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Reflection of plane waves from the boundary of an incompressible finitely deformed
electroactive half-space

Baljeet Singh and Ray W. Ogden

Abstract. Within the framework of the quasi-electrostatic approximation, the theory of the superposition of infinitesimal
deformations and electric fields on a finite deformation with an underlying electric field is employed to examine the problem
of the reflection of small amplitude homogeneous electroelastic plane waves from the boundary of an incompressible finitely
deformed electroactive half-space. The theory is applied to the case of two-dimensional incremental motions and electric fields
with an underlying biassing electric field normal to the half-space boundary, and the general incremental governing equations
are obtained for this specialization. For illustration, the equations are then applied to a simple prototype electroelastic model
for which it is found that only a single reflected wave is possible and a surface wave is in general generated for each angle
of incidence. Explicit formulas are obtained for the wave speed and the reflection and surface wave coefficients in terms of
the deformation, magnitude of the electric (displacement) field, the electromechanical coupling parameters, and the angle
of incidence, and the results are illustrated graphically.
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1. Introduction

The general nonlinear theory of electroelasticity is concerned with the coupling between the electric
and the mechanical properties of materials such as electroactive elastomers, which are capable of large
deformations. In the present paper, we consider a problem of the reflection of plane waves from the
boundary of a finitely deformed incompressible electroactive half-space with a biassing electric field normal
to the half-space boundary. This is based on the form of the theory of electromechanical interactions as
developed by Dorfmann and Ogden [1] and the theory of the propagation of small amplitude waves in a
nonlinear electroelastic material within the quasi-electrostatic approximation, as in [2]. The counterpart
of the current analysis for a purely elastic material was examined by Ogden and Sotiropoulos [3], while a
small number of papers have considered the propagation and reflection of small amplitude waves in the
presence of initial stress and/or biassing fields. For example, Liu et al. [4] studied the effects of pre-stress
on the propagation of waves of Bleustein—-Gulyaev type in piezoelectric materials, Simionescu-Panait [5]
examined the effect of electrostriction on the propagation of plane waves in an isotropic solid subjected
to small initial fields, and Singh [6] studied the effect of initial stress on the reflection coefficients at the
boundary of a piezoelectric half-space. See also the review of electroelastic waves under biassing fields by
Yang and Hu [7].

In Sects. 2, 3, and 4, the general theory of electroelasticity and its incremental counterpart are reviewed
briefly. In Sect. 5, the equations and boundary conditions are specialized to two-dimensional increments
for a plane strain underlying configuration and for an illustrative prototype electroelastic material model.
The equations governing the propagation of plane waves are then given in Sect. 6 and applied in Sect. 7 to
the problem of reflection of plane waves, as indicated above. For the considered material model, it is found
that for each angle of incidence only a single reflected wave exists, and this is in general accompanied
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by the generation of a surface wave. Explicit expressions are obtained for the speed of plane waves, and
the reflection and surface wave coefficients, which in general depend on the deformation, magnitude of
the electric (displacement) field, electromechanical coupling parameters, and the angle of incidence. The
dependence is illustrated graphically in Sect. 8, and some concluding remarks are provided in Sect. 9.

2. The basic equations of nonlinear electroelasticity

We denote by B, a fixed reference configuration of a continuous electroelastic body in the absence of
mechanical loads and electric fields. Material points in B, are labeled by their position vectors X. Let the
motion of the body be described by the equation x = x(X,¢), where ¢ is time and the vector function x
is defined for all points X in B,, x being the position of the material point X in the current configuration
of the body, denoted B; at time ¢. The configuration B; is in general maintained by a combination of
mechanical loads and an electric field vector, denoted E, which is associated with the electric displacement
vector, denoted D. We refer to the book [8] for details of the relevant equations from nonlinear continuum
mechanics and to [9] for a general treatment of nonlinear electromechanical coupling,.

In the present study, we neglect the magnetic field and electromagnetic interactions and adopt the
quasi-electrostatic approximation. Then, in the absence of free body charges and currents, Maxwell’s
equations specialize to

curlE =0, divD =0, (1)

where curl and div are curl and divergence operators with respect to x. Readers are referred to the classic
text [10] for details of the equations of electromagnetic theory.
Let Ef, and Dy, be the Lagrangian counterparts of E and D, respectively. These are defined by

E, =F'E, Dy =JF'D, (2)

where F = Gradx is the deformation gradient, with Grad being the gradient operator in B,, T the usual
transpose operator and J = det F. For incompressible materials, on which we focus in the article, the
constraint

J=detF =1 (3)

applies for each X.
Using Eq. (2), the equations in (1) can be written in Lagrangian form as

CurlE;, =0, DivDy =0, (4)

where Curl and Div are the curl and divergence operators in B;.
In the absence of mechanical body forces, the equation of motion of the material can be written as

divr = px 4, (5)

where 7 is the total Cauchy stress tensor, which is symmetric, and p is the mass density of the material
in B;. A subscript ¢ following a comma denotes the material time derivative.
The total nominal stress tensor T is defined, for an incompressible material, by

T=F 1. (6)
Using (6), Eq. (5) is written in Lagrangian form as
DivT = pX 44, (7)

where p, is mass density in B,, which, since we are considering incompressible materials, is equal to p,
and henceforth the subscript r is omitted from p,.
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We consider an energy function Q*, defined per unit volume in B, as a function of F and Dy,. Then,
for an incompressible material the total nominal stress tensor and the Lagrangian electric field are given
by

o* o*

T= —pF™', Ep=_—— 8
oF U PET gD ®)
where p is a Lagrange multiplier associated with incompressibility constraint (3), and hence
oN* oN*
=F—_—_ -pl, E=F" 9
T=For oL oD (9)

where I is the identity tensor.

For an incompressible isotropic electroelastic material, 2* can be written in terms of five scalar invari-
ants of the two tensors C and Dy, ® Dy,, where C is the right Cauchy—Green tensor, defined as FTF. The
invariants typically adopted are defined as

1
I =trC, I,= 5[(trC)Q —tr(C?)], (10)
I, =Dy -Dy, I;=D (CDy), Is=D-(C°Dy). (11)
It follows that 7 and E can be expanded in the forms
T =20;B +2Q3(,B — B*) — pI + 20:D ® D + 2Q{(D ® BD + BD ® D), (12)
E =2(Q;B "+ QI+ Q;B)D, (13)

where B = FF7 is the left Cauchy—Green tensor, Q} is defined as 9Q*/dI; for i = 1,2,4,5,6, and we
now use the notation Q* = Q*(Iy, I, Iy, Is, Ig).

3. Incremental motions and electric fields

Consider a static finite deformation x = x(X), which defines a deformed configuration B with deformation
gradient F, electrostatic displacement field D, corresponding Lagrangian field Dy, = F~'D and electric
field E = F~TEy, given by (8),. Upon this configuration, we superimpose a small (incremental) time-
dependent displacement x(X,¢), where here and henceforth a superposed dot signifies an incremental
quantity. The associated incremental deformation gradient is given by F = Gradx. Independently of x,
we suppose that Dy, is an increment in Dy,. Let T and Ey, be increments in T and Er,, respectively. Then,
the incremental forms of the governing equations (4) and (7) are

CwlEp =0, DivDy =0, DivT = pk. (14)

When linearized in the increments, the incremental forms of the constitutive equations (8) become
T=AF+I'D, —pF '+ pF 'FF ', E,=T"TF+K'D,, (15)
where p is the increment in p and A", I'" and K* are, respectively, fourth-, third- and second-order
tensors, which are referred to as electroelastic moduli tensors [2]. Respectively, they represent the elasticity
tensor at fixed Dy, the electroelastic coupling tensor, and the reciprocal of the dielectric tensor at fixed

deformation.
In (Cartesian) component form, the equations in (15) are written

Toi = AligiFjs + ThisDrss  Bra = UhyaFig + KigDug, (16)
where the components of the moduli tensors are defined by
. %0 . 0% . 020"

05 OF0F;5 @ T OF,0D)s" P 9D1,dDs (17)
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with T*" defined in component form by (I'*"), 5 = (I'*)gijo and A* and K* having the symmetries
aipj = Abjai Kap = Kpa
In order to refer quantltles to the deformed conﬁguratlon B rather than the original reference config-
uration B,, we use pushforward versions of T DL, EL7 denoted by TO, Dio, ELo, respectively, and (for
an incompressible material) defined by

To=FT, Diy=FD., E=FTE.. (18)

The equations in (14) can then be transformed into their Eulerian counterparts as
curlBry =0, divDro =0, divTy = pii, (19)

where u is the incremental displacement x when regarded as function of x and ¢ (instead of X and t), and
gradu = FF~!, which is the pushforward of F. Henceforth, we use the notation H = gradu. Equations
(19) are coupled with the incremental incompressibility condition

trH = divua = 0. (20)
The incremental constitutive equations in (15) can then be recast in the pushforward forms
To=AJH +T;Dro +pH - pI, Ero=T3"H+ KDy, (21)
where the updated moduli tensors A, I'y and K are related to A*, I' and K* in component form by
Abpia = FoaFap i Topilg = FoaFag Taipr Koij = Fai F3 Kl (22)
with the symmetries AG,;.; = Abgipis Lo, = Loiplgr Koij = Koji- A complete list of the components of

Aj, I and K{ for a general isotropic Q* can be found in the text [9].
Equations (19)—(21) govern the incremental displacement u and the incremental field Dy in Eulerian
form.

4. Incremental exterior fields and boundary conditions

Noting the distinction between * and *, let D* and E* be the electric displacement and electric field
outside the body connected by D* = ggE*, where ¢ is the permittivity of free space. The corresponding
incremental fields D* and E* are related by

D* = g E* (23)
and satisfy the equations
curlE* =0, divD* =0. (24)

The associated Maxwell stress, denoted 7*, and its increment +* are given by
1 . . .
=gy |[E*QE" — i(E* CENI|, 7 =¢|E*QE"+E* @ E*— (E* -E"I], (25)

and satisfy divr* = 0, divi* = 0.

Let n be the unit outward normal vector to 9B and da be the associated area element. Then, the
traction on the area element may be written as 7nda. The appropriate traction boundary condition in
Eulerian form is

™ = t, + t}, (26)
where t, is the applied mechanical traction per unit area of 9B and t} is the part of traction due to the
Maxwell stress exterior to the body. The above boundary condition may be written in Lagrangian form
as

TTN = ta + t3, (27)
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where to and tf; are related to t, and t; by tadA = t,da and t;dA = t;da, respectively. Here N is the
unit outward normal vector to 9B, and dA is the associated area element.

By Nanson’s formula nda = F~TNdA for an incompressible material, the exterior Maxwell traction
t3 is written as tf, = 7*F~TIN per unit reference area. Then, the above boundary condition becomes

TN =t + 7*F TN. (28)
On taking the increment of this equation, we obtain
TIN =iy + 7 F "N - 7F TRTF TN (29)
on 9B;, and in updated (Eulerian) form
TIN = a0+ #n— 7H'n, (30)
on 0B.
The boundary conditions for the electric displacement and electric field in Eulerian form are
D-D*) n=0, (E-E*)xn=0, (31)

where each term is evaluated on 0B, it being assumed that there are no surface charges. In Lagrangian
form, they become

(D, —F'D*) N=0, (E,—-FT'E*)xN=0, (32)
which apply on the boundary 0B5,. On taking the increments of these and then updating, we obtain
[[.)LO — D* + HD*] ‘n = 0, [ELO — E* — HTE*] Xn= O, (33)

both of which hold on 0B.

5. Two-dimensional incremental motions

We now restrict attention to plane strain in the (1, 2) plane with D3 = 0 and also consider the incremental
displacement components to have the forms

up = uy (w1, 2,t),  up = uz(z1,72,t), uz=0, (34)
while the incremental Lagrange multiplier is given by p = p(z1, z2,t). Similarly, we take the components
of the incremental electric displacement vector to be

Dior = Droi(21,%2,t), Droz = Dioa(21,22,t), Doz = 0. (35)
In what follows, a subscript i following a comma indicates partial differentiation with respect to x;, i =

1,2.
In this specialization, the incremental incompressibility condition (20) and Eq. (19)3 reduce to

uy,1 +ug 2 =0, DL01,1 + DL02,2 =0, (36)
from which we deduce the existence of functions ¢ = ¥(x1, z2,t) and ¢ = @(x1,x2,t) such that
w =12, us=-v1, Do =¢2 Drox=—¢1. (37)
The incremental equation of motion (19)s specializes to the two-component form as
T011,1 + T021,2 = pui tt, T012,1 + T022,2 = pu2 tt, (38)
and Eq. (19); reduces to
Ero1,2 — Eroz,1 = 0. (39)

The relevant components of the incremental stresses and electric field are obtained by specializing the
incremental constitutive equations (21), yielding

Torr = (Agiin +p)ury + Agrizwa e + Adriiaue,1 + Adrisate2 + g1 Dot + o112 Droz — 1,
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Tz = Afiontng + (Afizor + P2 + Afz19tiz1 + Afitiz 2 + 1—‘312|1DL01 + 1—‘Eﬂ)12|2DL027
Toor = Abornntn g + Aborz1ta,2 + (Aba112 + Pz + Abpiatia 2 + F321|1DL01 + F321|2DL02a
Thaz = Abiiaatin 1 + Aboi a2 + Afaiotiz,1 + (Afases + p)uz2 + F322|1DL01 + F(>522|2DL02 — D
(40)
and
Evor = Thpua + Toygp (w2 + 2,1) + Do uza + Ko Dot + Kgia Dros,

Ergs = Fan\zul,l + F812|2(Ul,2 + u2,1) + F822\2u2,2 + KEknzDLOl + K322DL02~ (41)

5.1. Specialization of the underlying configuration

In this section, the preceding equations and the boundary conditions from Sect. 4 are specialized for the
pure homogeneous deformation of an electroelastic half-space in the presence of an electric field normal
to its boundary. The pure homogeneous plane strain is described with reference to rectangular Cartesian
coordinates (X1, X5, X3) in the undeformed configuration and (z1, 22, z3) in the deformed configuration
by

T = )‘X17 Ty = )\71X2, Tr3 = Xg, (42)
where A is constant, and the half-space is taken to occupy the region x5 < 0 in the deformed configuration,
with boundary x5 = 0. For this deformation, the deformation gradient F is diagonal with respect to the
chosen (principal) axes of the deformation and the principal stretches are A\; = X\, Ao = A7}, A3 = 1.
Then, the invariants I; and I» are obtained from Eq. (10) as

L=L=1+X+)\2 (43)
We take D to be aligned with the x5 axis, so that Dy = D3 = 0 and D> is constant. The corresponding

Lagrangian field has components Dy, = Dy3 = 0 and Drs = AD5, and the invariants I, I5 and Ig are
obtained from Eq. (11) as

I, =D}, Is=\72Di, Is=\"'D3,. (44)
From (12) and (13), the only nonzero components of 7 and E are obtained as
11 = 2507 4 205(\2 + 1) — p, (45)
Tog = 205N 72 4205 (1 + A\ 72) — p + 205N 21, + 4Q50 4, (46)
a3 = 2005 4+ 2Q5(\2 + A 72) — p, (47)
and
By = 2(N°Q + Q5 + A% Ds. (48)

In this configuration, the components of the tensors A, I' and K{ are also reduced in number. In
particular, the coefficients in Eqs. (40) and (41) are such that the components Ag,;;, with three indices
1 or three indices 2 vanish, I'f;;\; = T'Go0; = Lor1j2 = 0, IG5 = I'fyyp = 0 and Ky, = 0 (see [9] for full
details of the component expressions).

Equations (38) and (39) can then be arranged as two equations coupling ¢ and ¢, namely

at 1111 + 26 1122 + € 2220 + (e — d)@ 112 + dp 222 = p(V 1141 + P 220¢), (49)
(e —d) 112 +dp 220 +gp 11+ fp22 =0, (50)

within which the following notations have been introduced:
a=Ag012, 20 = Ag1111 + Ag222 — 2401122 — 2A01221, ¢ = Apr21s (51)

d= F312\1 = F321\17 €= ngz\za [ =K1, 9= Kpao- (52)
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Since the underlying electric displacement field has just a single component Dy and F; = E3 = 0 in the
material, then, on applying the above boundary conditions on zo = 0, we have D5 = Dy, ET = E5 =0,
and from relation D* = ggE*, it follows that DT = D =0 and E3 = eang. The equations in (1) then
ensure that outside the material the electric displacement field is uniform and related to the internal
Lagrangian field via D = Dy = A1 Dy5. From Eq. (25), the nonzero components of the Maxwell stress
T* are obtained as

1
T =Ty = —Top = _5561D§~ (53)

In general, a2 # 735, so that an applied mechanical traction is required on zo = 0 in order to balance
the difference m3 — 735.

Since the incremental fields are independent of x3 in the considered specialization, we deduce the
existence of a scalar function p* = ¢*(x1,x2,t) such that

ET = *Sﬁfp Ez* = 790,*27 (54)
where ¢* satisfy Laplace’s equation in x5 > 0. The nonzero components of the incremental Maxwell stress
tensor in (25) are then

7'1*1 = 7"?fs = _7"2*2 = D2<Pf27 7"1*2 = 7.'2*1 = —D2<P,*1- (55)
In the present situation, we take the incremental mechanical traction on the boundary to vanish, so
that the following two boundary conditions are obtained from (30):
T021 + Tﬁl@,l — 7.'f2 =0, T022 + TSQILLQ,Q — 7L;2 =0 onaxy=0. (56)
The incremental electric boundary conditions (33) specialize as
ELOI — Ef — Eé‘ull =0, DL02 — D; + D;'LLQ’Q =0 onaxy=0. (57)

Following [2], we assume that there is no applied mechanical traction on x5 = 0 in the underlying
configuration, so that 7o = 73, = &5 ' D3/2. In terms of the scalar functions 1, ¢ and ¢*, the incremental
boundary conditions (56) and (57) then become

(561D§ — )1+ oo+ dpa+ D’y =0 onxp =0,

(20 + )Y 112 + et 222 + e 11+ dp a2 — Doy — ph oy =0 on 9 =0,
(60" D2 — d)p 11 + dpao + fp o + ¢ =0 onxzp=0,

Do) 1o+ @1 — o’y =0 onxy =0.

Equation (59) is obtained by differentiating (56)2 with respect to ;1 and then making use made of
the expression for p; from (38);. Equations (58)—(61) are equivalent to those obtained in [2] for the
corresponding situation.

On elimination of ¢* from Egs. (58) and (60) and elimination of (%, from Egs. (59) and (61) after
differentiating the latter with respect to x1, the boundary conditions required for Eqgs. (49) and (50) in
terms of the scalar functions ¥ and ¢ are

(Dzd — C)(’(/)711 - 1/)722) + (d - DQf)§072 =0 on Tog = 0, (62)
(20 + ¢ — eang)d}Ju + cth o020 + (e — 551D2)<p711 +dpos—pow =0 onxy =0. (63)

The exterior field can now be ignored and we are left with the two Egs. (49) and (50) and the associated
boundary conditions (62) and (63) involving ¢ and .
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5.1.1. A simple model energy function. The energy function Q* for a simple prototype model of nonlinear
electroelasticity, introduced in [2], is given by
* 1 —
O — §M(Il—3)+501(a14+[3[5), (64)

where the constant ¢ > 0 is the shear modulus of a neo-Hookean material in the configuration B, (in
the absence of an electric field) and o« > 0 and 8 > 0 are constant electroelastic parameters. Note that
if « = 8 = 0 the problem is purely elastic and has been discussed in detail in [3].

For this energy function, Eq. (48) reduces to

By = 2e5  (@\? 4 8) Do, (65)
so that ¢ = g9/2(a)\? + ) has the interpretation as the material permittivity, which for a # 0 is

deformation dependent. In the undeformed configuration, the relative permittivity £/eg > 1, so that the
restriction a + 8 < 1/2 applies. The material parameters (51) and (52) reduce to

a=pN, c=p(\2+26D3), W=a+c (66)

e—d=d=2:"8Ds, [=2" (AT +0), g=255" () +p), (67)

where D is a dimensionless measure of D defined by

Dy = Do/ /i (68)

In view of the relations 2b = a + ¢ and e = 2d, Egs. (49) and (50) and boundary conditions (62) and
(63) specialize accordingly, and henceforth, we adopt this specialization.

6. Plane waves

We now consider plane waves propagating in an incompressible finitely deformed electroactive material.
We assume that ¢ and ¢ have the forms

¥ = tho(niz1 + nowa — vt), @ = po(niz1 + naxy — vt), (69)
where v is the wave speed, t is time, 1)y and g are functions of the indicated argument and ny,ns with
n3 = 0 are components of the direction of propagation n, with (ny,ns) = (cos,sin ), so that

n34+n3 =1 (70)
On substituting (69) into Egs. (49) and (50) with the indicated specialization, we obtain

(an? + cenj — pv®)y + dnap, =0, (71)
dnaty + (gnd + fn3)g, = 0, (72)

where a prime signifies differentiation with respect to the argument.

After differentiating (72), we obtain a linear system for 1/)6/” and 4,08/, which has a non-trivial solution
if the determinant of coefficients vanishes. Following [2], this results in the following expression for the
wave speed v:

d*n?
gni + fn3’
This equation determines the wave speed for any given direction of propagation in the (z1,22) plane
provided pv? > 0. It also determines possible directions in which waves may propagate for a given speed,
material constants, and deformation. We now consider two cases.

(73)

2 2 2
pv° =anj +cny —
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Case (i): A\ = 1. For the undeformed configuration, we have a = pu,c —a = dDy,d = 25616D2, f=g=
2¢5 (o + B) and Eq. (73) is written in the form

2 cf —d* = po*f
0= —— - ——. 74
cos Y — (74)
For this equation to yield a real value of cos#, we must have
2 2 D2
< P g4 208D (75)
% a+pj
The two limits correspond to 8 = 0 and 6 = /2, and we note that
2 208D2n2
pvm _ 20pDsn; (76)
jz a+p

Thus, pv? = p if either a = 0, § = 0 or Dy = 0.
Case (ii): \ # 1. For a given wave speed v, (73) may be written as a quadratic equation for n?:

(c—a)(f —gni —[(c—a)f + (f — g9)(c— pv®) = &InT + f(c— pv*) —d* = 0. (77)

This determines possible angles of propagation for a given wave speed, material properties, and deforma-
tion.

7. Wave reflection from the half-space boundary

We now consider plane waves of the form given by (69) incident on the boundary x5 = 0 from within the
half-space 25 < 0. The incremental boundary conditions on x5 = 0 are given by Egs. (62) and (63). Let
(n1,n2) = (cosf,sinf) be the direction of propagation of an incident wave and v its speed.

The material properties and the state of deformation determine whether there are two reflected waves,
or just one reflected wave together with a surface wave. The general solutions for ¢ and ¢ consisting of
the incident and (possibly) two reflected waves are assumed in the forms

P = Aetk(nizitnazs —vt) + AReiF(mizi—n2z2—vt) + AR/eik"(n/lacl—n’29c2—v’t)7 (78)
o= gerik(n1w1+n2w2—vt) + glAReik(nlwl—nzmz—t) —|—££AR/eik/(n/1wl—n/2$2—vlt)’ (79)

where A is a constant, k and k' are the wave numbers, and v and v’ the wave speeds. The coupling
coefficients &, &1 and &) are obtained from Egs. (49) and (50) as

ik(an? + cn3 — pv?) ikdng
1= "% = nad T g+ 2’ (80)
¢ = ik (anf? + enl? — pv'?) ik dnj (81)
- i R

and R and R’ are reflection coefficients. The speed of the first reflected wave is equal to the speed of
the incident wave. Assuming that the first and second reflected waves are reflected at angles 6 and 6’
to the boundary, we have nf = cos®’,n, = sin#’. The incident and reflected waves must have the same
frequency, which requires

kv =K', (82)
and the boundary conditions (62) and (63) require that kn; = k'n}. Hence

v'ny = onf, (83)
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which is a Snell’s law for the case of two reflected waves. Note that for ¢ = f, which is only possible for
A=1or a=0, Eq. (80) gives
5 1kdn2 1/{5D2n2
0= — = _

f ar=2+

(84)

7.1. Case () A =1

For two reflected waves, we have from (73), since g = f when \ = 1,
po? = [THd* = (c—a)fInf + 7 (cf —d?), pu'? = fHd = (c—a)flni? + f (ef —d?).  (85)
Using Eq. (83) and eliminating v and v’ from these two expressions, we obtain nj = £n;. Thus, the two

reflected waves coincide and there is only one reflected wave, and it is therefore necessary to consider a
surface wave instead of a second reflected wave, as is done below.

7.2. Case (ii) A # 1

Consider an incident wave with speed v given by (73), i.e.,

2,,2
o d'ny

pv? = an? + cn — pr (86)
1 2
and a reflected with speed v’ given by
d2 12
pv'” = an? + enl? — L N— (87)

gni® + fny?
Using Eq. (83) and eliminating v and v" between (86) and (87), we obtain either n
(9= Nlelg = f) + @nini? + (g — f)ef — d*)(n +n?) + (cf —d*)f =0. (88)
Noting that cf — d?> = 2e5 ' A" 2[u(aX™2 + B) + 2¢5 'aBD3] is positive, it is straightforward to show
that n}? < 0 when g > f, i.e., A > 1, and n}? > 0 when g < f, i.e., A < 1. While it is in principle
possible that there could be two distinct reflected waves, with the second angle ' (n} = cos ') satisfying
(88), by forming an explicit expression for n}?, which must satisfy n}?> < 1, we find that this condition
requires that n > (c¢f — d?)/c(f — g), but for this also to be less that 1, we must have cg — d? =
2u60_1(a +08A 2+ QaﬁAQﬁ%) < 0, which cannot hold since o > 0 and 3 > 0. Thus, in this case there can
again be only one reflected wave, and the angle of reflection equals the angle of incidence.

We note that in the purely elastic context [3] the case in which the constitutive restriction 2b = a + ¢
given in (66) holds also leads to just a single reflected wave, while if 2b # a + ¢ two distinct reflected
waves are possible. This will also be the case here if we choose a more general form of energy function,
but this is not considered since our main purpose is to examine the basic influence of an electric field
on the plane wave characteristics, their reflection at a half-space boundary and the generation of surface
waves.

12 _ 2
17 =mnj or

7.3. Surface waves

As only one reflected wave is possible, we now consider surface waves generated by a plane wave impinging
on the boundary, and replace nj21 +noxe — vt in (69) by x1 —isxo —v't. Then, a general solution consisting
of an incident wave, a reflected wave and a surface wave is assumed in the form

’l/) _ Aeik(nlwljtnzxzfvt) +AReik(n1w17n2w27vt) _’_AR/eik'(wlfiswzfv't)’ (89)
o= EOAeik(nllerngngvt) + ElAReik(nlxlfngzgfvt) +§TAR/eik’(rl—15127U't)’ (90)
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and substituting into Eqs. (49) and (50), we obtain either s> = 1 or the counterpart of (73), which is
d?*s%(1 — s?%)

pv'? =a—cs? + P (91)
In the latter term, we have used the expression for £} obtained from Eq. (50), which gives
&g — f5%) = —dk's(1 - s%), (92)

while & = —& is given by (80). In the special case, when s? = 1, Eq. (49) is satisfied automatically, while
in the limit s — 1 (92) gives
k'd k' D,
L Ol o B 93
51 f a)\_g + /6 ( )
We require s > 0 for the surface wave terms in (89) and (90) to decay as xo — —oo. With Snell’s law
now in the form

kny =k, v'ny =, (94)
we obtain the counterpart of (88) for this case in the factorized form
(n3 + s*n}){(gni + fn3)(cf — d*)s® — gle(gni + fn3) — d°]} = 0. (95)

The first factor recovers a reflected wave with angle of reflection equal to the angle of incidence, while
for a surface wave (s > 0) the second factor yields

. \/ gle(gn3 + fn3) — &)
(gn + fn3)(cf — @)’

within which, for the values of the parameters given in (66) and (67), both numerator and denominator
are positive for any angle of incidence.

At this point, it should be emphasized that the expression for v’ given by (91) is not valid for s = 1
since consideration of (91) in conjunction with v = v'n; and (86) in the limit s — 1 leads to cf —d? =0,
but for the considered model cf — d?> > 0 when 3 > 0. It is thus important to distinguish between the
cases s = 1 and s # 1 in the following. We first consider the case s # 1.

Substituting (89) and (90) into the boundary conditions (62) and (63), we obtain

2 2 2aﬁD%n%
ny—mnz— 202 1+ \—2p,2
a(A?ng + ny) + B

and, after use of (73) and (91),

(96)

208D35%(1 — s?)

(I+R)+ OZ —A-252) + G(1 — 52)

Rn?=0 (97)

14 s+
@]

3(46 —1)D3
(A2n3 + A "2n3) + 3

B(48 —1)D3(1 — %)
(A2 = A7252) 4 B(1 — s2)

Note that in respect of the coefficients of R’ in (97) and (98), for s # 1 (and hence f # g), use of (96)

shows that
g(f —g)d’n?

(gnt + fn3)(cf —d?)’
and the factor n? cancels with an n? in each of the terms that include the denominator a(\? — A\=2s2) +
8(1 - s2).
From (97) and (98), we obtain the following values of R and R':
AB,, + A, B, 24, By,

_ r_
R= A.B, — A, B, R A.B, — A, B,

(1- R)n%ng

[»-2 + (48 -1)D2 - -

R'n} =0. (98)

—is

2224+ (43 —1)D? — -

20 (N2 — A28 + B(1 — s?)] = (99)

(100)
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where
Ap=n2—n2— 20pDfn (101)
m 2 a(X2n? + X\ "2nd) + 3’
1+ fn3) — d[e(gni + fn3) — d*nj]
A, = (1+s2)n2 + ale(gng 2 1 2 2 7 102
(14 5m 1B(gn3 + fr3)(cf — @) (102)
_ R 46 —1)D3?
B, = n?ny |20-2 4+ (46 — D2 — — DL 2 1
n n1n2 )\ +( 6 ) 2 (1()\271%4-)\7271%)4-6 ) ( 03)
; _ 2 2\ 722

218y ’

within which the expression (96) has been used.

It follows, in particular, that |R| = 1. Note that R’ = 0, i.e., no surface wave is generated and there is
only a reflected wave, if either A,, = 0 or B,, = 0, which is possible for a range of combinations of 0, «,
B, A and Dy and then R =1 and R = —1, respectively. Note also that Ay and B, reduce to A,, and B,
respectively, when s = ing/n1, which corresponds to a reflected wave equivalent to that associated with
R.

We now turn to the case s = 1. From Eq. (50) it follows, with £ # 0, that f = g. The latter can only
hold for &« = 0 or A = 1. By following the procedure above but by using the expression (86) with v = v'ny
instead of (91), we obtain, after multiplying by factors A2,

206 2D2n2 afA2D2
— 2 2 2'%2 _ 2 2
Aninl_n2_7a+ﬁ/\2 , As=2n] 1+70¢+5/\2 ,
o, a(48 — 1)A\2D? . 208 2D3\ 5, . a\Din?
Bn = ninz 2+ W 5 Bs = —1ng 1+ W (nl — TLQ) - m . (105)

These expressions apply for either A = 1 or a = 0 with A not necessarily equal to 1. In the latter case,
R and R’ are independent of X. Note that if either o = 0 or Dy = 0, this gives the result for the purely
elastic case provided in [3] in the absence of normal stress.

The special case § = 1/4 deserves particular attention. If 8 #1/4 or § =1/4 and A =1 then R — —1
and R" — 0 asny — 0, but if 8 = 1/4 and A\ # 1 then R — 1 and R' — A\?/2a as n; — 0. This is
exemplified in the numerical results presented in the following section.

(@) (b) (0
- 1.6¢ ‘
C 1.4r
1.5¢
ol ¢
1.4} 131
| 13} 12t
1.2¢
1.1r
1t 111
1.0 100
0.5 ‘ : 0.9 : ‘ 0.9 ‘ ‘
0 w/4 w/2 0 /4 /2 0 w/4 w/2

FIG. 1. Plots of the squared dimensionless wave speed ¢ = pv?/u against the angle of incidence 6 € [0,7/2] for a = 0.1,
£ =0.05,0.1,0.2,0.3 and D2 =2:aA=08bA=1;cA=1.2
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FIG. 2. Plots of the squared dimensionless wave speed ¢ = pv?/u against the angle of incidence 0 € [0,7/2] for 8 = 0.2,

a =0,0.05,0.1,0.2 and Dy =2 aAd=08bA=1cA=1.2
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FIG. 3. Plots of the squared dimensionless wave speed ¢ = pv?/u against Dy € [0.4] for 8 = 0.2, « = 0,0.05,0.1,0.2 and
A=12:a0=7/16;b 0 =7/4;¢c 0 ="T7r/16
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FIG. 4. Plots of the squared dimensionless wave speed ¢ = pv?/u against Dy € [0.4] for o = 0.1, 8 = 0.05,0.1,0.2,0.3 and
A=12:a0=7n/16;b 0 =7n/4;¢c 0 ="Tr/16
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F1c. 5. Plots of the real and imaginary parts of R and R’ (continuous and dashed curves, respectively) and |R|, |R’| (thick
continuous curves) for A = 1 with a = 0 (or Dz = 0): a R; b R’

—-0.5¢
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F1G. 6. Plots of Re(R), continuous curves, Im(R), dashed curves, and |R| = 1, versus 6 € [0,7/2] for A =1 with « = 0.1: a
B=01Dy=3bB=01Do=5cB=01Ds=8dB =025 D=3 e3=025 D=5 f3=025 Dy =8

8. Results

From Eq. (73), the dimensionless form of the squared wave speed ¢ = pc?/u of plane waves is computed
as a function of angle of propagation. This is plotted against the angle of propagation 6 for different com-
binations of the values of coupling parameters a and § when the values of the stretch A and dimensionless
constant Dy are prescribed.
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F1G. 7. Plots of Re(R'), continuous curves, Im(R’), dashed curves, and |R’|, thick continuous curves, versus 6 for A\ = 1,
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FiG. 8. Plots of Re(R), continuous curves, Im(R), dashed curves, and |R| = 1, versus d € [0,10] for A\=1, a = 8 = 0.1 for
different angles of incidence: a @ = 7/16; b 0 = 7/6; ¢ 0 = 7/4;d = 57/16; e § = 5.67/16; £ 0 = 6.57/16

In Fig. la—c, for A = 0.8, A = 1 and A = 1.2, respectively, (¢ is shown as a function of the angle of

incidence 6 for the representative values o« = 0.1 and Dy = 2 and for the four different values, 0.05, 0.1,
0.2 and 0.3, of § in each case. Note that for the relative permittivity of the material to be greater than

1 in the reference configuration we must have o + 8 < 1/2 and the values of « and 8 have been chosen
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Fic. 9. Plots of Re(R’), continuous curves, Im(R’), dashed curves, and |R’|, thick continuous curves, versus Do € [0, 10]
for A =1, a = 0.1, 8 = 0.2 for different angles of incidence: a § = w/16; b 0 = 7/8; ¢ 0 = 7/6;d 0 = /4, e 0 = /3; f
0 = 13m/32

to respect this inequality. It can be seen that for A = 0.8 and 1 the wave speed increases with the angle
of propagation, while for A = 1.2 it decreases. For each angle (except the grazing angle § = 0) and each
value of A the wave speed increases with increases in the value of 3. The effect of the coupling parameter
[ increases with an increase in 6 and it is maximum for normal incidence (6 = 7/2). The effect of the
value of A on the wave speed can be seen by comparing the curves in the three figures for specific values
of 3.

In Fig. 2a—c, corresponding results are illustrated again for A = 0.8, A = 1 and A = 1.2 and Dy =2, but
now for the fixed value § = 0.2 and with our different values, 0, 0.05, 0.1, and 0.2 of a. For A = 0.8 and 1
the plots have a similar character to those shown in Fig. 1a, b except that for « = 0 and A = 1, ¢ has the
value 1 independently of the angle of incidence. This value corresponds to the speed of a homogeneous
shear wave that is independent also of the parameter 8. For A = 1.2, the plots in Fig. 2c are mainly
similar to those in Fig. lc, except for « = 0.2 for which ( increases with 6 initially, but then exhibits
a maximum and thereafter decreases. For each value of 6 except § = 0 the wave speed increases with
the value of . The effect of the coupling parameter « increases with increasing 6 and, as in Fig. 1, is
maximal for normal incidence. Comparison of the three panels in Fig. 2 highlights the effect of different
values of \.

To illustrate the dependence of the results on lA)g, ¢ is plotted against Dy in Fig. 3for A\ =12, 6=0.2
and four values of « in each of the three panels, which correspond to angles of incidence 8 = 7/16,7/4
and 77 /16 in the panels (a), (b) and (c), respectively. In Fig. 4 the roles are o and [ are interchanged,
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F1G. 10. Plots of Re(R), continuous curves, Im(R), dashed curves, and |R| = 1, versus 0 € [0, 7/2] for A = 1.2 with o = 0.1:
afB=01,D0=3bB=01Ds=5cB=01Do=8df=025 Do =3 e 3=025 Do=5; £3 =025 Dy =8

and the plots are for & = 0.1 and four values of (3, with the other parameters unchanged. Results for
the other values of A are qualitatively the same and are not therefore included separately. In each case
(except for o = 0) ¢ increases monotonically with Dy and increases as the angle # increases toward /2.
For aw = 0, ( is independent of D, and has a value that depends on 6. There is no effect of the coupling
parameters « and (3 on the wave speed for Dy = 0, but for Dy # 0 ¢ increases with o and/or § for each
incident angle.

Figure 5 shows the dependence of R (a) and R’ (b) on the angle of incidence 6 for the basic case of
A = 1 with no dependence on the electric field. These results agree with those obtained for the purely
elastic case [3] and are compared with corresponding results for the presence of an electric field in Figs. 6
and 7 (for A = 1). In Fig. 6, the real and imaginary parts of R are shown together with |R| = 1 plotted
against 0 for o = 0.1 and 3 = 0.1 (first row) and 3 = 0.25 (second row) with Dy = 3,5,8 in the first,
second and third columns. This illustrates the dependence of R on the electric field (via Dy) and electric
parameters « and [ subject to the restriction o + 5 < 0.5. Note that Re(R) = —1 and Im(R) = 0 at the
end points 6 = 0, 7/2.

In Fig. 7 the real and imaginary parts of R’ and |R/| are plotted against 6 for a = 0.1 and 3 = 0.1
to illustrate the dependence on Ds. The pattern is very similar for other values of o and § with some
small differences in the vertical scale values. Note that R’ = 0, i.e., there is no surface wave generated,
at isolated values of the angle of incidence depending on the value of Ds.

Figures 8 and 9 show further the dependence of the results on the value of D,. In Fig. 8 the real
and imaginary parts of R and |R| = 1 are plotted against Dy for A = 1, and the representative values
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F1G. 11. Plots of Re(R), continuous curves, Im(R), dashed curves, and |R| = 1, versus d € [0,10] for A = 1.2, a = 0.1 for
different angles of incidence: a 8 = 0.1, § = 7/16; b 8 = 0.1, 0 = 7/4; ¢ = 0.1, § = Tw/16; d 8 = 0.25, 6 = 7/16; e
B =025 0=n/4f8 =025 0=7Tr/16

= [ = 0.1 for six different angles of incidence. Although not shown, it is clear that as § — 7/2,
( ) — 1 and Im(R) — 0. In Fig. 9 the real and imaginary parts of R’ and |R’| are plotted against D,

again for A = 1 and o = 0.1, but f = 0.2, and with six different values of the angle of incidence chosen
to illustrate the changing pattern.

Next, the dependence on the stretch A is illustrated, specifically for A = 1.2. In Figs. 10 and 11 the
real and imaginary parts of R and |R| = 1 are plotted against 6 and D, respectively. With A = 1.2 and
a = 0.1 in each case, the panels (a), (b), (c) in Fig. 10 are for § = 0.1, and panels (d), (e), (f) for 5= 0.25
with Dy equal to 3, 5 and 8 in the three columns. The pattern can be compared with that for A =1 in
Fig. 6. A key difference is that for the special case 8 = 0.25, R =1 for § = /2 compared with R = —1
in Fig. 6. The first row of Fig. 11, which shows the dependence of R on Dy for a = B = 0.1 for specific
angles of incidence, can likewise be compared with the appropriate panels in Fig. 7. The second row of
Fig. 11 illustrates how the results change with the value of 3.

Figure 12 shows the dependence of R’ (real and imaginary parts and |R’|) on 6 for A = 1.2. The first
row is for = 3 = 0.1 with Dy = 3,5,8 in panels (a), (b), (c), respectively. These plots can be compared
directly with those in Fig. 8, the main differences being a reduction in the magnitude |R’| and the change
in sign of Im(R’). In panels (d) and (e), for Dy = 3,8, respectively, 3 = 0.3 and the magnitude |R'| has
increased compared with that in panels (a) and (c). Finally, panel (f) considers the special value 8 = 0.25
for which R’ has the value A\?/2a, in this case 7.2, at § = m/2. The final figure, Fig. 13, illustrates the
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F1G. 12. Plots of Re(R’), continuous curves, Im(R’), dashed curves, and |R’|, thick continuous curves, versus 6 for A = 1.2,

a=01:a8=01D=3bB8=01,D=5¢8=01,Dy=8dB8=03,Dy=3;e3=03,Dy=8f3=025 Dy =38

dependence of R’ on 152 for A = 1.2 and different values of the angle of incidence, the first row for

a =3 =0.1 and the second row for @ = 0.1, 8 = 0.25. The three columns are for § = 7/16,7/4, 77 /16.
Results for other values of A show similar patterns to those for A = 1.2 and are not therefore included
separately in order to save space.

9. Conclusions

This paper has provided a general summary of equations governing the quasi-electrostatic approximation
for incremental electroelastic motions within a finitely deformed incompressible electroelastic material.
Attention has then been focused on two-dimensional incremental motions and the propagation of plane
incremental waves in a pure homogeneously deformed half-space of electroelastic material with an electric
field normal to the boundary and for a simple prototype form of material model.

The dependence of the (dimensionless) squared speed of plane waves on the deformation (via the
stretch M), the electric coupling parameters « and 3, and the (dimensionless) electric displacement field
152 has been illustrated in detail. One point to note is that when A = 1 (no deformation) the wave speed
is independent of the angle of propagation § when = 0, and also independent of bg, as can be seen

from Eq. (76). If, on the other hand, o # 0 but 8 = 0 then the wave speed given by (73) is independent
of Ds, and independent of 6 if A = 1.
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FiG. 13. Plots of Re(R’), continuous curves, Im(R'), dashed curves, and |R’|, thick continuous curves, versus Do € [0, 10]
for A = 1.2, a = 0.1 for different angles of incidence: a f = 0.1, 8 = w/16; b 8 = 0.1, 0 = 7/4; ¢ 8 = 0.1, § = 7x/16; d
B=0250=r/4eB=0250=nr/4fB=0250=7r/16

In examining the reflection of plane waves impinging on a half-space boundary it has been shown
that for the specific material model considered only one reflected wave is possible. This is in contrast to
the purely elastic situation when a more general form of the elastic part of the model is adopted, as in
[3]. The single reflected wave is in general accompanied by a generated surface wave. Expressions for the
reflection coefficient R of the reflected wave are determined for the separate cases of an undeformed and
deformed half-space, with their dependence on «, 8 and D,, and the differences in these two cases have
been highlighted. The corresponding coefficient R’ of the surface wave has also been obtained and its
features examined similarly. Both R and R’ are affected significantly by the parameters X\, a, 8 and Ds.
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