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Abstract

Microbial communities play an important role in organismal and ecosystem health.

While high‐throughput metabarcoding has revolutionized the study of bacterial com-

munities, generating comparable viral communities has proven elusive, particularly in

wildlife samples where the diversity of viruses and limited quantities of viral nucleic

acid present distinctive challenges. Metagenomic sequencing is a promising solution

for studying viral communities, but the lack of standardized methods currently pre-

cludes comparisons across host taxa or localities. Here, we developed an untargeted

shotgun metagenomic sequencing protocol to generate comparable viral communi-

ties from noninvasively collected faecal and oropharyngeal swabs. Using samples

from common vampire bats (Desmodus rotundus), a key species for virus transmission

to humans and domestic animals, we tested how different storage media, nucleic

acid extraction procedures and enrichment steps affect viral community detection.

Based on finding viral contamination in foetal bovine serum, we recommend storing

swabs in RNAlater or another nonbiological medium. We recommend extracting

nucleic acid directly from swabs rather than from supernatant or pelleted material,

which had undetectable levels of viral RNA. Results from a low‐input RNA library

preparation protocol suggest that ribosomal RNA depletion and light DNase treat-

ment reduce host and bacterial nucleic acid, and improve virus detection. Finally,

applying our approach to twelve pooled samples from seven localities in Peru, we

showed that detected viral communities saturated at the attained sequencing depth,

allowing unbiased comparisons of viral community composition. Future studies using

the methods outlined here will elucidate the determinants of viral communities

across host species, environments and time.
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1 | INTRODUCTION

Microbial communities of bacteria and viruses play important roles in

ecosystem function (Strickland, Lauber, Fierer, & Bradford, 2009;

Strom, 2008; Suttle, 2007; van der Heijden, Bardgett, & Straalen,

2008) and in maintaining the health of organisms (Ley, Turnbaugh,

Klein, & Gordon, 2006; Manrique et al., 2016; Muegge et al., 2011).
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Despite the importance of studying microbial communities in the

environment and within hosts, classical methods of microbe discov-

ery are not easily applied at the community level. For example, char-

acterization by isolation and culturing is unsuitable for members of

the microbial community that is difficult to grow in culture (Fancello,

Raoult, & Desnues, 2012). Serological tests of antibody presence are

targeted towards specific taxa and can be difficult to interpret due

to antibody cross‐reactivity and inconsistent cut‐off thresholds for

positivity (Gilbert et al., 2013). Molecular detection of nucleic acids

by targeted PCR remains an important technique for sequencing

specific genomic regions, but these approaches cannot identify all

taxa present and are inappropriate for discovering new, highly diver-

gent taxa as designing primers or probes requires prior knowledge of

nucleotide sequences (Fancello et al., 2012; Temmam, Davoust,

Berenger, Raoult, & Desnues, 2014). In contrast, unbiased deep

sequencing has the potential to capture a snapshot of microbial

communities in a large number of samples without prior expectations

about what taxa will be detected.

Deep sequencing has illuminated the structure and function of

microbial communities across time and space in ways that would not

have been possible using traditional methods. In the field of ecology,

theories developed at macro‐organismal level have been tested in

microbial communities, such as the cycling of predator and prey pop-

ulations (Rodriguez‐Brito et al., 2010) and the existence of elevational

diversity gradients (Fierer et al., 2011). Deep sequencing has also

demonstrated that both bacterial and viral communities differ across

abiotic environments (Dinsdale et al., 2008) in such diverse systems

as soil bacteria (Fierer et al., 2012) and marine viruses (Hurwitz,

Westveld, Brum, & Sullivan, 2014). In the context of human and ani-

mal health, deep sequencing can identify candidate pathogens in

unexplained disease (Briese et al., 2009; Cox‐Foster et al., 2007; Hon-

kavuori et al., 2008; Palacios et al., 2008) and potential hosts and

vectors of emerging pathogens (Masembe et al., 2012; Veikkolainen,

Vesterinen, Lilley, & Pulliainen, 2014; Volokhov et al., 2017). Studies

of host‐associated microbial communities have revealed that microbes

vary across body habitats, space and time (Blekhman et al., 2015;

Costello et al., 2009), and that a community‐level perspective of host‐
associated microbes is critical for understanding health and disease

(Lecuit & Eloit, 2013; Vayssier‐Taussat et al., 2014; Virgin, 2014).

Sequencing host‐associated bacterial communities in wildlife has

revealed that communities vary over time (Bobbie, Mykytczuk, &

Schulte‐Hostedde, 2017), that social interactions are key determinants

of community composition (Grieneisen, Livermore, Alberts, Tung, &

Archie, 2017; Tung, Barreiro, Burns, & Grenier, 2015) and that dietary

changes due to habitat degradation can alter bacterial communities

(Amato et al., 2013). While host‐associated viral communities in wild-

life remain relatively unexplored, the divergent responses of host‐as-
sociated bacteria and viruses to experimental diet modification (Howe

et al., 2015) and the biological differences between the two types of

microbes suggest that viral communities in wildlife might exhibit dif-

ferent patterns to those observed in bacteria.

Deep sequencing studies of microbial communities typically

employ either metagenomics, which is the random sequencing of

genomic fragments of an entire sample, or metabarcoding, which is a

sequence‐specific PCR‐based approach (Creer et al., 2016). Studies of

bacterial communities frequently use 16S ribosomal RNA (rRNA)

metabarcoding to examine highly multiplexed samples. However, viral

communities lack a similarly conserved marker across or even within

viral families (Mokili, Rohwer, & Dutilh, 2012; Rohwer & Edwards,

2002) and are therefore more commonly characterized using metage-

nomics. Although this approach is currently less cost‐ and time‐effi-
cient than metabarcoding for large numbers of samples, it can assign

taxa at higher resolution (depending on factors such as read length,

genomic region and reference database) and avoids PCR biases (Jovel

et al., 2016). Shotgun metagenomics also allows the simultaneous

characterization of different microbial communities (e.g., bacterial and

viral) (Chandler, Liu, & Bennett, 2015; Schneeberger et al., 2016) as

well as host population structure and diet (Srivathsan, Ang, Vogler, &

Meier, 2016). Furthermore, metagenomics can detect viruses at or

below the sensitivity of taxon‐specific PCR and qPCR (Greninger

et al., 2010; Li et al., 2015; Yang et al., 2011), implying that broader

taxonomic coverage does not necessarily trade off with sensitivity.

Targeted approaches also likely underestimate or bias measures of

viral diversity, potentially impacting downstream comparative analy-

ses. The ability of metagenomics to sensitively detect taxa that are

not specifically targeted and/or were previously undescribed has the

potential to overturn prior understandings of viral community diver-

sity and distribution based on serology and PCR.

Despite the great promise of metagenomics for studying viral

communities, challenges inherent to sequencing viral genomes and

technical uncertainties need to be addressed to maximize compara-

bility. Viral communities include single‐ and double‐stranded viruses

with both DNA and RNA genomes, ranging in size from

1,259,197 bp (Megavirus chilensis; Arslan, Legendre, Seltzer, Abergel,

& Claverie, 2011) to 1,700 bp (Hepatitis delta virus; Taylor, 2006);

larger viral genomes that have a higher probability of being

sequenced may be over‐represented in the inferred community (Fan-

cello et al., 2012). The RNA virus component of viral communities is

highly sensitive to degradation due to temperature and storage con-

ditions, raising questions about how samples should be preserved

and transported. Indeed, different storage media alter viral detection

in PCR‐based studies (Forster, Harkin, Graham, & McCullough, 2008;

Osborne et al., 2011) and it is reasonable to assume the same in

metagenomic studies.

Two popular methods for preserving viruses from field or clinical

samples are viral transport media (VTM), an aqueous solution that

typically contains protective proteins, antibiotics, and buffers to con-

trol the pH (Johnson, 1990) and RNAlater, a commercial reagent that

penetrates tissues and stabilizes RNA (Ambion). VTM has historically

been used to preserve samples when viruses are to be detected by

PCR or cultured in vitro (e.g., Jensen & Johnson, 1994; Druce, Garcia,

Tran, Papadakis, & Birch, 2012). Given the large number of historically

collected samples in VTM, it would be ideal to include these in

metagenomic studies. However, VTM may not be an appropriate

medium because one commonly used component, foetal bovine

serum (FBS), may be contaminated with bovine viruses. RNAlater is
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another popular medium for storing microbial samples collected in the

field (Bányai et al., 2017; Drexler et al., 2011; Frick et al., 2017;

Gomez et al., 2015), as it preserves RNA without requiring immediate

freezing. However, its high salt content, while not problematic for

solid tissue samples, creates challenges for nucleic acid extraction

from the kinds of noninvasive swab samples that are typical of eco-

logical field studies (e.g., blood, urine, faeces and saliva). While viruses

are often extracted from an aliquot of supernatant (Baker et al.,

2013; Tse et al., 2012; Wu et al., 2012), extraction from the swab

itself may be desirable for samples stored in RNAlater (Vo & Jedlicka,

2014). These extraction procedures need to be tested and optimized

for more widespread use in noninvasive viral metagenomics.

Another challenge for viral metagenomics is that since genomes

are sequenced at random, larger host and bacterial genomes are

preferentially detected relative to smaller viral genomes (Nakamura

et al., 2009; Yang et al., 2011). For this reason, samples are often

enriched for viruses using methods including nuclease treatment, fil-

tration of host/bacterial particles, density gradient centrifugation and

removal of rRNA (Hall et al., 2014; Kleiner, Hooper, & Duerkop,

2015; Kohl et al., 2015). DNase treatment is a well‐established and

effective method of enrichment (Allander, Emerson, Engle, Purcell, &

Bukh, 2001), while filtration and centrifugation are sometimes used

but can bias the inferred viral community composition (Kleiner et al.,

2015; Thurber, Haynes, Breitbart, Wegley, & Rohwer, 2009) and are

impractical for ecological studies given the large numbers of samples

typically processed and interest in generating community data rather

than focusing on a particular pathogen. Depletion of host rRNA is

unlikely to bias the viral community (He et al., 2010; Matranga et al.,

2014), but may affect the distribution of coverage across the viral

genome (Li et al., 2016). Identifying a combination of laboratory

methods that maximize the proportion of viral reads while minimiz-

ing bias would allow greater multiplexing, enabling metagenomic

studies of viral communities on an ecological or evolutionary scale.

Here, we describe a field–laboratory–bioinformatic pipeline to

characterize viral communities in noninvasively collected faecal and

oropharyngeal swabs from common vampire bats (Desmodus rotundus)

in Peru. To optimize our protocol for comparative viral metagenomics,

we first address the following questions: (a) Are samples stored in

VTM containing FBS appropriate for viral metagenomics? (b) what is

the most effective way to extract viral nucleic acid from swabs stored

in RNAlater? and do the enrichment methods of (c) rRNA depletion

and (d) DNase treatment increase the number of viral reads or viral

taxa detected? Finally, we apply our optimized protocol to field‐col-
lected samples to validate whether viral communities are reliably

characterized at commonly attained depths of sequencing.

2 | MATERIALS AND METHODS

2.1 | Authorizations

Bat capture and sampling methods were approved by the Research

Ethics Committee of the University of Glasgow School of Medical

Veterinary and Life Sciences (Ref081/15) and the University of

Georgia Animal Care and Use Committee (A2014 04–016‐Y3‐A5).
Bat capture and sampling were approved by the Peruvian Govern-

ment under permits RD‐009–2015‐SERFOR‐DGGSPFFS, RD‐264–
2015‐SERFOR‐DGGSPFFS and RD‐142–2015‐SERFOR‐DGGSPFFS.

Access to the genetic resources of Peru was granted under permit

RD‐054–2016‐SERFOR‐DGGSPFFS.

2.2 | Field sampling of common vampire bats

Common vampire bats were captured at 16 sites in seven depart-

ments (administrative regions) across Peru (Figure 1) between 2015

and 2016. Roosts were either natural (caves, trees) or man‐made

structures (abandoned houses, tunnels, mines) inhabited by bats.

Bats were captured within roosts using hand nets or while they

exited roosts using mist nets and harp traps. For nocturnal captures,

nets were open from approximately 18:00–6:00 and checked every

30 min; a combination of one to three mist nets and one harp trap

was used depending on the size and number of roost exits identified.

When exact roost locations were unknown, bats were captured

while foraging at livestock pens using mist nets. Upon capture, bats

were placed into individual cloth holding bags before being pro-

cessed and sampled. Bats were also given a uniquely numbered wing

band (3.5 mm incoloy, Porzana Inc) for identification of recaptures in

ongoing longitudinal studies.

Oropharyngeal (saliva) samples were collected by allowing bats to

chew on cotton‐tipped wooden swabs (Fisherbrand) for 10 s. Faecal

samples were collected by rectal swab, using a 3‐mm diameter rayon‐
tipped aluminium swab (Technical Service Consultants Ltd) dipped in

sterile Dulbecco's phosphate‐buffered saline DPBS (Gibco). Swabs

were stored in uniquely numbered cryovials containing 1 ml RNAlater

(Ambion) or VTM (10% foetal bovine serum, penicillin‐streptomycin,

fungizone antimycotic). Following manufacturer's instructions, swabs

in RNAlater were stored overnight at 4°C before being transferred to

dry ice (ca. −80°C), while those in VTM were immediately placed on

dry ice. Both were permanently stored in −70°C freezers.

2.3 | RNA extraction

Unless otherwise noted, nucleic acid extractions were performed on

a Kingfisher Flex 96 automated extraction machine (Thermo) with

the BioSprint One‐For‐All Vet Kit (Qiagen) using a modified version

of manufacturer's protocol for purifying viral nucleic acids from

swabs (details in Supporting Information Appendix S1).

2.4 | Bioinformatic analysis of viral communities

We created a bioinformatic pipeline for virus discovery and viral

community analyses in shotgun metagenomic data from vampire bat

samples (Supporting Information Appendix S2: Figure S1). Briefly,

the pipeline filtered out low‐quality reads and duplicates, and then

filtered out non‐viral reads including those matching the vampire bat

genome (Zepeda Mendoza et al., 2018; NCBI BioProject Accession

PRJNA414273), the PhiX Illumina sequencing control, ribosomal
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RNA and other reads with high matches to prokaryote/eukaryote

sequences. Remaining reads were assembled into contigs, and then,

both raw reads and assembled contigs were assigned to viral taxa by

comparison with the NCBI VIRAL REFSEQ database.

Viral reads and contigs were converted into lists of viral taxa at

different taxonomic levels using MEGAN Community Edition (Huson

et al., 2016) with the default parameters of the lowest common

ancestor (LCA) assignment algorithm, except that minimum score

and minimum support per cent were set to zero to include all hits

passing the filters of the bioinformatic pipeline (maximum e‐value of

0.001 for each Diamond blast step). For read‐level analysis, we did

not consider species‐level assignments to be trustworthy as reads

were only 150 bp long and could match equally well to numerous

species within a genus. We included genera that are not yet

assigned to families and species that are not yet assigned to genera.

Taxa lists were filtered for vertebrate‐infecting viruses using a list of

vertebrate‐infecting viral families and genera (Supporting Information

Table S1) that was compiled from the 2017 ICTV Taxonomy (Adams

et al., 2017). Viral family and genus richness were calculated using

the R package VEGAN (Oksanen et al., 2017; R Core Team, 2017).

2.5 | Pilot study 1: Are samples stored in viral
transport media appropriate for viral metagenomic
analysis?

Total nucleic acid from two aliquots of FBS was extracted, library

prepared and sequenced using a shotgun metagenomic approach

(Supporting Information Appendix S3) to evaluate the presence of

bovine viruses and to determine whether another storage medium,

such as RNAlater, would be more appropriate. The resulting reads

were processed through the bioinformatic pipeline (Supporting Infor-

mation Appendix S2).

2.6 | Pilot study 2: What extraction method for
swabs stored in RNAlater maximizes nucleic acid?

This experiment used swabs that were inoculated with known con-

centrations of viral particles to identify the extraction method that

maximized viral nucleic acid from swabs stored in RNAlater and to

assess efficiency and repeatability of the extraction protocol. Swabs

were designed to mimic samples collected from the field, with the

caveat that they did not include host material (e.g., faeces and sal-

iva), bacteria, parasites or the community of viruses expected to be

present in field‐collected samples. These other components of sam-

ples could impact extraction and PCR efficiency, for example, by act-

ing as a carrier to enhance RNA extraction or through the presence

of compounds that can act as extraction or PCR inhibitors. However,

rather than inoculate field‐collected swabs, in which differences

between sample types or between pathogen communities could

introduce uncontrolled variation, we opted for “clean” mock swabs

that would allow us to evaluate differences in viral detection

between extraction methods.

Extraction tests used Schmallenberg virus (SBV), a single‐
stranded RNA orthobunyavirus (Hoffmann et al., 2012). A 3.9 × 105

LR1
LR2

LMA5
LMA6

HUA1
HUA2

CAJ4

CAJ1
CAJ2

AMA2
AMA4
AMA6

API1
AYA11

AYA7
AYA14

−16

−12

−8

−4

−80 −76 −72 −68

F IGURE 1 Sampling of vampire bat
colonies used for enrichment and
subsampling tests. Individual colonies are
represented as white points and midpoints
for each pool, in which one to two
colonies were combined, are represented
as circles (faeces) or triangles (saliva).
Colony names are shown in the same
colour as the pools in which they are
included. Peru country borders and
departments within Peru where samples
were collected are outlined in white. The
inset map shows South America, with Peru
highlighted in the grey box
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plaque‐forming units (PFU)/ml stock of SBV was serially diluted in

sterile Dulbecco's phosphate‐buffered saline DPBS (Gibco), and 10 μl

of cell‐free virus at a range of dilutions from 106 to 103 copies/ml

was inoculated into the same swabs used in field studies (Fisher-

brand; Technical Service Consultants Ltd). Swabs were stored in

1 ml of RNAlater at −80°C overnight. We then extracted RNA from

swabs using a manual approximation of the Kingfisher Flex 96

extraction method (Supporting Information Appendix S4), converted

RNA to cDNA using random primers and quantified viral copy num-

ber using qPCR.

Our first test aimed to establish where in the sample the most

extractable virus was located. RNA was extracted from three compo-

nents of mock swabs (swab, supernatant and pellet). Three extrac-

tion replicates were performed for each component of swabs which

had been inoculated at a concentration of 105 copies/ml. All extrac-

tion replicates were quantified by qPCR in triplicate along with stan-

dards and no template controls (Supporting Information

Appendix S4).

Our second test aimed to approximate the minimal detectable

viral concentration by qPCR using this method, to assess repeatabil-

ity and to estimate extraction efficiency using the cotton‐tipped
wooden base swabs and rayon‐tipped aluminium base swabs used to

collect samples in the field. RNA was extracted from swabs, con-

verted into cDNA and quantified by qPCR as described above. Three

extraction replicates were performed for each concentration from

106 to 103 copies/ml for cotton‐tipped wooden base swabs, and

three extraction replicates were performed for aluminium base

swabs at 105 copies/ml.

2.7 | Pilot study 3: Is rRNA depletion a useful
enrichment method for characterizing viral
communities?

We tested the effect of rRNA depletion on the number of viral reads

and taxa detected. Swabs from 40 faecal and 10 saliva samples were

extracted individually, quantified and pooled as described in Support-

ing Information Appendix S1. Five pools were created using nucleic

acid extracts from the same sample type from 10 individuals across

one to two sites in the same locality (between 0.14 and 74.1 km

apart) within each department of Peru (Table 1; Figure 1).

Pools were treated with DNase I (Ambion); buffer and enzyme

were scaled such that all reactions contained 1× DNase buffer and

2U DNase per 100 μl. Reactions were incubated at 37°C for 5 min,

then cleaned up with 1.8× Agencourt RNAClean XP beads, eluted in

RNase‐free water and split in half. Half of each DNase‐treated pool

was enriched by rRNA depletion using the Ribo‐Zero rRNA Removal

Kit (Human/Mouse/Rat) (Illumina) according to manufacturer's

instructions, while the other half was library prepared directly, such

that two libraries were prepared from each initial pool for a total of

10 libraries.

cDNA synthesis and library preparation were performed as

described in Supporting Information Appendix S1 with a variable

number of PCR cycles: Twelve cycles were used for non‐enriched

samples, and 16 cycles were used for enriched samples. As rRNA

depletion significantly decreased the quantity of nucleic acid,

increased PCR cycles were necessary to generate sufficient material

for sequencing for enriched samples; however, this difference is not

expected to influence the proportion or composition of viral reads.

Although PCR errors can be problematic in sequencing studies, we

do not expect them to impact our results because viruses are

assigned at the level of family or genus, rather than species or

subspecies, where such errors could have a greater influence on tax-

onomic assignment. Final libraries were quantified, pooled, and

sequenced (Supporting Information Appendix S1) and processed

through the bioinformatic pipeline (Supporting Information

Appendix S2).

2.8 | Pilot study 4: Does intensive DNase
treatment further enrich viral communities?

A harsher DNase treatment was also tested for its effect on the

number of viral reads and viral taxa detected. Faecal swabs from 10

individuals across two sites in the Cajamarca Department (Table 1;

Figure 1) were extracted and pooled (Supporting Information

Appendix S1). The sample was split in half after pooling; one half

was subjected to “light” treatment of 2U DNase and incubated at

37°C for 5 min (as above), and the other half was subjected to

“harsh” treatment of 10U DNase and incubated at 37C for 15 min.

Both halves were then cleaned up using a 1.8× ratio of Agencourt

RNAClean XP beads. Following this step, pools were library prepared

and sequenced according to the final protocol (Supporting Informa-

tion Appendix S1) and processed through the bioinformatic pipeline

(Supporting Information Appendix S2).

2.9 | Subsampling analysis of viral community
saturation using the optimized sequencing protocol

We conducted a subsampling analysis to test whether observed vari-

ation in the number of raw sequencing reads (Table 1) would affect

the viral community detected (i.e., the number of viral reads, viral

taxa and vertebrate‐infecting viral taxa). The data sets analysed

included 12 multi‐colony pools (five faecal and seven saliva; Table 1)

that had been sequenced according to our final protocol. Faecal and

saliva pools contained swabs from individuals from the same colony

or colonies, except in the Amazonas Department where saliva pools

contained individuals from sites AMA2 and AMA4, but faecal pools

contained individuals from sites AMA2 and AMA6. Subsampling

comprised randomly selecting raw reads at every 10% between 10%

and 100% of the total reads and was repeated five times per pool.

Viruses from subsampled data sets were classified using the bioinfor-

matic pipeline without the assembly step (Supporting Information

Appendix S2).

A generalized linear mixed model (GLMM) with a Poisson distri-

bution was used to assess the effect of the percentage of raw reads

sampled on the number of viral taxa (families and genera) detected

using the LME4 package of R (Bates, Mächler, Bolker, & Walker,
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2015). Separate models were constructed for each combination of

sample type (faecal and saliva), filtering condition (all viruses and ver-

tebrate‐infecting) and taxonomic level (family and genus). The per-

centage of the total raw reads sampled was standardized by

subtracting the mean and dividing by the standard deviation of per-

centages, and pool ID was included as a random effect in the model.

For each data set, linear and second‐degree polynomial models were

tested and compared using a likelihood ratio test and the change in

Akaike information criterion (ΔAIC), with a better fitting polynomial

model indicating a plateau in the number of viral taxa detected at

attained read depths.

3 | RESULTS

3.1 | Metagenomic sequencing reveals diverse viral
nucleic acid in FBS (Pilot study 1)

A total of 21,501,182 raw reads were generated from the two

batches of FBS. The bioinformatic pipeline detected 1,373 and 516

viral reads in each batch, respectively, which spanned 14 families of

RNA and DNA viruses (Table 2). In both samples, the majority of

viral reads were assigned to the family Flaviviridae, with 41% and

30% of viral reads for the two FBS batches, respectively, assigned to

bovine viral diarrhoea virus 3 (BVDV‐3). Long contigs matching to

BVDV (the longest were 1,396 and 775 bp, respectively, out of a full

genome around 12,000 bp) had 96%–98% identity to strain SV757/

15 of BVDV‐3 (Supporting Information Table S2 and S3).

3.2 | Viral sequences are maximized by extracting
RNA from intact swabs (Pilot study 2)

For swabs stored in RNAlater, extracting directly from the swab

itself yielded viral nucleic acid that was measurable by qPCR, while

supernatant and pellet did not (data not shown). The limit of detec-

tion occurred with swabs that were initially inoculated with 220 viral

copies; at this level, virus was inconsistently detectable by qPCR

(Table 3). Virus became consistently detectable at 2,200 copies inoc-

ulated into the swab. Of the three aluminium‐base swabs that were

inoculated with 2,200 copies, two of the extractions contained unde-

tectable virus in all three qPCR replicate reactions, potentially

TABLE 1 Multi‐colony pools sequenced for enrichment tests and subsampling. Pools were created by combining nucleic acid from 10
individual swabs of the same sample type from the same site or locality

Pool IDa Sample type Raw reads Viral reads Colony 1b Colony 2b Testc Treatment Subsampled

AAC_H_F Faeces 12,166,001 10,870 AYA7 AYA14 – – Y

AAC_H_SV Saliva 9,507,979 431 AYA7 AYA14 – – Y

AAC_L_F Faeces 12,000,988 2,417 API1 AYA11 – – Y

AAC_L_SV Saliva 15,121,355 609 API1 AYA11 – – Y

AMA_L_ F_NR Faeces 17,827,799 2,062 AMA2 AMA6 rRNA Non‐enriched N

AMA_L_F_R Faeces 17,760,709 28,344 AMA2 AMA6 rRNA Enriched N

AMA_L_SV Saliva 9,363,273 305 AMA2 AMA4 – – Y

CAJ_L_F_NR Faeces 15,940,753 1,179 CAJ4 – rRNA Non‐enriched N

CAJ_L_F_R Faeces 15,843,806 5,945 CAJ4 – rRNA Enriched N

CAJ_L_SV Saliva 8,685,456 600 CAJ4 – – – Y

CAJ_H_F_1 Faeces 8,661,617 8,085 CAJ1 CAJ2 DNase Light Y

CAJ_H_F_2 Faeces 9,272,152 8,187 CAJ1 CAJ2 DNase Harsh Y

CAJ_H_SV Saliva 11,830,542 534 CAJ1 CAJ2 – – Y

HUA_H_F Faeces 10,814,816 11,285 HUA1 HUA2 – – Y

HUA_H_SV Saliva 8,931,393 517 HUA1 HUA2 – – Y

LMA_L_F_NR Faeces 19,605,605 1,425 LMA5 LMA6 rRNA Non‐enriched N

LMA_L_F_R Faeces 17,365,381 8,206 LMA5 LMA6 rRNA Enriched N

LMA_L_SV_NR Saliva 18,698,730 75 LMA5 LMA6 rRNA Non‐enriched N

LMA_L_SV_R Saliva 15,953,442 483 LMA5 LMA6 rRNA Enriched N

LR_L_F_NR Faeces 19,531,234 1,535 LR1 LR2 rRNA Non‐enriched N

LR_L_F_R Faeces 13,843,629 4,544 LR1 LR2 rRNA Enriched N

LR_L_SV Saliva 9,023,821 478 LR1 LR2 – – Y

aAll pool IDs reflect the locality (AAC, Ayacucho‐Apurímac‐Cusco; AMA, Amazonas; CAJ, Cajamarca; HUA, Huánuco; LMA, Lima; LR, Loreto) and sample

type (F, faeces; SV, saliva). Some IDs also reflect elevation (H, high; L, low) to differentiate localities with multiple pools. NR and R correspond to riboso-

mal treatment, either non‐enriched or enriched, and one sample (CAJ_H_F) has associated numbers (1 and 2) referring to two batches that received dif-

ferent treatments during viral enrichment. Pools processed using the final protocol are shown in bold. bColony codes correspond to department within

Peru. Colony locations and pool midpoints are shown in Figure 1. cEnrichment tests are abbreviated as rRNA (ribosomal RNA depletion) and DNase

(light or harsh DNase treatment).

6 | BERGNER ET AL.



because these swabs were smaller, and it was difficult to determine

whether the virus had absorbed into the rayon. However, the one

aluminium‐base swab with measurable virus was comparable in final

copy number to the wooden‐base swabs (Table 3). The qPCR repli-

cates were generally consistent aside from samples on the edge of

detectability, but Ct and copy number varied between extraction

replicates of swabs containing the same initial quantity of virus. For

the swabs inoculated with 2,200 copies (aluminium and wooden‐
base), there were on average 1,230 copies present following RNA

extraction, yielding an extraction efficiency of about 56% (there

were 1,578 copies and 72% efficiency when excluding an outlier

wooden‐base swab replicate that had 0.94 qPCR copies).

3.3 | Viral enrichment is improved by rRNA
depletion (Pilot study 3)

The sequenced faecal and saliva samples that were split and trialled

for rRNA depletion yielded a total of 172,371,088 reads which were

fairly evenly distributed across samples (Table 1). Samples that were

enriched contained on average 8,213 more viral reads (Figure 2a),

with this difference being close to statistically significant (paired Wil-

coxon signed‐rank test, p = 0.06) despite the small sample size

(N = 10). On average, there were nine more viral families (paired

Wilcoxon signed‐rank test, p = 0.058) and 3.8 more vertebrate‐in-
fecting viral families (paired Wilcoxon signed‐rank test, p = 0.06) per

sample in enriched samples (Figure 2b). Within vertebrate‐infecting
viral families, the number of reads per family was higher in enriched

samples with the exception of the family Retroviridae (Figure 3).

Vertebrate‐infecting viral families that were detected only after

enrichment exhibited diverse genome composition and structure

including positive sense, single‐stranded RNA (Astroviridae, Nodaviri-

dae), negative sense, single‐stranded RNA (Rhabdoviridae, Paramyx-

oviridae), double‐stranded RNA (Picobirnaviridae) and double‐
stranded DNA (Poxviridae). Similar patterns were observed for all

viruses, not just those infecting vertebrates, and results were con-

sistent when analyses were repeated at the level of viral genera

(data not shown). In summary, the rRNA depletion results suggest

that removal of host rRNA allowed detection of more viral taxa

(Figure 2b) and improved the sequencing depth for detected

viruses (Figure 3).

3.4 | Viral enrichment is improved by light DNase
treatment (Pilot study 4)

The faecal sample that was split and trialled for light/harsh DNase

treatment yielded 17,933,769 reads that were evenly distributed

across the two pools (Table 1). Although the number of viral reads

was comparable between the two pools, light DNase treatment

increased the taxonomic richness of viruses detected, both for all

viruses and vertebrate‐infecting viruses (Figure 4).

The proportion of low complexity/PCR duplicate reads was also

slightly higher in the harsh DNase treatment (1,974,128 reads)

compared to the light treatment (1,620,909 reads) (Supporting

Information Figure S2). suggesting that the harsh DNase treatment

could have created a less diverse pool of nucleic acid prior to re‐
amplification. Viral families that were absent in the harsh treatment

included those with single‐stranded DNA genomes (Circoviridae), as

well as single‐stranded RNA genomes (Flaviviridae), suggesting that

DNase treatment may also degrade RNA viruses. However, RNA

viruses were not always affected negatively by DNase treatment,

as the single‐stranded RNA family Paramyxoviridae was present in

the harsh treatment but not the light treatment. Paramyxoviridae

was only represented by two reads in the harsh treatment so it

could be a rare virus that was missing from the light treatment due

to chance, but the effects of DNase on different viral genome

types appear complex and may require more study to resolve.

Although only two pools were compared, and they contained simi-

lar numbers of viral reads, a greater diversity of viral families was

detected following the light DNase treatment.

3.5 | Summary of samples sequenced using the
optimized metagenomic protocol

Pooled samples processed according to the final protocol had simi-

lar numbers of raw reads, but the proportion of viral reads varied

widely across samples (Table 1). Saliva samples consistently con-

tained fewer viral reads than faecal samples. The proportion of

reads filtered out during different stages of bioinformatic

TABLE 2 Viral families detected from shotgun metagenomic
sequencing of FBS. For each viral family, the number of reads and
contigs is reported for each of the two batches of FBS that were
analysed

Family

FBS1a FBS2a

Reads Contigs Reads Contigs

Adenoviridae 27 0 40 2

Asfarviridae 2 0 0 0

Myoviridae 52 2 10 0

Podoviridae 29 0 47 5

Siphoviridae 73 4 32 2

Herpesviridae 2 2 6 1

Iridoviridae 1 0 0 0

Polydnaviridae 4 0 0 0

Poxviridae 9 0 0 0

Retroviridae 180 20 104 15

Microviridae 2 0 2 0

Nyamiviridae 0 0 1 0

Flaviviridae 950 15 267 11

Alphaflexiviridae 8 0 0 0

Total viral readsb 1,373 516

Raw reads 13,565,793 7,935,389

aFBS1 and FBS2 were two different batches of FBS that were

sequenced. bNumber of reads assigned to families do not add up to the

total number of viral reads as some were classified as viral but not

assigned to a family.
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processing was fairly similar across samples (Supporting Informa-

tion Figure S2), and we detected sequences matching to verte-

brates, arthropods, bacteria and archaea in addition to the viral

sequences that were the focus of our study (Supporting Informa-

tion Figure S3).

3.6 | Subsampling validates viral community
saturation using the optimized protocol

The number of viral reads increased consistently with the number of

raw reads, as would be expected with unbiased sequencing, though

Swab type

Virus
concentration
(copies/ml)b

Initial swab
quantity
(copies)b

Extraction
Replicate

Average Ct

(SD)

Average
qPCR copies
(SD)

Wooden‐
base

104 220 1a 37.44 (0.45) 0.67 (0.20)

2 No Ct No Ct

3a 36.69 (0.72) 1.16 (0.55)

Wooden‐
base

105 2,200 1 33.86 (0.36) 7.84 (1.94)

2 33.74 (0.6) 8.83 (3.79)

3 36.98 (0.57) 0.94 (0.37)

Aluminium‐
base

105 2,200 1 34 (0.12) 7 (0.59)

Wooden‐
base

106 22,000 1 33.49 (0.35) 10.13 (2.4)

2 31.72 (0.13) 33.70 (2.86)

3 32.92 (0.32) 14.90 (3.06)

Notes. SD: standard deviation.
aIndicates only two of the three qPCR replicates were measurable (one replicate was below the

limit of detection). When all three qPCR replicates were below the limit of detection, this is indi-

cated with no Ct. All other average Ct and average qPCR quantities are calculated based on three

qPCR replicates. bVirus concentration and initial swab quantities are calculated based on qPCR

measurements of undiluted virus, which was then diluted to obtain the concentrations used in this

experiment.

TABLE 3 Summary of mock swabs
tested for different extraction methods
using qPCR. Swabs were inoculated with
Schmallenberg virus and final virus
concentration following extraction was
measured using qPCR for different swab
types and initial quantities of virus
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rate of increase differed among pools (Figure 5). In contrast, the

number of viral families and vertebrate‐infecting viral families pla-

teaued at higher percentages of the total number of raw reads sam-

pled (Figure 6), and models explaining the number of viral families

with a second‐degree polynomial effect of percentage of raw reads

generally fit the data better than linear models (Table 4). The

exception was vertebrate‐infecting viral families detected in saliva;

however, detections did plateau at the viral genus level (Supporting

Information Table S4; Figure S4). Aside from vertebrate‐infecting
viral families in saliva, viral richness plateaued at around 80% of the

total reads (Figure 6; Supporting Information Figure S4). Converting

this to number of raw reads indicated that, on average, new detec-

tions began to level off at 8,358,626 reads (range: 6,929,294–
12,097,084).

4 | DISCUSSION

We developed a field–laboratory–bioinformatic protocol for charac-

terizing viral communities, incorporating the following findings from

pilot studies to maximize viral detections:

1. Swab samples should be stored in RNAlater rather than VTM

containing FBS.

2. Nucleic acids should be extracted directly from swabs, rather

than from supernatant or pellet.

3. Enrichment should use rRNA depletion and light DNase treat-

ment.

The metagenomic pipeline yielded viral community data from

swab samples taken from vampire bats across Peru, and detections

in most cases plateaued within commonly attained levels of sequenc-

ing depth (Figure 6), suggesting that we developed an effective

noninvasive method for sampling viral communities from field sam-

ples collected from wildlife. The field protocol standardizes sample

collection, storage and transportation among geographically
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widespread and remote study sites. The laboratory and bioinformatic

protocols aim to capture and identify as many different types of

viruses as possible, while processing large batches of samples and

avoiding well‐known sources of bias.

Metagenomic sequencing revealed diverse bovine viral nucleic acid

in FBS. Importantly, our results are unlikely to indicate the presence of

live viruses in FBS since commercial FBS is often heat‐inactivated and

screened for live viruses. Instead, our detections probably represent

viral nucleic acids which persist after heat inactivation, but which could

nevertheless impact metagenomic studies. Detecting BVDV is unsur-

prising, as it is a common cell culture contaminant that has previously

been found in high quantities in FBS (Allander et al., 2001; Gagnieur

et al., 2014). Consistent with the South American origin of the FBS

used in our analyses, BVDV‐3, or HoBi‐like viruses, was initially

reported in FBS from South America and is likely endemic to livestock

in Brazil (Bauermann & Ridpath, 2015). The consistent presence and

proportion of BVDV as well as Retroviridae and several bacteriophage

families (Table 2) across FBS batches suggest that this source of

contamination could perhaps be accounted for in order to include VTM

samples containing FBS in metagenomics studies. However, reads in

FBS also matched the family Adenoviridae (genus Mastadenovirus),

which are also common in bats (Drexler et al., 2011; Li et al., 2010),

including neotropical species (Wray et al., 2016). If bat samples stored

in VTM were sequenced and filtered for viral genera detected in FBS,

this would potentially exclude true bat viruses. Our results therefore

suggest that metagenomic results from historical samples stored in

media containing FBS should be interpreted with caution and avoided

where possible.

Our comparison of RNA extractions from different components

of samples (swab, supernatant, pellet) showed that swab extraction,

but not extraction from supernatant or pellet, typically yielded mea-

surable nucleic acid. This could be due to the high salt concentra-

tions in RNAlater that are designed to inhibit RNase activity, but

which could also interfere with extraction from the supernatant/pel-

let. Typically, tissues stored in RNAlater are blotted to remove

excess solution, and other samples such as blood are centrifuged,
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and the supernatant is removed prior to extraction. Unfortunately, it

is not possible to completely remove the RNAlater from swabs but

extracting from the swab itself might minimize salts relative to the

other components of the sample. It is also possible that virus parti-

cles mostly remain within the swab itself when stored in RNAlater.

Direct extraction from swabs was previously used to characterize

bacterial communities from swabs stored in RNAlater (Vo & Jedlicka,

2014), and other studies have released particles bound to swabs

through incubation in lysis buffer (Schweighardt, Tate, Scott, Harper,

& Robertson, 2014) or lysis buffer and proteinase K (Corthals et al.,
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TABLE 4 Model comparison for viral
family detection in subsampling analyses.
Linear and polynomial models were
compared for each sample type (faeces
and saliva) and filtering (all viral families
and vertebrate‐infecting only)
combination at the family level. For each
combination, two models were run and
compared through both likelihood ratio
test (L, χ2, df and p‐value) and AIC (AIC
and ΔAIC)

Model L χ2 df p‐Value AIC ΔAIC

Faecal viral families Linear −556.1 17.271 1 3.24E−05 1,118.2 15.271

Polynomial −547.47 1,102.9

Saliva viral families Linear −772.02 18.304 1 1.88E−05 1550 16.304

Polynomial −762.87 1533.7

Vertebrate-infecting

faecal viral families

Linear −407.39 10.356 1 0.00129 820.79 8.3564

Polynomial −402.22 812.43

Vertebrate-infecting

saliva viral families

Linear −573.15 0.8262 1 0.3634 1,152.3 1.174

Polynomial −572.73 1,153.5
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2015; Ghatak, Muthukumaran, & Nachimuthu, 2013). We tested

only one virus in this experiment, which may limit our ability to

extrapolate the estimated limit of detection or extraction efficiency

to other viruses with different characteristics or to field‐collected
samples that include host cells and other material. In addition, the

quantity of viral RNA extracted from swabs did not appear highly

repeatable between extraction replicates. However, our results indi-

cated that extracting directly from the swab improved viral detection

relative to other components of the sample.

Our study tested a variety of laboratory methods for enhancing

unbiased detection of viruses. The rRNA depletion results suggested

that removing host rRNA increased both the number of viral reads

and number of viral taxa detected without biasing the viral commu-

nity, as has been observed in previous studies (He et al., 2010;

Matranga et al., 2014). The only case in which there were more

reads in the non‐enriched samples was the family Retroviridae; how-

ever, retroviruses integrate into the host genome and are likely to

behave differently than other viral taxa with respect to enrichment.

Although the Ribo‐Zero kit is described as being for human/mouse/

rat and should be tested before use on other sample types, it has

been used effectively on samples from taxa as distantly related as

mosquitos (Weedall, Irving, Hughes, & Wondji, 2015), and we also

found it to be effective for enriching samples taken from bats.

Although we were only able to analyse one split sample, the light

DNase treatment results suggested an increase in the number of

viral taxa detected compared to the harsher treatment. DNase is a

well‐established method to reduce the number of host and bacterial

reads relative to virus (Allander et al., 2001). Our light treatment was

intended to knock down rather than remove all DNA, also potentially

allowing for better detection of bacteria and parasites compared

with an intensive enrichment, although we did not test this explicitly.

Although this step could have caused bias towards RNA viruses,

DNA virus reads occurred in all samples, as has been found in other

viral metagenomic studies using an RNA‐based approach (Hall et al.,

2014; Kohl et al., 2015; Wu et al., 2016), including those with a

DNase treatment step (Baker et al., 2013; Hall et al., 2014). This

could be explained by the presence of viral RNA transcripts, DNA

viruses that replicate through an RNA intermediate (e.g., Hepadnaviri-

dae), the ability of some DNA virus families to integrate into the

genome of their host (e.g., Herpesviridae) or DNA being carried

through the DNase treatment into library prep due to the light treat-

ment or less than perfect efficiency of the reaction.

Although more intensive enrichment such as filtration or cen-

trifugation could potentially have increased the number of viral

reads, such methods are known to be biased against certain taxa

(Conceição‐Neto et al., 2015; Kleiner et al., 2015; Wood‐Charlson,
Weynberg, Suttle, Roux, & Oppen, 2015). In addition, it would be

impossible to include a filtration step since swabs were immediately

treated with lysis buffer in the extraction, leading to lysis of the viral

particles which would normally be selected for using filtration. In the

light of the above results, and despite the relatively small number of

samples, we recommend rRNA depletion and light DNase treatment

as an effective combination for viral enrichment.

It is worth noting the caveats of analysing noninvasively col-

lected samples. First, although contamination has not been well char-

acterized in viral metagenomic studies, it is a known problem in

bacterial community studies. Samples with low microbial biomass are

particularly sensitive to contamination with other microbes, for

example from DNA extraction kits (Salter et al., 2014) or ultrapure

water (Laurence, Hatzis, & Brash, 2014). Our protocol minimized this

risk by pooling samples following extraction to increase the amount

of target nucleic acid relative to potential reagent‐derived contami-

nants in downstream steps. Second, noninvasive samples will only

detect viruses that are actively shed in urine and faeces, thus may

miss latent viruses that are sporadically shed, but might be detect-

able by sequencing organs from sacrificed animals (Amman et al.,

2012). Third, our protocol is not able to discriminate between

viruses actively infecting hosts and transient viruses acquired from

diet or the environment. Although some sources of bias are unavoid-

able, and it is likely that not all viral taxa in a given sample will be

identified, the same is true of all studies in community ecology

where exhaustive sampling is not possible (Gotelli & Colwell, 2001;

Hughes, Hellmann, Ricketts, & Bohannan, 2001), and we showed

statistically that viral communities in our samples were adequately

sampled (Figure 6). Our approach yielded sufficient depth to confi-

dently characterize viral communities at the viral family or genus

level, while identification of species or strains might be achieved by

further increasing read depths to generate longer contigs that could

be more precisely assigned (Figure 5).

In summary, our pipeline simultaneously generated comparable

viral communities from large numbers of noninvasively collected wild-

life samples. A standardized approach to viral metagenomics opens

many potential avenues of research in disease and community ecol-

ogy. For example, viral community data collected across multiple indi-

viduals, populations and species allow the investigation of ecological

processes shaping host‐associated viral community structure (Anthony

et al., 2015; Olival et al., 2017). Taxonomic and functional patterns of

bacterial diversity across host species are influenced by diet and phy-

logeny (Ley et al., 2008; Muegge et al., 2011; Zepeda Mendoza et al.,

2018), but drivers of host‐associated viral communities may be differ-

ent. In humans, host‐associated viral communities are stable over time

within individuals, but highly variable between individuals (Minot

et al., 2011; Reyes et al., 2010). These observations suggest the

potential to use viral communities as a host or environmental “finger-
print” to evaluate interactions between multiple hosts, or between

hosts and environments, as has been proposed in humans and pri-

mates (Fierer et al., 2010; Franzosa et al., 2015; Stumpf et al., 2016).

Finally, although it was not the focus of our study, we also detected

reads from vertebrates, protozoa and bacteria (Supporting Information

Figure S3), suggesting that with appropriate bioinformatic modifica-

tions, shotgun metagenomic data generated using our protocol could

simultaneously shed light on host genetics, diet, other non‐viral patho-
gens and commensal microbes. As metagenomics becomes an ever

more popular and powerful tool for viral ecology, use of standardized

methods such as those developed here will be crucial for comparative

insights from diverse host species and environments.
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