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Abstract. Within the framework of the quasi-electrostatic approximation, the theory of the superposition of infinitesimal

deformations and electric fields on a finite deformation with an underlying electric field is employed to examine the problem

of the reflection of small amplitude homogeneous electroelastic plane waves from the boundary of an incompressible finitely

deformed electroactive half-space. The theory is applied to the case of two-dimensional incremental motions and electric fields

with an underlying biassing electric field normal to the half-space boundary, and the general incremental governing equations

are obtained for this specialization. For illustration, the equations are then applied to a simple prototype electroelastic model

for which it is found that only a single reflected wave is possible and a surface wave is in general generated for each angle

of incidence. Explicit formulas are obtained for the wave speed and the reflection and surface wave coefficients in terms of

the deformation, magnitude of the electric (displacement) field, the electromechanical coupling parameters, and the angle

of incidence, and the results are illustrated graphically.
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1. Introduction

The general nonlinear theory of electroelasticity is concerned with the coupling between the electric
and the mechanical properties of materials such as electroactive elastomers, which are capable of large
deformations. In the present paper, we consider a problem of the reflection of plane waves from the
boundary of a finitely deformed incompressible electroactive half-space with a biassing electric field normal
to the half-space boundary. This is based on the form of the theory of electromechanical interactions as
developed by Dorfmann and Ogden [1] and the theory of the propagation of small amplitude waves in a
nonlinear electroelastic material within the quasi-electrostatic approximation, as in [2]. The counterpart
of the current analysis for a purely elastic material was examined by Ogden and Sotiropoulos [3], while a
small number of papers have considered the propagation and reflection of small amplitude waves in the
presence of initial stress and/or biassing fields. For example, Liu et al. [4] studied the effects of pre-stress
on the propagation of waves of Bleustein–Gulyaev type in piezoelectric materials, Simionescu-Panait [5]
examined the effect of electrostriction on the propagation of plane waves in an isotropic solid subjected
to small initial fields, and Singh [6] studied the effect of initial stress on the reflection coefficients at the
boundary of a piezoelectric half-space. See also the review of electroelastic waves under biassing fields by
Yang and Hu [7].

In Sects. 2, 3, and 4, the general theory of electroelasticity and its incremental counterpart are reviewed
briefly. In Sect. 5, the equations and boundary conditions are specialized to two-dimensional increments
for a plane strain underlying configuration and for an illustrative prototype electroelastic material model.
The equations governing the propagation of plane waves are then given in Sect. 6 and applied in Sect. 7 to
the problem of reflection of plane waves, as indicated above. For the considered material model, it is found
that for each angle of incidence only a single reflected wave exists, and this is in general accompanied
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by the generation of a surface wave. Explicit expressions are obtained for the speed of plane waves, and
the reflection and surface wave coefficients, which in general depend on the deformation, magnitude of
the electric (displacement) field, electromechanical coupling parameters, and the angle of incidence. The
dependence is illustrated graphically in Sect. 8, and some concluding remarks are provided in Sect. 9.

2. The basic equations of nonlinear electroelasticity

We denote by Br a fixed reference configuration of a continuous electroelastic body in the absence of
mechanical loads and electric fields. Material points in Br are labeled by their position vectors X. Let the
motion of the body be described by the equation x = χ(X, t), where t is time and the vector function χ
is defined for all points X in Br, x being the position of the material point X in the current configuration
of the body, denoted Bt at time t. The configuration Bt is in general maintained by a combination of
mechanical loads and an electric field vector, denoted E, which is associated with the electric displacement
vector, denoted D. We refer to the book [8] for details of the relevant equations from nonlinear continuum
mechanics and to [9] for a general treatment of nonlinear electromechanical coupling.

In the present study, we neglect the magnetic field and electromagnetic interactions and adopt the
quasi-electrostatic approximation. Then, in the absence of free body charges and currents, Maxwell’s
equations specialize to

curlE = 0, divD = 0, (1)

where curl and div are curl and divergence operators with respect to x. Readers are referred to the classic
text [10] for details of the equations of electromagnetic theory.

Let EL and DL be the Lagrangian counterparts of E and D, respectively. These are defined by

EL = FTE, DL = JF−1D, (2)

where F = Gradχ is the deformation gradient, with Grad being the gradient operator in Br, T the usual
transpose operator and J = detF. For incompressible materials, on which we focus in the article, the
constraint

J = detF ≡ 1 (3)

applies for each X.
Using Eq. (2), the equations in (1) can be written in Lagrangian form as

CurlEL = 0, DivDL = 0, (4)

where Curl and Div are the curl and divergence operators in Br.
In the absence of mechanical body forces, the equation of motion of the material can be written as

divτ = ρx,tt, (5)

where τ is the total Cauchy stress tensor, which is symmetric, and ρ is the mass density of the material
in Bt. A subscript t following a comma denotes the material time derivative.

The total nominal stress tensor T is defined, for an incompressible material, by

T = F−1τ . (6)

Using (6), Eq. (5) is written in Lagrangian form as

DivT = ρrx,tt, (7)

where ρr is mass density in Br, which, since we are considering incompressible materials, is equal to ρ,
and henceforth the subscript r is omitted from ρr.
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We consider an energy function Ω∗, defined per unit volume in Br as a function of F and DL. Then,
for an incompressible material the total nominal stress tensor and the Lagrangian electric field are given
by

T =
∂Ω∗

∂F
− pF−1, EL =

∂Ω∗

∂DL
, (8)

where p is a Lagrange multiplier associated with incompressibility constraint (3), and hence

τ = F
∂Ω∗

∂F
− pI, E = F−T ∂Ω∗

∂DL
, (9)

where I is the identity tensor.
For an incompressible isotropic electroelastic material, Ω∗ can be written in terms of five scalar invari-

ants of the two tensors C and DL ⊗DL, where C is the right Cauchy–Green tensor, defined as FTF. The
invariants typically adopted are defined as

I1 = trC, I2 =
1
2
[(trC)2 − tr(C2)], (10)

I4 = DL · DL, I5 = DL · (CDL), I6 = DL · (C2DL). (11)

It follows that τ and E can be expanded in the forms

τ = 2Ω∗
1B + 2Ω∗

2

(
I1B − B2

) − pI + 2Ω∗
5D ⊗ D + 2Ω∗

6(D ⊗ BD + BD ⊗ D), (12)

E = 2
(
Ω∗

4B
−1 + Ω∗

5I + Ω∗
6B

)
D, (13)

where B = FFT is the left Cauchy–Green tensor, Ω∗
i is defined as ∂Ω∗/∂Ii for i = 1, 2, 4, 5, 6, and we

now use the notation Ω∗ = Ω∗(I1, I2, I4, I5, I6).

3. Incremental motions and electric fields

Consider a static finite deformation x = χ(X), which defines a deformed configuration B with deformation
gradient F, electrostatic displacement field D, corresponding Lagrangian field DL = F−1D and electric
field E = F−TEL given by (8)2. Upon this configuration, we superimpose a small (incremental) time-
dependent displacement ẋ(X, t), where here and henceforth a superposed dot signifies an incremental
quantity. The associated incremental deformation gradient is given by Ḟ = Grad ẋ. Independently of ẋ,
we suppose that ḊL is an increment in DL. Let Ṫ and ĖL be increments in T and EL, respectively. Then,
the incremental forms of the governing equations (4) and (7) are

CurlĖL = 0, DivḊL = 0, DivṪ = ρẋ,tt. (14)

When linearized in the increments, the incremental forms of the constitutive equations (8) become

Ṫ = A∗Ḟ + Γ∗ḊL − ṗF−1 + pF−1ḞF−1, ĖL = Γ∗TḞ + K∗ḊL, (15)

where ṗ is the increment in p and A∗, Γ∗ and K∗ are, respectively, fourth-, third- and second-order
tensors, which are referred to as electroelastic moduli tensors [2]. Respectively, they represent the elasticity
tensor at fixed DL, the electroelastic coupling tensor, and the reciprocal of the dielectric tensor at fixed
deformation.

In (Cartesian) component form, the equations in (15) are written

Ṫαi = A∗
αiβjḞjβ + Γ∗

αi|βḊLβ , ĖLα = Γ∗
βi|αḞiβ + K∗

αβḊLβ , (16)

where the components of the moduli tensors are defined by

A∗
αiβj =

∂2Ω∗

∂Fiα∂Fjβ
, Γ∗

αi|β =
∂2Ω∗

∂Fiα∂Dlβ
, K∗

αβ =
∂2Ω∗

∂Dlα∂Dlβ
, (17)
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with Γ∗T defined in component form by (Γ∗T)α|βi = (Γ∗)βi|α and A∗ and K∗ having the symmetries
A∗

αiβj = A∗
βjαi, K

∗
αβ = K∗

βα.
In order to refer quantities to the deformed configuration B rather than the original reference config-

uration Br, we use pushforward versions of Ṫ, ḊL, ĖL, denoted by Ṫ0, ḊL0, ĖL0, respectively, and (for
an incompressible material) defined by

Ṫ0 = FṪ, ḊL0 = FḊL, ĖL0 = F−TĖL. (18)

The equations in (14) can then be transformed into their Eulerian counterparts as

curlĖL0 = 0, divḊL0 = 0, divṪ0 = ρu̇,tt, (19)

where u is the incremental displacement ẋ when regarded as function of x and t (instead of X and t), and
gradu = ḞF−1, which is the pushforward of Ḟ. Henceforth, we use the notation H = gradu. Equations
(19) are coupled with the incremental incompressibility condition

trH ≡ divu = 0. (20)

The incremental constitutive equations in (15) can then be recast in the pushforward forms

Ṫ0 = A∗
0H + Γ∗

0ḊL0 + pH − ṗI, ĖL0 = Γ∗T
0 H + K∗

0ḊL0, (21)

where the updated moduli tensors A∗
0, Γ∗

0 and K∗
0 are related to A∗, Γ∗ and K∗ in component form by

A∗
0piqj = FpαFqβA∗

αiβj , Γ∗
0pi|q = FpαF−1

βq Γ∗
αi|β , K∗

0ij = F−1
αi F−1

βj K∗
αβ , (22)

with the symmetries A∗
0piqj = A∗

0qjpi, Γ∗
0pi|q = Γ∗

0ip|q, K
∗
0ij = K∗

0ji. A complete list of the components of
A∗

0, Γ∗
0 and K∗

0 for a general isotropic Ω∗ can be found in the text [9].
Equations (19)–(21) govern the incremental displacement u and the incremental field ḊL0 in Eulerian

form.

4. Incremental exterior fields and boundary conditions

Noting the distinction between ∗ and �, let D� and E� be the electric displacement and electric field
outside the body connected by D� = ε0E�, where ε0 is the permittivity of free space. The corresponding
incremental fields Ḋ� and Ė� are related by

Ḋ� = ε0Ė� (23)

and satisfy the equations
curlĖ� = 0, divḊ� = 0. (24)

The associated Maxwell stress, denoted τ �, and its increment τ̇ � are given by

τ � = ε0

[
E� ⊗ E� − 1

2
(E� · E�)I

]
, τ̇ � = ε0[Ė� ⊗ E� + E� ⊗ Ė� − (E� · Ė�)I], (25)

and satisfy divτ � = 0, div τ̇ � = 0.
Let n be the unit outward normal vector to ∂B and da be the associated area element. Then, the

traction on the area element may be written as τnda. The appropriate traction boundary condition in
Eulerian form is

τn = ta + t�
e , (26)

where ta is the applied mechanical traction per unit area of ∂B and t�
e is the part of traction due to the

Maxwell stress exterior to the body. The above boundary condition may be written in Lagrangian form
as

TTN = tA + t�
E, (27)
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where tA and t�
E are related to ta and t�

e by tAdA = tada and t�
EdA = t�

eda, respectively. Here N is the
unit outward normal vector to ∂Br and dA is the associated area element.

By Nanson’s formula nda = F−TNdA for an incompressible material, the exterior Maxwell traction
t�
E is written as t�

E = τ �F−TN per unit reference area. Then, the above boundary condition becomes

TTN = tA + τ �F−TN. (28)

On taking the increment of this equation, we obtain

ṪTN = ṫA + τ̇ �F−TN − τ �F−TḞTF−TN (29)

on ∂Br, and in updated (Eulerian) form

ṪT
0 N = ṫA0 + τ̇ �n − τ �HTn, (30)

on ∂B.
The boundary conditions for the electric displacement and electric field in Eulerian form are

(D − D�) · n = 0, (E − E�) × n = 0, (31)

where each term is evaluated on ∂B, it being assumed that there are no surface charges. In Lagrangian
form, they become

(DL − F−1D�) · N = 0, (EL − FTE�) × N = 0, (32)
which apply on the boundary ∂Br. On taking the increments of these and then updating, we obtain

[ḊL0 − Ḋ� + HD�] · n = 0, [ĖL0 − Ė� − HTE�] × n = 0, (33)

both of which hold on ∂B.

5. Two-dimensional incremental motions

We now restrict attention to plane strain in the (1, 2) plane with D3 = 0 and also consider the incremental
displacement components to have the forms

u1 = u1(x1, x2, t), u2 = u2(x1, x2, t), u3 = 0, (34)

while the incremental Lagrange multiplier is given by ṗ = ṗ(x1, x2, t). Similarly, we take the components
of the incremental electric displacement vector to be

ḊL01 = ḊL01(x1, x2, t), ḊL02 = ḊL02(x1, x2, t), ḊL03 = 0. (35)

In what follows, a subscript i following a comma indicates partial differentiation with respect to xi, i =
1, 2.

In this specialization, the incremental incompressibility condition (20) and Eq. (19)2 reduce to

u1,1 + u2,2 = 0, ḊL01,1 + ḊL02,2 = 0, (36)

from which we deduce the existence of functions ψ = ψ(x1, x2, t) and ϕ = ϕ(x1, x2, t) such that

u1 = ψ,2, u2 = −ψ,1, ḊL01 = ϕ,2, ḊL02 = −ϕ,1. (37)

The incremental equation of motion (19)3 specializes to the two-component form as

Ṫ011,1 + Ṫ021,2 = ρu1,tt, Ṫ012,1 + Ṫ022,2 = ρu2,tt, (38)

and Eq. (19)1 reduces to
ĖL01,2 − ĖL02,1 = 0. (39)

The relevant components of the incremental stresses and electric field are obtained by specializing the
incremental constitutive equations (21), yielding

Ṫ011 = (A∗
01111 + p)u1,1 + A∗

01121u1,2 + A∗
01112u2,1 + A∗

01122u2,2 + Γ∗
011|1ḊL01 + Γ∗

011|2ḊL02 − ṗ,
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Ṫ012 = A∗
01211u1,1 + (A∗

01221 + p)u1,2 + A∗
01212u2,1 + A∗

01222u2,2 + Γ∗
012|1ḊL01 + Γ∗

012|2ḊL02,

Ṫ021 = A∗
02111u1,1 + A∗

02121u1,2 + (A∗
02112 + p)u2,1 + A∗

02122u2,2 + Γ∗
021|1ḊL01 + Γ∗

021|2ḊL02,

Ṫ022 = A∗
01122u1,1 + A∗

02221u1,2 + A∗
02212u2,1 + (A∗

02222 + p)u2,2 + Γ∗
022|1ḊL01 + Γ∗

022|2ḊL02 − ṗ,

(40)

and

ĖL01 = Γ∗
011|1u1,1 + Γ∗

012|1(u1,2 + u2,1) + Γ∗
022|1u2,2 + K∗

011ḊL01 + K∗
012ḊL02,

ĖL02 = Γ∗
011|2u1,1 + Γ∗

012|2(u1,2 + u2,1) + Γ∗
022|2u2,2 + K∗

012ḊL01 + K∗
022ḊL02. (41)

5.1. Specialization of the underlying configuration

In this section, the preceding equations and the boundary conditions from Sect. 4 are specialized for the
pure homogeneous deformation of an electroelastic half-space in the presence of an electric field normal
to its boundary. The pure homogeneous plane strain is described with reference to rectangular Cartesian
coordinates (X1,X2,X3) in the undeformed configuration and (x1, x2, x3) in the deformed configuration
by

x1 = λX1, x2 = λ−1X2, x3 = X3, (42)
where λ is constant, and the half-space is taken to occupy the region x2 < 0 in the deformed configuration,
with boundary x2 = 0. For this deformation, the deformation gradient F is diagonal with respect to the
chosen (principal) axes of the deformation and the principal stretches are λ1 = λ, λ2 = λ−1, λ3 = 1.
Then, the invariants I1 and I2 are obtained from Eq. (10) as

I1 = I2 = 1 + λ2 + λ−2. (43)

We take D to be aligned with the x2 axis, so that D1 = D3 = 0 and D2 is constant. The corresponding
Lagrangian field has components DL1 = DL3 = 0 and DL2 = λD2, and the invariants I4, I5 and I6 are
obtained from Eq. (11) as

I4 = D2
L2, I5 = λ−2D2

L2, I5 = λ−4D2
L2. (44)

From (12) and (13), the only nonzero components of τ and E are obtained as

τ11 = 2Ω∗
1λ

2 + 2Ω∗
2(λ

2 + 1) − p, (45)
τ22 = 2Ω∗

1λ
−2 + 2Ω∗

2(1 + λ−2) − p + 2Ω∗
5λ

−2I4 + 4Ω∗
6λ

−4I4, (46)
τ33 = 2Ω∗

1 + 2Ω∗
2(λ

2 + λ−2) − p, (47)

and
E2 = 2(λ2Ω∗

4 + Ω∗
5 + λ−2Ω∗

6)D2. (48)
In this configuration, the components of the tensors A∗

0, Γ∗
0 and K∗

0 are also reduced in number. In
particular, the coefficients in Eqs. (40) and (41) are such that the components A∗

0ijkl with three indices
1 or three indices 2 vanish, Γ∗

011|1 = Γ∗
022|1 = Γ011|2 = 0, Γ∗

012|2 = Γ∗
021|2 = 0 and K∗

012 = 0 (see [9] for full
details of the component expressions).

Equations (38) and (39) can then be arranged as two equations coupling ψ and ϕ, namely

aψ,1111 + 2bψ,1122 + cψ,2222 + (e − d)ϕ,112 + dϕ,222 = ρ(ψ,11tt + ψ,22tt), (49)
(e − d)ψ,112 + dψ,222 + gϕ,11 + fϕ,22 = 0, (50)

within which the following notations have been introduced:

a = A∗
01212, 2b = A∗

01111 + A∗
02222 − 2A∗

01122 − 2A∗
01221, c = A∗

02121, (51)
d = Γ∗

012|1 = Γ∗
021|1, e = Γ∗

022|2, f = K∗
011, g = K∗

022. (52)
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Since the underlying electric displacement field has just a single component D2 and E1 = E3 = 0 in the
material, then, on applying the above boundary conditions on x2 = 0, we have D�

2 = D2, E�
1 = E�

3 = 0,
and from relation D� = ε0E�, it follows that D�

1 = D�
3 = 0 and E�

2 = ε−1
0 D2. The equations in (1) then

ensure that outside the material the electric displacement field is uniform and related to the internal
Lagrangian field via D�

2 = D2 = λ−1DL2. From Eq. (25), the nonzero components of the Maxwell stress
τ � are obtained as

τ�
11 = τ�

33 = −τ�
22 = −1

2
ε−1
0 D2

2. (53)

In general, τ22 �= τ�
22, so that an applied mechanical traction is required on x2 = 0 in order to balance

the difference τ22 − τ�
22.

Since the incremental fields are independent of x3 in the considered specialization, we deduce the
existence of a scalar function ϕ� = ϕ�(x1, x2, t) such that

Ė�
1 = −ϕ�

,1, Ė�
2 = −ϕ�

,2, (54)

where ϕ� satisfy Laplace’s equation in x2 > 0. The nonzero components of the incremental Maxwell stress
tensor in (25) are then

τ̇�
11 = τ̇�

33 = −τ̇�
22 = D2ϕ

�
,2, τ̇�

12 = τ̇�
21 = −D2ϕ

�
,1. (55)

In the present situation, we take the incremental mechanical traction on the boundary to vanish, so
that the following two boundary conditions are obtained from (30):

Ṫ021 + τ�
11u2,1 − τ̇�

12 = 0, Ṫ022 + τ�
22u2,2 − τ̇�

22 = 0 on x2 = 0. (56)

The incremental electric boundary conditions (33) specialize as

ĖL01 − Ė�
1 − E�

2u2,1 = 0, ḊL02 − Ḋ�
2 + D�

2u2,2 = 0 on x2 = 0. (57)

Following [2], we assume that there is no applied mechanical traction on x2 = 0 in the underlying
configuration, so that τ22 = τ�

22 = ε−1
0 D2

2/2. In terms of the scalar functions ψ, ϕ and ϕ�, the incremental
boundary conditions (56) and (57) then become

(ε−1
0 D2

2 − c)ψ,11 + cψ,22 + dϕ,2 + D2ϕ
�
,1 = 0 on x2 = 0, (58)

(2b + c)ψ,112 + cψ,222 + eϕ,11 + dϕ,22 − D2ϕ
�
,12 − ρψ,2tt = 0 on x2 = 0, (59)

(ε−1
0 D2 − d)ψ,11 + dψ,22 + fϕ,2 + ϕ�

,1 = 0 on x2 = 0, (60)

D2ψ,12 + ϕ,1 − ε0ϕ
�
,2 = 0 on x2 = 0. (61)

Equation (59) is obtained by differentiating (56)2 with respect to x1 and then making use made of
the expression for ṗ,1 from (38)1. Equations (58)–(61) are equivalent to those obtained in [2] for the
corresponding situation.

On elimination of ϕ�
,1 from Eqs. (58) and (60) and elimination of ϕ�

,12 from Eqs. (59) and (61) after
differentiating the latter with respect to x1, the boundary conditions required for Eqs. (49) and (50) in
terms of the scalar functions ψ and ϕ are

(D2d − c)(ψ,11 − ψ,22) + (d − D2f)ϕ,2 = 0 on x2 = 0, (62)

(2b + c − ε−1
0 D2

2)ψ,112 + cψ,222 + (e − ε−1
0 D2)ϕ,11 + dϕ,22 − ρψ,2tt = 0 on x2 = 0. (63)

The exterior field can now be ignored and we are left with the two Eqs. (49) and (50) and the associated
boundary conditions (62) and (63) involving ψ and ϕ.
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5.1.1. A simple model energy function. The energy function Ω∗ for a simple prototype model of nonlinear
electroelasticity, introduced in [2], is given by

Ω∗ =
1
2
μ(I1 − 3) + ε−1

0 (αI4 + βI5), (64)

where the constant μ > 0 is the shear modulus of a neo-Hookean material in the configuration Br (in
the absence of an electric field) and α ≥ 0 and β > 0 are constant electroelastic parameters. Note that
if α = β = 0 the problem is purely elastic and has been discussed in detail in [3].

For this energy function, Eq. (48) reduces to

E2 = 2ε−1
0 (αλ2 + β)D2, (65)

so that ε ≡ ε0/2(αλ2 + β) has the interpretation as the material permittivity, which for α �= 0 is
deformation dependent. In the undeformed configuration, the relative permittivity ε/ε0 > 1, so that the
restriction α + β < 1/2 applies. The material parameters (51) and (52) reduce to

a = μλ2, c = μ(λ−2 + 2βD̂2
2), 2b = a + c, (66)

e − d = d = 2ε−1
0 βD2, f = 2ε−1

0 (αλ−2 + β), g = 2ε−1
0 (αλ2 + β), (67)

where D̂2 is a dimensionless measure of D2 defined by

D̂2 = D2/
√

με0. (68)

In view of the relations 2b = a + c and e = 2d, Eqs. (49) and (50) and boundary conditions (62) and
(63) specialize accordingly, and henceforth, we adopt this specialization.

6. Plane waves

We now consider plane waves propagating in an incompressible finitely deformed electroactive material.
We assume that ψ and ϕ have the forms

ψ = ψ0(n1x1 + n2x2 − vt), ϕ = ϕ0(n1x1 + n2x2 − vt), (69)

where v is the wave speed, t is time, ψ0 and ϕ0 are functions of the indicated argument and n1, n2 with
n3 = 0 are components of the direction of propagation n, with (n1, n2) = (cos θ, sin θ), so that

n2
1 + n2

2 = 1. (70)

On substituting (69) into Eqs. (49) and (50) with the indicated specialization, we obtain

(an2
1 + cn2

2 − ρv2)ψ
′′′′
0 + dn2ϕ

′′′
0 = 0, (71)

dn2ψ
′′′
0 + (gn2

1 + fn2
2)ϕ

′′
0 = 0, (72)

where a prime signifies differentiation with respect to the argument.
After differentiating (72), we obtain a linear system for ψ

′′′′
0 and ϕ

′′′
0 , which has a non-trivial solution

if the determinant of coefficients vanishes. Following [2], this results in the following expression for the
wave speed v:

ρv2 = an2
1 + cn2

2 − d2n2
2

gn2
1 + fn2

2

. (73)

This equation determines the wave speed for any given direction of propagation in the (x1, x2) plane
provided ρv2 > 0. It also determines possible directions in which waves may propagate for a given speed,
material constants, and deformation. We now consider two cases.
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Case (i): λ = 1. For the undeformed configuration, we have a = μ, c − a = dD2, d = 2ε−1
0 βD2, f = g =

2ε−1
0 (α + β) and Eq. (73) is written in the form

cos2 θ =
cf − d2 − ρv2f

cf − d2 − af
. (74)

For this equation to yield a real value of cos θ, we must have

1 ≤ ρv2

μ
≤ 1 +

2αβD̂2
2

α + β
. (75)

The two limits correspond to θ = 0 and θ = π/2, and we note that

ρv2

μ
= 1 +

2αβD̂2
2n

2
2

α + β
. (76)

Thus, ρv2 = μ if either α = 0, β = 0 or D̂2 = 0.
Case (ii): λ �= 1. For a given wave speed v, (73) may be written as a quadratic equation for n2

1:

(c − a)(f − g)n4
1 − [(c − a)f + (f − g)(c − ρv2) − d2]n2

1 + f(c − ρv2) − d2 = 0. (77)

This determines possible angles of propagation for a given wave speed, material properties, and deforma-
tion.

7. Wave reflection from the half-space boundary

We now consider plane waves of the form given by (69) incident on the boundary x2 = 0 from within the
half-space x2 < 0. The incremental boundary conditions on x2 = 0 are given by Eqs. (62) and (63). Let
(n1, n2) = (cos θ, sin θ) be the direction of propagation of an incident wave and v its speed.

The material properties and the state of deformation determine whether there are two reflected waves,
or just one reflected wave together with a surface wave. The general solutions for ψ and ϕ consisting of
the incident and (possibly) two reflected waves are assumed in the forms

ψ = Aeik(n1x1+n2x2−vt) + AReik(n1x1−n2x2−vt) + AR′eik
′(n′

1x1−n′
2x2−v′t), (78)

ϕ = ξ0Aeik(n1x1+n2x2−vt) + ξ1AReik(n1x1−n2x2−t) + ξ′
1AR′eik

′(n′
1x1−n′

2x2−v′t), (79)

where A is a constant, k and k′ are the wave numbers, and v and v′ the wave speeds. The coupling
coefficients ξ0, ξ1 and ξ′

1 are obtained from Eqs. (49) and (50) as

ξ1 = −ξ0 =
ik(an2

1 + cn2
2 − ρv2)

n2d
=

ikdn2

gn2
1 + fn2

2

, (80)

ξ′
1 =

ik′(an′ 2
1 + cn′ 2

2 − ρv′ 2)
n′
2d

=
ik′dn′

2

gn′ 2
1 + fn′ 2

2

, (81)

and R and R′ are reflection coefficients. The speed of the first reflected wave is equal to the speed of
the incident wave. Assuming that the first and second reflected waves are reflected at angles θ and θ′

to the boundary, we have n′
1 = cos θ′, n′

2 = sin θ′. The incident and reflected waves must have the same
frequency, which requires

kv = k′v′, (82)

and the boundary conditions (62) and (63) require that kn1 = k′n′
1. Hence

v′n1 = vn′
1, (83)
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which is a Snell’s law for the case of two reflected waves. Note that for g = f , which is only possible for
λ = 1 or α = 0, Eq. (80) gives

ξ0 = − ikdn2

f
= − ikβD2n2

αλ−2 + β
. (84)

7.1. Case (i) λ = 1

For two reflected waves, we have from (73), since g = f when λ = 1,

ρv2 = f−1[d2 − (c − a)f ]n2
1 + f−1(cf − d2), ρv′ 2 = f−1[d2 − (c − a)f ]n′ 2

1 + f−1(cf − d2). (85)

Using Eq. (83) and eliminating v and v′ from these two expressions, we obtain n′
1 = ±n1. Thus, the two

reflected waves coincide and there is only one reflected wave, and it is therefore necessary to consider a
surface wave instead of a second reflected wave, as is done below.

7.2. Case (ii) λ �= 1

Consider an incident wave with speed v given by (73), i.e.,

ρv2 = an2
1 + cn2

2 − d2n2
2

gn2
1 + fn2

2

, (86)

and a reflected with speed v′ given by

ρv′2 = an′ 2
1 + cn′ 2

2 − d2n′ 2
2

gn′ 2
1 + fn′ 2

2

. (87)

Using Eq. (83) and eliminating v and v′ between (86) and (87), we obtain either n′ 2
1 = n2

1 or

(g − f)[c(g − f) + d2]n2
1n

′ 2
1 + (g − f)(cf − d2)(n2

1 + n′ 2
1 ) + (cf − d2)f = 0. (88)

Noting that cf − d2 = 2ε−1
0 λ−2[μ(αλ−2 + β) + 2ε−1

0 αβD2
2] is positive, it is straightforward to show

that n′ 2
1 < 0 when g > f , i.e., λ > 1, and n′ 2

1 > 0 when g < f , i.e., λ < 1. While it is in principle
possible that there could be two distinct reflected waves, with the second angle θ′ (n′

1 = cos θ′) satisfying
(88), by forming an explicit expression for n′ 2

1 , which must satisfy n′ 2
1 ≤ 1, we find that this condition

requires that n2
1 ≥ (cf − d2)/c(f − g), but for this also to be less that 1, we must have cg − d2 ≡

2με−1
0 (α + βλ−2 + 2αβλ2D̂2

2) ≤ 0, which cannot hold since α ≥ 0 and β > 0. Thus, in this case there can
again be only one reflected wave, and the angle of reflection equals the angle of incidence.

We note that in the purely elastic context [3] the case in which the constitutive restriction 2b = a + c
given in (66) holds also leads to just a single reflected wave, while if 2b �= a + c two distinct reflected
waves are possible. This will also be the case here if we choose a more general form of energy function,
but this is not considered since our main purpose is to examine the basic influence of an electric field
on the plane wave characteristics, their reflection at a half-space boundary and the generation of surface
waves.

7.3. Surface waves

As only one reflected wave is possible, we now consider surface waves generated by a plane wave impinging
on the boundary, and replace n1x1+n2x2−vt in (69) by x1−isx2−v′t. Then, a general solution consisting
of an incident wave, a reflected wave and a surface wave is assumed in the form

ψ = Aeik(n1x1+n2x2−vt) + AReik(n1x1−n2x2−vt) + AR′eik
′(x1−isx2−v′t), (89)

ϕ = ξ0Aeik(n1x1+n2x2−vt) + ξ1AReik(n1x1−n2x2−vt) + ξ∗
1AR′eik

′(x1−isx2−v′t), (90)
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and substituting into Eqs. (49) and (50), we obtain either s2 = 1 or the counterpart of (73), which is

ρv′ 2 = a − cs2 +
d2s2(1 − s2)

g − fs2
. (91)

In the latter term, we have used the expression for ξ∗
1 obtained from Eq. (50), which gives

ξ∗
1(g − fs2) = −dk′s(1 − s2), (92)

while ξ1 = −ξ0 is given by (80). In the special case, when s2 = 1, Eq. (49) is satisfied automatically, while
in the limit s → 1 (92) gives

ξ∗
1 = −k′d

f
= − k′βD2

αλ−2 + β
. (93)

We require s > 0 for the surface wave terms in (89) and (90) to decay as x2 → −∞. With Snell’s law
now in the form

kn1 = k′, v′n1 = v, (94)
we obtain the counterpart of (88) for this case in the factorized form

(n2
2 + s2n2

1){(gn2
1 + fn2

2)(cf − d2)s2 − g[c(gn2
1 + fn2

2) − d2]} = 0. (95)

The first factor recovers a reflected wave with angle of reflection equal to the angle of incidence, while
for a surface wave (s > 0) the second factor yields

s =

√
g[c(gn2

1 + fn2
2) − d2]

(gn2
1 + fn2

2)(cf − d2)
, (96)

within which, for the values of the parameters given in (66) and (67), both numerator and denominator
are positive for any angle of incidence.

At this point, it should be emphasized that the expression for v′ given by (91) is not valid for s = 1
since consideration of (91) in conjunction with v = v′n1 and (86) in the limit s → 1 leads to cf − d2 = 0,
but for the considered model cf − d2 > 0 when β > 0. It is thus important to distinguish between the
cases s = 1 and s �= 1 in the following. We first consider the case s �= 1.

Substituting (89) and (90) into the boundary conditions (62) and (63), we obtain
[

n2
1 − n2

2 − 2αβD̂2
2n

2
2

α(λ2n2
1 + λ−2n2

2) + β

]

(1 + R) +

[

1 + s2 +
2αβD̂2

2s
2(1 − s2)

α(λ2 − λ−2s2) + β(1 − s2)

]

R′n2
1 = 0 (97)

and, after use of (73) and (91),
[

2λ−2 + (4β − 1)D̂2
2 − β(4β − 1)D̂2

2

α(λ2n2
1 + λ−2n2

2) + β

]

(1 − R)n2
1n2

−is

[

2λ−2 + (4β − 1)D̂2
2 − β(4β − 1)D̂2

2(1 − s2)
α(λ2 − λ−2s2) + β(1 − s2)

]

R′n3
1 = 0. (98)

Note that in respect of the coefficients of R′ in (97) and (98), for s �= 1 (and hence f �= g), use of (96)
shows that

2ε−1
0 [α(λ2 − λ−2s2) + β(1 − s2)] =

g(f − g)d2n2
1

(gn2
1 + fn2

2)(cf − d2)
, (99)

and the factor n2
1 cancels with an n2

1 in each of the terms that include the denominator α(λ2 − λ−2s2) +
β(1 − s2).

From (97) and (98), we obtain the following values of R and R′:

R =
AsBn + AnBs

AsBn − AnBs
, R′ = − 2AnBn

AsBn − AnBs
, (100)
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where

An = n2
1 − n2

2 − 2αβD̂2
2n

2
2

α(λ2n2
1 + λ−2n2

2) + β
, (101)

As = (1 + s2)n2
1 +

α[c(gn2
1 + fn2

2) − d2][c(gn2
1 + fn2

2) − d2n2
2]

μβ(gn2
1 + fn2

2)(cf − d2)
, (102)

Bn = n2
1n2

[

2λ−2 + (4β − 1)D̂2
2 − β(4β − 1)D̂2

2

α(λ2n2
1 + λ−2n2

2) + β

]

, (103)

Bs = −isn3
1[2λ−2 + (4β − 1)D̂2

2] +
isn1(4β − 1)[c(gn2

1 + fn2
2) − d2n2

2]
2μβg

, (104)

within which the expression (96) has been used.
It follows, in particular, that |R| = 1. Note that R′ = 0, i.e., no surface wave is generated and there is

only a reflected wave, if either An = 0 or Bn = 0, which is possible for a range of combinations of θ, α,
β, λ and D̂2 and then R = 1 and R = −1, respectively. Note also that As and Bs reduce to An and Bn,
respectively, when s = in2/n1, which corresponds to a reflected wave equivalent to that associated with
R.

We now turn to the case s = 1. From Eq. (50) it follows, with ξ∗
1 �= 0, that f = g. The latter can only

hold for α = 0 or λ = 1. By following the procedure above but by using the expression (86) with v = v′n1

instead of (91), we obtain, after multiplying by factors λ2,

An = n2
1 − n2

2 − 2αβλ2D̂2
2n

2
2

α + βλ2
, As = 2n2

1

(

1 +
αβλ2D̂2

2

α + βλ2

)

,

Bn = n2
1n2

[

2 +
α(4β − 1)λ2D̂2

2

α + βλ2

]

, Bs = −in1

[(

1 +
2αβλ2D̂2

2

α + βλ2

)

(n2
1 − n2

2) − αλ2D̂2
2n

2
1

α + βλ2

]

. .(105)

These expressions apply for either λ = 1 or α = 0 with λ not necessarily equal to 1. In the latter case,
R and R′ are independent of λ. Note that if either α = 0 or D̂2 = 0, this gives the result for the purely
elastic case provided in [3] in the absence of normal stress.

The special case β = 1/4 deserves particular attention. If β �= 1/4 or β = 1/4 and λ = 1 then R → −1
and R′ → 0 as n1 → 0, but if β = 1/4 and λ �= 1 then R → 1 and R′ → λ2/2α as n1 → 0. This is
exemplified in the numerical results presented in the following section.
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Fig. 1. Plots of the squared dimensionless wave speed ζ = ρv2/μ against the angle of incidence θ ∈ [0, π/2] for α = 0.1,

β = 0.05, 0.1, 0.2, 0.3 and D̂2 = 2: a λ = 0.8; b λ = 1; c λ = 1.2
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Fig. 2. Plots of the squared dimensionless wave speed ζ = ρv2/μ against the angle of incidence θ ∈ [0, π/2] for β = 0.2,

α = 0, 0.05, 0.1, 0.2 and D̂2 = 2: a λ = 0.8; b λ = 1; c λ = 1.2
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Fig. 3. Plots of the squared dimensionless wave speed ζ = ρv2/μ against D̂2 ∈ [0.4] for β = 0.2, α = 0, 0.05, 0.1, 0.2 and
λ = 1.2: a θ = π/16; b θ = π/4; c θ = 7π/16
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Fig. 4. Plots of the squared dimensionless wave speed ζ = ρv2/μ against D̂2 ∈ [0.4] for α = 0.1, β = 0.05, 0.1, 0.2, 0.3 and

λ = 1.2: a θ = π/16; b θ = π/4; c θ = 7π/16
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Fig. 5. Plots of the real and imaginary parts of R and R′ (continuous and dashed curves, respectively) and |R|, |R′| (thick

continuous curves) for λ = 1 with α = 0 (or D̂2 = 0): a R; b R′
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Fig. 6. Plots of Re(R), continuous curves, Im(R), dashed curves, and |R| = 1, versus θ ∈ [0, π/2] for λ = 1 with α = 0.1: a

β = 0.1, D̂2 = 3; b β = 0.1, D̂2 = 5; c β = 0.1, D̂2 = 8; d β = 0.25, D̂2 = 3; e β = 0.25, D̂2 = 5; f β = 0.25, D̂2 = 8

8. Results

From Eq. (73), the dimensionless form of the squared wave speed ζ = ρc2/μ of plane waves is computed
as a function of angle of propagation. This is plotted against the angle of propagation θ for different com-
binations of the values of coupling parameters α and β when the values of the stretch λ and dimensionless
constant D̂2 are prescribed.
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Fig. 8. Plots of Re(R), continuous curves, Im(R), dashed curves, and |R| = 1, versus d ∈ [0, 10] for λ = 1, α = β = 0.1 for
different angles of incidence: a θ = π/16; b θ = π/6; c θ = π/4; d θ = 5π/16; e θ = 5.6π/16; f θ = 6.5π/16

In Fig. 1a–c, for λ = 0.8, λ = 1 and λ = 1.2, respectively, ζ is shown as a function of the angle of
incidence θ for the representative values α = 0.1 and D̂2 = 2 and for the four different values, 0.05, 0.1,
0.2 and 0.3, of β in each case. Note that for the relative permittivity of the material to be greater than
1 in the reference configuration we must have α + β < 1/2 and the values of α and β have been chosen
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Fig. 9. Plots of Re(R′), continuous curves, Im(R′), dashed curves, and |R′|, thick continuous curves, versus D̂2 ∈ [0, 10]
for λ = 1, α = 0.1, β = 0.2 for different angles of incidence: a θ = π/16; b θ = π/8; c θ = π/6; d θ = π/4; e θ = π/3; f
θ = 13π/32

to respect this inequality. It can be seen that for λ = 0.8 and 1 the wave speed increases with the angle
of propagation, while for λ = 1.2 it decreases. For each angle (except the grazing angle θ = 0) and each
value of λ the wave speed increases with increases in the value of β. The effect of the coupling parameter
β increases with an increase in θ and it is maximum for normal incidence (θ = π/2). The effect of the
value of λ on the wave speed can be seen by comparing the curves in the three figures for specific values
of β.

In Fig. 2a–c, corresponding results are illustrated again for λ = 0.8, λ = 1 and λ = 1.2 and D̂2 = 2, but
now for the fixed value β = 0.2 and with our different values, 0, 0.05, 0.1, and 0.2 of α. For λ = 0.8 and 1
the plots have a similar character to those shown in Fig. 1a, b except that for α = 0 and λ = 1, ζ has the
value 1 independently of the angle of incidence. This value corresponds to the speed of a homogeneous
shear wave that is independent also of the parameter β. For λ = 1.2, the plots in Fig. 2c are mainly
similar to those in Fig. 1c, except for α = 0.2 for which ζ increases with θ initially, but then exhibits
a maximum and thereafter decreases. For each value of θ except θ = 0 the wave speed increases with
the value of α. The effect of the coupling parameter α increases with increasing θ and, as in Fig. 1, is
maximal for normal incidence. Comparison of the three panels in Fig. 2 highlights the effect of different
values of λ.

To illustrate the dependence of the results on D̂2, ζ is plotted against D̂2 in Fig. 3 for λ = 1.2, β = 0.2
and four values of α in each of the three panels, which correspond to angles of incidence θ = π/16, π/4
and 7π/16 in the panels (a), (b) and (c), respectively. In Fig. 4 the roles are α and β are interchanged,
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Fig. 10. Plots of Re(R), continuous curves, Im(R), dashed curves, and |R| = 1, versus θ ∈ [0, π/2] for λ = 1.2 with α = 0.1:

a β = 0.1, D̂2 = 3; b β = 0.1, D̂2 = 5; c β = 0.1, D̂2 = 8; d β = 0.25, D̂2 = 3; e β = 0.25, D̂2 = 5; f β = 0.25, D̂2 = 8

and the plots are for α = 0.1 and four values of β, with the other parameters unchanged. Results for
the other values of λ are qualitatively the same and are not therefore included separately. In each case
(except for α = 0) ζ increases monotonically with D̂2 and increases as the angle θ increases toward π/2.
For α = 0, ζ is independent of D̂2 and has a value that depends on θ. There is no effect of the coupling
parameters α and β on the wave speed for D̂2 = 0, but for D̂2 �= 0 ζ increases with α and/or β for each
incident angle.

Figure 5 shows the dependence of R (a) and R′ (b) on the angle of incidence θ for the basic case of
λ = 1 with no dependence on the electric field. These results agree with those obtained for the purely
elastic case [3] and are compared with corresponding results for the presence of an electric field in Figs. 6
and 7 (for λ = 1). In Fig. 6, the real and imaginary parts of R are shown together with |R| = 1 plotted
against θ for α = 0.1 and β = 0.1 (first row) and β = 0.25 (second row) with D̂2 = 3, 5, 8 in the first,
second and third columns. This illustrates the dependence of R on the electric field (via D̂2) and electric
parameters α and β subject to the restriction α + β < 0.5. Note that Re(R) = −1 and Im(R) = 0 at the
end points θ = 0, π/2.

In Fig. 7 the real and imaginary parts of R′ and |R′| are plotted against θ for α = 0.1 and β = 0.1
to illustrate the dependence on D̂2. The pattern is very similar for other values of α and β with some
small differences in the vertical scale values. Note that R′ = 0, i.e., there is no surface wave generated,
at isolated values of the angle of incidence depending on the value of D̂2.

Figures 8 and 9 show further the dependence of the results on the value of D̂2. In Fig. 8 the real
and imaginary parts of R and |R| = 1 are plotted against D̂2 for λ = 1, and the representative values
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Fig. 11. Plots of Re(R), continuous curves, Im(R), dashed curves, and |R| = 1, versus d ∈ [0, 10] for λ = 1.2, α = 0.1 for
different angles of incidence: a β = 0.1, θ = π/16; b β = 0.1, θ = π/4; c β = 0.1, θ = 7π/16; d β = 0.25, θ = π/16; e
β = 0.25, θ = π/4; f β = 0.25, θ = 7π/16

α = β = 0.1 for six different angles of incidence. Although not shown, it is clear that as θ → π/2,
Re(R) → 1 and Im(R) → 0. In Fig. 9 the real and imaginary parts of R′ and |R′| are plotted against D̂2,
again for λ = 1 and α = 0.1, but β = 0.2, and with six different values of the angle of incidence chosen
to illustrate the changing pattern.

Next, the dependence on the stretch λ is illustrated, specifically for λ = 1.2. In Figs. 10 and 11 the
real and imaginary parts of R and |R| = 1 are plotted against θ and D̂2, respectively. With λ = 1.2 and
α = 0.1 in each case, the panels (a), (b), (c) in Fig. 10 are for β = 0.1, and panels (d), (e), (f) for β = 0.25
with D̂2 equal to 3, 5 and 8 in the three columns. The pattern can be compared with that for λ = 1 in
Fig. 6. A key difference is that for the special case β = 0.25, R = 1 for θ = π/2 compared with R = −1
in Fig. 6. The first row of Fig. 11, which shows the dependence of R on D̂2 for α = β = 0.1 for specific
angles of incidence, can likewise be compared with the appropriate panels in Fig. 7. The second row of
Fig. 11 illustrates how the results change with the value of β.

Figure 12 shows the dependence of R′ (real and imaginary parts and |R′|) on θ for λ = 1.2. The first
row is for α = β = 0.1 with D̂2 = 3, 5, 8 in panels (a), (b), (c), respectively. These plots can be compared
directly with those in Fig. 8, the main differences being a reduction in the magnitude |R′| and the change
in sign of Im(R′). In panels (d) and (e), for D̂2 = 3, 8, respectively, β = 0.3 and the magnitude |R′| has
increased compared with that in panels (a) and (c). Finally, panel (f) considers the special value β = 0.25
for which R′ has the value λ2/2α, in this case 7.2, at θ = π/2. The final figure, Fig. 13, illustrates the
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α = 0.1: a β = 0.1, D̂2 = 3; b β = 0.1, D̂2 = 5; c β = 0.1, D̂2 = 8; d β = 0.3, D̂2 = 3; e β = 0.3, D̂2 = 8; f β = 0.25, D̂2 = 8

dependence of R′ on D̂2 for λ = 1.2 and different values of the angle of incidence, the first row for
α = β = 0.1 and the second row for α = 0.1, β = 0.25. The three columns are for θ = π/16, π/4, 7π/16.

Results for other values of λ show similar patterns to those for λ = 1.2 and are not therefore included
separately in order to save space.

9. Conclusions

This paper has provided a general summary of equations governing the quasi-electrostatic approximation
for incremental electroelastic motions within a finitely deformed incompressible electroelastic material.
Attention has then been focused on two-dimensional incremental motions and the propagation of plane
incremental waves in a pure homogeneously deformed half-space of electroelastic material with an electric
field normal to the boundary and for a simple prototype form of material model.

The dependence of the (dimensionless) squared speed of plane waves on the deformation (via the
stretch λ), the electric coupling parameters α and β, and the (dimensionless) electric displacement field
D̂2 has been illustrated in detail. One point to note is that when λ = 1 (no deformation) the wave speed
is independent of the angle of propagation θ when α = 0, and also independent of D̂2, as can be seen
from Eq. (76). If, on the other hand, α �= 0 but β = 0 then the wave speed given by (73) is independent
of D̂2, and independent of θ if λ = 1.
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Fig. 13. Plots of Re(R′), continuous curves, Im(R′), dashed curves, and |R′|, thick continuous curves, versus D̂2 ∈ [0, 10]
for λ = 1.2, α = 0.1 for different angles of incidence: a β = 0.1, θ = π/16; b β = 0.1, θ = π/4; c β = 0.1, θ = 7π/16; d
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In examining the reflection of plane waves impinging on a half-space boundary it has been shown
that for the specific material model considered only one reflected wave is possible. This is in contrast to
the purely elastic situation when a more general form of the elastic part of the model is adopted, as in
[3]. The single reflected wave is in general accompanied by a generated surface wave. Expressions for the
reflection coefficient R of the reflected wave are determined for the separate cases of an undeformed and
deformed half-space, with their dependence on α, β and D̂2, and the differences in these two cases have
been highlighted. The corresponding coefficient R′ of the surface wave has also been obtained and its
features examined similarly. Both R and R′ are affected significantly by the parameters λ, α, β and D̂2.

Acknowledgements

The work of Dr. Baljeet Singh was supported by a grant under the bilateral agreement between the Royal
Society of Edinburgh and the Indian National Science Academy for his visit to Glasgow. This is gratefully
acknowledged.

Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

http://creativecommons.org/licenses/by/4.0/


ZAMP Reflection of plane waves from the boundary Page 21 of 21   149 

References

[1] Dorfmann, A., Ogden, R.W.: Nonlinear electroelasticity. Acta Mech. 174, 167–183 (2005)
[2] Dorfmann, A., Ogden, R.W.: Electroactive waves in a finitely deformed electroactive material. IMA J. Appl. Math. 75,

630–636 (2010a)
[3] Ogden, R.W., Sotiropoulos, D.A.: The effect of pre-stress on the propagation and reflection of plane waves in incom-

pressible elastic solids. IMA J. Appl. Math. 59, 95–121 (1997)

[4] Liu, H., Kuang, Z.B., Cai, Z.M.: Propagation of Bleustein–Gulyaev waves in a prestressed layered piezoelectric structure.
Ultrasonics 41, 397–405 (2003)

[5] Simionescu-Panait, O.: Wave propagation in cubic crystals subject to initial mechanical and electric fields. Z. Angew.
Math. Phys. 53, 1038–1051 (2002)

[6] Singh, B.: Wave propagation in a prestressed piezoelectric half-space. Acta Mech. 211, 337–344 (2009)
[7] Yang, J.S., Hu, Y.: Mechanics of electroelastic bodies under biasing fields. Appl. Mech. Rev. 57, 173–189 (2004)
[8] Ogden, R.W.: Non-linear Elastic Deformations. Dover, New York (1997)
[9] Dorfmann, L., Ogden, R.W.: Nonlinear Theory of Electroelastic and Magnetoelastic Interactions. Springer, New York

(2014)
[10] Jackson, J.D.: Classical Electrodynamics. Wiley, New York (1999)

Baljeet Singh
Department of Mathematics
Postgraduate Government College
Sector 11
Chandigarh 160011
India

Ray W. Ogden
School of Mathematics and Statistics
University of Glasgow
Glasgow
UK
e-mail: raymond.ogden@glasgow.ac.uk

(Received: October 20, 2018)


	Reflection of plane waves from the boundary of an incompressible finitely deformed electroactive half-space
	Abstract
	1. Introduction
	2. The basic equations of nonlinear electroelasticity
	3. Incremental motions and electric fields
	4. Incremental exterior fields and boundary conditions
	5. Two-dimensional incremental motions
	5.1. Specialization of the underlying configuration
	5.1.1. A simple model energy function


	6. Plane waves
	7. Wave reflection from the half-space boundary
	7.1. Case (i) λ=1 
	7.2. Case (ii) λneq1
	7.3. Surface waves

	8. Results
	9. Conclusions
	Acknowledgements
	References




