]|(Var[ YXE , that quantifies the average variability within outcomes. Another 

component is the variance of the conditional means, )]|([Var YXE , that indicates how much 

the variability is between outcomes. The former is considered in the correlation measure which 

will be presented next.  

The correlation coefficient that measure the relationship between a quantitative random 

variable X  and a nominal random variable � is defined by  

 

2/1

qn
)Var(

]|Var([
1),( 










X

YXE
YXr   (3.16) 

which actually exploits the law of total variance. Based on previous discussions about )(Var X  

and )]|(Var[E YX , it can be verified that 1),(0 qn  YXr . A value of ),(qn YXr  approaching 

‘1’ indicates that there is a strong correlation or dependency between X  and .Y  Meanwhile, 

the value of ),(qn YXr  approaching ‘0’ suggests that there is a weak relationship between X  

and .Y  If X  and Y  are totally independent or uncorrelated, then 0),(qn YXr , which is the 

special case of the law of total variance mentioned before.  On contrary, the presence of perfect 

dependency or correlation between X  and Y  is indicate by 1),(qn YXr . 

The above correlation coefficient will be used to measure feature relevance. It will be 

integrated with multiple correlation assessment in order to define a new feature selection 
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criterion that can measure both feature relevancy and feature redundancy simultaneously.  The 

multiple correlation assessment can be used to identify features with multicollinearity and thus 

can be used to detect and remove redundant features.   

3.5 Multicollinearity Redundancy and the Squared Multiple 

Correlation Coefficient 

The idea of feature redundancy assessment for the method to be proposed is centred around the 

concept of multicollinearity. With this attention, the notion of multicollinearity redundancy is 

discussed exclusively in sub Section 3.5.1 and how it is related to the squared multiple 

correlation coefficient is also described herein after clearly via sub Section 3.5.2.  

3.5.1 Multicollinearity Redundancy 

A feature subset selected from a feature selection process should essentially lead to a 

performance improvement or at least with minimal performance degradation as much as 

possible for the task under consideration. This objective can be realized by selecting 

representative features that hold important information characterizing all original features. In 

particular, it can be done by not only selecting features that have high relevancy to the targeted 

class but also have low redundancy within selected features.  

An ultimate feature redundancy occurs if a feature has exact linear dependency with the 

current selected features and thus provides no extra information. While exact linear dependency 

is rarely present in many real data, a significant type of redundancy is also taken into account 

in such a way that features with any potential multicollinearity will be removed. 

Multicollinearity is a term to describe the presence of strong correlation or high linear 

dependency among two or more independent variables. This means that a feature with 

multicollinearity can be linearly estimated by a set of other features at some high level of 

accuracy and therefore suggests such a feature has redundant information. In comparison to 

features having ultimate redundancy, features with multicollinearity redundancy still provide 

some unique information but not important enough to give notable impact for effective data 

analysis tasks for example classification.  
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Multicollinearity can be identified from high values of the multiple correlation 

coefficient. However, since the actual interest is to assess predictive power of the current 

selected features in estimating a considered feature, the squared multiple correlation coefficient 

is often used instead of the multiple correlation coefficient. The squared multiple correlation 

coefficient specifically indicates the proportion of the variation in the considered feature that 

is predictable from the selected features. The value ranges from 0 to 1 with higher values 

implying a better predictive power. When a maximum value of the squared multiple correlation 

coefficient is obtained it indicates a full predictive power which is the ultimate redundancy. 

Thus, the ultimate redundancy can be regarded as the best achievable multicollinearity. Note 

that the squared multiple correlation coefficient can be computed by utilizing pairwise 

orthogonal projection of features already selected (Wei & Billings, 2007; Billings, 2013). This 

will be further discussed in the next section. 

3.5.2 The Squared Multiple Correlation Coefficient 

Suppose that the set },,,{ 21 MF fff   is a complete dataset of M features where each 
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The squared correlation coefficient between a feature SF f  and an orthogonal 

variable },,,{ 21 kqqqq   is defined as 
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Based on (3.18), the squared multiple correlation coefficient for each remaining feature 

SF f  with the selected features 
kiii fff ,,,

21
  (or equivalently with kqqq ,,, 21  ) can be 

computed as 

 
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2 ),(sc),,;( qfqqf   (3.19) 

where the square root of 2R  geometrically represents the length of orthogonal projection of  

f   in the directions of the orthogonal variables kqqq ,,, 21   divided by the  norm (energy) of 

f . 

3.6 Monitoring Criterion  

In order to choose features that are most relevant to the targeted class c , the monitoring 

condition is to maximize the measure V  as 

 SFrV jj  fcf such that),(2
qn  (3.20) 

which utilizes the squared value of the correlation coefficient given in (3.16). On the other 

hand, the squared multiple correlation coefficient defined in (3.19) is suggested to guide 

selection of features that are least mutually dissimilar or least redundant. Thus, the redundancy 

condition to be considered for measuring redundancy between feature jf  and the current 

selected feature subset S is to minimize the measure W : 

 SFRW j
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2   (3.21) 

where kqqq ,,, 21   are orthogonal variables associated respectively with preceding selected 

features 
kiii fff ,,,

21
  contained in S . 

Because the aim of the feature selection is to select features that are highly relevant to 

the targeted class c  and also has low redundancy with other selected features, both measures 

V and W  are optimized simultaneously. A new feature to be added will be based on one 

possible single criterion combining both measures. The monitoring criterion used in this study 

is to maximize  
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 SFRrJ jkjjj  fqqfcff     such that        ),,;(),()( 1
22

qn   (3.22) 

which can also be written as 
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The correlation coefficient qnr  is squared in (3.22) so that a fair comparison can be 

made with the 2R  term. It is known from Section 3.4 that 10 qn  r . This implies that the 

range of values given by 2
qnr  is the same as for the qnr , that is, 10 2

qn  r . Note that the 2R  

term also has the same range of values. Hence, the 2
qnr  term is completely comparable to the 

2R  term and as such makes (3.22) a well-defined criterion. Owing to the same fact that both 

terms are in the similar scale which directly follows the logic of criterion (3.3), the proposed 

criterion (3.22) is thus requires no pre-set parameter to control feature redundancy. Clearly, 

there is no other adjusting parameters are required from user in the criterion. The feature 

selection method, based on the criterion (3.23) is referred to as the maximum relevance – 

minimum multicollinearity (MRmMC) method. 

In the MRmMC method, the first feature is selected if it satisfies the optimization 

criteria stated in (3.20) and the rest are selected based on criterion as in (3.23) by using forward 

sequential search strategy. At every subsequent step, a new feature will be added to previously 

selected feature subset. This simple piecewise feature search strategy will avoid excessive 

computational burden to the MRmMC feature selection, and can therefore accelerate the 

feature search procedure. Note that although the search may lead to a suboptimal solution, it 

can meet the requirements for most real applications. 

The proposed criterion in (3.22) can overcome the drawback of the MIFS approach, and 

it can effectively manage relevance and redundancy as follows. The first part, V, measures 

relevance using a correlation coefficient defined by (3.16) and (3.20), while the second part, 

W, measures the redundancy of a candidate feature with features in a selected feature set by 

evaluating the multicollinearity when the candidate feature is added to the existing feature 

subset.  

The proposed criterion has the following advantages: i) The two parts of the criterion 

are comparable, and can result in a good balance between relevance and redundancy; ii) There 
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is no need to pre-specify a control parameter as required in MIFS, and iii) the algorithm is 

relatively easier to implement. Some implementation details (pseudo-code) of MRmMC is 

shown in Figure 3.1. 

Input:    },,,{ 21 MF fff   // A complete dataset of M features  

Output:  S    // Subset of features 

Initialize:  },,2,1{1 ML  , {}S  

  m    // Number of features to be selected 
 

for 1j  to M  

Compute ),(2
qn cf jj rV   such that Fj f ; 

end for  
 

][maxarg
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1 j
Lj

V


  such that 11 L ;  
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hh fz  ;   

add hz  to S ; 

end for 

Figure 3.1:  The MRmMC algorithm. 

The time complexity of the MRmMC method is determined by three main parts: the 

assessment of feature relevancy to the class label, the computation of the squared correlation 

coefficient, and the orthogonalization operations. Feature relevancy assessment has a linear 

time complexity of )(MNO  where M is the number of candidate features and N  is the number 

of observations. The computation of the squared correlation coefficient has a worst-case time 

complexity of )( 2NMO  while the orthogonalisation procedure is of a complexity of 

))1(( NMO  . As a result, the overall time complexity takes the order of )( 2NMO . 
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3.7 Experimental Setup and Procedure 

A series of experiments were conducted to test and analyse the efficacy of the proposed 

MRmMC method from several perspectives.  Eight datasets were used as benchmarks, and 

relevant results were compared with those generated from mRMR and MIFS. 

3.7.1 Benchmark Datasets 

The eight public real datasets available from the UCI Machine Learning Repository, are 

depicted in Table 3.1. In order to provide comprehensive evaluation, the datasets were picked 

based on three different categories of dimensional size: low-dimension )10( M , medium-

dimension )10010(  M , and high-dimension )100( M . Important details of the chosen 

datasets are summarized in Table 3.1. Observe that the datasets are also varied in terms of 

number of instances and number of classes.  

Table 3.1:  A summary of the datasets characteristics. 

Dataset Number of features Number of instances Number of classes 

Glass [N] 9 214 7 
Magic Gamma [N] 10 19020 2 
Vowel [N] 10 990 11 
Statlog [N] 18 846 4 
Mfeat Zernike [N] 47 2000 10 
Sonar  60 208 2 
Musk [N] 166 476 2 
Mfeat Factors [N] 216 2000 10 

[N]: The raw dataset was normalized for the proposed method in the experiment. This also means the 
dataset was normalized in classification accuracy computation for all classifiers. 

3.7.2 Comparison with Similar Methods 

The MIFS and mRMR methods are specifically employed for a comparison purpose as they 

possess similar forms of measurement criteria and use the same sequential feature search 

strategy.  Feature subset solutions of the MIFS and mRMR methods were obtained by running 

the Feature Selection Toolbox (FEAST) (available at: 

http://www.cs.man.ac.uk/∼gbrown/fstoolbox/) that was originally developed by Brown et al. 

(2012). In this work, the redundancy parameter was chosen to be 1  for the MIFS method.  

This choice of parameter value was in the appropriate range suggested by Battiti (1994). 
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3.7.3 Validation Classifiers 

MRmMC is a filter method, and hence its efficiency might be different from one classifier to 

another classifier. Thus, four of the ten most influential algorithms in data mining (Wu, et al., 

2008), namely, the k-Nearest Neighbour (k-NN), Naïve Bayes, support vector machine (SVM) 

and CART classifier algorithms, are used to verify the classification capability of the 

performance of the MRmMC method for feature subset selection. These classifiers were chosen 

not only because of their popularity but also because of their distinct learning mechanism. The 

aim is to test the overall performance of the newly proposed method in comparison to these 

popular classifiers. 

Note that the number of nearest neighbours in the kNN classifier was chosen to be 5k

in all experiments, and this is a fair choice for all the three methods: MRmMC, mRMR and 

MIFS. 

3.7.4 Cross Validation Procedure  

For each of the classifiers, the same holdout cross-validation scheme was used to test the 

performance. Particularly, 80% of the data were used for training whereas the remaining 20% 

were holdout (for testing) and once the training completed, these holdout data were then used 

to assess the spotted classification models in the testing stage.  

In addition, to reduce variability in the assessment, 30 rounds of cross-validation were 

performed. The validation results are presented as the 95% confidence intervals for the 

classification accuracies based on the accuracies obtained from that 30 rounds. 

3.8 Numerical Results and Discussion 

Figure 3.2 through to Figure 3.9 show classification results over different number of selected 

features by the three feature selection methods, tested with the four classifiers. The x-axis in 

each figure represents the number of selected features while the y-axis represents the average 

classification accuracy based on 30 rounds of cross-validation. For clear visualization and due 

to space limitations, the plots only present the performance of the first 30 selected features even 
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if more than 30 were selected. This doesn’t affect the performance evaluation of the feature 

selection methods.   

It can be observed that the overall pattern of the classification accuracies of the three 

methods based on the selected feature subset for Mfeat Zernike and Mfeat Factors datasets is 

comparable to each other for all the four classifiers as illustrated in Figure 3.6 and Figure 3.9, 

respectively. Interestingly, the classification accuracy by MRmMC outperforms the other two 

methods if only a few number of significant features need to be identified, and as more features 

were progressively added, MRmMC gains the same level of accuracy as the other two. This 

pattern is particularly distinct for Magic Gamma, Statlog, Sonar and Musk datasets as depicted 

in Figure 3.3, Figure 3.5, Figure 3.7 and Figure 3.8, respectively.  

:  

Figure 3.2:  Classification results for Glass dataset over different number of selected features, tested 

with four classifiers: (a) 5-NN, (b) Naïve Bayes, (c) SVM and (d) CART. Each plot shows 

comparison among MRmMC, mRMR and MIFS methods. 
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Figure 3.3:  Classification results for Magic Gamma dataset over different number of selected 

features, tested with four classifiers: (a) 5-NN, (b) Naïve Bayes, (c) SVM and (d) CART. Each plot 

shows comparison among MRmMC, mRMR and MIFS methods. 
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Figure 3.4:  Classification results for Vowel dataset over different number of selected features, tested 

with four classifiers: (a) 5-NN, (b) Naïve Bayes, (c) SVM and (d) CART. Each plot shows 

comparison among MRmMC, mRMR and MIFS methods. 

 

 

 

 

 

 



 

43 
 

 

 

 

 

 

 

Figure 3.5:  Classification results for Statlog dataset over different number of selected features, tested 

with four classifiers: (a) 5-NN, (b) Naïve Bayes, (c) SVM and (d) CART. Each plot shows 

comparison among MRmMC, mRMR and MIFS methods. 
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Figure 3.6:  Classification results for Mfeat Zernike dataset over different number of selected 

features, tested with four classifiers: (a) 5-NN, (b) Naïve Bayes, (c) SVM and (d) CART. Each plot 

shows comparison among MRmMC, mRMR and MIFS methods. 
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Figure 3.7:  Classification results for Sonar dataset over different number of selected features, tested 

with four classifiers: (a) 5-NN, (b) Naïve Bayes, (c) SVM and (d) CART. Each plot shows 

comparison among MRmMC, mRMR and MIFS methods. 

 

 

 

 

 

 



 

46 
 

 

 

 

 

 

 

Figure 3.8:  Classification results for Musk dataset over different number of selected features, tested 

with four classifiers: (a) 5-NN, (b) Naïve Bayes, (c) SVM and (d) CART. Each plot shows 

comparison among MRmMC, mRMR and MIFS methods. 
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Figure 3.9:  Classification results for Mfeat Factors dataset over different number of selected features, 

tested with four classifiers: (a) 5-NN, (b) Naïve Bayes, (c) SVM and (d) CART. Each plot shows 

comparison among MRmMC, mRMR and MIFS methods. 
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Table 3.2 and Table 3.3 summarize the mean of the average classification accuracies 

based on a number of first selected features. The results presented in rows with m = 5, 10, 15, 

and 30 provide the average classification accuracies of the selected features from 2 to 

),,min( Mmn f   respectively, where M is the number of original features. As suggested in 

Sotoca & Pla (2010), the four ranges of the number of selected features in our study here are 

representative as these choices cover the approximate transitory period where the classification 

accuracy becomes stable for most of the datasets (see Figure 3.2 until Figure 3.9). A one-tailed 

two-sample z-test was conducted for each case of the m values in order to evaluate the 

alternative hypothesis ( 1H ) that “the mean accuracy of the proposed method is greater than the 

mean accuracy of the compared method”. The recorded p-value is the probability 

corresponding to the z-test. A significant difference is obtained to support the hypothesis if p  

is lower than 0.05 (5% significance level). Meanwhile, if p  is greater than 0.95 then it can be 

concluded that the compared method outperforms the proposed method. For ease of viewing, 

results in the p-value columns are marked with the symbol “” and “” to indicate that the 

MRmMC method is statically superior or inferior to the compared method, respectively. The 

p-value columns which are not highlighted by any symbol indicate that the two methods are 

comparable. 

From Table 3.2 and Table 3.3, it can be observed that the MRmMC method generally 

provides either better or comparable classification accuracy in comparison with the other two 

methods for all classifiers when fewer features (e.g. 2 to 15 features) are used to represent all 

the candidate features, except in Vowel and Mfeat Factors. The performance of MRmMC is 

not as good as mRMR for the Vowel dataset with Nearest Neighbour, Naïve Bayes and SVM 

classifiers but is comparable to mRMR with CART classifier. Furthermore, MRmMC is only 

slightly inferior to the MIFS method for the Vowel dataset with Nearest Neighbour classifier. 

Considering each classifier used, the MRmMC method is only inferior to either mRMR 

or MIFS for the Mfeat Factors dataset. Specifically, the MRmMC method shows slightly lower 

performance than the MIFS method with Naive Bayes classifier yet comparable/better 

performance with the other three classifiers, while conversely, MRmMC produces comparable 

performance with the mRMR with Naive Bayes classifier but slightly lower performance with 

the other three classifiers. 
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Table 3.2:  A comparison of the average classification accuracy based on the first m selected features. 
 

 Glass      Magic Gamma    

 MRmMC mRMR  MIFS   MRmMC mRMR  MIFS  

5-NN Acc. Acc. p-value Acc. p-value  Acc. Acc. p-value Acc. p-value 

m = 5 62.38 62.42 0.51 58.65 0.01   80.38 77.61 0.00  77.22 0.00  

m = 10 64.28 64.68 0.60 62.25 0.10  81.21 79.91 0.00  79.91 0.00  

N Bayes Acc. Acc. p-value Acc. p-value  Acc. Acc. p-value Acc. p-value 

m = 5 53.87 48.73 0.00  45.20 0.00   76.96 77.22 0.96 ■ 77.09 0.79 

m = 10 54.53 54.40 0.47  51.55 0.05   76.55 76.85 0.98 ■ 76.91 0.99 ■ 

SVM Acc. Acc. p-value Acc. p-value  Acc. Acc. p-value Acc. p-value 

m = 5 59.13 60.79 0.87 54.22 0.00   78.71 74.55 0.00  74.82 0.00  

m = 10 61.72 62.28 0.64 57.04 0.00   78.93 76.63 0.00  76.60 0.00  

CART Acc. Acc. p-value Acc. p-value  Acc. Acc. p-value Acc. p-value 

m = 5 60.36 59.92 0.40 56.35 0.01   76.70 73.64 0.00  73.34 0.00  

m = 10 63.06 62.5 0.38 62.17 0.30  78.50 77.08 0.00  77.02 0.00  

 
Vowel 

    
 

Statlog  
   

 MRmMC mRMR  MIFS   MRmMC mRMR  MIFS  

5-NN Acc. Acc. p-value Acc. p-value  Acc. Acc. p-value Acc. p-value 

m = 5 73.6 76.32 1.00 ■ 76.45 1.00 ■  54.69 50.57 0.00  51.34 0.00  

m = 10 82.66 84.01 0.98 ■ 84.05 0.98 ■  61.99 59.06 0.00  58.97 0.00  

m = 15 - - - - -  64.79 62.75 0.01  62.84 0.01  

m = 30 - - - - -  65.99 64.31 0.02  64.42 0.03  

N Bayes Acc. Acc. p-value Acc. p-value  Acc. Acc. p-value Acc. p-value 

m = 5 59.67 61.03 0.96 ■ 59.73 0.53  53.88 45.06 0.00  45.55 0.00  

m = 10 65.83 67.24 0.96 ■ 66 0.58  59.20 52.84 0.00  52.21 0.00  

m = 15 - - - -   59.99 55.51 0.00  54.61 0.00  

m = 30 - - - -   60.08 56.57 0.00  55.77 0.00  

SVM Acc. Acc. p-value Acc. p-value  Acc. Acc. p-value Acc. p-value 

m = 5 59.34 61.83 1.00 ■ 60.53 0.94   50.7 46.54 0.00  47.37 0.00  

m = 10 67.23 69.00 0.99 ■ 68.23 0.90   60.51 57.16 0.00  58.25 0.00  

m = 15 - - - - -  64.93 63.67 0.06 65.20 0.63 

m = 30 - - - - -  67.2 66.48 0.18 67.71 0.74 

CART Acc. Acc. p-value Acc. p-value  Acc. Acc. p-value Acc. p-value 

m = 5 65.35 66.56 0.92  65.84 0.72  53.16 52.78 0.34 53.77 0.75 

m = 10 69.93 70.45 0.72  70.25 0.65  61.62 60.21 0.06 61.30 0.36 

m = 15 - - - - -  64.61 63.60 0.13 64.25 0.34 

m = 30 - - - - -  65.67 64.74 0.15 65.21 0.30 
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Table 3.3:  A comparison of the average classification accuracy based on the first m selected features. 

 Mfeat Zernike     Sonar     

 MRmMC mRMR  MIFS   MRmMC mRMR  MIFS  

5-NN Acc. Acc. p-value Acc. p-value  Acc. Acc. p-value Acc. p-value 

m = 5 53.06 53.66 0.90 53.64 0.88  74.55 70.13 0.00  71.16 0.02  

m = 10 64.43 64.46 0.53 62.74 0.00   77.92 72.56 0.00  73.15 0.00  

m = 15 69.15 69.42 0.73 67.98 0.00   79.39 74.7 0.00  74.65 0.00  

m = 30 75.05 74.78 0.25 74.70 0.19  81.24 78.76 0.05 76.45 0.00  

N Bayes Acc. Acc. p-value Acc. p-value  Acc. Acc. p-value Acc. p-value 

m = 5 55.96 55.58 0.24 55.54 0.20  75.08 74.81 0.43 74.00 0.27 

m = 10 63.62 62.52 0.02  61.55 0.00   74.59 75.87 0.78 73.59 0.28 

m = 15 66.28 65.57 0.08 64.77 0.00   74.41 76.35 0.88 73.86 0.37 

m = 30 69.5 68.24 0.00  69.30 0.34  74.93 75.62 0.66 74.15 0.33 

SVM Acc. Acc. p-value Acc. p-value  Acc. Acc. p-value Acc. p-value 

m = 5 56.4 57.08 0.88 56.82 0.78  77.44 73.23 0.01  72.18 0.00  

m = 10 65.63 66.24 0.88 64.51 0.01   77.67 73.97 0.01  72.52 0.00  

m = 15 69.81 71.08 1.00 ■ 68.97 0.04   77.12 75.23 0.12 73.31 0.01  

m = 30 75.66 76.31 0.94 75.89 0.70  77.48 76.58 0.29 73.86 0.01  

CART Acc. Acc. p-value Acc. p-value  Acc. Acc. p-value Acc. p-value 

m = 5 49.54 49.47 0.45 49.45 0.44  69.96 66.67 0.04  67.01 0.07 

m = 10 56.83 57.00 0.62 55.51 0.01   73.54 67.81 0.00  67.4 0.00  

m = 15 59.53 60.40 0.94 58.46 0.03   73.84 69.4 0.01  67.68 0.00  

m = 30 63.37 63.71 0.73 62.27 0.02   73.16 70.25 0.05 68.46 0.00  

 
Musk 

     
Mfeat Factors 

   

 MRmMC mRMR  MIFS   MRmMC mRMR  MIFS  

5-NN Acc. Acc. p-value Acc. p-value  Acc. Acc. p-value Acc. p-value 

m = 5 69.49 66.98 0.02  67.18 0.02   72.36 75.33 1.00 ■ 72.13 0.32 

m = 10 73.12 70.52 0.01  69.12 0.00   82.63 84.90 1.00 ■ 81.95 0.05 

m = 15 74.45 73.16 0.12 71.48 0.00   86.59 88.25 1.00 ■ 86.11 0.10 

m = 30 78.53 78.02 0.31 75.72 0.00   90.98 92.10 1.00 ■ 90.82 0.31 

N Bayes Acc. Acc. p-value Acc. p-value  Acc. Acc. p-value Acc. p-value 

m = 5 70.3 52.41 0.00  50.31 0.00   72.91 74.09 0.99 ■ 79.56 1.00 ■ 

m = 10 72.3 58.61 0.00  56.26 0.00   81.83 82.35 0.90 83.69 1.00 ■ 

m = 15 72.35 63.24 0.00  60.33 0.00   85.18 85.11 0.43 86.31 1.00 ■ 

m = 30 75.58 71.78 0.00  68.51 0.00   89.22 89.05 0.31 89.92 0.98 ■ 

SVM Acc. Acc. p-value Acc. Acc.  Acc. Acc. p-value Acc. p-value 

m = 5 74.09 64.29 0.00  63.14 0.00   73.85 75.96 1.00 ■ 72.69 0.01  

m = 10 75.31 67.14 0.00  66.58 0.00   83.28 84.86 1.00 ■ 82.57 0.04  

m = 15 76.29 69.42 0.00  69.31 0.00   87.02 88.33 1.00 ■ 86.68 0.18 

m = 30 77.01 74.00 0.00  74.02 0.00   91.32 92.26 1.00 ■ 91.29 0.46 

CART Acc. Acc. p-value Acc. Acc.  Acc. Acc. p-value Acc. p-value 

m = 5 70.51 69.64 0.22 69.75 0.25  68.45 70.60 1.00 ■ 66.84 0.00  

m = 10 72.43 71.78 0.29 71.27 0.16  76.34 77.93 1.00 ■ 74.68 0.00  

m = 15 73.80 73.72 0.47 71.61 0.03   79.08 80.33 0.99 ■ 78.05 0.02  

m = 30 75.59 75.25 0.39 72.93 0.01   82.32 83.37 0.99 ■ 81.64 0.08 
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Table 3.4 and Table 3.5 present the performance of MRmMC, mRMR and MIFS 

methods, generated by using the least number of selected features, leastm , with which a 

classification accuracy more than or close to that obtain by using the complete dataset (with no 

more than 5% difference). Results from Table 3.4 and Table 3.5 are further summarized in 

Table 3.6 with an intention to specifically demonstrate the capability of the MRmMC method 

in representing the full feature set. The win/tie/loss scores reported in Table 3.6 represent the 

number of benchmark datasets for which the MRmMC method gives lower/equal/higher 

number of selected features in comparison to other methods. 

As can be seen from Table 3.6, the MRmMC method performs better than the MIFS for 

all four classifiers. It performs better for two out of four classifiers and shows comparable 

performance for the fourth classifier (CART) when compared to the mRMR method but does 

not perform well with SVM classifier. It can also be noticed that MRmMC gives outstanding 

performance with Nearest Neighbour and Naïve Bayes classifiers. Based on the average results 

given in the last row of Table 3.6, it can be concluded that the MRmMC method is the winner 

in overall when only a small number of features are required to represent the full feature set. 
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Table 3.4:  The least number of selected features, ������, by MRmMC, mRMR and MIFS methods 

that gives classification accuracy close to (at most 5% less than the full set accuracy) or better than the 

full feature set. The symbol “•” (or “□”) denotes the proposed method has lower (or larger) value of 

������ than the compared method. Results are based on Glass, Magic Gamma, Vowel and Statlog 

datasets. 

 Glass     Magic Gamma    

5-NN Full set accuracy  mleast Subset Accuracy  Full set accuracy  mleast Subset Accuracy 

MRmMC 64.52 ± 2.61  3 65.16 ± 1.97  83.72 ± 0.16  2 79.46 ± 0.18 

mRMR 64.52 ± 1.96  3 65.32 ± 1.86  83.76 ± 0.20  4   • 79.56 ± 0.18 

MIFS 66.43 ± 2.27  3 62.30 ± 2.23  83.76 ± 0.19  5   • 79.46 ± 0.21 

N Bayes Full set accuracy  mleast Subset Accuracy  Full set accuracy  mleast Subset Accuracy 

MRmMC 61.67 ± 2.49  3 65.87 ± 2.44  76.13 ± 0.28  2 77.69 ± 0.23 

mRMR 60.48 ± 2.61  6   • 57.94 ± 2.66  76.22 ± 0.18  2 76.46 ± 0.15 

MIFS 61.59 ± 2.31  7   • 58.17 ± 2.59  76.27 ± 0.21  2 76.32 ± 0.24 

SVM Full set accuracy  mleast Subset Accuracy  Full set accuracy  mleast Subset Accuracy 

MRmMC 63.17 ± 1.98  3 61.27 ± 2.46  79.16 ± 0.22  2 78.34 ± 0.20 

mRMR 63.65 ± 2.35  3 65.87 ± 1.59  78.98 ± 0.14  3   • 74.40 ± 0.24 

MIFS 64.21 ± 2.03  8   • 62.78 ± 2.53  79.06 ± 0.22  3   • 74.36 ± 0.24 

CART Full set accuracy  mleast Subset Accuracy  Full set accuracy  mleast Subset Accuracy 

MRmMC 66.35 ± 2.52  3 63.10 ± 2.36  81.84 ± 0.22  4 77.41 ± 0.29 

mRMR 66.35 ± 2.30  3 64.84 ± 2.22  81.64 ± 0.21  6   • 77.84 ± 0.22 

MIFS 68.73 ± 2.41  5   • 66.27 ± 2.45  81.95 ± 0.32  7   • 78.41 ± 0.29 

 Vowel     Statlog    

5-NN Full set accuracy  mleast Subset Accuracy  Full set accuracy  mleast Subset Accuracy 

MRmMC 91.55 ± 0.64  6 87.12 ± 0.82  71.78 ± 0.95  6 67.34 ± 1.04 

mRMR 91.73 ± 0.92  6 89.09 ± 0.75  72.13 ± 0.97  9   • 68.93 ± 1.19 

MIFS 91.45 ± 0.89  6 87.29 ± 1.00  71.87 ± 1.23  11 • 69.90 ± 1.12 

Naïve 
Bayes 

Full set accuracy  mleast Subset Accuracy  Full set accuracy  mleast Subset Accuracy 

MRmMC 73.30 ± 1.19  7 72.73 ± 1.01  60.61 ± 1.25  5 59.03 ± 1.35 

mRMR 73.33 ± 1.03  6   □ 69.87 ± 1.13  61.44 ± 1.24  7   • 60.06 ± 1.32 

MIFS 73.13 ± 1.28  7 71.06 ± 1.28  60.34 ± 1.38  6   • 57.04 ± 1.23 

SVM Full set accuracy  mleast Subset Accuracy  Full set accuracy  mleast Subset Accuracy 

MRmMC 77.81 ± 1.12  8 73.23 ± 1.21  79.59 ± 0.92  16 76.11 ± 0.77 
mRMR 78.64 ± 1.18  8 75.57 ± 1.08  79.51 ± 0.89  13 □ 76.00 ± 1.02 
MIFS 78.42 ± 0.83  8 75.00 ± 1.01  79.57 ± 0.93  12 □ 77.57 ± 0.97 

CART Full set accuracy  mleast Subset Accuracy  Full set accuracy  mleast Subset Accuracy 

MRmMC 74.07 ± 1.23  5 71.41 ± 1.11  70.75 ± 0.97  7 68.90 ± 1.43 
mRMR 74.75 ± 1.36  4   □ 70.42 ± 1.11  70.37 ± 1.14  7 65.64 ± 1.31 
MIFS 74.58 ± 1.19  4   □ 70.37 ± 1.08  69.57 ± 1.08  5   □ 65.03 ± 1.19 
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Table 3.5:  The least number of selected features, ������, by MRmMC, mRMR and MIFS methods 

that gives classification accuracy close to (at most 5% less than the full set accuracy) or better than the 

full feature set. The symbol “•” (or “□”) denotes the proposed method has lower (or larger) value of 

������ than the compared method. Results are based on Mfeat Zernike, Sonar, Musk and Mfeat 

Factors datasets. 

 Mfeat Zernike     Sonar    

5-NN Full set accuracy  mleast Subset Accuracy  Full set accuracy  mleast Subset Accuracy 

MRmMC 80.61 ± 0.48  9 77.03 ± 0.52  78.13 ± 1.80  3 76.34 ± 2.17 

mRMR 80.60 ± 0.54  9 77.20 ± 0.65  79.43 ± 1.92  8   • 76.26 ± 1.96 

MIFS 80.58 ± 0.49  12 • 75.94 ± 0.60  77.89 ± 2.56  3 73.01 ± 1.74 

Naïve 
Bayes 

Full set accuracy  mleast Subset Accuracy  Full set accuracy  mleast Subset Accuracy 

MRmMC 72.33 ± 0.70  6 67.58 ± 0.51  75.61 ± 2.59  2 72.52 ± 2.55 

mRMR 72.43 ± 0.68  8   • 70.25 ± 0.72  75.12 ± 2.42  2 71.79 ± 2.25 

MIFS 72.58 ± 0.70  8   • 68.69 ± 0.54  76.67 ± 1.41  3   • 75.69 ± 2.66 

SVM Full set accuracy  mleast Subset Accuracy  Full set accuracy  mleast Subset Accuracy 

MRmMC 83.01 ± 0.57  14 78.17 ± 0.72  79.76 ± 2.25  3 78.70 ± 2.59 
mRMR 82.53 ± 0.41  9   □ 77.64 ± 0.52  76.18 ± 2.47  2   □ 72.36 ± 2.36 

MIFS 82.47 ± 0.45  15 • 78.38 ± 0.66  77.48 ± 1.86  4   • 72.93 ± 1.87 

CART Full set accuracy  mleast Subset Accuracy  Full set accuracy  mleast Subset Accuracy 

MRmMC 66.58 ± 0.82  8 63.19 ± 0.67  73.01 ± 1.79  3 70.16 ± 2.82 
mRMR 66.09 ± 0.64  8 63.74 ± 0.80  72.28 ± 2.30  3 67.40 ± 2.90 
MIFS 66.68 ± 0.85  8 62.20 ± 0.81  73.66 ± 2.25  3 69.76 ± 3.06 

 Musk     Mfeat Factors    

5-NN Full set accuracy  mleast Subset Accuracy  Full set accuracy  mleast Subset Accuracy 

MRmMC 88.49 ± 0.96  21 83.89 ± 0.91  96.47 ± 0.26  8 92.20 ± 0.50 

mRMR 88.21 ± 1.21  23 • 83.54 ± 1.23  96.55 ± 0.24  7   □ 92.34 ± 0.37 

MIFS 87.37 ± 1.14  30 • 84.00 ± 1.41  96.63 ± 0.30  9   • 92.17 ± 0.51 

Naïve 
Bayes 

Full set accuracy  mleast Subset Accuracy  Full set accuracy  mleast Subset Accuracy 

MRmMC 82.81 ± 1.63  20 77.88 ± 2.37  93.87 ± 0.39  8 89.34 ± 0.64 

mRMR 82.14 ± 1.08  17  □ 78.76 ± 2.19  94.08 ± 0.39  9   • 89.59 ± 0.38 

MIFS 80.91 ± 1.50  20 76.86 ± 1.59  93.87 ± 0.32  10 • 90.03 ± 0.47 

SVM Full set accuracy  mleast Subset Accuracy  Full set accuracy  mleast Subset Accuracy 

MRmMC 85.68 ± 0.99  40 81.47 ± 1.22  97.46 ± 0.25  10 92.79 ± 0.51 
mRMR 85.05 ± 1.67  40 80.28 ± 1.61  97.62 ± 0.28  9   □ 92.97 ± 0.48 
MIFS 85.05 ± 1.27  30  □ 80.88 ± 1.20  97.74 ± 0.27  10 93.68 ± 0.50 

CART Full set accuracy  mleast Subset Accuracy  Full set accuracy  mleast Subset Accuracy 

MRmMC 77.09 ± 1.63  5 72.67 ± 1.17  88.38 ± 0.55  9 84.17 ± 0.73 

mRMR 78.74 ± 1.76  9   • 75.02 ± 1.37  88.01 ± 0.57  7   □ 83.67 ± 0.67 

MIFS 77.30 ± 1.97  7   • 75.12 ± 1.69  87.88 ± 0.58  9 83.09 ± 0.59 

Table 3.6: A comparison of win/tie/loss counts of the MRmMC method against the other methods. 
The counts are based on the results presented in Table 3.4 and Table 3.5. 

Win/tie/lose mRMR MIFS 

5-NN 4 / 3 / 1 5 / 3 / 0 
Naïve Bayes 4 / 2 / 2 5 / 3 / 0 

SVM 1 / 3 / 4  4 / 2 / 2 
CART 2 / 4 / 2 3 / 3 / 2 

Average 2.75 / 3 / 2.25 4.25  2.75 / 1 
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3.9 Summary 

The MRmMC method uses a hill-climbing search structure with a straightforward 

measurement criterion that makes it simple and easy to implement. It is a filter feature selection 

method as it uses no specific classification scheme in the selection process, and therefore it 

works well with popular classifiers such as k-NN, naïve Bayes, SVM and CART.  

Although the method may not always find the optimal subset as the search is non-

exhaustive, it is shown from the experimental and numerical case studies that the method is 

competent for feature selection and dimensionality reduction. 

As mentioned in Section 3.5, MRmMC possesses several attractive properties, one of 

which is that there is no need to pre-specify control parameters as required in MIFS methods, 

and another important one is that it is relatively easier to implement. 
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Chapter 4                               

Unsupervised feature selection based on 

local largest structure  

4.1 Introduction 

This chapter presents the second feature selection method to be proposed in which information 

of the local data structure is mainly utilised. Particularly, the special characteristics possesses 

by local largest structure (LLS) of locality preserving projection is employed in the new method 

for detecting significant features in an unsupervised setting. Being incline to a simple yet 

effective approach, a sequential orthogonal search (SOS) is used as the feature selection 

strategy. The method is thus referred to as sequential orthogonal search for local largest 

structure (SOS-LLS). 

The remaining sections of this chapter is outlined as follows. In Section 4.2, a review 

of local structure preservation techniques is given. The proposed feature selection method is 

described in Section 4.3. Next, the experimental setup and the comparative results are given in 

Section 4.4, along with discussion about the performance of the proposed method. Finally, the 

chapter is ended with a summary in Section 4.5. 

 

4.2 Related Work 

4.2.1 Locality Preserving Projection  

Locality preserving projection (LPP) emerged in response to the need for an alternative linear 

feature transformation approach that gives low dimensional space by optimally preserves local 

information of a dataset. Such transformations are obtained by constructing a nearest neighbour 

graph in which local geometric structure information is kept. The locality aspect is being 
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considered in a sense that two data points are more likely connected to the same subject matter 

if they are close together.  

4.2.1.1 LPP procedure 

The main procedure to find LPP is briefly summarized in the following. Let a set of N  data 

points in the original measurement space be Nxxx ,,, 21   in ℝ�. The LPP approach attempts 

to find a transformation matrix A  that projects the N  data points to a set of new points 

Nyyy ,,, 21  , while preserving local neighbourhood structure of the data. Being regarded as 

representatives of the original data points, these new points are referred to as the locality 

preserving projections (LPP). They are obtained based on a mapping function ii xAy T  which 

lie in a reduced feature subspace ℝ� where normally Mm  . In general, there are three main 

steps involved in finding the LPP: 

Step 1:   Build an adjacency graph with N  nodes 

Consider a graph G  with M  nodes in which the i -th node corresponds to a data point ix . An 

adjacency graph is built in a way where edges are drawn between nodes that are closest 

(adjacent) in distance based on nearest neighbours principle. One of the following nearest 

neighbour distance rules shall be used: 

(1) k -nearest neighbours. For every node i  in G , draw an edge to link the node with each 

of its k -nearest neighbour nodes. In this rule k ∈ ℕ and k  is typically a small value. 

(2) �-neigbours. For every node i  in G , draw an edge to link the node with each of its 

nearest neighbour nodes j  that satisfies 
2

ji xx . This radius-based neighbours 

distance rule is a good choice when a dataset is not uniformly distributed. 

In both rules the Euclidean distance function can be used for simplicity.  

Step 2:   Give weightage to the edges 

Based on the adjacency graph ,G  give weightage to the identified edges so that the 

neighbourhood relationship between data points can be expressed into a matrix W . This step 

technically allows the local geometrical structure of the original measurement space being 
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presented by the weight matrix W . The elements ijw  of the matrix W  particularly define the 

weights or the degree of closeness between nodes i  and .j  Two choices that are widely used 

for weighting the edges are as follows:  

(1) Binary weighting. If there is an edge connecting nodes i  and j , then 1ijw . Otherwise, 

if there is no edge between them then 0ijw . This is a simple weighting choice that 

does not involve any pre-set parameter. 

(2) Heat kernel weighting. If there is an edge connecting nodes i  and j , then  
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exp
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w
ji

ij

xx
 (4.1) 

where 0t . Otherwise, 0ijw . This type of weighting is more specific to the data 

structure compared to binary weighting as it gives preference to neighbouring nodes 

that are closer.  

Step 3:   Find the projections 

Given the data matrix ][ 21 NxxxX   whose i -th column constitutes the point .ix  Find 

the eigenvectors and their associated eigenvalues for the following generalized eigenvector 

problem: 

 aXDXaXLX TT   (4.2) 

where D  is a diagonal matrix whose main diagonal elements iiD  are the column sums (or row 

sums since W  is symmetric) of W , that is,   j ijii WD . The larger the iiD  value, the more 

the impact or local density of the node i . Meanwhile, WDL   is the Laplacian matrix 

whose role is to measure the extent to which every node differs from its neighbour nodes in the 

graph. Suppose that the solution for (4.2) is a series of significant eigenvectors denoted by 

,,,, 21 maaa   correspond to the first m  smallest eigenvalues. Then the following eigenmap 

can be obtained: 

 iii xAyx T  (4.3) 
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where ],,,[ 21 maaaA   is an mM   matrix. The resulting map iy  is the so-called LPP 

projection which is a vector of m-dimensional.  

4.2.1.2 LPP connection with Laplacian eigenmap 

Generally, the aim of local manifold structure preservation approach for feature extraction is 

to map close points in high dimensional feature space in a way so that their mappings are also 

close to each other in the associated low dimensional representation. Let T
21 ],,,[ Nyyy y   

denote the vector of such a map. According to Laplacian eigenmap (Belkin & Niyogi, 2002), 

an optimal map is obtained based on the following objective function: 

 



N

ji
ijji wyy

1,

2)(min  (4.4) 

where ijw  is the element of the weight matrix W  as defined previously. A heavy penalty is 

imposed on the objective function via the weight ijw  when close points ix  and jx  in the 

measurement space are mapped far apart in the transformed space. Hence, the objective 

function ensures that if two points ix  and jx  are close, then their mappings iy  and jy  will be 

set close too. Applying some simple algebraic operation reduces the objective function (4.4) to 

 LyyTmin  (4.5) 

which is subject to constraint 1T Dyy . This constraint is important in order to avoid arbitrary 

scale in the mapping. 

The vector y  that meets this objective function can be obtained by solving the 

generalized eigenvector problem 

 DyLy   (4.6) 

where y  is associated with the minimum eigenvalue.  
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Apparently, Laplacian eigenmap is a nonlinear approach. It was then adapted to provide 

a linear variant called LPP (He & Niyogi, 2004). In LPP, each ix  is intended to be linearly 

mapped by a transformation vector ,a  such that 

 
iiy xaT . (4.7) 

This map is not only defined on original data points but also on any new test point.  

Substituting (4.7) into (4.4) yields 

 



N

ji
ijji w

1,

2TT )(min xaxa  (4.8) 

which is the objective function of LPP.  With this connection in place, LPP can be viewed as a 

linear approximation to the nonlinear Laplacian eigenmap. By some algebraic manipulation, 

the objective function (4.8) turns out to be 

 aXLXa TTmin . (4.9) 

The minimizing problem of the objective function (4.9) can be formulated into a 

generalized eigenvector problem 

 aXDXaXLX TT   (4.10) 

under the constraint 1TT aXDXa , analogous to the constraint specified for Laplacian 

eigenmap objective function. In this formulation, the transformation vector a  that satisfies the 

LPP objective function is provided by the minimum eigenvalue obtained from the generalized 

eigenvector problem. 

4.2.2 Laplacian Score  

Laplacian score is an unsupervised feature selection method, fundamentally based on the ideas 

of Laplacian eigenmap and LPP. It selects features with strong locality preserving power which 

contribute the most to the underlying local manifold structure of the data. This is done 

specifically through selection of features that respect geometrical structure of a pre-determined 
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adjacency graph G  for the data, represented by its resultant weight matrix W  as defined for 

the LPP method.  

Let ],,,[ 21 rNrrr fff f  be the r-th feature vector formed by N  observations. In order 

to reflect the targeted data structure, the criterion for choosing significant features of the 

Laplacian score is set to minimize the following objective function: 
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 


  (4.11) 

where ijw  is the element of the weight matrix W , while )(Var rf  denotes the estimated variance 

of the r-th feature. Based on this objective function, feature selection is achieved by choosing 

the top ranked features with the lowest scores. As a mean to minimize the objective function 

(4.11), it obviously requires the numerator term  


N

ji ijrjri wff
1,

2)(  to be minimized 

meanwhile the denominator term )(Var rf  should be maximized. Minimizing the term 

 


N

ji ijrjri wff
1,

2)(  will lead to selection of features that are consistent with the graph 

structure G  or in other words features with strong locality preserving power. This is based on 

a key assumption that in order for a feature to be significant, any two data points defined 

specifically on this feature should be close to each other as they are in the original feature space. 

By maximizing the term )(Var rf  Laplacian score does not only intend to prefer features with 

strong locality preserving power, but also more representative ability. 

4.2.3 Multi-Cluster Feature Selection  

Feature selection criterion of Laplacian Score method evaluates every candidate feature 

individually. This approach does not take into account the correlation between different 

features, thus ignores feature redundancy and makes it prone to suboptimal results. Even 

though a feature has high individual predictive power, it should not be selected if it concurrently 

has high correlation with preceding selected features since such a feature contributes no extra 

information. In the event that a feature has low individual predictive power, it may be of high 

predictive power when combined with the already selected features as together they form some 
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relationship, which, if true, it should be considered for selection. Thus, it is crucial to evaluate 

feature importance jointly rather than individually.  

Multi-Cluster Feature Selection (MCFS) considers this necessity by using spectral 

analysis integrated with L1-regularized regression model. In order to capture the multi-cluster 

structure of the data, MCFS exploits the top ranked eigenvectors of the generalized eigenvector 

problem for the Laplacian Eigenmap as defined in (4.6). Because this approach utilizes local 

discriminative information, it has thus considered the local manifold structure naturally.  

Let Kyyy ,,, 21   be the K  eigenvectors obtained by solving the generalized 

eigenvector problem (4.6). A subset of significant features can be identified based on the 

following objective function as: 

 2Tmin

subject to 

k k

k 





y X a

a
 (4.12) 

where ka  is an M-dimensional vector that contains the coefficients for the linear combination 

of different features in approximating the vector ky , ka  denotes the number of nonzero 

coefficients (entries) of ka  and   is a pre-determined threshold. The objective function (4.12) 

is essentially the L1-regularized regression problem in which ka  is the optimal solution 

corresponds to ky . Provided that a dataset containing K  clusters, then K  sparse coefficient 

vectors Kaaa ,,, 21   can be determined to represent the eigenvectors Kyyy ,,, 21   that are 

most representative for the clusters. Under this formulation, each ky  is expected to reflect the 

data distribution among different features as well as on the associated cluster. Every feature rf  

will be given a score based on the highest coefficient value of ka  that correspond to rf  and 

significant features can be finally selected according to the top high-scored features of the 

ranking list.  

4.2.4 Minimum-Maximum Laplacian Score (MMLS)  

A variant of the Laplacian Score method called Minimum-Maximum Laplacian Score (MMLS) 

(Hu, et al., 2013) was introduced to gain more discriminative power in unsupervised setting by 

considering two different perspectives of local structure information: the within-locality 
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information and the between-locality information. Following the intuition that separation 

between points of the same class should be as small as possible, the within-locality information 

needs to be minimized to identify this particular manifold data structure.  

On the other hand, the between-locality information needs to be maximized to ensure 

points from different classes are well separated, and therefore increase the discriminative power 

of the selected feature subset. Integrating both goals into one gives rise to the following 

objective function to be minimized: 
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 (4.13) 

where ijaw ,  and ijbw ,  denote the entries of the within-locality weight matrix aW  and the 

between-locality weight matrix bW  respectively, while   is a pre-defined parameter that 

controls the trade-off between the two types of local structure information being considered.  

The within-locality weight matrix aW  has all the same properties of the weight matrix 

defined for LPP and Laplacian Score which assigns a nonzero weight entry for any two points 

with the nearest relationship whereas the between-locality weight matrix bW  is a matrix whose 

entries are set contrast with reference to aW  which gives a nonzero weight entry for any two 

points without the nearest relationship. Like in the Laplacian Score, the variance of the r-th 

feature, )(Var rf , is also considered as a part of the MMLS criterion. By minimizing the 

objective function (4.13) as a whole forcing  


N

i,j ijarjri wff
1 ,

2)(  to give a minimum value 

whereas  


N

i,j ijbrjri wff
1 ,

2)(  and )(Var rf  are of maximum value. The term 

 


N

i,j ijarjri wff
1 ,

2)( is essentially the same term contained in the objective function of the 

Laplacian Score and minimizing it here is specifically intended to preserve the close 

relationship of each data point with its neighbouring points on the r-th feature. Conversely, 

maximizing the term  


N

i,j ijbrjri wff
1 ,

2)(  is expected to preserve any non-neighbouring 

relationship on the r-th feature.  

Even though MMLS method claims that it selects features based on local manifold 

structure preservation, the approach can be seen as an attempt to choose features that preserve 
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data structure in a global sense because maximizing the between-locality information will 

basically retain geometric data structure of faraway points in the high dimensional space to the 

low dimensional space. The MMLS method brought a slight change to the Laplacian Score 

criterion by incorporating the between-locality information and it was found to be an effective 

strategy for feature selection. It is however, does not take into account the correlation between 

different features and hence suffers the same problem highlighted earlier for Laplacian Score.   

4.3 The Proposed Algorithm for Feature Ranking and Selection 

This section is primarily aims to simultaneously exploit the potential of local geometric 

structure for unsupervised feature selection and the power of LPP approach for classification. 

It seeks to presents a new feature selection method based on local largest structure (LLS) of 

locality preserving projection. The new feature selection method can be represented as a 

multiple linear regression problem in which the most significant feature map defined by LPP 

will be treated as a response variable, while all the original features will be treated as predictor 

variables. The key idea of the method is to select a subset of predictor variables that best 

represents the response variable.  In other words, the objective is to select a subset of features 

that has the highest capability to represent the most significant feature extracted by LPP which 

carries the major information about the local largest structure. Under this feature selection 

framework, the method can be seen as an attempt to take advantages of both feature extraction 

and feature selection approaches. In the new method, significant features are selected one by 

one using a sequential search strategy (SOS). 

Let the set },,,{ 21 MF xxx   denotes a collected full dataset of M features where 

each T)](,),2(),1([ Nxxx iiii x  is a feature vector composed by N  observations. The 

objective of feature selection is to find the best feature subset },,,{ 21 ddS zzz   that gives 

compact representation of the full feature set F  where Fj z  and d  should be the least 

possible integer with Md   if the measurement space is of high dimensionality. In this 

regard, every feature vector ix  can be satisfactorily represented using the selected feature 

subset dS  via some functional relationship which generally can be expressed as 

 idii f ezzzx  ),,,( 21   (4.14) 



 

64 
 

where if   is a function that supposed to well describe the relationship between the feature ix  

and the selected features dzzz ,,, 21  , while the term ie  denotes the estimation error. In (Wei 

& Billings, 2007), the relationship between the feature ix  and the selected feature subset is 

assumed to be linear which leads to the commonly used multiple regression model 

 i

d

k
kkii ezx 

1
,  (4.15) 

where diii ,2,1, ,,,    are the regression coefficients that need to be estimated based on the 

observed dataset.  

Referring to the embedding map obtained by LPP as specified in (4.3), it is 

straightforward that the k-th component of LPP for any observation rx  is given by 
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for .,,2,1 Nr   Hence, the overall k-th component of LPP is 
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where jx  is the j-th column vector of X , representing the j-th feature vector made up of N  

observations . Note that each newly generated component of LPP is derived by using a linear 

model that involves all the original features. Since some of the original features may be linearly 

correlated with the others, it is reasonable to exclude these redundant features from the 

candidate set as they give little or no additional information to the component map. Hence, 

feature selection is accompanied with some basic feature elimination performance.  

As the k-th component ky  of LPP defined in (4.17) is fundamentally a feature vector 

formed by a linear combination of all original features, it also should be well represented using 
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the selected feature subset dS  through a simple adaptation of model as in (4.15). The 

approximation of ky  is therefore as follows 

 k

d

j
j

k
jk ezy 

1

)(  (4.18) 

where the response variable ix  in (4.15) is replaced by ky  in (4.18). This approximation model 

leads to the idea that feature vectors which are significant in representing the LPP component 

must also be significant for building a reduced dimension representation of the original full 

feature set F .  

Motivated by the above observations, this work introduces a feature selection method 

by defining the reference response variable in the multiple linear regression model as the first 

LPP component whereas the candidate predictors are chosen to be the original feature 

variables. Basically, this means that the information contained in the first LPP component is 

used to guide the feature selection. 

The rationale of using only the first LPP component as the reference response variable 

is to keep the data locality because the eigenvector that generates the component is the one that 

encodes perhaps the most important graph information (Mohar, et al., 1991). This eigenvector 

which corresponds to the smallest non-zero eigenvalue of the corresponding Laplacian matrix 

for a graph is well known as the Fiedler vector, named after the seminal work of Fiedler 

(Fiedler, 1973; Fiedler, 1989). The eigenvalue associated to the Fiedler vector is called the 

“algebraic connectivity” of a graph due to its special relation with the structural properties of 

the graph – the vertex connectivity and the edge connectivity. If a new edge is inserted in 

between two weakly connected nodes, the value of the algebraic connectivity will show the 

greatest increase among the spectrum of a graph (Maas, 1987; Wang & Mieghem, 2008). In 

this sense, the eigenvalue associated with the Fiedler vector can be viewed as an indicator of 

the degree of graph connectivity. As the Fiedler vector represents data structure with the highest 

graph connectivity, the projection of the Fiedler vector is referred as a projection that preserves 

the largest structure of the data. Since LPP particularly preserves local data structure, the first 

LPP component is therefore can be viewed as holding the local largest structure of the data. As 

such, the first LPP component is the one that reflects the local largest structure preservation. 

This explains the term LLS being used in the name of the proposed method.  
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Each entry of the Fiedler vector represents a value for a graph node while the vector as 

a whole represents an optimal segmentation for the graph (Bertrand & Moonen, 2013; Perazzi, 

et al., 2015). Intuitively, one can consider the projection of the Fiedler vector as a tool to 

evaluate features for selection. 

By using only one LPP component,  model (4.18) can be rewritten as  

 ezy 


d

j
jj

1

  (4.19) 

where y  is the first LPP component generated by a Fiedler vector. This means that the first 

LPP component y  should be well represented by the selected features dzzz ,,, 21  . Because 

y  is an LPP component, the selected features should have a good ability in preserving local 

structure of the manifold. In particular, note that these features are selected based on local 

largest structure of LPP so as to capture the optimal local separation as the LPP component 

being considered is induced by a Fiedler vector.   

Note that the linear model (4.19) can also be expressed in a compact matrix form as 

 
ePβy   (4.20) 

where ],,,[ 21 dzzzP   is a full column rank matrix.  The matrix P  can be decomposed into 

 QRP   (4.21) 

where Q  is an dN  matrix comprises of orthogonal vectors dqqq ,,, 21   as its columns 

whereas R  is an upper triangular matrix with unity diagonal elements of size dd  . 

Substituting (4.21) into (4.20) along with some simple algebraic manipulation gives the 

following equivalent representation for (4.20): 

 eQge)(Rβ(PRy 1   )  (4.22) 

where T
21 ][ dggg  Rβg  with its elements jg  are the orthogonal coefficients. Utilizing 

the orthogonal property of Q , the coefficient jg  can be computed in terms of y  and jq by: 
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 )()( TT
jjjjg qqqy . (4.23) 

Based on (4.22), the total sum of squares (or total variation) for the LPP projection y  

is expressed by: 

 eeqqyy T

1

T2T 


j

d

j
jjg . (4.24) 

Observe that the total variation consists of two general components: the variation due to 

relationship of y  with dqqq ,,, 21   (or, equivalently, dzzz ,,, 21  ) which is jj

d

j
jg qqT

1

2


 and 

the variation due to residual error which is given by eeT . Hence, jjjg qqT2  is interpreted as the 

amount of contribution by the variable jq  to the total energy of the response variable, i.e., ||y||2. 

Applying the concept of error reduction ratio (ERR) described in Billings et al. (1989); 

Chen et al. (1989) and Billings (2013), here, the ERR associated with jq  or equivalently with 

jz  is defined as 
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qq
 . (4.25) 

This ratio serves as a measure to quantify the significance of a feature with higher ratio 

indicating greater contribution in representing the original feature set.  

Following Wei & Billings (2007), the feature selection procedure can be fulfilled in a 

stepwise manner. Let the set },,,{ 21 MF xxx   denotes a full dataset of M features. At the 

first step, determine  

 Mjj
jj

j ,,2,1;
))((

)(
]1;[ERR

TT

2T


xxyy

xy
 (4.26) 

  ]1;[ERRmaxarg
1

1 j
Mj

  (4.27) 

where ]1;ERR[ j  denotes the error reduction ratio obtained by choosing jx  as the first 

significant feature. The first selected feature is then given by 
11 xz   and the associated 

orthogonal variable is then set as 11 zq  .  Notice that the variable vector jq  in (4.25) is 
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substituted with a feature vector jx  in (4.26). This direct replacement is permitted here because 

1
xzq  11 .  The selection of 

1
x  as the first significant feature means it is the feature that 

explains the variation in the overall features with the highest percentage among all candidate 

features.   

Suppose that a subset S  containing )1( r  significant features 121 ,,, rzzz    has been 

identified at the )1( r th search step. The selected features 121 ,,, rzzz   are then  transformed 

to a new set of orthogonal vectors 121 ,,, rqqq  .  Now, assume the task is to include the r th 

significant feature rz  into S , and let jf  be a possible candidate feature to be considered where

SFj f .  The r th orthogonal variable, rj ,q  associated to jf  is computed by  
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(4.28) 

Similar to the first step and based on the criterion defined by (4.25), the followings are 

determined in the r th step so that the r th significant feature can be identified: 
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  ];[ERRmaxarg
1
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The r th significant feature rz  will be selected as the r -th feature vector from the original 

feature set, that is 
rr fz   and the corresponding orthogonal variable is therefore rr r ,qq  .  

 Subsequent significant features can be selected in the same way, employing a sequential 

orthogonal search (SOS) strategy where features are selected in a stepwise manner, one by 

one, through an orthogonalization scheme as described above. At each step, a feature that 

contributes the most to the total variation in the response variable y  with the highest value of 

ERR is selected. As y  represents the locality preserving projection resulting from a Fiedler 

vector, in which the local largest structure (LLS) of a dataset lies, the selected features are thus 

expected to preserve the main information of the local geometric structure hold by the original 

data set. For simplicity of the discussion onwards, the newly introduced method will be referred 
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to as SOS-LLS (sequential orthogonal search for local largest structure) approach. The pseudo- 

code of the SOS-LLS is given in Figure 4.1. 

 

Input:    },,,{ 21 MF xxx    // A complete dataset of M features  

Output:  S     // Subset of features 

Initialize:  },,2,1{1 ML  , {}S  

  m     // Number of features to be selected 
 
Find y       // The first LPP component as defined by (4.17)  

 
for 1j  to M  

;
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end for  
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  such that 11 L ;  
11 xq  ;  

11 xz  ;   

add 1z  to S ; 

 
for 2r  to m   

}{\ 11  rrr LL  ;   

for rLj  
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 end for  

 }];ERR[{maxarg rj
rLj

r


  such that rr L ; 

;, rr r
qq   

rr xz  ;   

add rz  to S ; 

end for 

Figure 4.1:  The SOS-LLS algorithm. 

 

4.4 Experimental Setup and Evaluation 

In order to test and analyse the overall performance of the proposed SOS-LLS method, we 

applied the method to two categories of datasets: one with well-known data properties whereas 

the other does not. All datasets are publicly available online from the UCI machine learning 

repository excluding the Alate Adelges data. A complete Alate Adelges data matrix is 

accessible from Krzanowski (1987).  
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4.4.1 First Category of Benchmark Datasets 

The true data characteristics in this category are known in advance, so the performance of a 

data analysis method (e.g. feature selection method) can easily be revealed through such 

datasets. Two datasets are considered: Iris and Alate Adelges. As both original datasets contain 

features with different units and scales, they were aligned using normalization prior to 

execution with the SOS-LLS algorithm so that a fair comparison can be made between features. 

4.4.1.1 Experiments on Alate Adelges Dataset 

The effectiveness of the SOS-LLS method is first depicted using a popular Alate Adelges 

dataset. The Alate Adelges dataset was first used by Jeffers (1967) as a case study for PCA 

application. It is characterized by 19 features, measured on a sample of 40 winged aphids 

caught in a light trap. Two main conclusions were drawn from the case study (Jeffers, 1967). 

First, it was concluded that two principal components is sufficient for representing the complete 

data. Second, it was concluded that the 40 aphids can be clustered into four distinct groups 

corresponding to four different types of aphids.  

In order to evaluate the subset capability to represent the full feature set, the first two 

principal components score plot for a full Alate Adelges dataset and the score plots for two 

potential subsets by SOS-LLS were examined. These PC1-PC2 score plots are as presented in 

Figure 4.2.  

In Figure 4.2 (a), both of the principal components are functions involving all 19 

features. The plot exhibits four distinct clusters as inferred by Jeffers (1967). Note that 

observation number 34 is a real outlier because it belongs to a special class of aphid but this is 

not the case for observation number 19 (Heberger & Andrade, 2004). Therefore, observation 

34 should not be attached to any of the four groups whilst observation 19 should be merged 

with the cluster marked with the symbol “”. However, this is not the case when all features 

are considered as shown in Figure 4.2 (a).   
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Figure 4.2:  PC1-PC2 score plot for the Alate Adelges dataset based on (a) full feature set, (b) the 

first four selected features and (c) the first five selected features. 

In Figure 4.2 (b) and (c), the two principal components only involve four and five 

selected features respectively. It can be seen from Figure 4.2 (b) that the four-feature subset 

obtained by using SOS-LLS method has started to form similar structural pattern as that formed 

by using the full feature set. A very similar pattern is captured by just including one more 

feature to the four-feature subset as depicted in Figure 4.2 (c). Thus, the five-feature subset can 

be considered as really good to substitute the full feature set if data structure is the main goal 

for feature selection. Notice that also the five-feature subset managed to reveal observation 34 

as unique and anomalous while observation 19 was correctly grouped to its actual cluster. 

These results are of great importance as they signify that the SOS-LLS method is robust and 

can select the most representative features.     

4.4.1.2 Experiments on Iris dataset 

The Iris is one of the most popular benchmark datasets with well-known nature of data and is 

frequently used to test an algorithm’s performance in pattern recognition studies. The dataset 

comprises of 150 observations where each observation is described by four continuous-valued 
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variables (features) and belonging to one of the three distinct classes of iris flowers, namely, 

Setosa, Versicolour and Virginia. For each class, fifty observations were equally recorded. In 

this dataset, it is known that the Setosa class is linearly separable from the other two, while the 

other two are non-linearly separable from each other.  

The four features of Iris dataset are sepal length )( 1f , sepal width )( 2f , petal length )( 3f  

and petal width )( 4f . Among these four features, only the last two are relevant and sufficient 

to cluster the Iris dataset correctly into three groups corresponding to the three classes of Iris 

flowers.  

Table 4.1 lists the feature ranking results of the Iris dataset given by different feature 

selection methods. The basic parameter settings for each of these feature selection methods are 

as follows. The number of nearest neighbours was set to be 5k  for Laplacian Score, MCFS, 

and MMLS. This value was chosen for each of the methods based on the recommended range 

for the number of nearest neighbours that possibly lead to good feature subset solution. The 

same value 5k  was also used in the proposed SOS-LLS method so that a fair comparison 

can be made with those obtained by the three competing methods. The heat kernel weighting 

scheme was specifically adopted to measure the closeness of neighbouring points for all these 

Laplacian graph-based methods including the proposed method.  In MCFS, the required pre-

defined number of clusters was set equal to the number of true classes of the dataset being 

considered. For ReliefF method, the number of nearest neighbours was restricted to 10k  as 

suggested in Robnik-Sikonja & Kononenko (2003). In addition, the redundancy parameter of 

the MIFS approach was assigned a value 1 , according to the appropriate range advised in 

Battiti (1994).  

All methods listed in Table 4.1, except MCFS, rank 3f  and 4f  as the first two significant 

features, following the actual order that corresponds to the most relevant feature pair.  Note 

that Laplacian Score, MCFS, MMLS and the proposed SOS-LLS are unsupervised methods 

while the others are supervised methods. This shows that even though SOS-LLS is 

unsupervised, it is capable to reach the same result as these most commonly used supervised 

methods.  
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Table 4.1: Feature ranking results of the Iris dataset given by different feature selection methods. 

 Unsupervised feature selection 

 Laplacian score MCFS MMLS SOS-LLS 

Feature ranking f3, f4, f1, f2 f3, f2, f1, f4  f3, f4, f1, f2 f3, f4, f2, f1 

 Supervised feature selection 

 Fisher score ReliefF mRMR MIFS 

Feature ranking f3, f4, f1, f2 f4, f3, f2, f1   f3, f4, f2, f1 f3, f4, f2, f1 

4.4.2 Second Category of Benchmark Datasets  

In contrast to the first category, the second category considers datasets with unknown or unclear 

data properties. Eight datasets of this category are used to further demonstrate the efficacy of 

the proposed method from  different perspective. Table 4.2 summarises some important details 

of the used datasets. Here, feature subset solutions obtained by the SOS-LLS method are 

evaluated by using classification performance for the listed datasets.  The experimental results 

based on SOS-LLS are compared with that from a number of state-of-the-art methods; some 

details are described as below.   

Table 4.2:  Important details of the used benchmark datasets for 2nd category. 

Dataset Number of features Number of observations Number of classes 

Pima Diabetes 8 768 2 
Wbc 9 699 2 
Glass [N] 9 214 7 
Vowel [N] 10 990 11 
Statlog [N] 18 846 4 
Ionosphere  33 351 2 
Waveform  40 5000 4 
Mfeat Zernike [N] 47 2000 10 
Sonar  60 208 2 
Musk [N] 166 476 2 
Mfeat Factors [N] 216 2000 10 
Isolet 649 2000 26 

[N]: The raw dataset was normalized before the experiment. 

It is interesting to compare the results of SOS-LLS with a few similar methods. For this 

purpose, the Laplacian Score (LS), MCFS and MMLS are employed because these are also 

unsupervised methods, using filter approach and most importantly sharing the same type of 

evaluation criterion  hinged on locality preserving information. In all the experiments, the 
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parameter settings for all methods including the SOS-LLS method are the same as given in 

Section 4.4.1.1.  

Since SOS-LLS is a filter method, its reliability might be different from one classifier 

to another. Thus, it is also interesting to validate its effectiveness by applying SOS-LLS across 

several classifiers with different learning architecture. Four widely used classifiers, listed 

among the ten most influential data mining algorithms (Wu, et al., 2008) , namely, k-nearest 

neighbour (k-NN), Naïve Bayes (NBayes), support vector machine (SVM), and classification 

and regression trees (CART), are considered here. To provide a fair comparison, the number 

of nearest neighbours of the k-NN classifier was set to 5k  for all tests.  

The same holdout cross-validation approach was adopted for each classifier in order to 

avoid overfitting and gain more accurate performance generalization. In particular, the 

considered dataset was randomly split into two sets where 80% were used as a training set 

while the remaining 20% were holdout and reserved as a validation set. The classification 

model was first built by using the training set and the validation set was later used to assess the 

model performance. In addition, 30 iterations of this cross-validation procedure were carried 

out, from which the average percentage of classification accuracies was calculated to reduce 

the effect of the random variation error in the result.  

Table 4.3 and Table 4.4 present the average classification accuracy based on m  selected 

features over the four classifiers (5-NN, Naive Bayes, SVM, and CART). Only a few cases 

with certain values of m  are reported in the tables, as these cases should be sufficiently 

representative to demonstrate the overall performance of the four methods used (i.e., SOS-LLS, 

LS, MCFS, and MMLS). In order to determine whether the classification accuracy based upon 

the feature subset selected by SOS-LLS is significantly higher or lower than that induced by 

its competitor, a one-tailed two-sample z-test was performed for each case of the m values. As 

such, the test was conducted based on a hypothesis that “the average classification accuracy of 

the proposed method is greater than the average classification accuracy of the compared 

method”. The value recorded within the bracket in Table 4.3 and Table 4.4 is the p-value 

corresponding to the z-test and it serves as an indicator to show how the results on the data are 

consistent with the aforementioned hypothesis. A p-value lower than or equal to 0.05 (5 % 

significance level) indicates that the z-test statistic provides enough evidence to support the 

original hypothesis. Meanwhile, a p-value of at least 0.95 suggests that the compared method 

wins over the proposed method. For ease of comparison, the results are marked with “” and 
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“” to indicate that the SOS-LLS method is significantly superior or inferior to the compared 

method, respectively. Otherwise, if no symbol is specified, it means that the two methods are 

comparable.  

As can be seen from Table 4.3 and Table 4.4, SOS-LLS consistently or almost 

consistently shows better or comparable classification accuracy with all classifiers compared 

to other feature selection methods particularly on Pima Diabetes, Ionosphere, Waveform, 

Mfeat Zernike and Musk datasets. The performance of SOS-LLS, however, is not as good as 

that achieved by Laplacian Score in general for Glass, Vowel, Sonar and Isolet. Yet, SOS-LLS 

beats Laplacian Score on Vowel data with Naïve Bayes classifier for all the m  cases. In the 

meantime, for Glass, Sonar and Isolet datasets, it can be observed that SOS-LLS still provides 

strong competition to Laplacian Score with SVM classifier. SOS-LLS basically gives 

competitive performance over the MCFS method in many cases of different combinations of 

classifiers and feature subset sizes except for Statlog, Sonar and Isolet data. For Wbc, though 

the proposed SOS-LLS obviously does not show as good as performance as MCFS for the same 

feature subset size, it just loses to MCFS for a few cases only. When compared to MMLS, 

SOS-LLS only fails to perform satisfactorily on Glass and Vowel datasets but it performs 

exceptionally well over the rest of the benchmark datasets. 

Table 4.5 and Table 4.6 present the test performance results of SOS-LLS and the other 

three methods. It is noteworthy that the performance was calculated based on the least number 

of features for each of the methods, where the least number leastm  was determined as follows: 

the classification accuracy of a method using only mleast features close to (with tolerance no 

more than 5% less) or higher than that obtained by using the full feature set. 

Results from both Table 4.5 and Table 4.6 are abstracted and summarised in Table 4.7, 

to give more insightful inspection of the overall performance of SOS-LLS in representing the 

original full feature set. The recorded win/tie/loss scores in Table 4.7 refer to the number of 

benchmark datasets for which the SOS-LLS method uses lower/equal/higher feature subset size 

when compared with the other locality preserving methods. 
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Table 4.3:  Performance comparison of the average classification accuracy based on m selected 

features with four classifiers. The value within the bracket is the p-value to test whether the accuracy 

of SOS-LLS is significantly larger than that obtained by its competitor. 

  Pima Diabetes    Wbc     

  SOS-LLS LS MCFS MMLS  SOS-LLS LS MCFS MMLS 

5-NN m = 2 70.57 69.98  [0.21] 71.07  [0.72] 63.79  [0.00]   93.60 95.90  [1.00]  95.37  [1.00]  93.91  [0.73] 
 m = 4 72.11 70.50  [0.02]  64.53  [0.00]  71.87  [0.38]  95.69 96.28  [0.15] 96.52  [0.42] 96.43  [0.30] 
 m = 6 71.39 71.66 [0.61] 65.86  [0.00]  71.35  [0.48]  97.17 96.67  [0.13] 96.86  [0.24] 95.92  [0.00]  

NBayes m = 2 69.56 68.80  [0.12] 68.61  [0.06] 66.14  [0.00]   93.12 94.03  [0.97]  93.76  [0.90] 92.01  [0.02]  
 m = 4 70.57 70.37  [0.39] 67.30  [0.00]  70.33  [0.38]  96.52 94.80  [0.00]  96.67  [0.68] 94.94  [0.00]  
 m = 6 73.36 73.31  [0.47] 68.06  [0.00]  72.14  [0.05]   95.54 96.28  [0.98]  96.52  [1.00]  95.95  [0.86] 

SVM m = 2 74.05 74.99  [0.90] 73.57  [0.26] 65.14  [0.00]   93.96 95.83  [1.00]  94.92  [0.99]  94.84  [0.98]  
 m = 4 76.71 74.31  [0.00]  65.73  [0.00]  74.60  [0.00]   97.17 96.19  [0.01]  96.67  [0.09] 95.64  [0.00]  
 m = 6 75.86 76.14  [0.63] 67.60  [0.00]  76.45  [0.79]  96.55 96.83  [0.76] 96.62  [0.57] 96.00  [0.08] 

CART m = 2 66.75 66.80  [0.52] 67.28  [0.72] 63.68  [0.00]   94.53 95.16  [0.88] 94.96  [0.79] 93.48  [0.02]  
 m = 4 68.65 66.86  [0.03]  62.11  [0.00]  67.56  [0.16]  94.77 94.92 [0.65] 94.72  [0.45] 94.94  [0.65] 
 m = 6 71.15 70.94  [0.39] 66.12  [0.00]  69.17  [0.01]   94.17 94.32  [0.62] 94.36  [0.67] 94.29  [0.60] 

           
  Glass     Vowel    

  SOS-LLS LS MCFS MMLS  SOS-LLS LS MCFS MMLS 

5-NN m = 2 52.06 42.38  [0.00]  41.19  [0.00]  68.81  [1.00]   45.99 62.54  [1.00]  29.34  [0.00]  62.64  [1.00]  
 m = 4 52.62 64.44  [1.00]  60.63  [1.00]  73.41  [1.00]   81.40 82.26  [0.91]  60.64  [0.00]  82.86  [0.99]  
 m = 6 64.37 68.57  [0.99]  61.51  [0.06] 71.03  [1.00]   87.21 90.42  [1.00]  82.73  [0.00]  88.74  [0.99]  

NBayes m = 2 39.37 41.59  [0.95]  47.78  [0.02]  55.48  [1.00]   37.19 22.82  [0.00]  24.70  [0.00]  57.00  [1.00]  
 m = 4 42.78 49.84  [1.00]  47.78  [0.00]   65.87  [1.00]   62.93 26.67  [0.00]  28.77  [0.00]  63.84  [0.86] 
 m = 6 56.19 60.79  [1.00]  48.33  [0.00]  67.46  [0.85]  68.42 62.56  [0.00]  50.47  [0.00]  68.10  [0.35] 

SVM m = 2 50.95 45.95  [0.00]  42.46  [0.00]  50.16  [0.31]  31.48 53.91  [1.00]  23.60  [0.00]  52.95  [1.00]  
 m = 4 53.89 57.86  [1.00]  52.14  [0.14] 62.38  [1.00]   63.79 64.73  [0.87] 20.71  [0.00]  64.85  [0.89] 
 m = 6 65.71 63.17  [0.05]  62.70  [0.07] 63.89  [0.17]  67.78 69.34  [0.96]  46.52  [0.00]  70.15  [1.00]  

CART m = 2 47.06 45.56  [0.21] 47.54  [0.59] 61.43  [1.00]   42.46 56.70  [1.00]  26.13  [0.00]  56.89  [1.00]  
 m = 4 56.83 60.32  [0.99]  56.75  [0.48] 68.73  [1.00]   69.70 70.88  [0.94] 44.24  [0.00]  71.31  [0.97]  
 m = 6 65.00 64.60  [0.42] 63.81  [0.28] 68.97  [0.98]   73.55 75.15  [0.98]  60.82  [0.00]  72.78  [0.19] 

           
  Statlog     Ionosphere    

  SOS-LLS LS MCFS MMLS  SOS-LLS LS MCFS MMLS 

5-NN m = 5 60.91 55.74  [0.00]  65.13  [1.00]  55.54  [0.00]   86.57 81.67  [0.00]  83.86  [0.00]  81.29  [0.00]  
 m = 10 69.53 67.91  [0.01]  71.79  [1.00]  69.37  [0.39]  85.76 83.29  [0.01]  82.95  [0.00]  84.71  [0.15] 
 m = 15 72.45 70.95  [0.04]  71.62  [0.15] 70.49  [0.01]   85.67 84.00  [0.04]  84.67  [0.13] 86.24  [0.73] 

NBayes m = 5 54.22 51.32  [0.00]  61.34  [1.00]  52.58  [0.02]   75.71 73.43  [0.02]  77.52  [0.95]  72.48  [0.00]  
 m = 10 57.71 56.02  [0.03]  61.66  [1.00]  56.04  [0.05]   80.38 74.38  [0.00]  78.14  [0.04]  75.90  [0.00]  
 m = 15 59.13 60.28  [0.88] 59.86  [0.82] 58.74  [0.33]  85.43 79.57  [0.00]  81.86  [0.00]  79.57  [0.00]  

SVM m = 5 57.55 46.09  [0.00]  59.63  [0.99]  45.92  [0.00]   81.71 70.33  [0.00]  75.86  [0.00]  70.57  [0.00]  
 m = 10 72.98 67.12  [0.00]  72.84  [0.43] 70.26  [0.00]   87.00 79.00  [0.00]  79.43  [0.00]  77.00  [0.00]  
 m = 15 75.78 77.20  [0.97]  80.04  [1.00]  77.34  [0.97]   87.86 83.71  [0.00]  83.95  [0.00]  82.86  [0.00]  

CART m = 5 60.20 55.25  [0.00]  64.60  [1.00]  56.04  [0.00]   85.52 84.71  [0.20] 83.62  [0.02]  84.10  [0.07] 
 m = 10 68.26 66.33  [0.02]  68.78  [0.71] 66.06  [0.01]   88.52 84.57  [0.00]  83.76  [0.00]  80.76  [0.00]  
 m = 15 69.09 70.00  [0.83] 69.64  [0.73] 68.86  [0.41]  90.19 86.10  [0.00]  85.90  [0.00]  85.62  [0.00]  
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Table 4.4:  Performance comparison of the average classification accuracy based on m selected 

features with four classifiers. The value within the bracket is the p-value to test whether the accuracy 

of SOS-LLS is significantly larger than that obtained by its competitor. 

  Waveform    Mfeat Zernike   

 
 

SOS-
LLS 

LS MCFS MMLS  SOS-LLS LS MCFS MMLS 

5-NN m = 5 76.22 68.10  [0.00]  75.72  [0.05]  65.22  [0.00]   59.39 34.96  [0.00]  53.95  [0.00]  33.79  [0.00]  
 m = 10 81.68 78.19  [0.00]  79.62  [0.00]  77.78  [0.00]   73.37 53.92  [0.00]  74.91  [1.00]  42.39  [0.00]  
 m = 15 83.42 83.58  [0.73] 82.80  [0.01]  83.79  [0.93]  80.30 58.51  [0.00]  77.31  [0.00]  54.58  [0.00]  
 m = 30      80.24 74.98  [0.00]  80.03  [0.29] 66.48  [0.00]  

NBayes m = 5 75.93 67.28  [0.00]  76.03  [0.63] 65.02  [0.00]   53.68 34.53  [0.00]  53.23  [0.18] 29.97  [0.00]  
 m = 10 77.42 73.69  [0.00]  76.02  [0.00]  73.60  [0.00]   63.58 46.37  [0.00]  68.08  [1.00]  39.95  [0.00]  
 m = 15 79.90 80.22  [0.91] 79.35  [0.00]  79.69  [0.17]  71.79 50.37  [0.00]  71.85  [0.56] 45.91  [0.00]  
 m = 30 - - - -  73.04 66.21  [0.00]  73.84  [0.93] 58.47  [0.00]  

SVM m = 5 79.00 72.81  [0.00]  79.13  [0.63] 71.09  [0.00]   53.91 38.29  [0.00]  55.03  [0.97]  35.61  [0.00]  
 m = 10 84.27 81.68  [0.00]  83.70  [0.02]  81.44  [0.00]   72.13 57.13  [0.00]  72.93  [0.94] 44.23  [0.00]  
 m = 15 86.71 86.56[17] 86.45  [0.18] 86.61  [0.37]  80.75 61.08  [0.00]  78.99  [0.00]  56.28  [0.00]  
 m = 30 - - - -  82.06 78.23  [0.00]  81.89  [0.29] 72.22  [0.00]  

CART m = 5 71.00 63.00  [0.00]  71.15  [0.64] 59.87  [0.00]   50.49 31.42  [0.00]  47.52  [0.00]  30.35  [0.00]  
 m = 10 75.55 70.98  [0.00]  73.73  [0.00]  71.44  [0.00]   58.92 46.62  [0.00]  63.61  [1.00]  38.52  [0.00]  
 m = 15 75.68 76.52  [0.99]  75.75  [0.58] 76.08  [0.94]  64.25 50.05  [0.00]  64.51  [0.68] 46.83  [0.00]  
 m = 30 - - - -  66.78 63.68  [0.00]  65.73  [0.02]  56.12  [0.00]  

           
  Sonar     Musk    

 
 

SOS-
LLS 

LS MCFS MMLS  SOS-LLS LS MCFS MMLS 

5-NN m = 5 65.37 71.71  [1.00]  68.94  [0.99]  66.91  [0.84]  75.93 67.68  [0.00]  70.95  [0.00]  70.04  [0.00]  
 m = 10 66.67 70.57  [0.99]  74.72  [1.00]  69.59  [0.94]  77.86 71.44  [0.00]  73.16  [0.00]  69.86  [0.00]  
 m = 15 72.76 73.50  [0.66] 77.56  [1.00]  73.25  [0.61]  76.35 76.00  [0.38] 75.33  [0.16] 72.49  [0.00]  
 m = 30 79.84 73.82  [0.00]  79.11  [0.34] 71.87  [0.00]   79.30 78.67  [0.31] 74.11  [0.00]  71.82  [0.00]  

NBayes m = 5 53.74 68.62  [1.00]  68.62  [1.00]  60.24  [1.00]   64.18 62.35  [0.03]  64.74  [0.68] 54.67  [0.00]  
 m = 10 66.50 65.04  [0.23] 69.92  [0.97]  58.54  [0.00]   67.16 65.23  [0.04]  69.58  [0.98]  57.96  [0.00]  
 m = 15 68.46 69.43  [0.69] 76.75  [1.00]  60.89  [0.00]   71.40 63.30  [0.00]  66.25  [0.00]  58.35  [0.00]  
 m = 30 74.39 70.73  [0.02]  77.48  [0.95]  64.80  [0.00]   75.82 64.18  [0.00]  71.47  [0.00]  62.21  [0.00]  

SVM m = 5 50.41 67.89  [1.00]  60.65  [1.00]  60.41  [1.00]   58.77 57.68  [0.10] 63.51  [1.00]  55.54  [0.00]  
 m = 10 59.43 63.17  [0.99]  62.44  [0.96]  61.14  [0.83]  67.51 60.63  [0.00]  63.23  [0.00]  55.89  [0.00]  
 m = 15 69.67 63.74  [0.00]  72.20  [0.94] 60.49  [0.00]   69.12 55.54  [0.00]  67.19  [0.03]  59.16  [0.00]  
 m = 30 75.61 69.27  [0.00]  73.33  [0.07] 65.69  [0.00]   75.02 60.35  [0.00]  74.67  [0.38] 59.19  [0.00]  

CART m = 5 56.59 67.32  [1.00]  68.21  [1.00]  59.11  [0.92]  72.67 69.79  [0.01]  72.88  [0.57] 68.28  [0.00]  
 m = 10 61.06 69.43  [1.00]  72.11  [1.00]  58.78  [0.08]  71.02 72.00  [0.77] 71.61  [0.66] 67.05  [0.00]  
 m = 15 65.85 66.75  [0.70] 78.05  [1.00]  61.06  [0.00]   76.98 74.46  [0.01]  74.35  [0.02]  72.18  [0.00]  
 m = 30 72.76 68.70  [0.01]  73.25  [0.62] 67.80  [0.00]   77.72 77.44  [0.42] 76.00  [0.11] 75.19  [0.04]  

          
  Mfeat Factors    Isolet   

 
 

SOS-
LLS 

LS MCFS MMLS  SOS-LLS LS MCFS MMLS 

5-NN m = 5 71.09 69.63  [0.00]  65.70  [0.00]  63.57  [0.00]   - - - - 
 m = 10 88.28 76.85  [0.00]  89.59  [1.00]  79.44  [0.00]   32.17 36.86  [1.00]  55.73  [1.00]  29.55  [0.00]  
 m = 15 91.96 76.11  [0.00]  92.18  [0.78] 83.72  [0.00]   42.75 54.97  [1.00]  61.53  [1.00]  34.30  [0.00]  
 m = 30 94.99 89.52  [0.00]  95.06  [0.61] 91.15  [0.00]   58.35 68.83  [1.00]  74.78  [1.00]  47.13  [0.00]  
 m = 60 - - - -  74.42 76.41  [1.00]  78.29  [1.00]  55.30  [0.00]  
 m = 120 - - - -  84.05 80.79  [0.00]  84.84  [1.00]  71.57  [0.00]  
 m = 240 - - - -  88.41 84.34  [0.00]  88.15  [0.10] 81.67  [0.00]  

NBayes m = 5 65.31 64.84  [0.20] 63.99  [0.01]  60.08  [0.00]   - - - - 
 m = 10 84.44 61.49  [0.00]  85.97  [1.00]  63.86  [0.00]   21.35 21.45  [0.59] 37.05  [1.00]  23.74  [1.00]  
 m = 15 84.48 64.06  [0.00]  88.74  [1.00]  67.16  [0.00]   29.78 33.06  [1.00]  42.08  [1.00]  27.26  [0.00]  
 m = 30 91.83 77.97  [0.00]  91.86  [0.53] 78.66  [0.00]   40.98 43.97  [1.00]  55.02  [1.00]  33.94  [0.00]  
 m = 60 - - - -  59.11 56.60  [0.00]  66.20  [1.00]  43.71  [0.00]  
 m = 120 - - - -  62.66 66.64  [1.00]  71.52  [1.00]  63.09  [0.82] 
 m = 240 - - - -  77.09 75.09  [0.00]  76.78  [0.23] 77.98  [0.99]  

SVM m = 5 68.09 75.18  [1.00]  62.97  [0.00]  68.03  [0.45]  - - - - 
 m = 10 89.54 80.68  [0.00]  88.99  [0.08] 83.54  [0.00]   37.47 37.43  [0.45] 59.60  [1.00]  31.10  [0.00]  
 m = 15 93.35 83.42  [0.00]  93.01  [0.14] 88.81  [0.00]   50.55 58.21  [1.00]  65.96  [1.00]  36.23  [0.00]  
 m = 30 96.33 93.71  [0.00]  95.75  [0.01]  93.72  [0.00]   71.75 72.30  [0.96]  81.31  [1.00]  50.99  [0.00]  
 m = 60 - - - -  87.20 82.92  [0.00]  86.92  [0.10] 65.41  [0.00]  
 m = 120 - - - -  93.05 89.06  [0.00]  92.13  [0.00]  81.45  [0.00]  
 m = 240 - - - -  94.82 92.29  [0.00]  94.73  [0.24] 91.41  [0.00]  

CART m = 5 62.36 65.63  [1.00]  60.52  [0.00]  60.39  [0.00]   - - - - 
 m = 10 76.38 70.15  [0.00]  79.83  [1.00]  72.41  [0.00]   32.17 35.11  [1.00]  53.59  [1.00]  26.29  [0.00]  
 m = 15 81.02 70.04  [0.00]  82.38  [1.00]  77.49  [0.00]   40.46 52.39  [1.00]  58.47  [1.00]  29.91  [0.00]  
 m = 30 84.57 80.88  [0.00]  85.55  [0.99]  80.76  [0.00]   54.89 64.73  [1.00]  70.10  [1.00]  40.90  [0.00]  
 m = 60 - - - -  70.45 72.44  [1.00]  74.05  [1.00]  50.21  [0.00]  
 m = 120 - - - -  77.34 76.48  [0.00]  79.46  [1.00]  63.97  [0.00]  
 m = 240 - - - -  79.57 78.52  [0.00]  80.80  [1.00]  77.01  [0.00]  
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Table 4.5:  The least feature subset size, mleast, given by different feature selection methods that reach 

classification accuracy close to (with tolerance no more than 5% less) or maybe more than that 

obtained by the full feature set of size M. The symbol “●” (or “□”) marks that SOS-LLS gives smaller 

(or larger) value of mleast than the compared method. Results are based on eight benchmarks datasets. 

 Pima Diabetes  Wbc  Glass   Vowel 

5-NN M =  8    71.94 ± 1.36  M = 9    96.83 ± 0.58  M = 9    65.40 ± 2.32  M = 10    92.31 ± 0.70 
 mleast Subset Accuracy  mleast Subset Accuracy  mleast Subset Accuracy  mleast Subset Accuracy 

SOS-LLS 2 70.57 ± 1.11  2 93.60 ± 0.62  5 63.49 ± 2.80  7 90.59 ± 0.91 
LS 2 69.98 ± 0.94  2 95.90 ± 0.66  4    □ 64.44 ± 2.16  6    □ 90.42 ± 0.81 
MCFS 2 71.07 ± 1.29  2 95.37 ± 0.63  5 64.84 ± 2.24  7 89.73 ± 0.72 
MMLS 3    ● 71.94 ± 1.05  2 93.91 ± 0.76  2    □ 68.81 ± 2.23  6    □ 88.74 ± 0.74 
            

NBayes M     73.38 ± 1.05  M 96.26 ± 0.52  M     62.70 ± 2.80  M    73.03 ± 1.20 
 mleast Subset Accuracy  mleast Subset Accuracy  mleast Subset Accuracy  mleast Subset Accuracy 

SOS-LLS 2 69.56 ± 0.80  2 93.12 ± 0.77  9 62.70 ± 2.80  8 71.77 ± 1.00 
LS 3    ● 70.17 ± 1.13  2 94.03 ± 0.60  7    □ 61.35 ± 2.75  7    □ 69.71 ± 1.13 
MCFS 7    ● 69.74 ± 1.17  2 93.76 ± 0.57  9 62.70 ± 2.80  9    ● 72.31 ± 0.94 
MMLS 4    ● 70.33 ± 1.08  2 92.01 ± 0.67  3    □ 65.00 ± 2.61  8 70.96 ± 0.99 
            

SVM M     76.69 ± 1.26  M 96.31 ± 0.43  M     62.06 ± 2.52  M    77.04 ± 1.01 
 mleast Subset Accuracy  mleast Subset Accuracy  mleast Subset Accuracy  mleast Subset Accuracy 

SOS-LLS 2 74.05 ± 0.99  2 93.96 ± 0.61  6 65.71 ± 2.33  8 75.69 ± 1.09 
LS 2 74.99 ± 1.08  2 95.83 ± 0.49  5    □ 62.86 ± 1.77  8 75.34 ± 1.35 
MCFS 2 73.57 ± 1.07  2 94.92 ± 0.47  6 62.70 ± 3.24  9    ● 73.75 ± 0.95 
MMLS 3    ● 73.49 ± 0.87  2 94.84 ± 0.60  4    □ 62.38 ± 2.22  8 75.12 ± 1.07 
            

CART M     70.61 ± 1.22  M 94.03 ± 0.80  M     66.75 ± 2.68  M    74.33 ± 1.43 
 mleast Subset Accuracy  mleast Subset Accuracy  mleast Subset Accuracy  mleast Subset Accuracy 

SOS-LLS 4 68.56 ± 1.48  2 94.53 ± 0.80  9 66.75 ± 2.68  5 71.90 ± 1.43 
LS 3    □ 67.28 ± 1.49  2 95.16 ± 0.69  7    □ 66.27 ± 3.02  4    □ 70.88 ± 1.21 
MCFS 2    □ 67.28 ± 1.16  2 94.96 ± 0.68  9 66.75 ± 2.68  7    ● 71.94 ± 1.02 
MMLS 3    □ 68.24 ± 1.43  2 93.48 ± 0.59  3    □ 65.71 ± 2.22  4    □ 71.31 ± 1.41 
            
 Statlog   Ionosphere  Waveform  Mfeat Zernike 

5-NN M = 1 8    70.85 ± 1.02  M = 33    83.19 ± 1.48  M = 40 81.15 ± 0.40  M = 47    80.75 ± 0.49 
 mleast Subset Accuracy  mleast Subset Accuracy  mleast Subset Accuracy  mleast Subset Accuracy 

SOS-LLS 7 68.34 ± 1.18  4 83.52 ± 1.54  6 77.13 ± 0.42  13 79.13 ± 0.56 
LS 9    ● 69.33 ± 1.15  2    □ 81.10 ± 1.45  10  ● 78.19 ± 0.36  32  ● 76.53 ± 0.59 
MCFS 7 68.22 ± 1.04  3    □ 82.57 ± 1.59  7    ● 76.95 ± 0.41  15  ● 77.31 ± 0.61 
MMLS 9    ● 68.60 ± 1.07  2    □ 82.00 ± 1.21  10  ● 77.78 ± 0.40  38  ● 77.16 ± 0.59 
            

NBayes M     61.52 ± 1.49  M 91.24 ± 1.05  M     79.75 ± 0.30  M    72.48 ± 0.58 
 mleast Subset Accuracy  mleast Subset Accuracy  mleast Subset Accuracy  mleast Subset Accuracy 

SOS-LLS 7 58.88 ± 1.35  16 88.00 ± 1.51  4 75.37 ± 0.46  13 69.40 ± 0.87 
LS 13  ● 59.94 ± 1.08  26   ● 90.38 ± 1.17  11  ● 76.85 ± 0.37  31  ● 68.32 ± 0.62 
MCFS 2    □ 61.14 ± 1.12  22   ● 88.86 ± 1.35  5    ● 76.03 ± 0.39  11  □ 68.53 ± 0.58 
MMLS 15  ● 58.74 ± 1.20  21   ● 87.81 ± 1.50  13  ● 76.48 ± 0.33  39  ● 68.78 ± 0.86 
            

SVM M     78.76 ± 0.83  M 86.90 ± 1.19  M     86.23 ± 0.33  M    82.17 ± 0.40 
 mleast Subset Accuracy  mleast Subset Accuracy  mleast Subset Accuracy  mleast Subset Accuracy 

SOS-LLS 12 75.74 ± 1.22  6 84.00 ± 1.29  8 82.06 ± 0.39  13 79.23 ± 0.59 
LS 15  ● 77.20 ± 0.92  15  ● 83.71 ± 1.40  10  ● 81.68 ± 0.42  28  ● 78.12 ± 0.43 
MCFS 12 79.17 ± 0.96  15  ● 83.95 ± 1.30  8 82.24 ± 0.46  15  ● 78.99 ± 0.75 
MMLS 14  ● 76.02 ± 1.17  16  ● 84.00 ± 1.20  11  ● 82.76 ± 0.34  36  ● 78.47 ± 0.67 
            

CART M     70.51 ± 1.05  M 87.24 ± 1.58  M     74.34 ± 0.49  M    67.51 ± 0.80 
 mleast Subset Accuracy  mleast Subset Accuracy  ml5east Subset Accuracy  mleast Subset Accuracy 

SOS-LLS 8 67.83 ± 1.15  5 85.52 ± 1.32  5 71.00 ± 0.48  13 63.64 ± 0.66 
LS 11  ● 66.92 ± 1.12  5 84.71 ± 1.39  9    ● 70.40 ± 0.64  30  ● 63.68 ± 0.82 
MCFS 7    □ 68.17 ± 1.36  6    ● 87.19 ± 1.01  5 71.15 ± 0.69  10  □ 63.61 ± 0.78 
MMLS 13  ● 67.79 ± 1.38  3    □ 85.67 ± 1.61  9    ● 69.91 ± 0.39  38  ● 64.88 ± 0.67 
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Table 4.6:  The least feature subset size, mleast, given by different feature selection methods that reach 

classification accuracy close to (with tolerance no more than 5% less) or maybe more than that 

obtained by the full feature set of size M. The symbol “●” (or “□”) marks that SOS-LLS gives smaller 

(or larger) value of mleast than the compared method. Results are based on four benchmarks datasets. 

 Sonar  Musk  Mfeat Factors  Isolet 

5-NN M =  60    80.65 ± 1.87  M = 166 87.26 ± 1.41  M = 216 96.74 ± 0.28  M = 617    88.60 ± 0.20 
 mleast Subset Accuracy  mleast Subset Accuracy  mleast Subset Accuracy  mleast Subset Accuracy 

SOS-LLS 28 78.62 ± 2.35  65 84.60 ± 1.20  16 93.14 ± 0.43  120 84.05 ± 0.25 
LS 41  ● 79.43 ± 2.00  120  ● 84.60 ± 1.12  60  ● 92.82 ± 0.52  160  ● 84.65 ± 0.27 
MCFS 21  □ 78.37 ± 2.08  100  ● 84.11 ± 1.25  15  □ 92.18 ± 0.39  115  □ 83.99 ± 0.28 
MMLS 58  ● 79.35 ± 2.34  75    ● 83.82 ± 1.14  60  ● 93.22 ± 0.37  370  ● 83.96 ± 0.30 
            

NBayes M     75.69 ± 2.58  M 82.08 ± 1.46  M     94.04 ± 0.35  M    82.79 ± 0.42 
 mleast Subset Accuracy  mleast Subset Accuracy  mleast Subset Accuracy  mleast Subset Accuracy 

SOS-LLS 24 75.85 ± 2.65  60 79.21 ± 1.61  20 90.25 ± 0.46  320 78.46 ± 0.40 
LS 34  ● 75.45 ± 2.34  135  ● 78.77 ± 1.50  110  ● 89.69 ± 0.58  410  ● 78.39 ± 0.39 
MCFS 13  □ 75.69 ± 1.72  55    □ 80.98 ± 1.88  16    □ 90.26 ± 0.51  320 78.44 ± 0.39 
MMLS 52  ● 75.85 ± 2.27  125  ● 78.95 ± 1.39  120  ● 89.99 ± 0.62  260  □ 78.47 ± 0.38 
            

SVM M     77.89 ± 2.48  M 85.65 ± 1.13  M     97.61 ± 0.35  M    96.28 ± 0.17 
 mleast Subset Accuracy  mleast Subset Accuracy  mleast Subset Accuracy  mleast Subset Accuracy 

SOS-LLS 29 75.77 ± 2.10  85 83.26 ± 1.36  15 93.35 ± 0.47  95 91.55 ± 0.26 
LS 34  ● 75.94 ± 2.19  145  ● 82.77 ± 1.22  25  ● 93.42 ± 0.34  190  ● 91.77 ± 0.27 
MCFS 31  ● 76.67 ± 2.33  60    □ 82.81 ± 1.08  16  ● 94.22 ± 0.37  105  ● 91.54 ± 0.24 
MMLS 59  ● 78.37 ± 1.65  125  ● 83.51 ± 1.29  27  ● 93.12 ± 0.51  250  ● 91.62 ± 0.25 
            

CART M     70.08 ± 2.27  M 79.37 ± 1.96  M     87.72 ± 0.49  M    81.05 ± 0.29 
 mleast Subset Accuracy  mleast Subset Accuracy  mleast Subset Accuracy  mleast Subset Accuracy 

SOS-LLS 13 69.76 ± 2.16  15 76.98 ± 1.52  18 83.42 ± 0.55  110 77.27 ± 0.39 
LS 6    □ 68.94 ± 2.98  18  ● 78.21 ± 1.45  60  ● 84.76 ± 0.82  110 76.50 ± 0.32 
MCFS 6    □ 69.43 ± 2.76  26  ● 77.09 ± 1.66  17  □ 83.60 ± 0.50  85    □ 76.69 ± 0.40 
MMLS 33  ● 68.86 ± 2.73  20  ● 76.46 ± 1.41  70  ● 84.73 ± 0.67  210  ● 76.87 ± 0.41 

 

Table 4.7:  Tabulations of the win/tie/loss counts of the SOS-LLS method versus other methods. The 

counts are based on the results presented in Table 4.5 and Table 4.6. 

Win/tie/lose LS MCFS MMLS 

5-NN 7 / 2 / 3 3 / 5 / 4 8 / 1 / 3 
Naïve Bayes 9 / 1 / 2 4 / 3 / 5 8 / 2 / 2 

SVM 8 / 3 / 1  6 / 5 / 1 9 / 2 / 1 
CART 5 / 3 / 4 3 / 3 / 6 7 / 1 / 4 

Average 7.25 / 2.25 / 2.5 4 / 4 / 4 8 / 1.5 / 2.5 

Based on the results presented in Table 4.7, it is clear that in comparison to MMLS, the 

proposed SOS-LLS method gives outstanding performance in terms of smaller subset size 

among all the four classifiers. SOS-LLS also shows remarkable performance for three out of 

four classifiers when compared to Laplacian Score but it narrowly wins with CART classifier.  

It should be stressed that the proposed method does not perform as good as MCFS except with 

SVM classifier. Nevertheless, it is worth to point out that the least number of features, leastm , 

attained by SOS-LLS, is not significantly different than that by the MCFS and relatively much 

less than the number of original features.  This can be observed clearly from the results reported 
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in Table 4.5 and Table 4.6, especially for cases where the original datasets have more than 40 

features.   

By referring to the average results listed in the last row of Table 4.7, it can be concluded 

that overall SOS-LLS is the winner against Laplacian Score and MMLS if the main interest is 

to find a smaller feature subset to represent the full feature set closely. In addition, SOS-LLS 

is generally comparable to MCFS, but it should be emphasized that MCFS can only achieve its 

best performance when the number of true classes of the dataset is known (Yan & Yang, 2015).   

4.5 Summary 

A new unsupervised data learning method, called sequential orthogonal search for local largest 

structure (SOS-LLS), has been introduced for feature selection and ranking. The method 

exploits the information lie in the first component of LPP and the structure of its mapping 

function and uses the component as a reference to select significant features that preserves the 

most important local structure information of the data. A simple yet effective sequential 

orthogonal feature search strategy has been employed to evaluate the significance of candidate 

features. 

Experiments on two datasets with known data characteristics reveal that SOS-LLS is 

able to rank features appropriately according to their significance in representing the reference 

response variable. More experimental results based on twelve datasets clearly show the ability 

of SOS-LLS to yield small feature subsets that well represent the original full feature set in 

terms of classification performance. This performance achievement has been verified with four 

classifiers, each of which has distinct learning mechanism and thereby demonstrates the fitness 

of use for different problems. Owing to the fact that SOS-LLS largely outperforms the MMLS 

method, it does reaffirm that focusing on preserving local structure is more critical than 

preserving the global structure for unsupervised feature selection. 
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Chapter 5                                     

Feature Selection based on Kernel Pre-

Images 

5.1 Introduction 

This chapter presents the third feature selection method which utilises kernel pre-images (KPI) 

to guide the search for significant features in an unsupervised manner under the assumption 

that data are contaminated by noise. Again, here the same sequential orthogonal search (SOS) 

strategy as in Chapter 4 is employed but a different implementation procedure based on kernel 

pre-image approach is proposed to deal with attribute noise. Hence, the new feature selection 

scheme is referred to as the SOS-KPI method. 

Theoretical background and brief overview of the pre-image problem based on kernel 

PCA are given in Section 5.2 since the idea of this subject forms the basis for the new feature 

selection method. The proposed method is then presented in detail in Sections 5.3 and 5.4, 

whereas the experimental setup and procedure employed to evaluate the overall performance 

of the SOS-KPI method is explained in Section 5.5. Next, the results of the experiments 

including comprehensive comparison with other state-of-the-art methods are reported and 

discussed in Section 5.6. The chapter is close with a summary in Section 5.7.  

5.2 Kernel PCA and the Pre-Image Problem 

Principal component analysis (PCA) is a powerful method that can be used to identify useful 

patterns in multidimensional datasets by projecting and compressing the data into lower 

dimensional space with the least possible amount of information loss. In particular, PCA 

attempts to identify lower dimensional hyperplane that sufficiently describes and represents the 

data in such a way where the sum of squares of orthogonal deviations (errors) of the data 

observations from the hyperplane is minimized, or equivalently, the variation of the projections 
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is maximized.  As these data projections create new features  in lower dimensional space, the 

method is regarded as an example of feature extraction method. Whilst PCA has been widely 

used and works fairly well for various applications, it can only identify linear structure of the 

data and thus prone to loss  useful nonlinear structure. 

Over the past few decades, there has been a lot of interest on kernel methods in various 

learning systems for analysing nonlinear patterns. The basic idea of kernel methods is to map 

nonlinear data that is linearly inseparable in the original input space  to a higher dimensional 

(possibly infinite) feature space where linear separations (or relations) can be achieved. Since 

the linear geometry of the data in the feature space is embedded in dot products between data 

instances, the mapping from the original data space to the feature space does not have to be 

performed explicitly but just needs some defining form of dot products in the original input 

space. This nonlinear mapping strategy is the so called ‘kernel trick’, which is the essence of 

the kernel methods. Taking into advantage of this kernel trick implies that the coordinates of 

the data in the feature space are not required. Kernel methods are preferable to other nonlinear 

methods because they do not involve any nonconvex nonlinear optimization procedure but 

merely require solution for the eigenvalue problem (Kwok & Tsang, 2004), thus  the risk of 

being trapped in local minima can be avoided. This special feature, along with the brilliant idea 

of kernel approach, have led to many significant research advances such as kernel principal 

component analysis (kernel PCA) (Scholkopf & Smola, 1997), kernel discriminant analysis 

(Mika, et al., 1999a; Liu, et al., 2004; Zheng, et al., 2014), kernel-based clustering (Camastra 

& Verri, 2005; Yin, et al., 2010; Tzortzis & Likas, 2012; Kang, et al., 2017) and kernel 

regression (Blundell & Duncan, 1998; Yan, et al., 2008; Brouard, et al., 2016).  

It is not exaggerate to claim that kernel PCA is one of the most influential kernel-based 

methods for data dimensionality reduction reported in the literature. Kernel PCA was originally 

introduced by Scholkopf & Smola (1997) as a nonlinear feature extraction method  to overcome 

the drawback of PCA which can only find linear structure in the data as mentioned earlier. 

Kernel PCA mimics the underlying concept of PCA but it applies the same linear scheme in 

the feature space instead of in the input space. Since its introduction, there has been a great 

deal of attention given to expand the approach for a variety of applications such as image 

processing (segmentation/face recognition) (Schmidt, et al., 2016), process monitoring (Zhang, 

et al., 2013; Reynders, et al., 2014; Jaffel, et al., 2017), fault detection (Choi, et al., 2005; Navi, 

et al., 2015), and forecasting, just to name a few.   
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In recent years, finding pre-images based on kernel PCA has been proven to be very 

useful for pattern denoising. Given a noisy pattern ,x the first step of the denoising procedure 

(refer to Figure 5.1) is to map the noisy pattern from the input space into the feature space. The 

mapping   which is normally nonlinear, utilizes the kernel trick in order to avoid explicit 

computation relating to mapped shaped vectors in the feature space, so that the entire operations 

in the feature space can be performed by merely using the dot products. PCA is then applied 

on the -mapped pattern, from which the principal directions in the feature space of the input 

data can be obtained. Next, the -mapped pattern is further projected onto the subspace 

spanned by the most significant principal directions which are characterised by the leading 

eigenvectors. The projection vector onto this subspace, denoted by )(xP , can be considered as 

the sought denoised pattern that retain the main structure of x  while the projection on the 

complementary space can be regarded as the component that pick up the noise lies in x . The 

projection )(xP , however, is still reside in the feature space and it has to be mapped back to the 

input space in order to observe its pre-image x̂ , that is, the ultimate denoised pattern. 

 

Figure 5.1:  Pre-image problem in kernel PCA. 

How to obtain the reverse mapping from the feature space back to the input space is 

often referred to as the “pre-image problem”. A pre-image in a kernel method is therefore can 

Input space Feature space 
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be defined as follows: If )(xP  is the projection of )(x  onto the kernel principal component 

subspace in the feature space where x  is a pattern in the input space while   is some map 

function (usually nonlinear), a pre-image x̂  is a pattern in the input space that corresponds to 

)(xP  such that )(ˆ
)(

1
xx  P .  As the projection )(xP  captured the main structure of x , the pre-

image x̂  is then can be viewed as a denoised version of x .  

The most challenging part of the pre-image problem is that the mapping function from 

the input space to the feature space is not isomorphic in general (Abrahamsen & Hansen, 2009). 

Thus, one cannot expect a straightforward solution as the exact pre-image typically does not 

exist and even if it exists, it is not always unique. In order to alleviate this problem, many 

methods resort to approximate solution. A prominent pioneer effort in this direction was given 

by Mika et al. (1999b), who used a gradient decent approach to estimate the pre-image. Yet, 

the approach is numerically unstable, sensitive to the choice of initial starting point, and 

generally converge to a local optimum solution (Abrahamsen & Hansen, 2009). To address 

these problems, an approach using kernel ridge regression was introduced in Weston et al. 

(2004) but it requires that the training patterns should have a reasonably good distribution to 

represent the points that will be used to compute the pre-images. In Kwok & Tsang (2004), an 

approach based on the relationship between feature-space distance and input-space distance 

together with the idea of multi-dimensional scaling was taken to find the pre-image. By 

utilizing linear algebra manipulation, this method not only offers non-iterative procedure but it 

also tackled the problems inherent in the approach taken by Mika et al.(1999b). More recent 

techniques to estimate the pre-image can be traced from Zheng et al. (2010); Abrahamsen & 

Hansen (2011); Kallas et al. (2013); Shinde et al. (2014) and Li, et al., (2016). 

5.3 Feature Selection Based on Pre-Images of Kernel PCA 

This section is mainly devoted to present a new feature selection method dealing with data 

contaminated by attribute noise from which the search for a subset of relevant features will be 

performed. A new feature selection method based on pre-images of kernel PCA is introduced 

towards this goal. In this new method, the feature selection problem is formulated into a 

multiple linear regression model by considering the pre-images as the dependent (response) 

variables while all the original features as the independent variables. The key idea underlying 

the proposed method is to identify features that are significant in characterising the pre-images. 



 

85 
 

Pre-images are  useful as they recover the denoised variation patterns of  noisy input data and 

as such they have the potential to guide the search for significant features. The method is 

coupled with the sequential orthogonal search strategy so that identifying the significant 

features can be made in a stepwise manner, one after the other. At each step, the most 

representative feature to describe the overall variation patterns given by the pre-images is 

selected. 

In principle, the proposed method should work well with any approach for estimating 

the kernel pre-images. However, the approach developed by Kwok & Tsang (2004) is adopted 

here as a base technique to perform the estimation due to its aforesaid advantages and 

widespread usage.   

Let },,,{ 21 Nxxx   be a set of N  pattern (observation) vectors in ℝ�. The proposed 

feature selection procedure begins at computing the pre-image vector ix̂  associated to the input 

pattern vector ix  for each i , provided that )()ˆ(
i

Pi xx    when the exact pre-image exists or 

otherwise )()ˆ(
i

Pi xx   . Essentially, this first step serves as a tool to learn the intrinsic 

structures within the noisy input patterns and later on recover the denoised variation patterns.  

Suppose that the set },,,{ 21 MF fff   denotes an original dataset of M  features in the 

input space where T)](,),2(),1([ Nfff jjjj f  is the j th feature vector formed by N  

patterns and )](,),(),([ 21 ififif M  is the i th pattern vector. By retaining the same notations 

used in the preceding paragraph, the i th pattern vector is thus )](,),(),([ 21 ififif Mi x .  

Let T
)( )](ˆ,),2(ˆ),1(ˆ[ˆ Nxxx kkkk x  denotes a vector formed based on the vector entries 

of the pre-images )](ˆ,),(ˆ),(ˆ[ˆ
21 ixixix Mi x . As such, this yields M  unit vectors of )(

ˆ
kx .  

Here, the feature selection approach is formulated as a multiple linear regression problem by 

setting the vector )(
ˆ

kx  as the dependent variable while all the original feature vectors 

Mfff ,,, 21    as the independent variables. In this formulation, it is assumed that every vector 

)(
ˆ

kx  can be approximated by a linear combination of the M  features using the following 

regression model: 

 
k

M

j
jkjk efx  

1
,)(

ˆ   (5.1) 
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where Mjjj ,2,1, ,,,    are the regression coefficients while the term ke  represents the 

unobservable error of the approximation.  

Often, not all of the M  features made a significant contribution to the variation in the 

dependent variable )(
ˆ

kx  and some even perhaps redundant with other features. This observation 

brought up the idea that )(
ˆ

kx  can be well approximated by merely relying on a subset of F and 

thereby feature selection is required to play its role. Let the subset be },,,{ 21 mmS zzz    

where Fj z . As )(
ˆ

kx  depends on the subset mS , the regression model (5.1) can be rewritten 

as  

 
k

m

j
jkjk ezx  

1
,)(

ˆ   (5.2) 

This new reduced regression model became the primary reference model for the proposed 

method in this chapter.  

 

5.4 Monitoring Criterion and Search Procedure 

Based on the regression model (5.2), the objective of the proposed feature selection is thus 

stipulated to select the best feature subset },,,,{ 21 mmS zzz   that can represents any 

response variable vector )(
ˆ

kx . In other words, the requirement is to select a feature subset mS   

that adequately explains the overall variation in the dependent variables )(
ˆ

kx . To fulfil this 

requirement, an adaptation to the assessment criteria presented in Billings & Wei (2005) and 

Wei & Billings (2007) is made for the present work.  

The reduced regression model (5.2) can be presented in a compact matrix form then 

 
kjk ePθx )(

ˆ  (5.3) 

Where ],,,[ 21 mzzzP    is a full column rank matrix and  T,,2,1 ,,, jmjjj  θ  is a vector 

whose elements are regression coefficients.  Note that the matrix P  in equation (5.3) can be 

decomposed into the product of two matrices as  
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 QRP   (5.4) 

Where R  is an mm  upper triangular matrix with unity diagonal elements while Q  is an 

mN  matrix whose columns correspond to orthogonal vectors mqqq ,, 21  . How these 

orthogonal vectors can be obtained will be explained later. Substituting (5.4) into equation (5.3) 

and applying some simple algebra gives  

 
kkkkk eQgeRθPRx   ))((ˆ 1

)(  (5.5) 

where T
,2,1, ],,,[ mkkkkk ggg Rθg  is a vector of m  orthogonal coefficients. By virtue of 

the orthogonal property of ,Q  each coefficient jkg ,  can be readily computed based on )(
ˆ

kx   

and Q as follows: 

 )/()ˆ( TT
)(, jjjkjkg qqqx .  (5.6) 

Using relation (5.6) in equation (5.5), one can then express the total sum of squares (or total 

variation) of the overall response variable )(
ˆ

kx  from the origin as 

 
kk

m

j
jjjkkk g eeqqxx T

1

T2
,)(

T
)(
ˆˆ  



 (5.7) 

Notice that the total variation consists of two parts. One is the explained variation, given by 




m

j
jjjkg

1

T2
, qq which is obtained from the relationship of )(

ˆ
kx  with mqqq ,, 21   (or equivalently 

mzzz ,,, 21  ). Another one is the unexplained variation which is due to chance or error, 

represented by the term kk eeT . The explained variation indicates the proportion to which the 

variation in the dependent variable )(
ˆ

kx  is described by the independent variables mqqq ,, 21   

Hence, jjjkg qqT2
, is referring to the amount of contribution made by jq  to the total variation. 

This idea has led to the concept of error reduction ratio (ERR) obtained by including jq  (or 

equivalently jz ) to the model (5.3), which is defined by 

 

))(ˆˆ(

)ˆ(

ˆˆ

)(
),ˆ(ERR

T
)(

T
)(

2T
)(

)(
T

)(

T
,

)(

jjkk

jk

kk

jjjk

jk
qqxx

qx

xx

qqg
qx  . (5.8) 
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The above ratio is employed here as an evaluation criterion to measure the significance of a 

candidate feature in representing the full feature set.  

Every Fj f  is considered as a candidate feature to be chosen as the most significant 

feature, 1z . Once 1z  is identified, it is then directly taken as 1q , that is, 11 zq  . As this is the 

case, the error reduction ratio to be computed in detecting the first significant feature is as 

below: 

 

))(ˆˆ(

)ˆ(
),ˆ(ERR

T
)(

T
)(

2T
)(

)(

jjkk

jk

jk
ffxx

fx
fx   (5.9) 

Before the first feature can be selected, the followings are determined: 

 
Mjkjk jk ,,2,1,;),ˆ(ERR]1;,[ERR )(  fx  (5.10) 

 





M

k

jk
M

j
1

]1;,[ERR
1

]1;[ERR  (5.11) 

 ]}1;[ERR{maxarg
1

1 j
Mj 

  (5.12) 

The first significant feature is then chosen by taking 
11 fz   and the associated orthogonal 

variable is then set as 11 zq  .  Note that ERR  is used to measure the percentage of variation 

in the overall response variables )(
ˆ

kx  that can be explained by variable kq  (which also means 

the feature vector kz ) individually. 

Assume that a subset S  of )1( r  features, 121 ,,, rzzz  , has already been selected 

from the full feature set of size Mand these features have been transformed into a new set of 

orthogonal variables 121 ,,, rqqq   via some type of orthogonal transformation.  In order to 

select the r th significant feature and add it to the subset ,S  consider each SFj α . The r

th orthogonal variable, )(r
jq , associated to jα  is calculated by 

 







1

1
T

T

)(
r

k
k

kk

kj

j
r
j q

qq

qα
αq . (5.13) 

The followings are then obtained: 
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 ),ˆ(ERR];,[ERR )(
)(

r
jkrjk qx  (5.14) 

 





M

k

rjk
M

rj
1

];,ERR[
1

];[ERR  
(5.15) 

 ]};[ERR{maxarg
1

rj
Mj

r


 . (5.16) 

Thereby, the r th significant feature can be selected as 
rr fz  and its corresponding 

orthogonal variable is therefore )(r
r r

qq  .  

Subsequent significant features can be found one by one iteratively (also known as 

sequential search strategy) via the same search procedure as listed from equations (5.13) 

through (5.16). At each search iteration, any new feature to be selected is the one that supposed 

to increase the percentage of contribution in explaining the variation in the overall response 

variables )(
ˆ

kx  more than other remaining candidate features. To ease the discussion for the rest 

of this chapter, the newly proposed feature selection approach is referred to as sequential 

orthogonal search for kernel pre-images (SOS-KPI) method. The pseudo- code of the SOS-KPI 

is given in Figure 5.2. 
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Input:    },,,{ 21 MF fff    // A complete dataset of M features  

Output:  S     // Subset of features 

Initialize:  },,2,1{1 ML  , {}S  

  m     // Number of features to be selected 
 

Find )(
ˆ

kx  where Mk ,,2,1    // As described in Section 5.4 

 

for 1j  to M  

for 1k  to M  

),ˆERR(]1;,ERR[ )( jkjk fx ; // As defined by equation (5.9) 

 end for  

 



M

k

jk
M

j
1

]1;,[ERR
1

]1;[ERR  

end for  

]}1;[ERR{maxarg
1

1 j
Lj

  such that 11 L ;  
11 fq  ;  

11 fz  ;   

add 1z  to S ; 

 
for 2r  to m   

}{\ 11  rrr LL  ;   

for rLj  







1

1
T

T
)(

r

k kk

kk
j

r
j

qq

qf
fq ; 

),ˆERR(];,ERR[ )(
)(

r
jkrjk qx  where Mk ,,2,1  ;  

 end for  

 



M

k

rjk
M

rj
1

];,[ERR
1

];[ERR  

 ]};[ERR{maxarg rj
rLj

r


  such that rr L ; 

;)(r
r r

qq   
rr fz  ;   

add rz  to S ; 

end for 

Figure 5.2:  The SOS-KPI algorithm. 

 

5.5 Experimental Setup and Procedure 

5.5.1 Modified Benchmark Datasets 

In order to evaluate the overall performance of SOS-KPI method, we conducted our simulation 

experiments on 12 benchmark datasets which are frequently used in the literature.  These 

datasets can be retrieved online from the UCI machine learning repository. We picked the 
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datasets based on three different categories of dimensional size: low-dimension )20( M  

medium-dimension )10020(  M , and high-dimension )100( M . Table 5.1 summarises 

the important characteristics regarding the used datasets.  

Table 5.1:  Characteristics of the used benchmark datasets. 

Dataset Number of features Number of observations Number of classes 

Pima Diabetes 8 768 2 
Glass [N] 9 214 7 
Vowel [N] 10 990 11 
Statlog [N] 18 846 4 
Wdbc [N] 30 569 2 
Ionosphere  33 351 2 
Waveform  40 5000 4 
Mfeat Zernike [N] 47 2000 10 
Sonar  60 208 2 
Musk [N] 166 476 2 
Mfeat Factors [N] 216 2000 10 
Isolet 649 2000 26 

[N]: The raw dataset was normalized before the experiment. 

The main objective of SOS-KPI method is to gain a robust method that is less sensitive 

to attribute noise. However, all twelve datasets we used do not really contain noise. Hence, 

artificial noise were added into the attributes (or features) of our experimental datasets. It has 

been proven in Zhu & Wu (2004) and Xiao et al. (2010) that as the attribute noise level goes 

higher, the classification accuracy tend to be lower. As such, it is not important to make 

comparison with results when the datasets are clean.   

There are two ways how attribute noise is usually distributed in a dataset, one is 

following Gaussian distribution and the other following uniform distribution. This has led to 

two common implementations of attribute noise injection, namely Gaussian attribute noise 

scheme and uniform attribute noise scheme. In this study, though, we only applied the latter 

because uniform attribute noise was found to be more disruptive than the Gaussian attribute 

noise (Saez, et al., 2013; Saez, et al., 2014).  Particularly, we performed the same noise injection 

mechanism adopted by Teng (1999) and Zhu et al. (2004) to include the required uniform 

attribute noise to the datasets. Two levels of attribute noise are considered: 10% and 20%. 

According to the noise injection mechanism, approximately %r  of the N observations from 

each feature vector will be given some random values. Since our datasets only consist of 

numerical features, the random values are generated between the maximum and minimum 
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values of each feature vector being considered. As this perfectly follows the standard random 

sampling procedure, every observation is thus has equally likely chance to be injected by noise. 

Therefore, we only experimented with completely random attribute noise (Howell, 2007), 

which means noise introduced into an attribute has weak relationship with noise in other 

attributes.  

5.5.2 Comparison with Other Methods 

The results obtained based on SOS-KPI method are compared with other state-of-the-art 

feature selection methods which have been used in the previous chapter: Laplacian Score (LS), 

Multi-Cluster Feature Selection (MCFS) and Minimum-Maximum Laplacian Score (MMLS). 

These three methods are used again here for comparison not only because they are promising 

techniques but also because they involve same kind of feature selection scheme that evaluate 

features in the input space using unsupervised setting as for SOS-KPI.   

5.5.3 Validation Classifiers 

As the proposed feature selection method is of filter model, it is therefore imperative to test its 

versatility across different classifiers that belong to different learning paradigms. Looking at 

this perspective, four popular classifiers which have been acclaimed as among the ten most 

influential algorithms in data mining (Wu, et al., 2008) are employed to assess the predictive 

ability of the feature subsets induced by the proposed method. The classifiers are: k-nearest 

neighbour (k-NN), Naïve Bayes (NBayes), support vector machine (SVM), and classification 

and regression trees (CART). 

The number of nearest neighbours of the k-NN classifier was set to  for all 

experiments (i.e., all different combinations of noise level and the tested feature selection 

method). This setting ensures a fair comparison between the four methods.  

5.5.4 Cross-Validation Procedure 

To prevent overfitting problem, the classification performance of each generated feature subset 

was evaluated over 30 rounds of holdout cross validation strategy. In each round, the strategy 

was set to split randomly 80% of the dataset for training while the remaining 20% were holdout 

5k
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for testing. The classification results are recorded based on the average classification accuracies 

computed from that 30 rounds of cross-validation.     

5.6 Numerical Results and Discussion 

Table 5.2 through Table 5.5 show the least number of selected features, mleast,  achieved by 

different feature selection methods that gives classification accuracy more than or close to the 

one obtained by using the full feature set with at most 5% less than the figure recorded for full 

feature set. Each mleast was determined using a one-tailed two-sample z-test, comparing the 

average classification accuracy yielded by the full feature set to the average classification 

accuracy given by the targeted feature subset. Results in Table 5.2 through Table 5.5 are 

marked with ‘●’ if the SOS-KPI method is statistically superior to the compared method 

whereas the symbol ‘□’ is reserved to denote that the SOS-KPI method is statistically inferior 

to the compared method.  

Results from Table 5.2 through Table 5.5 are then summarised into Table 5.6 through 

Table 5.9, so as to demonstrate the potential of the proposed SOS-KPI to produce optimal 

feature subset in representing the full feature set. Particularly, the information provided in 

Table 5.6 and Table 5.7 are aimed to gain an insight on how well the SOS-KPI method performs 

for the three specified categories of dimensional size. In the meantime, Table 5.8 and Table 5.9 

are useful mainly for demonstrating the feasibility of SOS-KPI as a robust filter feature 

selection that capable to perform with different classifiers. The win/tie/loss scores recorded in 

Table 5.6 through Table 5.9 are referring to the number of test datasets for which the SOS-KPI 

method yields lower/equal/higher subset size compared against other feature selection 

methods.  

As can been seen from Table 5.6, the SOS-KPI method shows higher performance than 

the all three methods in comparison for moderate and high dimensional sizes when 10% of 

attribute noise was added to the datasets. Considering the low dimensional size category, the 

proposed SOS-KPI method only loses to Laplacian Score.  

It appears from Table 5.7 that the SOS-KPI method also performs better than the others 

for moderate and high dimensional sizes when test datasets were corrupted with 20% of 
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attribute noise. However, the proposed method has been defeated by all of its rivals for low 

dimensional size category as 20% of attribute noise occurred.  

From Table 5.8, it is clear that the SOS-KPI outperforms other methods for all four 

classifiers considered with 10% of attribute noise. When 20% of attribute noise was introduced 

into the benchmark datasets, the SOS-KPI method is just slightly inferior to Laplacian Score 

and MCFS with CART classifier yet it surpasses for other cases, as reported in Table 5.9. The 

average results provided in the final row of both Table 5.8 and Table 5.9 indicate that the SOS-

KPI method is more robust against attribute noise than the other competing methods in overall 

if a small feature subset is desired to represent the original feature set.   

Figure 5.3 shows comparison of the win/tie/loss cumulative counts of the SOS-KPI 

methods against LS, MCFS and MMLS when dealing with different categories of dimensional 

size. It can be observed that the SOS-KPI method performs very well in overall for moderate 

)10020(  M  and high )100( M  dimensional sizes but it is slightly inferior when low 

)20( M  dimensional size is considered. 
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Table 5.2:  The least number of selected features, mleast, induced by SOS-KPI, LS, MCFS and MMLS methods that gives classification accuracy close to (at 
most 5% less than the full set accuracy) or better than the full feature set. The symbol “●” (or “□”) denotes the proposed method has lower (or larger) value of 

mleast than the compared method. Results are based on Pima Diabetes, Glass and Vowel datasets. 

 
Pima Diabetes 

 
Glass 

 
Vowel 

   

5-NN 
10% Noise 20% Noise  10% Noise 20% Noise  10% Noise 20% Noise 

mleast Subset Accuracy mleast Subset Accuracy  mleast Subset Accuracy mleast Subset Accuracy  mleast Subset Accuracy mleast Subset Accuracy 

SOS-KPI 2  69.96 ± 1.30 2 71.37 ± 1.29  3 55.63 ± 2.90 4 47.22 ± 3.29  6 63.67 ± 1.27 4 44.38 ± 1.18 
LS 2  69.59 ± 1.15 2 71.94 ± 1.16  5 ● 56.43 ± 3.04 5 ● 47.54 ± 2.18  4 □ 63.79 ± 1.23 3 □ 46.50 ± 0.94 

MCFS 4 ● 70.92 ± 1.20 2 66.97 ± 1.31  6 ● 55.56 ± 2.78 4 47.38 ± 1.99  7 ● 63.10 ± 1.52 6 ● 48.42 ± 0.98 
MMLS 3 ● 68.06 ± 1.26 2 71.83 ± 1.19  4 ● 56.98 ± 2.26 3 □ 47.13 ± 2.23  4 □ 62.63 ± 1.10 3 □ 45.71 ± 1.31 
Full set  71.26 ± 1.31  70.54 ± 1.01   56.83 ± 2.25  47.62 ± 2.25   65.24 ± 1.38  47.44 ± 1.10 

               

NBayes 
10% Noise 20% Noise  10% Noise 20% Noise  10% Noise 20% Noise 

mleast Subset Accuracy mleast Subset Accuracy  mleast Subset Accuracy mleast Subset Accuracy  mleast Subset Accuracy mleast Subset Accuracy 

SOS-KPI 2 71.29 ± 1.08 2 68.91 ± 1.00  6 55.71 ± 2.31 9 50.40 ± 2.79  6 58.27 ± 1.24 6 50.25 ± 1.00 
LS 2 71.90 ± 0.91 2 68.39 ± 0.84  8 ● 59.60 ± 2.63 9 50.40 ± 2.79  9 ● 61.80 ± 1.34 6 49.18 ± 1.34 

MCFS 4 ● 71.85 ± 1.05 2 71.20 ± 0.79  7 ● 56.90 ± 3.06 7 □ 48.65 ± 2.81  8 ● 59.85 ± 1.04 7 ● 49.58 ± 1.11 
MMLS 3 ● 73.20 ± 1.26 2 68.63 ± 1.13  5 □ 62.22 ± 1.74 5 □ 51.11 ± 2.40  8 ● 58.48 ± 1.45 7 ● 50.51 ± 1.54 
Full set  73.57 ± 1.44  71.44 ± 1.07   57.70 ± 2.84  50.40 ± 2.79   61.41 ± 1.28  51.72 ± 1.14 

               

SVM 
10% Noise 20% Noise  10% Noise 20% Noise  10% Noise 20% Noise 

mleast Subset Accuracy mleast Subset Accuracy  mleast Subset Accuracy mleast Subset Accuracy  mleast Subset Accuracy mleast Subset Accuracy 

SOS-KPI 2 72.64 ± 1.08 2 69.35 ± 1.03  8 57.30 ± 2.47 7 47.14 ± 2.45  6 52.39 ± 1.18 6 43.00 ± 1.13 
LS 2 72.46 ± 0.88 2 69.67 ± 1.14  7 □ 58.10 ± 2.21 4 □ 47.06 ± 2.27  4 □ 49.90 ± 1.12 2 □ 40.99 ± 1.22 

MCFS 4 ● 73.59 ± 0.86 2 69.15 ± 0.96  6 □ 57.94 ± 2.05 5 □ 47.70 ± 2.80  7 ● 52.14 ± 1.35 6 38.43 ± 1.08 
MMLS 3 ● 72.77 ± 1.13 2 68.89 ± 1.19  6 □ 56.98 ± 2.20 9 ● 48.89 ± 2.50  4 □ 50.84 ± 1.09 2 □ 40.34 ± 1.21 
Full set  74.79 ± 1.15  69.69 ± 1.43   59.13 ± 2.19  48.89 ± 2.50   53.57 ± 1.11  41.75 ± 0.94 

               

CART 
10% Noise 20% Noise  10% Noise 20% Noise  10% Noise 20% Noise 

mleast Subset Accuracy mleast Subset Accuracy  mleast Subset Accuracy mleast Subset Accuracy  mleast Subset Accuracy mleast Subset Accuracy 

SOS-KPI 3 65.84 ± 1.53 2 67.95 ± 1.17  5 57.62 ± 3.32 7 48.41 ± 2.26  6 55.86 ± 1.01 5 40.61 ± 1.01 
LS 3 65.42 ± 1.22 2 67.49 ± 1.20  5 58.65 ± 2.29 5 □ 52.94 ± 2.41  3 □ 53.65 ± 1.20 2 □ 40.02 ± 1.09 

MCFS 4 ● 66.10 ± 1.29 2 65.40 ± 1.24  6 ● 60.87 ± 2.42 5 □ 47.85 ± 1.15  7 ● 56.72 ± 1.14 6 ● 44.14 ± 1.36 
MMLS 4 ● 65.08 ± 1.29 2 67.30 ± 1.22  4 □ 58.89 ± 2.13 4 □ 51.56 ± 1.23  3 □ 53.30 ± 1.21 2 □ 39.90 ± 0.92 
Full set  68.04 ± 1.31  66.27 ± 1.29   58.17 ± 2.68  50.16 ± 2.64   55.57 ± 1.57  42.76 ± 1.07 
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Table 5.3:  The least number of selected features, mleast, induced by SOS-KPI, LS, MCFS and MMLS methods that gives classification accuracy close to (at 
most 5% less than the full set accuracy) or better than the full feature set. The symbol “●” (or “□”) denotes the proposed method has lower (or larger) value of 

mleast than the compared method. Results are based on Statlog, Wdbc and Ionosphere datasets. 

 
Statlog 

 
Wdbc 

 
Ionosphere 

   

5-NN 
10% Noise 20% Noise  10% Noise 20% Noise  10% Noise 20% Noise 

mleast Accuracy mleast Subset Accuracy  mleast Subset Accuracy mleast Subset Accuracy  mleast Subset Accuracy mleast Subset Accuracy 

SOS-KPI 5  55.76 ± 1.11 4 43.67 ± 1.40  14 89.20 ± 0.99 2 84.45 ± 1.06  5 82.24 ± 1.15 10 78.95 ± 0.92 
LS 4 □ 56.67 ± 0.92 4 47.65 ± 1.37  9 □ 88.82 ± 1.10 12 ●  85.63 ± 1.29  16 ● 83.33 ± 1.26 14 ● 79.86 ± 1.49 

MCFS 4 □ 57.46 ± 1.27 4 46.77 ± 1.09  8 □ 88.70 ± 1.02 16 ● 84.22 ± 1.07  14 ● 82.43 ± 1.41 15 ● 78.29 ± 1.47 
MMLS 5  56.51 ± 1.18 3 □ 45.19 ± 1.19  3 □ 90.38 ± 1.02 4   ● 84.78 ± 1.17  15 ● 81.29 ± 1.59 16 ● 80.52 ± 1.03 
Full set  57.71 ± 1.30  47.02 ± 1.25   91.95 ± 0.92  87.55 ± 0.91   84.29 ± 1.13  81.52 ± 1.12 

               

NBayes 
10% Noise 20% Noise  10% Noise 20% Noise  10% Noise 20% Noise 

mleast Subset Accuracy mleast Subset Accuracy  mleast Subset Accuracy mleast Subset Accuracy  mleast Subset Accuracy mleast Subset Accuracy 

SOS-KPI 6 58.97 ± 1.07 10 55.42 ± 1.15  7 89.38 ± 0.99 5 89.62 ± 1.19  19 88.67 ± 1.46 18 85.81 ± 1.48 
LS 4   □ 57.67 ± 1.10 6 □ 54.44 ± 1.30  9 ● 87.99 ± 1.26 12 ● 90.41 ± 1.15  25 ● 86.76 ± 1.58 26 ● 85.71 ± 1.59 

MCFS 5   □ 55.72 ± 1.26 4 □ 54.46 ± 1.46  8 ● 87.52 ± 1.08 16 ● 90.27 ± 0.97  27 ● 85.67 ± 1.74 29 ● 87.71 ± 1.35 
MMLS 12 ● 56.31 ± 1.38 4 □ 54.16 ± 1.14  3 □ 90.65 ± 0.77 9   ● 90.06 ± 0.99  21 ● 85.48 ± 1.55 23 ● 86.05 ± 1.71 
Full set  57.65 ± 1.10  57.65 ± 1.19   91.30 ± 0.86  93.33 ± 0.69   88.57 ± 1.07  88.33 ± 1.82 

               

SVM 
10% Noise 20% Noise  10% Noise 20% Noise  10% Noise 20% Noise 

mleast Subset Accuracy mleast Subset Accuracy  mleast Subset Accuracy mleast Subset Accuracy  mleast Subset Accuracy mleast Subset Accuracy 

SOS-KPI 6 51.79 ± 1.53 9 43.81 ± 1.35  16 91.53 ± 0.96 6 85.78 ± 0.82  13 80.76 ± 1.82 11 76.29 ± 1.43 
LS 13 ● 52.35 ± 1.31 10 ● 42.74 ± 1.07  14 □ 91.24 ± 0.88 12 ● 85.37 ± 0.93  17 ● 80.33 ± 1.17 13 ● 75.62 ± 1.28 

MCFS 11 ● 54.99 ± 1.24 8   □ 42.78 ± 1.21  11 □ 90.03 ± 0.96 18 ● 86.02 ± 1.15  27 ● 80.76 ± 1.43 18 ● 75.52 ± 1.38 
MMLS 9   ● 56.39 ± 1.18 9 43.73 ± 0.95  5   □ 90.35 ± 1.00 8   ● 86.70 ± 1.13  15 ● 81.57 ± 1.49 14 ● 75.86 ± 1.44 
Full set  55.31 ± 1.04  46.37 ± 1.12   93.66 ± 0.89  89.29 ± 0.94   83.57 ± 1.50  78.29 ± 1.91 

               

CART 
10% Noise 20% Noise  10% Noise 20% Noise  10% Noise 20% Noise 

mleast Subset Accuracy mleast Subset Accuracy  mleast Subset Accuracy mleast Subset Accuracy  mleast Subset Accuracy mleast Subset Accuracy 

SOS-KPI 5 57.67 ± 1.26 8 52.39 ± 0.83  7 86.78 ± 1.11 5 86.76 ± 1.31  4 82.10 ± 1.70 16 79.05 ± 1.51 
LS 4 □ 60.18 ± 1.31 6 □ 53.87 ± 1.10  6 □ 86.93 ± 1.03 9   ● 87.88 ± 0.89  16 ● 82.90 ± 1.81 17 ● 80.48 ± 1.57 

MCFS 4 □ 60.71 ± 1.47 5 □ 54.81 ± 1.39  3 □ 87.32 ± 1.15 12 ● 86.22 ± 1.17  16 ● 81.62 ± 1.21 18 ● 80.90 ± 1.92 
MMLS 8 ● 57.51 ± 1.42 4 □ 57.40 ± 1.21  3 □ 86.99 ± 1.05 4   □ 86.31 ± 1.20  16 ● 82.67 ± 1.97 17 ● 82.81 ± 1.95 
Full set  60.65 ± 1.31  55.25 ± 1.35   89.14 ± 0.83  89.12 ± 1.20   84.76 ± 1.78  82.19 ± 1.52 
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Table 5.4:  The least number of selected features, mleast, induced by SOS-KPI, LS, MCFS and MMLS methods that gives classification accuracy close to (at 
most 5% less than the full set accuracy) or better than the full feature set. The symbol “●” (or “□”) denotes the proposed method has lower (or larger) value of 

mleast than the compared method. Results are based on Waveform, Mfeat Zernike and Sonar datasets. 

 
Waveform 

 
Mfeat Zernike 

 
Sonar 

   

5-NN 
10% Noise 20% Noise  10% Noise 20% Noise  10% Noise 20% Noise 

mleast Subset Accuracy mleast Subset Accuracy  mleast Subset Accuracy mleast Subset Accuracy  mleast Subset Accuracy mleast Subset Accuracy 

SOS-KPI 6  73.60 ± 0.49 8 66.52 ± 0.56  30 68.49 ± 0.74 37 55.88 ± 0.77  11 72.85 ± 2.36 10 67.80 ± 2.20 
LS 10 ● 73.32 ± 0.43 8 65.78 ± 0.52  42 ● 67.65 ± 0.86 43 ●  56.05 ± 0.60  36 ● 72.36 ± 2.10 31 ● 66.83 ± 2.40 

MCFS 10 ● 73.28 ± 0.36 5 □ 66.93 ± 0.53  28 □ 67.36 ± 0.94 34 □ 55.77 ± 0.74  34 ● 72.68 ± 2.62 22 ● 66.59 ± 2.14 
MMLS 10 ● 73.28 ± 0.36 9 ● 66.51 ± 0.48  44 ● 68.47 ± 0.59 43 ● 55.78 ± 0.85  50 ● 71.79 ± 2.00 26 ● 67.07 ± 2.15 
Full set  76.40 ± 0.43  69.96 ± 0.54   71.20 ± 0.89  59.60 ± 0.85   73.74 ± 2.53  69.02 ± 2.18 

               

NBayes 
10% Noise 20% Noise  10% Noise 20% Noise  10% Noise 20% Noise 

mleast Subset Accuracy mleast Subset Accuracy  mleast Subset Accuracy mleast Subset Accuracy  mleast Subset Accuracy mleast Subset Accuracy 

SOS-KPI 7 74.76 ± 0.41 14 73.19 ± 0.38  16 63.91 ± 0.60 33 63.24 ± 0.67  5 66.67 ± 2.08 18 71.14 ± 2.02 
LS 11 ● 75.83 ± 0.44 10 □ 72.75 ± 0.48  39 ● 64.15 ± 0.73 39 ● 62.76 ± 0.86  8   ● 67.97 ± 2.49 36 ● 71.63 ± 2.65 

MCFS 7 75.97 ± 0.43 7   □ 73.30 ± 0.49  19 ● 65.37 ± 0.77 30 □ 63.17 ± 0.80  10 ● 68.54 ± 1.75 34 ● 71.14 ± 2.83 
MMLS 13 ● 74.67 ± 0.37 14 74.43 ± 0.45  40 ● 65.99 ± 0.83 42 ● 63.57 ± 0.81  30 ● 68.86 ± 2.53 42 ● 71.79 ± 2.47 
Full set  78.68 ± 0.38  77.08 ± 0.40   67.95 ± 0.78  66.70 ± 0.63   69.67 ± 2.12  73.17 ± 2.34 

               

SVM 
10% Noise 20% Noise  10% Noise 20% Noise  10% Noise 20% Noise 

mleast Subset Accuracy mleast Subset Accuracy  mleast Subset Accuracy mleast Subset Accuracy  mleast Subset Accuracy mleast Subset Accuracy 

SOS-KPI 7 74.74 ± 0.32 15 70.07 ± 0.34  25 67.04 ± 0.72 36 57.53 ± 0.84  30 73.33 ± 2.11 19 70.08 ± 2.28 
LS 11 ● 77.26 ± 0.34 10 □ 70.00 ± 0.39  39 ● 67.43 ± 0.67 39 ● 57.90 ± 0.59  36 ● 71.71 ± 2.28 33 ● 69.92 ± 1.93 

MCFS 7 75.06 ± 0.55 9   □ 70.31 ± 0.47  26 ● 66.92 ± 0.64 26 □ 57.32 ± 0.76  30 72.03 ± 1.98 34 ● 69.76 ± 2.34 
MMLS 11 ● 74.79 ± 0.49 13 □ 70.61 ± 0.42  39 ● 66.68 ± 0.75 40 ● 58.19 ± 0.83  59 ● 72.68 ± 2.66 53 ● 67.07 ± 2.14 
Full set  79.12 ± 0.49  74.45 ± 0.45   70.62 ± 0.75  61.23 ± 0.92   73.66 ± 2.49  69.27 ± 2.46 

               

CART 
10% Noise 20% Noise  10% Noise 20% Noise  10% Noise 20% Noise 

mleast Subset Accuracy mleast Subset Accuracy  mleast Subset Accuracy mleast Subset Accuracy  mleast Subset Accuracy mleast Subset Accuracy 

SOS-KPI 6 68.84 ± 0.47 9 63.25 ± 0.63  19 54.92 ± 0.93 17 43.76 ± 0.86  10 69.51 ± 2.47 18 67.48 ± 3.00 
LS 9 ● 65.72 ± 0.45 8 □ 60.50 ± 0.54  29 ● 53.51 ± 0.84 31 ● 43.33 ± 0.91  29 ● 67.24 ± 2.33 17 □ 63.01 ± 2.70 

MCFS 9 ● 65.69 ± 0.43 5 □ 61.27 ± 0.46  17 □ 53.69 ± 0.73 15 □ 43.83 ± 0.76  7   □  71.63 ± 2.40 11 □ 64.80 ± 2.59 
MMLS 9 ● 65.69 ± 0.43 9 61.75 ± 0.47  38 ● 53.94 ± 0.97 36 ● 44.09 ± 0.77  60 ● 69.27 ± 2.60 51 ● 63.90 ± 2.05 
Full set  69.98 ± 0.50  64.85 ± 0.47   57.27 ± 0.81  47.19 ± 1.00   69.27 ± 2.60  64.63 ± 2.96 
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Table 5.5:  The least number of selected features, mleast, induced by SOS-KPI, LS, MCFS and MMLS methods that gives classification accuracy close to (at 
most 5% less than the full set accuracy) or better than the full feature set. The symbol “●” (or “□”) denotes the proposed method has lower (or larger) value of 

mleast than the compared method. Results are based on Musk, Mfeat Factors and Isolet datasets. 

 
Musk 

 
Mfeat Factors 

 
Isolet 

   

5-NN 
10% Noise 20% Noise  10% Noise 20% Noise  10% Noise 20% Noise 

mleast Subset Accuracy mleast Subset Accuracy  mleast Subset Accuracy mleast Subset Accuracy  mleast Subset Accuracy mleast Subset Accuracy 

SOS-KPI 95  76.42 ± 1.25 6 64.98 ± 1.64  33 90.98 ± 0.49 80 89.23 ± 0.54  200 81.78 ± 0.28 310 77.87 ± 0.37 
LS 140 ● 76.39 ± 1.65 120 ● 65.26 ± 2.04  70   ● 90.67 ± 0.48 100 ●  88.67 ± 0.39  250 ● 82.43 ± 0.33 300 □ 77.76 ± 0.32 

MCFS 115 ● 76.77 ± 1.21 70   ● 65.00 ± 1.38  36   ● 90.60 ± 0.38 70   □ 89.30 ± 0.40  210 ● 82.01 ± 0.31 270 □ 78.31 ± 0.30 
MMLS 100 ● 76.53 ± 1.45 65   ● 64.84 ± 1.50  100 ● 91.45 ± 0.52 160 ● 89.57 ± 0.63  410 ● 82.05 ± 0.32 400 ● 78.00 ± 0.34 
Full set  79.47 ± 1.57  68.11 ± 1.27   95.07 ± 0.39  93.12 ± 0.40   86.45 ± 0.29  82.32 ± 0.28 

               

NBayes 
10% Noise 20% Noise  10% Noise 20% Noise  10% Noise 20% Noise 

mleast Subset Accuracy mleast Subset Accuracy  mleast Subset Accuracy mleast Subset Accuracy  mleast Subset Accuracy mleast Subset Accuracy 

SOS-KPI 14 67.05 ± 1.99 12 64.77 ± 1.44  23 88.32 ± 0.43 40 89.07 ± 0.61  85 73.41 ± 0.35 180 74.25 ± 0.70 
LS 100 ● 66.42 ± 1.48 110 ● 64.95 ± 1.78  100 ● 88.97 ± 0.41 90   ●  88.13 ± 0.54  220 ● 73.48 ± 0.34 230 ● 73.92 ± 0.53 

MCFS 35   ● 67.30 ± 1.81 50   ● 64.35 ± 1.93  21   □ 88.21 ± 0.53 50   ● 88.92 ± 0.55  320 ● 73.73 ± 0.36 350 ● 74.20 ± 0.38 
MMLS 95   ● 68.32 ± 1.60 105 ● 65.44 ± 1.66  120 ● 88.12 ± 0.56 130 ● 88.91 ± 0.59  280 ● 74.61 ± 0.36 250 ● 73.77 ± 0.40 
Full set  69.35 ± 1.97  66.95 ± 1.51   92.35 ± 0.49  92.54 ± 0.48   77.99 ± 0.37  78.17 ± 0.49 

               

SVM 
10% Noise 20% Noise  10% Noise 20% Noise  10% Noise 20% Noise 

mleast Subset Accuracy mleast Subset Accuracy  mleast Subset Accuracy mleast Subset Accuracy  mleast Subset Accuracy mleast Subset Accuracy 

SOS-KPI 18 65.37 ± 1.59 11 61.30 ± 1.52  70 92.64 ± 0.41 110 89.34 ± 0.41  200 88.58 ± 0.24 310 85.74 ± 0.28 
LS 95   ● 65.65 ± 1.60 110 ● 61.65 ± 1.81  100 ● 91.36 ± 0.42 140 ● 89.93 ± 0.55  270 ● 88.37 ± 0.25 320 ● 86.41 ± 0.27 

MCFS 45   ● 65.86 ± 1.73 29   ● 61.40 ± 1.98  60   □ 91.71 ± 0.52 120 ● 89.76 ± 0.48  230 ● 88.57 ± 0.24 300 □ 86.03 ± 0.31 
MMLS 125 ● 65.89 ± 1.69 125 ● 61.51 ± 1.72  130 ● 92.20 ± 0.39 150 ● 89.05 ± 0.62  350 ● 88.48 ± 0.25 400 ● 86.06 ± 0.37 
Full set  68.21 ± 1.64  64.32 ± 1.59   95.71 ± 0.30  93.37 ± 0.42   93.08 ± 0.24  90.30 ± 0.22 

               

CART 
10% Noise 20% Noise  10% Noise 20% Noise  10% Noise 20% Noise 

mleast Subset Accuracy mleast Subset Accuracy  mleast Subset Accuracy mleast Subset Accuracy  mleast Subset Accuracy mleast Subset Accuracy 

SOS-KPI 75 71.47 ± 1.59 12 63.75 ± 1.56  11 70.17 ± 0.97 14 60.46 ± 1.01  75 60.27 ± 0.54 240 50.53 ± 0.48 
LS 65 □ 71.75 ± 2.07 50 ● 63.61 ± 1.46  40 ● 69.97 ± 0.77 40 ● 60.96 ± 1.05  110 ● 60.37 ± 0.51 115 □ 50.41 ± 0.37 

MCFS 70 □ 71.30 ± 1.97 19 ● 63.37 ± 1.76  15 ● 69.73 ± 0.67 40 ● 61.36 ± 0.93  95   ● 60.36 ± 0.44 140 □ 51.09 ± 0.37 
MMLS 70 □ 72.42 ± 2.15 55 ● 65.02 ± 2.11  70 ● 71.55 ± 0.84 50 ● 59.69 ± 0.75  210 ● 60.38 ± 0.47 250 ● 50.43 ± 0.48 
Full set  74.21 ± 1.58  65.75 ± 2.16   73.59 ± 0.86  63.39 ± 0.80   64.56 ± 0.48  54.62 ± 0.56 
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Table 5.6:  A comparison of the win/tie/loss counts of the SOS-KPI method against other methods for 
different categories of dimensional size. The counts are based on the results presented in Table 5.2 

through Table 5.5 when the datasets are corrupted with 10% of attribute noise and considering all four 
classifiers. 

Win/tie/lose LS MCFS MMLS 

Low dimension 4 / 5 / 7  12 / 0 / 4 9 / 1 / 6 
Moderate dimension 17 / 0 / 3 11 / 3 / 6 16 / 0 / 4 

High dimension 11 / 0 / 1 9 / 0 / 3 11 / 0 / 1 

Table 5.7:  A comparison of the win/tie/loss counts of the SOS-KPI method against other methods for 
different categories of dimensional size. The counts are based on the results presented in Table 5.2 

through Table 5.5 when the datasets are corrupted with 20% of attribute noise and considering all four 
classifiers. 

Win/tie/lose LS MCFS MMLS 

Low dimension 2 / 7 / 7 3 / 7 / 6 2 / 5 / 9 
Moderate dimension 15 / 1 / 4 11 / 0 / 9 16 / 2 /2 

High dimension 10 / 0 / 2 8 / 0 / 4 12 / 0 / 0 

 

 
Figure 5.3:  Comparison of the total win/tie/loss counts of the SOS-KPI method versus other methods 

according to different categories of dimensional size. 
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Table 5.8:  A comparison of the win/tie/loss counts of the SOS-KPI method against other methods. 
The counts are based on the results presented in Table 5.2 through Table 5.5 when the datasets are 

corrupted with 10% attribute noise. 

Win/tie/lose LS MCFS MMLS 

5-NN 8 / 1 / 3 9 / 0 / 3 9 / 1 / 2 
NBayes 10 / 1 / 1 8 / 1 / 3 11 / 0 / 1 

SVM 8 / 1 / 3 7 / 2 / 3 9 / 0 / 3 
CART 6 / 2 / 4  7 / 0 / 5 8 / 0 / 4 

Average 8 / 1 / 3 7.75 / 0.75 / 3.5 9 / 0.25 / 2.75 

Table 5.9:  A comparison of the win/tie/loss counts of the SOS-KPI method against other methods. 
The counts are based on the results presented in Table 5.2 through Table 5.5 when the datasets are 

corrupted with 20% attribute noise. 

Win/tie/lose LS MCFS MMLS 

5-NN 7 / 3 / 2 5 / 3 / 4 8 / 1 / 3 
NBayes 7 / 3 / 2 7 / 1 / 4 8 / 1 / 3 

SVM 9 / 1 / 2 6 / 2 / 4 7 / 2 / 3 
CART 5 / 1 / 6 5 / 1 / 6 6 / 2 / 4 

Average 7 / 2 / 3 5.75 / 1.75 / 4.5 7.25 / 1.5 / 3.25 

 

5.7 Summary 

Numerous feature selection techniques found in the literature focus on the case when noise-

free data are available. In fact, among the efforts considering noisy data in feature selection, 

many have been directed to address the problems of class noise. In practice, however, the data 

are often found not only containing irrelevant features but also corrupted with attribute noise. 

Since very limited works have been done considering attribute noise, a feature selection method 

called sequential orthogonal search for kernel pre images (SOS-KPI) is thus introduced.  

 Pre-images are interesting as they recover the denoised variation patterns of the noisy 

input data. The basic idea of the SOS-KPI method is therefore to identify features that are 

significant in characterising the pre-images. The same sequential orthogonal search strategy as 

in the SOS-LLS method is also applied for the SOS-KPI method to identify significant features 

but a somewhat different formulation is imposed according to the specific context being 

considered where noisy data are observed.  

Experiments performed on 12 benchmark datasets that have been injected with attribute 

noise show that the proposed SOS-KPI method is competitive to the state-of-the-art methods. 

There are three important findings have emerged from the experiments. First, the SOS-KPI 
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method is indeed less sensitive to attribute noise. Second, better performance achievement by 

the SOS-KPI method demonstrated through application with different classifiers suggests its 

adaptive flexibility as a filter feature selection approach. Finally, which is the third, the SOS-

KPI particularly shows its best performance when moderate )10020(  M  and high 

)100( M  dimensional sizes are considered. 
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Chapter 6                                    

Conclusion 

6.1 Research Summary and Conclusion 

Technological advancement in data storage has led to the explosive growth in size of massive 

datasets which are usually of high dimensional with redundant and irrelevant features. 

Modelling high dimensional data is often computationally expensive and good predictive 

models are difficult to obtain because datasets may contain a large number redundant and 

irrelevant features. Thus, dimensionality reduction is seen as a crucial pre-processing step to 

overcome these problems, and one approach to achieve this is through feature selection.  

Guided by extensive literature review, three research opportunities were explored to 

address some important issues in feature selection. Three research objectives were set.  

The first research objective led to a feature selection method with a new evaluation 

criterion called maximum relevance–minimum multicollinearity (MRmMC) is being proposed. 

This newly proposed method was designed to overcome some problems associated with 

existing methods that apply the same form of feature selection criterion, especially those that 

are based on mutual information. Rather than using mutual information as the basis for the 

evaluation criterion, the MRmMC method adopts correlation coefficient  from conditional 

variance to measure feature relevance, and an orthogonal projection scheme based on multiple 

correlation coefficient is employed to quantify feature redundancy. Unlike mutual information 

based feature selection, the new method has the advantage of not demanding any control 

parameters, thereby preventing any uncertainty associated with it.  

The second research objective is achieved by introducing a new unsupervised feature 

selection method, namely, sequential orthogonal search for local largest structure (SOS-LLS). 

The method is designed to utilise the underlying information captured by LPP approach where 

the first component of LPP that preserves the most important local structure of the data is used 

as a reference to select significant features. As the SOS-LLS has largely outperforms the 
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MMLS method, it does reaffirm that focusing on preserving local structure is more critical than 

preserving the global structure for unsupervised feature selection.   

The third research objective is accomplished by presenting another new unsupervised 

feature selection method named as sequential orthogonal search for kernel pre-images (SOS-

KPI). This feature selection method attempts to offer a robust method that is less sensitive to 

attribute noise. Towards this goal, the kernel pre-images is exploited as the main reference to 

identify significant features because pre-images are seen offering the denoised variation 

patterns of the noisy input data. Even though the SOS-KPI method has been shown to work 

well with moderate )10020(  M  and high )100( M dimensional sizes, not with low- 

)20( M  dimensional size category, this should not be a serious practical limitation since 

feature selection main goal is apparently more critical to reduce higher dimensional sizes.  

Note that the three proposed methods employed similar feature search strategy 

implemented by means of a sequential orthogonalization scheme. Each method, however, 

applied this feature search scheme differently according to specific mathematical formulation 

involved that suits the context of feature selection problem being considered. The MRmMC 

method is specifically devised to select a significant feature subset by utilising the information 

from both input features and class labels, whereas the SOS-LLS and SOS-KPI methods are 

forced to depend merely on information obtained from input features. The SOS-LLS and SOS-

KPI are useful in cases where class labels are absence, probably due to the fact that class labels 

acquisition is costly and time-consuming. The SOS-KPI method, however, distinct from the 

SOS-LLS method as the SOS-KPI method is intended to provide a feature selection approach 

that has stronger noise resistance ability.  

The sequential orthogonalization search scheme which selects significant feature in a 

stepwise wise iterative fashion, one feature at a time, coupled with a straightforward 

measurement criterion makes each proposed method easy to implement and suitable to be 

applied in many applications. All of the three methods are also based on the same feature 

selection model, which is filter approach, as they merely rely on characteristics of the data 

without involving any specific classification algorithms in the selection process. Therefore, 

they work well with different types of classification algorithms such as k-NN, Naïve Bayes, 

SVM and CART. Despite the advantages offered by such feature selection design, the proposed 

method however, may not always find the optimal feature subset as the search is non-

exhaustive. Nevertheless, from experimental studies performed separately for each method 
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show that all three proposed methods are functionally competent for feature selection based on 

their own unique goal and context. 

6.2 Future Direction of the Research 

In light of the present work, a number of new research directions will be explored. The list is 

as follows. 

(i) Expansion of the MRmMC method: A limitation of MRmMC is that the proposed 

redundancy measure is reliable for quantitative features, but cannot effectively evaluate 

the redundancy between a quantitative and a nominal random variable. It is of interest 

to make use of other measures to assess feature redundancy and combine this idea with 

the feature relevancy measure applied in this research study. The combination is 

expected to form a new criterion that can be used to effectively deal with both nominal 

and quantitative features. It would be also interesting to explore the new criterion with 

other feature search strategies such as floating search selection and nature-inspired 

selection in order to find better feature subset solutions. 

 

(ii) Expansion of the SOS-LLS method: It is of interest in future work to explore how 

smaller sample size affects the effectiveness of the proposed approach. While the results 

indicate that the sequential search strategy works well, it sometimes generates sub-

optimal performance. Future research should therefore be focusing on enhancing the 

present approach by combining it with other search strategies (e.g. the bagging method 

based on distance correlation metric proposed in (Solares & Wei, 2015) so as to lead to 

more significant feature subset solutions. It would be also interesting to consider other 

projection schemes to replace or combine with LPP to define more powerful reference 

response variables. 

 

(iii) Expansion of the SOS-KPI method: From many literature reports, it has been 

highlighted that the effect of class noise is more severe than attribute noise However, 

through SOS-KPI method, one can observe that handling attribute noise in a feature 

selection technique may lead to significant improvement in classification performance. 

Realizing the notable effect of attribute noise on feature selection solution, it would be 

interesting to conduct further research that will improve the SOS-KPI by taking into 
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account both class noise and attribute noise. It is also desirable to consider class 

imbalance effect for future work. In addition, it is believe that a research on sensitivity 

of non-representative attribute noise also should be performed.  

Exploring the above listed future works should address some open problems in feature 

selection research specifically and dimensionality reduction generally. 
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