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ABSTRACT 

 

Creep of concrete can have damaging effects by inducing deformations that may contribute 

or eventually lead to cracks, which influence concrete durability, steel reinforcement 

exposure to corrosion, and aesthetic damage to architectural buildings. This research 

investigated the early age creep deformation in concrete samples made with normal, 

lightweight (Lytag), recycled concrete, and recycled asphalt aggregates using ultrasonic pulse 

velocity measurements.  Creep was achieved by applying a load corresponding to 30% of the 

strength of concrete to 100x250 mm prisms.  The compressive load was applied from 24 

hours after mixing and up to 27 days. The results and analysis of measurements obtained for 

stress development, specific creep (creep strain per unit stress), and ultrasonic pulse velocity 

measured up to 27 days after load application are presented.  Empirical models that allow the 

assessment of creep of concrete using ultrasonic pulse velocity measurements are also 

presented.  

Early age specific creep is higher for recycled asphalt aggregate than Lytag aggregate and 

recycled concrete aggregate concretes, which are higher than gravel concrete.  Measurements 

of ultrasonic pulse velocity could be used to determine creep but further work to refine this 

technique is required. 
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1. Introduction 

 

Creep is the deformation of concrete with time, when it is under a sustained load.  It 

continues at a decreasing rate as the stress is maintained. It follows an instantaneous elastic 

strain and a “near” instantaneous inelastic initial creep strain which takes from 10 to 100 

minutes to develop [1,2,3].  The creep behaviour of concrete, resulting from sustained load 

application, became apparent at the beginning of the 20th century [4]. 

Creep can have damaging effects by inducing cracks in concrete which affects concrete 

durability allowing reinforcement to corrode and are undesirable aesthetically.  It can also 

cause loss of stress in pre-stressed concrete, increase in deflection over time of large span 

concrete beams, and cladding buckling problems in tall buildings [1]. 

Creep does not always have harmful effects, although it may seem that it does. One of its 

benefits in structures is enabling concrete to undergo strain deformations so relieving 

concrete stresses and avoiding what could otherwise be a ductile type collapse of concrete 

columns and beams.  Further, creep in the elastic range at an early age may have the potential 

for inhibiting subsequent pre-stress loss in post-stressed concrete beams [5].  

Concrete can also experience strain deformations that are time dependant, without the 

application of load, in the form of shrinkage [1,2,3,6,7].  

Creep of concrete is affected by many factors that either relate to internal concrete 

composition or to external effects of the environment and size of the concrete member. Some 

of the main factors include; water/cement ratio, curing conditions, temperature and relative 

humidity, size of concrete member, aggregate type and volume, bonding, cement type, degree 

of compaction, and admixtures [1,2,4,6,7,8].  To examine in depth all the variables affecting 

creep was beyond the scope of this research and whilst these influences are acknowledged the 

aim of this project was to establish a method of assessing early age creep of concrete using 
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ultrasonic pulse velocity, and to obtain a relationship between early age creep and ultrasonic 

pulse velocity for four different concrete types.     

 

2. The mechanism of creep 

 

Creeping concrete can be regarded as a multi-phase material consisting of cement paste and 

aggregate. The aggregates, which can occupy up to 75% of a concrete’s volume, are bonded 

together by the cement paste and act as a restraining material [1].  

The cement paste consists of unhydrated cement grains surrounded by cement gel and water-

filled or empty capillary pores [2,6]. The cement gel consists of intertwined particles of 

mainly crumpled colloidal sheets of calcium silicate hydrates, some are needle-shaped, with a 

continuous system of water-filled gel pores. Creep is thought to occur when the colloidal 

sheets slide through a de-bonding and re-bonding process when under stress. The unstable 

contact between the sheets becomes weaker when water is present; hence creep is reduced 

after drying [2,6,8]. 

Drying of concrete under load causes water to diffuse out of the stressed gel micropores 

meaning the colloidal structure moves closer together, which results in additional shrinkage, 

known as drying Shrinkage [2,6,7].  According to Bazant and Wittmann [6], and Bazant and 

Chern [8], this could be enhanced by compressive stresses and existing mirocracking, 

induced by earlier drying and result in further shrinkage. Creep that occurs under controlled 

conditions of no moisture movement to or from the environment is termed basic creep.  
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3. Calculation of concrete creep 

 

The total strain generated by concrete under applied compressive stress includes initial elastic 

strain, strains related to the effects of environmental conditions, such as shrinkage strains, and 

in addition creep strains [7]. Therefore, in controlled environmental conditions, such as a 

laboratory, the actual creep strain from loading is obtained by subtracting from the total strain 

the elastic strain and the environmental strains obtained from an unstressed control specimen 

stored in the same environmental conditions as the stressed concrete. This is expressed by 

equation 1. 

 

  creep = total - initial - control  (mm/mm)      (1)  

where  creep = creep strain. 

  total = total strain in stressed concrete. 

  initial = initial strain, measured immediately after applying the load. 

  control = strain obtained from control concrete, which includes shrinkage. 

 

4. Materials and experimental method 

 

4.1 Materials 

 

4.1.1 Cement type  

The cement used in all the mixes of concrete investigated was CEM I Portland Cement (PC) 

type 42.5 N, manufactured by Lafarge Blue Circle. This was a general purpose cement of a 

quality that complies with BS EN 197-1:2011[9] and carries the European conformity CE 

marking. 
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4.1.2 Mixing water 

Ordinary fresh tap water was used throughout, as supplied by Thames Water Utilities 

Limited. This water is considered as suitable for use in concrete in accordance with BS EN 

1008:2002[10]. The water was used at ambient temperature.   

 

4.1.3 Aggregates- fine and coarse 

All the different types of aggregate (normal, RCA, recycled asphalt, and lightweight) used in 

the manufacture of concrete were oven dried and allowed to cool before use. Concrete mixing 

water was adjusted for the absorption of different aggregates. The aggregates were allowed to 

absorb water for 24 hours prior to mixing. 

 

Normal (gravel) concrete: 

For gravel concrete, Thames Valley flint gravels (4/10mm and 10/20mm) and uncrushed 

river sand (0-4mm all-in) were used throughout the experimental work. The fine aggregate 

particle sizes were found to have the grading proportions shown for sand in Table 1. The 

water absorption and relative density of the aggregates were measured based on a saturated 

surface dry basis as outlined by BS EN 1097-6:2000 [11], and also shown in Table 1. 

 

Recycled concrete aggregate (RCA) concrete 

The aggregate used in RCA concrete consisted of sand (0-4mm all-in) for fine aggregate, as 

used in normal concrete, and RCA aggregate (5-20mm all-in) for coarse aggregate. The RCA 

was Class RCA (II), in accordance with Recycled Aggregates BRE Digest 433 [12], supplied 

by Day Group Ltd, Middlesex, UK. The grading and constituent material proportions of RCA 
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are listed in Table 2. The relative density (saturated surface dry) and water absorption of 

RCA are also listed in Table 2.  

 

 

Table 1 

Sand gradation with relative density and water absorption for sand and gravel. 

Sand grading 

Sieve size (mm) % passing 

2.36 94.3 

1.18 84.2 

0.6 73.7 

0.3 49.9 

0.15 9.38 

Sand 

Relative density (SSD) 2.2 

Water absorption 2.91 % 

 

10mm gravel 

Relative density (SSD) 2.48 

Water absorption 2.71 % 

 

20mm gravel 

Relative density (SSD) 2.48 

Water absorption 2.18 % 
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Table 2  

RCA size and constituent gradation with relative density and water absorption. 

Sieve size (mm) % passing 

31.5 100 

20 97.3 

10 37.1 

9.5 33.6 

5 2.4 

2.36 0.5 

RCA constituent 

materials 
% of total 

RCA 96.6 

Yellow brick 0.7 

Red brick 0.6 

Asphalt 2.0 

Glass 0.03 

Other 0.1 

Relative density (SSD) 2.04 

Water absorption 5.35 % 
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Recycled asphalt aggregate (RA) concrete 

Asphalt is a mixture of aggregates, such as gravel, and bituminous binder. Recycled asphalt is 

reclaimed asphalt obtained by the milling of asphalt road layers.  

Throughout this research study, RA concrete is essentially normal concrete with the 20mm 

gravel (10/20mm) replaced with single size 20mm reclaimed asphalt (10/20mm). The 20mm 

RA aggregate was a Type I unbound mixture for sub-base asphalt, supplied by Tarmac 

Southern Ltd (Hayes). It has a relative density (saturated surface dry) of 2.46 and water 

absorption of 0.5%. 

 

Lightweight aggregate (Lytag) concrete 

The lightweight aggregate used was Lytag aggregate. Lytag is manufactured using fly ash, 

which is a waste product from electricity generation in coal-fired power stations [13].  

The Lytag was supplied as fine (0/4mm) and coarse (4/14mm) aggregate, by Lytag Ltd, York 

UK. The particle size grading, relative density (saturated surface dry), and water absorption, 

which were all provided by the supplier, are listed in Tables 3 and 4 for fine and coarse 

Lytag, respectively. 
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Table 3  

Fine (0/4mm) Lytag gradation, relative density, and water absorption. 

Sieve size (mm) % passing 

6.30 100 

4.00 98 

3.15 96 

2.00 84 

1.00 60 

0.50 46 

0.25 36 

0.125 28 

Relative density (SSD) 1.8 

Water absorption 15 % 

 

 

Table 4  

Coarse (4/14mm) Lytag gradation, relative density, and water absorption. 

Sieve size (mm) % passing 

14 95 

10 90 

8 56 

6.3 23 

4 8 

Relative density (SSD) 1.45 

Water absorption 15 % 
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4.2 Mixing procedure and curing of concrete 

 

The concrete mix designs for normal, RA, RCA, and Lytag aggregate concretes were for w/c 

ratio 0.5, as shown in Table 5. For direct comparisons and due to resource constraints a single 

w/c ratio was used for all the different aggregate type concretes.   

The mixing procedure involved placing the aggregate in an ELE concrete pan mixer (56 litres 

capacity), the cement was then added followed by the water. After two minutes of mixing the 

process was complete. The concrete was then poured into 100x250 mm prism moulds (12 

prisms per mix). The mixing procedure used was based on BS 1881-125:1986 [14]. After 

placement, all samples were compacted on a vibrating table and covered with polythene 

sheets for curing. After de-moulding, except for two samples (to be used as test and control 

samples), all prisms were kept under polythene, next to the creep testing apparatus, until 

loading for compressive strength measurements.  

 

Constituent material quantities for concretes made with all aggregate types were obtained 

using the BRE [15] mix design method, in view of the important direct comparisons carried 

out between the different concrete types and for consistency. 
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Table 5  

Mix design of all the concrete types used. 

  
Normal  

concrete 

RA  

concrete 

RCA  

concrete 

Lytag  

concrete 

  kg/m3 

Cement  360 360 420 460 

Water  180 180 210 230 

Fine Aggregate  518 518 490 471 

Coarse Aggregate 
10 mm 437 437 

1240 599 
20 mm 874 874 

 

 

 

4.3 Testing methods and instruments used 

 

4.3.1 Ultrasonic pulse velocity measurements (UPV) 

The UPV is obtained by measuring the time, in microseconds (μs), that an ultrasonic pulse 

takes to travel between a transmitter and a receiver (transit time) through a known distance of 

concrete (path length in mm). The velocity in km/sec is the path length divided by the transit 

time. Transit time was measured using the PUNDIT- Mark7-PC1012 (Portable Ultrasonic 

Non-destructive Digital Indicating Tester). The transducers used were 54kHz (50mm 

diameter x 38mm long). These were coupled to the concrete surface using petroleum jelly. 
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4.3.2 Concrete creep testing 

Two samples were used for creep testing; a creep sample placed under sustained compressive 

load, and a control sample.  Data recording commenced at 24 hours and continued up to 28 

days after mixing. The creep deformation in concrete was measured on the test sample and 

compared to the control sample using strain measurements.  

 

4.3.2.1 Creep strain measurements  

The strain measurements were carried out using a 100 mm Demountable Mechanical Strain 

Gauge (DEMEC), manufactured by Mayes (Windsor) with 0.002 mm accuracy, and stainless 

steel studs (5 mm in diameter), that were fixed to the concrete surface using Araldite 90 

seconds adhesive [16]. Measurements were obtained on two opposing smooth concrete sides, 

which were then averaged to provide a creep strain reading for the concrete 

 

4.3.2.2 Creep testing setup 

The creep testing frame, shown in Fig. 1, consists of two steel plates (330x330x25 mm) fixed 

by four steel struts (30x2000 mm), with steel nuts.  A lockable manual loading jack ramp is 

placed on the lower plate. The whole assembly, including the upper and lower plates and the 

surface of the loading jack were levelled using an accurate spirit level. 

One hour after attaching the stainless steel studs to the concrete surface, the creep test sample 

was placed between two additional steel plates (100x100 mm), and positioned on platens with 

ball bearings, which were placed on the load cell (NCB MRE Type-403 509 KN, 10 Volts 

input) that rests on the loading jack (Fig. 1). This was connected to a strain indicator (Vishay 

Micro-Measurements-model P3) for the display of the load stress level. The concrete sample 

was then brought into contact with the top plate of the frame, by using the loading jack, 
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making sure that the top of the concrete and its steel platen were level and flush with the 

frame steel plate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Early age concrete creep test setup 

 

 

Direction of UPV 
measurement 
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The control sample was placed next to the frame. Both samples (test and control) were under 

the same ambient environmental conditions, which were 22oC and 34% relative humidity 

(measured using Digitron-DRT880 Thermo Hygrometer). 

Before starting the load application initial measurements were obtained for the control and 

test concretes (initial strain).  Compressive load stress was then applied to the test concrete at 

30% of its compressive strength, this was measured at each stage of load application by 

crushing a separate specimen (kept under polythene cover near the apparatus). The loading 

jack ramp was then locked and the stress maintained until the next creep strain measurement. 

Following the measurements of strain, UPV testing was carried out on the test and control 

concretes. 

The method for early age concrete creep testing and the measurements obtained for strain and 

UPV were applied to all four aggregate type concretes. For direct comparisons and due to 

investigation time limitations only 30% stress was applied to all the different aggregate type 

concretes.    

 

5. Results and discussion 

 

Background 

 

Neville [2, 4], Alexander and Mindess [17], and Brooks [18] note that bond between 

aggregate and cement matrix affects the development of the interface between aggregate and 

cement paste (transition zone) and this has direct effects on creep, and concrete strength and 

can lead to microcracking. They also established that bond is mainly affected by the 

aggregate type, texture, and porosity, and these parameters therefore have an influence on 

creep. 
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In addition, Bungey [19] notes that ultrasonic pulses travelling through concrete are affected 

by the aggregate/paste interface and the presence of any voids or discontinuities at the 

interface.  Hence, the interface affects the bond between the aggregate and cement matrix. 

In view of the above, and the potential effects of aggregate type and bond on both creep and 

UPV, these parameters have become the focus of this investigation.     

Furthermore, Neville [2] notes that it is the hydrated paste within concrete which undergoes 

creep and that the aggregate restrains; this being applicable to both normal and lightweight 

aggregate concretes. Clearly, in this project, the use of crushed asphalt with its smooth 

bitumen coating, may result in some debonding at the interface and hence less restraint. 

Neville [2] also notes that other properties of the aggregate can influence creep in particular 

its modulus of elasticity, stating, the higher the modulus the greater the restraint to potential 

creep of the paste. At early ages, the relative weakness of the paste will probably mean that 

even weak aggregates provide good restraint.  By 28 days, though, Lytag for example may 

not be providing as good a restraint as the Thames Valley aggregate.  This will need further 

investigating but is not considered in this study. Other variables could affect the outcomes 

and will be considered in future investigations.  

In summary, the aim of this investigation was to develop in principle methods that would 

establish UPV relationships with an important property of concrete, namely creep, 

particularly at early ages.  
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5.1 Creep development of concrete 

 

The creep strain of concrete is calculated using equation 1. Strain measurements provided by 

the control concrete sample (control) are deducted from the stressed concrete strains (total) to 

eliminate the effects of all environmental variables, including drying creep, present at the 

time of testing. The compressive load was first applied to the test concrete samples 24 hours 

after mixing.  Measurements were carried out at 2, 4 and 6 hours after loading, then daily up 

to a week, and weekly up to 28 days. 

The initial elastic strain (initial), which is the strain measured immediately after applying the 

load, was also deducted from total creep strain, which results in a value for the actual creep 

strain (creep).  

After the initial load application the stress was increased daily, up to 1 week, and weekly, up 

to 3 weeks, to match the increase in concrete strength during early age. This presented the 

potential for some additional initial elastic stresses to occur upon increasing these loads. 

These secondary initial strains were considered to be part of the continuous creeping process, 

which was already in progression and therefore only the elastic strain measured at first load 

application was taken to represent the initial elastic strain. 

 

The creep behaviour of concretes made with normal, lightweight, RCA, and asphalt 

aggregates, during early age (1-28 days after mixing), are shown in Fig. 2. Creep for all 

concretes increased with time under stress, which complies with similar creep behaviour in 

hardened concrete investigated by Neville [2], Reinhardt and Kümmel [20], and Gómez-

Soberón [21].  
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Concrete containing gravel produced lower creep measurements compared to other concretes 

(Fig. 2). The highest creep values were produced by lightweight (Lytag) concrete, which 

might be attributed to Lytag’s high water absorption and low stiffness.  

The creep of asphalt concrete follows that of lightweight concrete, reaching similar values by 

28 days. Unlike Lytag, asphalt aggregate has very low water absorption and its modulus of 

elasticity is similar to that of gravel. Therefore, the high creep behaviour of concrete  

 

 

 

 

 

 

 

 

 

 

Fig. 2. Creep developments for concretes with normal, lightweight, RCA, and recycled 

asphalt aggregates 

 

containing asphalt aggregate might be due to other aggregate properties, related to its surface 

characteristics, such as week bonding between the bitumen covered aggregate and the cement 

matrix. This would promote the initiation and propagation of microcracks at the 

aggregate/paste boundary, under stress, and therefore help to increase the creep of concrete.   

The creep of RCA concrete was higher than normal concrete but lower than both lightweight 

and asphalt concretes (Fig. 2). The creep behaviour of RCA concrete could be influenced by 
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RCA’s higher porosity and weaker bond with the cement paste, than that of gravel. The 

weakness of the bonding would mainly be due to the presence of some impurities associated 

with RCA, which are listed in Table 2.  Hardened mortar attached to the original aggregate 

may reduce the concretes’ stiffness and increase creep at higher strengths. 

 

5.2 Applied stress variation of concrete 

 

The compressive strength development of concrete with age for the four aggregate types 

considered is shown in Fig. 3. 

Similar strengths are obtained for gravel and Lytag concretes at 1 day, 8.85 N/mm2 and 8.5 

N/mm2 respectively. However, gravel concrete produced slightly higher values of 

compressive strength (20.4 N/mm2) than Lytag concrete (19.65 N/mm2) by 28 days.  

Compressive strength of both concretes was higher than that for RCA concrete (5.8 N/mm2 at 

1 day and 16.2 N/mm2 at 28 days). Recycled asphalt concrete produced the lowest strength of 

all the concretes considered, 4.1 N/mm2 at 1 day and 12.8/mm2 at 28 days. 
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Fig. 3. Compressive strength variation for concretes with normal, lightweight, RCA, and 

recycled asphalt aggregates 
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The corresponding stresses applied to each of the four concretes, based on 30% of concrete 

compressive strength are shown in Fig. 4. The figure is somewhat similar to Figure 3 but 

indicates where stresses were maintained at constant values    

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Stress variations for concretes with normal, lightweight, RCA, and recycled asphalt 

aggregates 

 

 

For all concretes stress increased over time except when held constant. Higher stress 

development was obtained for normal and lightweight concretes than RCA concrete, which 

was higher than asphalt concrete.  

Strength of concrete is influenced by the bond between aggregate and cement matrix, which 

can be affected by aggregate properties including its surface properties and texture [2]. 

Weakness at the aggregate paste interface would induce more cracks earlier resulting in 
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weaker concrete. In the case of recycled asphalt it is the smooth impermeable surface of the 

bituminous aggregate that promotes the weak bond with the paste and helps to induce cracks 

at lower stresses. For recycled concrete aggregate, the weakness in the bond between 

aggregate and paste can be caused by the presence of impurities (e.g. glass, wood-chippings, 

asphalt, and bricks, Table 2) and loose mortar particles on the surface surrounding the 

recycled concrete aggregate. On the other hand, Lytag aggregate in lightweight concrete 

induces good bond strength.  Lytag is essentially sintered fly ash, which might chemically 

react with Portland cement, resulting in improved bond with surrounding cement paste [22]. 

In addition, the high porosity of Lytag would provide more moisture within the concrete body 

for longer, resulting in more fully hydrated cement paste. The porous texture of Lytag would 

also help the cement gel to embed into the aggregate surface, hence improving the physical 

bonding with the matrix, and in combination with the roughly spherical shape of the 

aggregate would reduce the tendency for microcracking.  Husem [23] suggested that the bond 

between lightweight aggregate and cement paste increases with pore volume and the surface 

roughness of aggregate. 

 

5.3 Specific creep development of concrete 

 

Differences in the stress that each concrete sustained, at any time, and the variation in the 

resulting strains for these concretes suggests that it might be more appropriate to express 

creep as strain per unit stress, known as specific creep (CS, units per N/mm2).  The change of 

specific creep with respect to time is shown in Fig 5, for all the concretes considered. From 

the figure it can be seen that, although lightweight concrete had high creep strains (Fig. 2) it 

also resisted high stresses, similar to normal concrete (Fig. 4), to produce these strains. 

Therefore, for a unit applied stress, much lower creep was produced by lightweight concrete 
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in comparison to recycled asphalt concrete (Fig. 5). The latter has lower concrete strength and 

required lower stresses (Figs. 3 and 4) to produce higher creep strains.   

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Specific creep developments for concretes with normal, lightweight, RCA, and 

recycled asphalt aggregates 

 

 

Specific creep for RCA concrete followed the trend for that of lightweight concrete, despite 

the fact that Lytag has a much higher absorption (15%) than RCA (5.35%).  Normal concrete, 

with its lower porosity and higher strength, still has the lowest creep per unit of applied 

stress. The specific creep for the four concretes increased at a reduced rate as time progressed 

and concrete matured. 
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5.4 UPV variation for concretes under load 

 

The variation in UPV with time, measured on test and control concrete samples is shown in 

Fig. 6. For all concrete types, the UPV for concrete undergoing creep was lower than the 

control concrete. The applied compressive load would result in lateral stresses that can cause 

cracks to form at the aggregate paste boundary. Cracks can occur at 30% stress [24]. This 

could even be lower for early age concrete. According to Newman [25], below 40% stress, 

any sustained load would result in creep strain which is proportional to the applied stress and 

can be defined in terms of specific creep. The fracture processes in concrete depend primarily 

upon the applied state of stress and the internal structure of the specimen. These cracks can 

be present or further develop when load is applied and sustained [25]. 

The ultrasonic pulse propagating through concrete would travel around these cracks, which 

would increase the transit time of the pulse and reduce its velocity [19].  

 

 

 

 

 

 

 

 

 

 

Fig. 6. UPV variation with time for concretes with normal, lightweight, RCA, and recycled 

asphalt aggregates 
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The highest UPV reduction was obtained for recycled asphalt concrete, reflecting the 

increased presence of microcracks, due to the weak bond between recycled asphalt and 

mortar matrix. 

 

The differences in UPV measurements between the creep tested specimens and the control, 

for each concrete type, were almost constant, throughout the testing period (Fig. 6). This 

indicates that cracks forming when load was applied, at the start of the test, were of major 

influence throughout testing. Although the increase in applied stresses during testing would 

induce further cracks, this would be counteracted by the continuing hydration and production 

of cement gel, which would fill some of the crack pores present. 

 

This is further demonstrated by Fig. 7, which shows the percentage reduction in UPV is 

highest at the start of testing and after applying the initial load, for all the concretes. After 

that the rate of reduction is greatly reduced, reaching almost zero by 28 days. This is 

associated with the reducing rate of increase in specific creep with time, observed earlier 

(Fig. 4).  Normal concrete has the lowest reduction, with 1% at start of test, reducing to 0.4% 

at 28 days. Both RCA and lightweight concretes have a 2% reduction at the beginning of test 

reaching 0.5% for RCA and 1% for lightweight concretes at the end of test. Recycled asphalt 

concrete has the highest difference in UPV with a reduction from 5% to 3% over the test 

period. 

 

All the above indicate that when using UPV to evaluate the strength of loaded concrete, the 

reduction in UPV associated with creep would need to be deducted from the UPV 

measurements. 
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Fig. 7. Percentage reduction in UPV for concretes with normal, lightweight, RCA, and 

recycled asphalt aggregates. 

 

 

5.5 UPV variation with creep of concrete 

 

The UPV measurements obtained for the four concretes considered have been correlated with 

the specific creep strain in Fig. 8. It is clear from the figure that separate relationships, 

between UPV and specific creep, exist for each concrete with the possible exception of RCA 

and recycled asphalt concretes which could also be represented by a single expression (bold 

dark line, Fig. 8). The relationships take the form of power correlations and can be expressed 

as: 

CS = 5x10-10V15.48 for normal concrete,   (2) 

with a correlation coefficient of R2 = 0.90. 

 

CS = 5x10-7V14.07 for lightweight concrete,  (3) 
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with a correlation coefficient of R² = 0.98 

 

CS = 8x10-12V19.46  for RCA concrete,   (4) 

with a correlation coefficient of R² = 0.94 

 

CS = 2x10-9V16.08 for RA concrete,   (5) 

with a correlation coefficient of R² = 0.93 

 

CS = 8x10-11V18.00 for RCA and RA concretes,  (6) 

with a correlation coefficient of R² = 0.84 

 

Where CS = Specific creep in per N/mm2, 

 V  = UPV in km/sec. 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Specific creep correlation with UPV for concretes made with different aggregate 

types. 
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All the relationships produced good correlation coefficients (i.e. R2 > 0.75), including the 

expression combining RCA and recycled asphalt concretes. The differences between the 

relationships, in Fig. 8, bear some similarity to the UPV variations, in Fig. 6, for the different 

concretes. This highlights the influence of UPV on these relationships, and perhaps concretes 

with similar UPVs could have similar expressions that might be used for the assessment of 

the UPV-creep relationship.  

 

For concrete with a water/cement ratio of 0.5 and for the range of aggregates and conditions 

used, the empirical models produced here could be used to assess the creep of concrete from 

UPV measurements.  Monitoring concrete under load for any excessive strains produced by 

stresses that might have adverse effects on concrete performance is a possible application.  

 

UPV has the advantage of being a totally non-destructive test that can be used to monitor 

concrete on site and in laboratories, which could enable the development of creep-UPV 

models and the monitoring of creep in structures.  However, further investigations would 

need to be carried out for concretes under higher stress levels with different mix proportions 

and under different environmental conditions.  

 

The work carried out in this study has confirmed that the early age creep of concrete is 

significantly affected by the aggregate type. It is possible that both the porosity of the 

aggregate and the aggregate/cement matrix bond play a role in this effect. Other factors will 

have an influence and also need to be investigated.  
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6. Conclusions 

From the results and analysis of early age creep and UPV measurements it is possible to 

make the following conclusions: 

1- Creep can be affected by the aggregate porosity.  

2- The bond between aggregate and cement paste has a significant effect on early age 

creep.  

3- Reductions in UPV readings provide a clear indication of the presence of creep 

deformation, especially when concretes are young.  The highest reduction in UPV was 

for recycled asphalt concrete. 

4- Correlations between specific creep and UPV have been established for normal, 

lightweight, RCA, and recycled asphalt concretes. The expressions have a power 

form. These relationships would enable the assessment of creep development at 

different stages using UPV measurements. 

5- The empirical models produced here could form the basis of a technique to assess the 

creep of concrete using UPV measurements during the early ages (1-28 days) of 

concrete.   

6- UPV can be applied by concrete technologists with the minimum of training and it is 

a non-destructive test. 
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