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Using Lorentz transmission electron microscopy and small-angle electron scattering techniques,
we investigate the temperature-dependent evolution of a magnetic stripe pattern period in thin-
film lamellae of the prototype monoaxial chiral helimagnet CrNb3S6. The sinusoidal stripe pattern
appears due to formation of a chiral helimagnetic order (CHM) in this material. We found that as
the temperature increases, the CHM period is initially independent of temperature and then starts
to shrink above the temperature of about 90 K, which is far below the magnetic phase transition
temperature for the bulk material, Tc (123 K). The stripe order disappears at around 140 K, far
above Tc. We argue that this cascade of transitions reflects a three-stage hierarchical behavior of
melting in two dimensions.

Introduction. Stripe pattern formation is found in a
wide variety of ordered systems with many degrees of
freedom. It has been of considerable interest and inten-
sively discussed in condensed matter physics, including
the areas of density waves [1–3], Wigner crystals [4], mag-
netic domains [5], superconductors [6], and liquid crys-
tals [7, 8].

Temperature evolution of the stripe pattern is one of
the fundamental and intriguing issues in this research
area. Chiral helimagnets with the chiral helical order,
being stabilized by an antisymmetric exchange interac-
tion [9, 10], exhibit robust and stable phase coherence
on a macroscopic length scale [11]. Because of this fea-
ture, purely sinusoidal phase modulation is realized in
this class of materials [12, 13]. The regularity of the mag-
netic order makes chiral helimagnets a promising candi-
date system to carry out accurate determination of the
spatial period and wave number of the stripe magnetic
pattern.

In this Letter, we report experimental analyses of the
periodicity of a chiral helimagnetic order (CHM) in thin-
film lamellae of a monoaxial chiral helimagnet CrNb3S6
in a wide temperature range by using Lorentz transmis-
sion electron microscopy and small-angle electron scat-
tering (SAES) techniques. From direct visualization of
the spin helix order, we found three stages in the tem-
perature, T , evolution of the CHM period. First, the
CHM keeps its period constant at low T . As T increases,
a shrinkage of the period occurs at around 90 K, followed
by a linear dependence of the wave number on T , which
is far below the magnetic phase transition temperature
for the bulk crystal, Tc, of 123 K. In the end, the stripe

order vanishes above 140 K. The appearance of these two
characteristic temperatures is hardly explained through
mean-field theory of three dimensional (3-D) phase tran-
sitions. Remarkably, the observed temperature evolution
of the CHM pitch is in line with predictions of the the-
ory of melting in two dimensions [14]. Specifically, one
may identify the experimental results just described as
a low temperature solid phase, a floating solid phase at
intermediate temperatures, and an isotropic fluid phase
at higher temperatures. This process has not previously
been considered for the chiral helimagnetic system and
we believe our results represent the observation of two
dimensional (2-D) melting in a magnetic system.

Experiment. Single crystals of transition-metal
dichalcogenide CrNb3S6 were grown using a chemical-
vapor transport method, as described elsewhere [15].
CrNb3S6 has a hexagonal crystalline structure belong-
ing to the space group P6322 and thus exhibits an anti-
symmetric Dzyaloshinskii-Moriya (DM) exchange inter-
action [9, 10] which competes with a symmetric Heisen-
berg exchange interaction. As a consequence, the CHM
appears with a harmonic spatial modulation and a fixed
sense of rotation of the magnetic moment about the prin-
cipal (c) axis of the crystal, corresponding to the helical
axis, as depicted in Fig. 1(a).

The magnetic-field dependence of the CHM period at
a constant temperature is well understood: the CHM
transforms into a nonlinear helicoidal spin order, fre-
quently called chiral spin soliton lattice (CSL), in the
presence of a magnetic field applied in a direction perpen-
dicular to the helical axis of the CHM [11, 16]. The CSL
changes its period with increasing field strength during
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FIG. 1: (a) Schematic of the chiral helimagnetic order (CHM)
with a period L. (b) Magnetization curves of the bulk
CrNb3S6 single crystal as a function of T with a small H
applied perpendicular to the helical axis.(c) Temperature de-
pendence of L expected from 3-D mean field theory.

the CSL formation, which allows the chiral spin system to
present many striking physical responses [12, 13] such as
discretized multi-valued magnetoresistance [17–19] and
collective resonant dynamics sensitive to excitation po-
larization [20]. In contrast, in this Letter, we focus on
the temperature dependence of the CHM period at small
constant magnetic field.

Before preparing thin platelet specimens for Lorentz
electron microscopy observations, a temperature depen-
dence of the magnetization of the original bulk CrNb3S6
crystal was measured in order to examine the crystal
quality. Figure 1(b) shows the temperature dependent
magnetization curves for the bulk crystal. The data
were taken at various magnetic fields in the configura-
tion of H applied perpendicular to the helical c axis us-
ing a commercial superconducting quantum interference
device magnetometer. A sharp peak of the magnetiza-
tion appears and the peak position remains almost the
same at small H. However, it moves toward lower T
with further increasing H, as reported elsewhere [13, 17].
This behavior corresponds to the phase transition from
the CHM (or CSL) phase into a paramagnetic one, which
is well described by the 3-D mean field theory based on
the chiral sine-Gordon model [21, 22]. This consistency
supports the validity of the 3-D mean field picture for
the bulk crystal.

Following a standard definition of the critical temper-
ature Tc as the temperature giving the peak of the mag-
netization at small H, e.g., less than 100 Oe, Tc is de-
termined to be 123 K for the bulk crystal used in this
study. This value is smaller than the maximum value
of 132 K, obtained in the bulk crystals synthesized in
the laboratory. However, as seen in the following para-
graphs, the CHM period is 48 nm at the lowest T used
for this crystal. This value is consistent with that ob-
tained in previous studies [23, 24], which guarantees that
the present specimen has the same quality as those stud-
ied in the literature. Neutron scattering experiments [24]

FIG. 2: Stripe pattern in a thin lamella of CrNb3S6 crystal
at various temperatures. Lorentz Fresnel images and SAES
data are given in (a) to (e) and (f) to (j), respectively. The
insets in (a) to (c) present harmonic intensity profiles of the
CHM. A pair of fundamental satellite peaks are indicated by
arrows in (f) to (i). Intensity linetrace along dotted arrows in
the c∗ direction is shown below (i), indicating the presence of
spots associated with the magnetic stripe pattern at 137 K.

showed that the CHM wave number remains unchanged
at 13 K and 100 K for the bulk crystal.

Thin (< 100 nm) platelet specimens for transmission
electron microscopy (TEM) analyses were prepared from
the bulk crystal using focused ion beam methods. TEM
observations were performed in a nearly-H-free environ-
ment (with a residual H ∼ 100 Oe) by operating the
electron microscope without the electromagnetic objec-
tive lens being excited.

Real-space observations of magnetic structures were
performed by means of the Fresnel mode of Lorentz mi-
croscopy [25] using model JEM-2010 or JEM-2100 trans-
mission electron microscope with an acceleration voltage
of 200 kV. Differential phase contrast (DPC) mode [26]
was also adopted for precise evaluation of the stripe pat-
tern period using a JEOL ARM-200CF scanning trans-
mission electron microscope. In addition, SAES exper-
iments [25] were performed to accurately determine the
value of the wave number in reciprocal space. To exam-
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FIG. 3: The CHM period (a) and wave number (b) as a func-
tion of T in a thin lamella of CrNb3S6 crystal. Blue squares
represent the data obtained by the Lorentz Fresnel and DPC
methods. Green circle and red triangles correspond to the
SAES data taken with increasing and decreasing T , respec-
tively. The inset in (a) shows the curve derived from the 3-D
mean field theory together with the experimental data and
Tc for the bulk crystal. Three regions which show different
kinds of T dependence are clearly seen. Regions I, II, and
III correspond to the solid phase (the CHM with the con-
stant period), the floating solid phase (the shrinkage of the
CHM period), and the isotropic fluid phase (the paramagnetic
regime), respectively.

ine the behavior in a temperature range above 100 K,
TEM samples were cooled using a liquid N2 holder. For
performing Lorentz microscopy at lower temperatures
for many hours, the samples were cooled down to be-
low 2 K using superfluid He in the seventh generation
cryogenic transmission electron microscope available in
Nagoya University, Japan [27]. In this case, the speci-
men temperature was around 4 K, which is lower than
temperatures achieved using a standard liquid He holder.
The temperature dependence of the CHM period was
measured with decreasing T below 100 K, while it was
examined with cycling T above 100 K.

A series of Fresnel-mode Lorentz images and SAES
data were taken at various temperatures as shown in
Fig. 2. A stripe pattern was obtained in the real-space
images and its intensity profile appears to be modulated
in a harmonic manner, as highlighted in Figs. 2(a) to 2(c).
The harmonic nature of the magnetic modulation was di-
rectly demonstrated in the SAES data, as presented in
Figs. 2(f) to 2(j). A pair of spots were clearly observed
only at a wave number of the first harmonic position at
110 K, as reported elsewhere [11]. These CHM spots re-
main present without any accompanying higher harmon-
ics at 130 K, which is above the value of Tc for the original
bulk crystal. However, no spots were observed at 140 K.
One of the important findings is that the harmonic mag-
netic structure appears in a wide range of temperatures
from 4 K to 137 K, indicating that the CHM survives
even above Tc for the bulk crystal.

Figure 3 shows how the CHM period L and wave num-
ber Q vary with T . Precise measurements of L and Q

were performed in the real and reciprocal space by means
of Lorentz Fresnel and DPC methods and SAES method,
respectively. The temperature dependences of L and Q
are consistent with each other and thus the relationship
of Q = 2π/L hold as expected. It is clear that the CHM
keeps its period constant up to about 90 K, at around
which temperature it starts to decrease with further in-
creasing T , e.g., a small drop of the period is found at
100 K. Then, the stripe contrast suddenly disappears
above 137 K. Interestingly, the CHM period and wave
number show a linear dependence on T above 110 K and
grows until the temperature reaches 137 K, as clearly
seen in Figs. 3(a) and 3(b), respectively. The linear de-
pendence can be found in both cases since the amount
of changes are smaller than the values of L and Q at the
lowest temperature. Importantly, the observed behav-
ior is inconsistent with that expected for the 3-D mean
field theory drawn in Fig. 1(c) and the inset of Fig. 3(a).
Moreoever, Lorentz microscopy observations reveal three
T regions (regions I, II and III) based on the tempera-
ture dependence of the CHM period and wave number,
as indicated in Fig. 3.

Theoretical support. The temperature dependence of
the magnetization shown in Fig. 1(b) indicates that the
3-D mean field picture works well in the bulk sam-
ple [21, 22]. First, we demonstrate the temperature de-
pendence of the CHM and CSL periods based on this
picture. The CSL period is given by a formula L =
8K(κ)E(κ)/(πq0) [12, 16], where K(κ) and E(κ) respec-
tively denote the elliptic integrals of the first and second
kinds with the elliptic modulus κ (0 ≤ κ ≤ 1). The mod-
ulus κ is determined by minimizing the CSL formation
energy and determined through the relation κ/E(κ) =√
H/Hc

√
m(H,T )/m(H, 0) where Hc is the critical field

at the zero temperature andm(H,T ) is the field and tem-
perature dependent amplitude of the magnetic moment
which is determined by minimizing the mean field free en-
ergy density[21], f = (T/Tc − 1)m2 + bm4 −mH, where
b is a temperature-independent positive constant. Then,
at the constant field, the temperature dependent mod-
ulus κ gives the temperature dependence of L, which is
presented in Fig. 1(c). In the the 3-D mean field picture,
L hardly increases upon increasing T below Tc and starts
to rapidly increase far above Tc. A similar divergent be-
havior of L is also reported in the recent study [28].

In the experimental findings mentioned above, the lin-
ear temperature-dependence of the wave number in the
temperature region II seems to be a challenging issue,
since this result goes against the 3-D mean eld theory as
evident from Fig. 1(c). We will argue that this feature
might be explained within the theory of 2-D melting [14].

Prior to substantiaing this claim based on the 2-D
model, we first note that Lorentz microscopy and SAES
experiments [11, 25] enable us to monitor the spatial dis-
tribution of the magnetic moment associated with the
CHM, M (r) = M0 [êx cosφ (r)± êy sinφ (r)], where



4

the xy plane corresponds to the crystallographic ab plane
and the helical z axis coincides with the crystallographic
c axis. The sign defines the chirality of the helix. The
amplitude of the order parameter M0 is the value of the
magnetic moment and the phase φ (r) describes the spa-
tial modulation of the CHM structure. In real-space im-
ages, the CHM is visualized as a modulated stripe pat-
tern of an in-plane component of the magnetic moment.
As complementary information provided by SAES, the
harmonically-modulated CHM is detected as a pair of
fundamental satellite peaks in the reciprocal k space.
To describe the temperature evolution of the stripe

pattern, we begin with the 2-D classical phase Hamilto-
nian of the Pokrovsky-Talapov model [29, 30], which has
been discussed in the context of CHM [31, 32],

H =

∫
dxdz

[σ
2
(∂zφ− δ)

2
+

ν

2
(∂xφ)

2
+ λ cosφ

]
, (1)

where the spin stiffness parameters, σ and ν (σ ≪ ν),
originate from the anisotropic ferromagnetic exchange in-
teractions within the xz plane, the misfit parameter δ
stems from the antisymmetric exchange interaction, and
the pinning potential λ comes from the Zeeman coupling
with the small external magnetic field applied perpendic-
ular to the helical axis.

Depending on temperature ranges, the starting Hamil-
tonian (1) is mapped onto different effective models. In
the low temperature regime (regime I), the fermionic rep-
resentation is valid, as demonstrated by Schulz [33]. In
the intermediate and high temperature regimes (regimes
II and III, respectively), the renormalization-group (RG)
scheme works well [34, 35]. The whole sequence of
the analysis is consistent with a universal hierarchy
of 2-D melting phenomena proposed by Nelson and
Halperin [14].

In this general scheme, a regular solid state undergoes
a transition into a floating solid phase with an orienta-
tional order followed by an isotropic fluid phase upon
increasing temperature [14]. In our experiment on chi-
ral helimagnets, the solid phase corresponds to the CHM
one with a constant period, the floating solid phase is
indicated by the shrinkage of the CHM period, and the
isotropic fluid phase arises as the paramagnetic phase.

To specify the correspondence, we discuss the theoreti-
cal scheme in more detail. The fermionic model by Schulz
is introduced by applying the transfer integral technique
to the Hamiltonian (1) which maps it firstly onto the
(1 + 1) quantum bosonic Hamiltonian, where the space
coordinate lies along the z-axis. This bosonic Hamilto-
nian is then transformed into the fermionic Tomonaga-
Luttinger model with the umklapp scattering term orig-
inating from the Zeeman coupling term, λ cosφ. The
misfit parameter δ plays a role of the chemical potential
of the fermion system.

In the fermion model framework, the umklapp pro-
cesses cause the Mott insulating phase with a gap be-

tween the lower Hubbard band (LHB) and the upper one
(UHB) [33]. As a consequence, the phase coherence of the
pattern is protected by the Mott gap, where the chemical
potential lies inside the gap. An appearance of additional
kinks corresponds to thermally excited fermions in the
UHB, which is interpreted as a starting of the melting.
As has been demonstrated by Schulz, the orientational
phase order just above the melting point is supported by
the strongly anisotropic nature of spatial correlations.

The intermediate temperature regime may be treated
by the RG theory of the floating devil’s staircase in
two dimensions [35]. According to this approach, the
initial Hamiltonian (1) may be considered as a grand-
canonical ensemble with a chemical potential, µ, coupled
with the kink density, ρ. A key insight of the formalism is
that the phase fluctuations undergo the RG transforma-
tions after the periodic background is subtracted. It was
demonstrated that the RG flows belong to the Kosteritz-
Thouless (KT) universality class, but, in contrast to the
original KT theory, they rapidly terminate in our system
due to the presence of sharp cut-off functions which re-
flect the existence of the natural length scale related with
a distance between kinks [35]. Just above the melting
transition, the RG trajectories flow towards the regime
where the Mott gap collapses with the chemical poten-
tial µ being fixed. Therefore, possible excitations may be
regarded as proliferation of the fermions into the UHB.
In other words, as T increases, new kinks enter into the
system following a linear dependence of the kink density
on temperature, ρ ∝ µT + f(µ), where f(µ) is a function
of only the chemical potential [35]. This linearly tem-
perature dependent kink density is consistent with the
experimentally observed linear dependence of the wave
number above 110 K.

At the final stage, the stripe order disappears and is
followed by a high-temperature paramagnetic phase. As
discussed previously by some of the authors, the initial
Hamiltonian (1) may be reformulated in terms of the
massive Thirring model, where it was argued that the
misfit parameter rules out a KT transition, because it
acts as an effective in-plane electric field that prevents a
formation of bound vortex-antivortex pairs [34].

Concluding remark. In this Letter, we examined the
temperature-dependent evolution of a magnetic stripe
pattern associated with the harmonic CHM in thin lamel-
lae of CrNb3S6 using Lorentz electron microscopy and
SAES techniques. A notable feature found in these mea-
surements is the shrinkage of the CHM period above
T ∼ 90 K, far below the magnetic phase transition tem-
perature for the bulk material. We argued that this tem-
perature dependence reflects the universal behavior in-
trinsic to 2-D melting [14]. This observation might be
regarded as manifestation of Halperin-Nelson hierarchy
of the melting process in a magnetic system. We believe
that the present work will gain insight on the hierarchy
of 2-D melting and shed light on the physics of patterns
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in a magnetic system.
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