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Synthesis and Antiviral Activity of Novel Spirocyclic Nucleosides  

Alexander J A. Cobb,a,b* Antonio Dell’Isola,b Ban O. Abdulsattar,c,d Matthew M. W. McLachlan,e 
Benjamin W. Neuman,c,f Christin Müller,g Kenneth Shankland,b Hawaa M. N. Al-Mulla,c Alexander 
W. D. Binks,c Warren Elvidge.c  

The synthesis of  a number of spirocyclic ribonucleosides containing either a triazolic or azetidinic system is described, 

along with two analogous phosphonate derivatives of the former. These systems were constructed from the same -D-

psicofuranose starting material. The triazole spirocyclic nucleosides were constructed using the 1-azido-1-hydroxymethyl 

derived sugars, where the primary alcohol was alkylated with a range of propargyl bromides, whereas the azetidine 

systems orginated from the corresponding 1-cyano-1-hydroxymethyl sugars. Owing to their close simlarity with ribavirin, 

the library of compounds were investigated for their antiviral properties using MHV (Mouse Hepatitis Virus) as a model.

1. Introduction  

Ribavirin 1 (also known as rebatol® and virazole®), a 1,2,4-

triazole nucleoside, discovered by Witkowski and co-workers in 

1972,1 exhibits a broad spectrum of antiviral activity against 

both DNA and RNA viruses and has been used for the treatment 

of a variety of viral infections, such as severe respiratory 

syncytial virus (RSV) infection, lassa fever, influenza A and B, 

measles and mumps.2 Today ribavirin is the standard care for 

the treatment of chronic hepatitis C in combination with 

PEGylated interferon-.3 

 
Figure 1 : Ribavirin 1, and its phosphorylated active form. 

Despite its potent antiviral activity, the use of ribavirin is limited 
by adverse effects - mainly associated with haemolytic 
anaemia.4 In plasma, the nucleoside is transported into 

erythrocytes by suitable transporters and converted into its 
phosphate forms (RMP, RDP and RTP). These then accumulate 
owing to the lack the phosphatases needed to hydrolyse them, 
leading to a relative deficiency of adenosine triphosphate and 
subsequent extravascular haemolysis.5 
 
Therefore, driven by the need to find safer and more specific 
IMP mimics, we set out to develop a range of spirocyclic 
nucleosides, the first class containing a [1,2,3]-triazolyl moiety 
(accessed via an intramolecular [1,3]-dipolar cycloaddition) and 
the second an azetidine functionality (accessed via 
intramolecular SN2 reaction) around the spirocyclic anomeric 
centre (Figure 2) and which show remarkable structural 
similarity to ribavirin. Nucleosides where the conformational 
restriction involves the nucleobase are known as 
cyclonucleosides, and have garnered interest on a number of 
fronts, including agrochemical (e.g. hydantocidin),6 as well as 
being of synthetic interest.7,8  
 
Nucleosides restricted in this way can often show a greater 
specificity towards their enzymatic target, and this can result in 
enhanced biological activity.9 
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Figure 2: Spirocyclic nucleosides targeted 

2. Results and Discussion 

 

The starting point for the synthesis of both spirocyclic systems 

was -D-fructopyranose 4, which was converted to D-

psicopyranose 5 in a straightforward and previously reported 

three step procedure.10 This intermediate was then converted 

to the corresponding furanose 6 using amberlyst A15 resin in 

acetone (Scheme 1). The subsequent protecting group used on 

the 6’OH-position was found to be hugely influential on the next 

glycosidation step. In the case of azide insertion, the benzoate 

ester 7 sufficed, but for the nitrile insertion, the benzylated 

intermediate 8 was required for efficient reaction (Scheme 1). 

These glycosidations were achieved through the use of 

trimethylsilyl triflate and either TMS azide for compound 9, or 

TMS nitrile for compound 11.11  

The former resulted in the trimethylsilyl ether which 

required acidic methanolysis to give the primary alcohol 10, but 

fortunately this was very high yielding. Also satisfyingly, only the 

desired anomer was produced and this is assumed to be a result 

of the intermediate oxonium ion being very hindered on the -

face owing to the presence of the acetonide, in addition to the 

product being the more stable isomer owing to a positive 

anomeric effect. 

 

2.1 [1,2,3]-Triazolooxazines 

With building block 10 in hand, the alkylation of the primary 

alcohol to form the alkynyl-azido compound 2 was undertaken. 

A variety of bases were used to achieve this, initially with 

propargyl bromide as the electrophile (Table 1). Using sodium 

hydride in THF (Entry 1), two products were isolated
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Scheme 1 : Access to psicofuranosyl derivatives building blocks 10 and 11. 

The first was identified as the required product 2a, which was 

obtained in a disappointing 11% yield, and the second – 

obtained in 6% yield – was the hydrolysed diol 12. None of the 

other metal bases screened gave the desired compound in any 

useful yield, and interestingly KHMDS in THF gave 

predominantly the diol 12. We then tested the non-metallic 

phosphazene base BEMP in acetonitrile (Entry 6), and pleasingly 

this gave exclusively the azido-alkynyl product 2a in 54% yield. 

Table 1 : Alkylation study for the synthesis of azido-alkyne 2a. 

 
Entry Base Solvent Yield 2a  

(%) 

Yield 12 

(%) 

1 NaH THF 11 6 

2 NaH/TBAI CH3CN 22 6 

3 LiHMDS THF - - 

4 NaHMDS THF 11 70 

5 KHMDS THF 16 73 

6 BEMP CH3CN 54 - 

[a] Reactions were performed at 0 °C for 2h 

With the optimised alkylation conditions in place, a range of 

propargyl bromides 15a-f were used to obtain the 

corresponding propargylic ethers 2. These were prepared from 

commercially available aryl iodides and propargyl alcohol using 

a two-step process involving Sonogashira coupling12 followed 

by conversion of the resulting 3-arylprop-2-ynyl alcohols 14a-f 

to their corresponding bromides under Appel conditions (Table 

2). 

Table 2 : Preparation of 3-arylprop-2-ynyl bromides 15a-f. 

 
Entry Ar Product Yield, 

% 

Product Yield, 

% 

1 Ph 14a nd 15a 83 

2 4-Cl-

C6H4 

14b 68 15b 76 

3 4-MeO-

C6H4 

14c 84 15c 56 

4 4-F-C6H4 14d 86 15d 85 

5 3-F-C6H4 14e 81 15e 70 

6 2-F-C6H4 14f 55 15f 49 

 

The O-alkylation reaction was then performed using the 

optimized conditions described (Table 3). The crude alkynyl-

azido intermediates 2a-k underwent efficient intramolecular 

1,3-dipolar cycloaddition upon heating in toluene for 24 h,13 
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resulting in the novel protected anomeric spironucleoside 

library 16a-k. 

Table 3 : Alkylation and 1,3-dipolar cycloaddition to access the spirocyclic nucleoside 

system 

 
Entry R Product Overall yield,% 

1 H 16a 51 

2 Me 16b 53 

3 Et 16c 43 

4 2-Napthyl 16d 59 

5 Ph 16e 44 

6 4-Cl-C6H4 16f 45 

7 4-MeO-C6H4 16g 43 

8 4-F-C6H4 16h 43 

9 3-F-C6H4 16i 39 

10 2-F-C6H4 16j 45 

11 n-Pentyl 16k 36 

[a] Overall isolated yield for alkylation and cycloaddition 

Debenzoylation of these compounds, using a 7 M solution of 

ammonia in methanol gave intermediates 17a-k. X-ray 

diffraction on a single crystal of 17a was our first glimpse of the 

spirocyclic nature of these novel systems (Figure 3). Finally, 

these acetonide systems were deprotected with acidic resin 

(Dowex® 50W) to give straightforward access to anomeric 

spironucleosides 18a-k in satisfactory yield (Table 4).14 

 

 

Figure 3 : X-ray crystal structure of 17a (CCDC 1840501) 

Table 4 : Final deprotection steps to obtain anomeric spirocyclic nucleosides Xa-k 

 
Entry R Product Overall yield,% 

1 H 18a 56 

2 Me 18b 47 

3 Et 18c 51 

4 2-Napthyl 18d 50 

5 Ph 18e 67 

6 4-Cl-C6H4 18f 63 

7 4-MeO-C6H4 18g 52 

8 4-F-C6H4 18h 80 

9 3-F-C6H4 18i 74 

10 2-F-C6H4 18j 73 

11 n-Pentyl 18k 69 

[a] Overall isolated yield for benzoate and acetonide deprotection 

2.2 Spiro-[1,2,3]-triazolooxazine Nucleoside Phosphonates 

As has been mentioned, the active form of ribavirin is the 5’-

phosphate, and as such nucleoside analogues containing the 

phosphonate moiety as a bioisostere of this have achieved 

reasonable success.15 As such we sought to also make the 

phosphonate 22 as a part of our library (Scheme 2). This was 

achieved through Dess-Martin oxidation of the 5’-OH in 17a to 

the corresponding aldehyde 19 in 80% yield, followed by 

Horner-Wadsworth-Emmons reaction using tetraethyl 

methylenediphosphonate to give the corresponding vinyl 

phosphonate 20 in a 5:2 E/Z ratio. High pressure (4 bar) 

reduction in methanol gave the corresponding alkyl 

phosphonate 21 in 61% yield. This underwent deprotection, 

first of the acetonide using Dowex resin as described previously, 

followed by deprotection of the phosphonate ester to the 

corresponding phosphonic acid 23 using trimethylsilyl bromide 

and 2,6-lutidine in dichloromethane in a 12% overall yield for 

the two final steps.  
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Scheme 2 : Synthesis of phosphonate 23 

 
Scheme 3 : Synthesis of azetidinic systems. 

 

2.3 Spirocyclic Azetidines 

Another class of spirocyclic nucleoside we were interested in 

was based on the azetidinic system as described previously by 

Fuentes and co-workers.16 In this work, they took the N-,O-

methyl sulfonate 25a and subjected it to sodium hydride in 

DMF, whereupon intramolecular cyclisation of the sulfonamide 

anion onto the O-mesylate resulting in the azetidinic system 

26a. We conducted the same reaction for tosyl and nosyl 

compounds 25b and 25c. Subsequently, for the mesyl, and tosyl 

systems (26a and 26b respectively), we achieved deprotection 

of the acetonide in the usual way, followed by removal of the 

benzyl protecting group at high pressure to give spirocylic 

azetidines 27a and 27b. The configuration of the tosyl derivative 

27b was determined by X-ray crystallography (Figure 4). The 

nosyl derivative 26c was synthesized due to the ease with which 

it can be removed from the nitrogen atom on which it resides 

compared to the mesyl and tosyl compounds to expose the 

secondary amine. However, we were unable to deprotect this 

compound fully to the corresponding triol but did managed to 

convert it to the secondary amine intermediate 28. This possibly 

represents a useful scaffold to generate a library with 

structurally diverse spironucleosides.  
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Figure 4 : X-ray crystal structure of novel tosyl azetidinic system 27b. (CCDC 1840502) 

Biological Evaluation 

Coronaviruses are an important family of human and veterinary 

pathogens that can cause enteric and respiratory infections, 

including severe acute respiratory syndrome coronavirus (SARS) 

and middle east respiratory syndrome coronavirus (MERS), 

which are amongst the most lethal viral infections currently 

known. Infection with the model coronavirus Murine hepatitis 

virus (MHV) can also lead to gastroenteritis, nephritis, hepatitis, 

encephalitis, and progressive demyelinating disease, depending 

on the animal model, virus strain and inoculation route used.17 

Coronaviruses are considered the largest and most complex 

RNA viruses known, encoding an unusually wide array of 

proteins that interact with or modify viral RNA.18 Since 

coronaviruses are enveloped viruses with a positive-sense RNA 

genome, they are predicted to be sensitive to RNA-like drugs,19 

and some nucleosides, such as ribavirin 1, have anti-coronaviral 

activity. 

As a result, Mouse Hepatitis Virus (MHV) has been chosen as a 

proving ground for the novel nucleoside analogues described in 

this study for antiviral activity. In order to test for antiviral 

effects, MHV was grown on mouse 17Cl-1 cells that had been 

pre-treated with the experimental compounds at a 

concentration of 1 mM 3 h before inoculation to allow time for 

drug uptake and potential phosphorylation, inoculated with 10 

infectious units of virus per cell for 1 h to ensure as many cells 

as possible were infected, rinsed with saline to remove any virus 

that had not entered a cell yet, and incubated again with the 

same amount of experimental compound for 14 h. The amount 

of MHV released from infected cells usually peaks at about 14 h 

after infection (Figure 5a).  The amount of virus released from 

infected cells was then measured by plaque assay. Two of the 

treatments, 18b and 18f reduced the amount of MHV that was 

released by about tenfold (Figure 5b). Unfortunately, no 

significant activity was seen for compound 27b or the 

phosphonate analogue, compound 22.    

MHV infection in 17Cl-1 cells normally results in formation of 

large multinucleate syncytia starting about 6 h after infection, 

followed by detachment of cells from the culture flask and 

widespread cell death by 14 h after infection.  

Compounds were tested for side effects on cell growth (Figure 

6a) and then for the ability to protect cells from overt signs of 

infection (Figure 6b).  Selected compounds were tested for side 

effects on cell viability and growth over three days of treatment 

by MTT assay.  The most effective experimental compound 18f 

did not show any significant toxicity at concentrations of 1 mM 

and below (Figure 6c).  The concentration that produced a 50% 

reduction in cell viability in these assays was greater than 1 mM 

for each of the experimental compounds tested, demonstrating 

that the compounds are relatively non-toxic. 

Compound 18f was then screened for the ability to protect cells 

from MHV-induced cytopathology, including cell fusion and 

detachment from the culture flask. The 17Cl-1 cells were pre-

treated with 18f 3 h before infection, rinsed after 24h to remove 

any dead or detached cells, and surviving adherent cells were 

photographed 24 h after infection. Treatment with 1 mM 

compound 18f resulted in a dose-dependent reduction in both 

syncytium formation and detachment of infected cells (Figure 

6d and 6e). 

 

 
 

Figure 5.   Effects of spirocyclic nucleosides on release of infectious 

virus.  (A) Experimental procedure used to test antiviral efficacy.  Mouse 

17Cl-1 cells were pre-treated with compounds 3h before inoculation 

with the virus MHV.  After 14h virus growth was measured by plaque 

assay. (B) Effects of 1 mM treatment on virus release, normalized to 

virus release from infected untreated cells. 

     

From these data it was concluded that 18f exerted a limited 

protective effect on treated cells at concentrations of 250 µM, 

and appeared to completely protect treated cells from overt 

cytopathic effects of virus infection at 2 mM. This also 

demonstrated that the apparent antiviral activity of 18f was not 

simply an artefact of cytotoxicity. More detailed dose-response 

experiments were performed for four of the experimental 

compounds in order to better gauge their antiviral potential. 

The two treatments that were previously identified as most 

effective, compound 18b and 18f, strongly reduced virus 

growth at 1 mM and 2 mM concentrations, but did not 

significantly inhibit virus growth at 0.1 mM or lower 

concentrations (Figure 7) similar to the dose-effectieness profile 

of the antiviral nucleoside ribavirin (Fig. 8). Indeed, the low 

activity of ribavirin against MHV has been well documented.20-
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22 Two groups using different cell culture methods 

demonstrated an approximately ten-fold reduction of MHV 

growth in the presence of 41 micromolar ribavirin,22 and a 

greater than ten-fold reduction in MHV growth in the presence 

of a 40 micromolar conjugate of human hemoglobin and 

ribavirin bound to haptoglobin.20  However, ribavirin treatment 

has also been shown to reduce the severity of MHV-induced 

disease in mice and alter the cytokine profile in infected mice.20-

22 In the investigation of our spirocyclic systems, pre-treatment 

with 2 mM of 18f produced the strongest antiviral effects, 

resulting in approximately one million-fold reduction of MHV 

growth.  Unfortunately, no significant activity was seen for 

compounds 23 or 27b at any of the concentrations tested.  

 

 
 
Figure 6.  Effects of spirocyclic nucleoside treatment on cells. The 
experimental procedures used to test for effects on cell viability (A) and 
the appearance of virus-induced cytopathic effects in mouse 17Cl-1 cells 
(B) are shown.  The effects of experimental compounds on cell viability 
were assessed by MTT assay 24 hours after treatment (C).  Cytopathic 
effects due to MHV infection were assessed by counting visible nuclei in 
cells and syncytia after infection in the presence of absence of 
experimental compounds (D).  Representative examples of cells from 
each treatment group are shown (E) to illustrate the appearance of 
typical MHV cytopathic effects including formation of multinucleate 
syncytia (most apparent in 2.5× magnified insets from infected 250 µM, 
500 µM and 1 mM treatment groups) and loss of cells due to cell 
destruction (apparent in the infected 0 µM and 150 µM treatment 
groups). 

 

A further experiment was performed in order to learn more 

about the mechanism of 18f antiviral activity by evolving drug 

resistance. MHV was serially passaged eight times on 17Cl-1 

cells, which had been pre-treated with 1 mM 18f, a 

concentration that reproducibly reduced viral growth by about 

90%. Previous work on antiviral compounds suggested that 

these conditions were appropriate for the selection of drug-

resistant coronavirus within about five passages.23 MHV growth 

in the presence of 18f was consistently reduced by about 90% 

compared to the virus produced in untreated control cells, and 

did not develop resistance (data not shown). These results 

suggest that the mechanism of action of 18f is unclear, and that 

effects of 18f on the cell cannot be ruled out as a potential 

explanation of the antiviral effects. 
 

 
 
Figure 7. Dose-dependent inhibition of virus growth.  The experimental 
protocol was performed as described in Fig. 6a.  

 

 
Figure 8. Ribavirin has the similarly low mM cytotoxicity as for our 

compounds and reduced virus titre in a dose-dependent manner. 

 

Conclusions  

In conclusion, we have synthesized an array of spirocyclic 
ribonucleosides from a common precursor, the protected psicose 
derivative 6. Both triazolic and azetidinic systems were accessed, as 
well as phosphate derivatives. Some of these agents showed 
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promising activity towards MHV (Mouse Hepatitis Virus), with the 
most promising being the triazolic system 18f.    

Experimental  

Materials and methods 

All moisture-sensitive reactions were carried out under an 

atmosphere of nitrogen. All solvents were analytical grade purity, 

dried over standard drying agents and stored over 3Å molecular 

sieves. All commercially available chemicals were purchased from 

Sigma Aldrich and used as supplied unless otherwise stated. 

Reactions were monitored by thin layer chromatography (TLC), 

which was performed on Merck aluminium backed plates coated 

with 0.2 mm silica gel 60 F254. The spots were visualised using UV 

light (254 nm) and then by charring with 10% sulfuric acid in 

methanol. Column chromatography was carried out using silica gel 

60Å (35-70 μm). 1H-NMR spectra were recorded in suitable 

deuterated solvents (CDCl3, CD3OD) using a Bruker DPX 400 (400 

MHz) or a Bruker Avance III 400 (400 MHz) or a Bruker Avance II+ 500 

(500 MHz) spectrometer. In all cases, tetramethylsilane (TMS) was 

used as internal standard for calibrating chemical shifts (δ), which 

were quoted in parts per million. Abbreviations were used for the 

following multiplicities: s, singlet; d, doublet; dd, doublet of doublets; 

ddd, double double doublet; dt, doublet of triplets; t, triplet; td, 

triplet of doublets, tt, triplet of triplets; q, quartet; m, multiplet and 

the coupling constants J were quoted in Hz. 13C-NMR spectra were 

recorded at 100 MHz on a DPX 400 or Avance III 400 or 125 MHz on 

a Avance II+ 500 in suitable deuterated solvents (CDCl3, CD3OD). 

Assignments were confirmed by homonuclear 2D COSY and 

heteronuclear 2D correlated experiments (1H,13CHSQC, 1H,13C-

HMBC). Infrared spectra were recorded on a Perkin-Elmer FT-IR 

spectrometer as a thin film. The absorptions are quoted in 

wavenumbers (cm-1). Mass spectrometry data was recorded on a 

Thermo Scientific LTQ Orbitrap XL using electrospray ionisation (ESI) 

conditions. Optical rotations were recorded with a Perkin-Elmer 341 

polarimeter using a sodium lamp (D line, 589 nm) and mercury lamp 

(yellow line, 578 nm) as the source of polarized light. They were 

measured at 20 ± 2 °C in the stated solvent and are quoted in units 

of 10-1 deg cm2 g-1. Solution concentrations (c) are given in the units 

of 10-2 g cm-3. Melting points are uncorrected and were determined 

on a Stuart SMP3 melting point apparatus. HPLC analysis was 

determined on an Agilent Technologies 1200 Series HPLC, using a 

ratio of HPLC grade hexanes and propan-2-ol as the eluent, using 

either a Chiralpak AD-H column (0.46 cm ø X 25 cm) or a Chiralcel OD 

column (0.46 cm ø X 25 cm), and detection by UV at 210 nm or 254 

nm. 

Synthetic Procedures 

1,2:3,4-di-O-isopropylidine-β-D-psicofuranose 610 

l,2:3,4-di-O-isopropylidine-β-D-psicopiranose 5 (5.0 g, 19.2 mmol) 

was dissolved in acetone (50 mL). A15 amberlyst resin (250 mg) was 

added in one portion and the resulting suspension was stirred 

vigorously for 13 h, then the resin was filtered off, basified with 

triethylamine and washed with acetone. The filtrate was evaporated 

under reduced pressure to afford the crude residue as orange oil, 

which is pure enough to be used immediately for the next step. 

Purification of the crude product by column chromatography (silica 

gel, hexane/ethyl acetate 85/15) gave the pure protected β-D-

psicofuranose 6 (4.4 g, 88% yield) as white solid. Data for 6: White 

solid, mp = 56-57 °C. []D
20= - 92.1 (c = 0.01, CHCl3). 1H-NMR (400 

MHz, CDCl3): 1.33 (3H, s, CH3), 1.41 (3H, s, CH3), 1.45 (3H, s, CH3), 

1.53 (3H, s, CH3), 3.18 (1H, dd, J = 10.4, 2.8, OH), 3.65 (1H, td, J = 12.4, 

3.6, H-6a), 3.77 (1H, dt, J = 12.4, 2.4, H-6b), 4.07 (1H, d, J = 10.0, H-1a), 

4.30 (1H, t, J = 2.8, H-5), 4.34(1H, d, J = 9.8, H-1b), 4.65 (1H, d, J = 6.0, 

H-3), 4.92 (1H, dd, J = 6.0, 1.2, H-4). 13C-NMR (100 MHz, CDCl3): 24.8 

(CH3), 26.2 (CH3), 26.3 (CH3), 26.5 (CH3), 64.0 (C- 6), 69.9 (C-1), 81.7 

(C-4), 85.8 (C-3), 86.8 (C-5), 111.7 (C-2), 112.3 (C(CH3)2), 113.4 

(C(CH3)2). IR (CHCl3, cm-1): 3480 (br), 2988 (w), 1372 (m), 1209 (m), 

1062 (s), 1029 (s), 851 (s). 

1,2:3,4-di-O-isopropylidene-6-O-benzoyl--D-psicofuranose 710 

To a stirring solution of l,2:3,4-di-O-isopropylidine-β-D-psicofuranose 

6 (5.0 g, 19.2 mmol), triethylamine (13 mL, 96.0 mmol) and 

dimethylaminopyridine (230 mg, 1.92 mmol) in dichloromethane (60 

mL) was added benzoyl chloride (2.45 mL, 21.1 mmol) dropwise at 0 

°C. The resulting light yellow solution was allowed to warm to room 

temperature and stirred for 14 h. The mixture was partitioned 

between saturated aq. NaHCO3 and dichloromethane. The combined 

organic layers were washed with brine, dried over MgSO4, filtered 

and concentrated to dryness under reduced pressure. Purification of 

the crude product by column chromatography (silica gel, hexane/ 

ethyl acetate 9/1) gave the title compound 7 (5.6 g, 80% yield) as a 

white solid. Data for 7: White solid, mp = 72-73°C. []D
20=- 64.4 (c = 

0.01, CHCl3). 1H-NMR (400 MHz, CDCl3): 1.34 (3H, s, CH3), 1.35 (3H, 

s, CH3), 1.43 (3H, s, CH3), 1.47 (3H, s, CH3), 4.08 (1H, d, J = 9.6, H-1a), 

4.31 (1H, d, J = 9.6, H-1b), 4.36-4.48 (3H, m, H-3, H-4 and H-5), 4.68 

(1H, d, J = 5.6, H-6a), 4.83 (1H, d, J = 6.0, H-6b), 7.44 (2H, t, J = 8.0, 

2×Hm), 7.57 (1H, tt, J = 7.6, 1.2, Hp), 8.08 (2H, dd, J = 8.4, 1.2, 2×Ho). 
13C-NMR (100 MHz, CDCl3): 25.1 (CH3), 26.2 (CH3), 26.3 (CH3), 26.4 

(CH3), 64.8 (C-1), 66.1 (C-6), 82.2 (C-4), 83.0 (C-3), 85.2 (C-5), 111.7 

(C-2), 112.8 (C(CH3)2), 113.7 (C(CH3)2), 128.2 (Cm), 129.7 (Cipso), 129.8 

(Co), 133.1 (Cp), 166.1 (COPh). IR (CHCl3, cm-1): 2989 (w), 1720 (s), 

1373 (m), 1268 (s), 1065 (s), 1024 (s), 854 (s), 709 (s). 

 

1,2:3,4-di-O-isopropylidene-6-O-benzyl--D-psicofuranose 811 
Sodium hydride (60 % dispersion in mineral oil, 5.2 g, 0.13 mol) was 
placed in a 1L 3 neck round bottom flask equipped with a 
thermometer and pressure equalising dropping funnel and cooled to 
0 °C. Anhydrous DMF (50 mL) was slowly added under inert 
atmosphere (N2), ensuring that the internal temperature remained 
less than 10 °C. A solution of protected D-psicofuranose 6 (28.66 g, 
0.11 mol) in anhydrous DMF (200 mL) was then added dropwise over 
30 min – again with control of the exotherm and stirred for a further 
30 min at 0 °C. A solution of benzyl bromide (19.4 mL, 0.16 mol) in 
anhydrous DMF (100 mL) was then added dropwise at 0 °C and the 
resulting solution allowed to warm to room temperature. After this 
had been achieved, the mixture was stirred for a further 4 h. It was 
then treated with methanol, diluted with water and extracted with 
diethylether. The combined organic layers were washed with brine, 
dried over MgSO4, filtered and concentrated to dryness under 
reduced pressure to afford the crude residue as orange oil. 
Purification of the crude product by column chromatography (silica 
gel, isohexane/ ethyl acetate 9/1) gave the title compound 8 (32.26 
g, 84% yield) as colourless syrup. Data for 8: pale yellow syrup. 

[]D
20= - 65.6 (c = 0.01, CHCl3). 1H-NMR (400 MHz, CDCl3): 1.29 (3H, 
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s, CH3), 1.35 (3H, s, CH3), 1.41 (3H, s, 2×CH3), 1.48-1.59 (2H, m, 2×H-
6), 4.03 (1H, d, J = 9.6, H-1a), 4.26-4.31 (1H, m, H-5), 4.28 (1H, d, J = 
9.6, H-1b), 4.52 (2H, AB q, J = 12.4, CH2Ph), 4.36-4.57 (1H, d, J = 5.8, 
H-3), 4.72 (1H, d, J = 5.8, H-4), 7.24-7.32 (5H, m, 5×Harom). 13C-NMR 
(100 MHz, CDCl3): 25.2 (CH3), 26.3 (CH3), 26.4 (CH3), 26.5 (CH3), 69.8 
(C-1), 70.9 (C-6), 73.3 (C-1’), 82.6 (C-4), 83.8 (C-5), 85.2 (C-3), 111.4 
(C-2), 112.5 (C(CH3)2), 113.6 (C(CH3)2), 127.6 (Cm), 129.6 (Cipso), 129.3 
(Co), 138.2 (Cp). IR (CHCl3, cm-1): 2941 (w), 1450 (s), 1370 (s). 
 
1-O-Trimethylsilyl-2-azido-2-deoxy-3,4-O-isopropylidene-6-O-

benzoyl --D-psicofuranose 914 
To a solution of spiroketal 7 (1.0 g, 2.74 mmol) and freshly distilled 
acetonitrile (30 mL) was added azidotrimethylsilane (750 μL, 5.48 
mmol) at 0 °C under a nitrogen atmosphere in the presence of 
activated 4Å molecular sieves. The solution was stirred for 5 min and 
trimethylsilyltriflate (146 μL, 0.82 mmol) added dropwise, and the 
stirring was continued at 0 °C for a further 5 min. The mixture was 
neutralized with triethylamine (228 μL, 1.64 mmol), diluted with 
ethyl acetate and warmed to room temperature. The resulting 
solution was partitioned between saturated aq. NaHCO3 and ethyl 
acetate. The organic layers were washed with brine, dried over 
MgSO4, filtered and concentrated to dryness under reduced 
pressure. Purification of the crude product by column 
chromatography (silica gel, hexane/ ethyl acetate 95/5) gave the 

pure 9 (1.03 g, 89% yield) as colourless syrup. Data for 9: []D
20 = -

89.6 (c = 0.01, CHCl3). 1H NMR (400 MHz, CDCl3): 0.01 (9H, s, 
Si(CH3)3), 1.13 (3H, s, CH3), 1.47 (3H, s, CH3), 3.81 (1H, d, J = 11.6, H-
1a), 3.84 (1H, d, J = 11.2, H-1b), 4.24-4.28 (2H, m, H-4, H-6a), 4.33-
4.37 (1H, m, H-6b), 4.42 (1H, td, J = 6.4, 1.6, H-5), 4.67 (1H, dd, J = 2.0, 
6.0, H-3), 7.25 (2H, dd, J = 7.6, 7.2, 2×Hm), 7.37 (1H, tt, J = 7.6, 1.2, 
Hp), 7.91(2H, d, J = 7.2, 2×Ho). 13C NMR (100 MHz, CDCl3): 0.0 
(Si(CH3)3), 25.7 (CH3), 27.1(CH3), 65.0 (C-6), 65.9 (C-1), 83.1 (C-3), 
85.3 (C-5), 85.9 (C-4), 101.4 (C-2), 114.1 (C(CH3)2), 129.0 (Cm), 130.3 
(Cipso), 130.4 (Co), 133.8 (Cp), 166.7 (COPh). IR (CHCl3, cm-1): 2956 (w), 
2114 (m, N3), 1723 (s), 1247 (s), 1108 (m, Si-O), 839 (s), 709 (s). HRMS 
required for C19H27N3O6SiNa+ is 444.1561, found 444.1561. 
 

2-Azido-2-deoxy-3,4-O-isopropylidene-6-O-benzoyl--D-
psicofuranose 1014 
To a solution of silyl ether derivative 9 (1.10 g, 2.61 mmol) in acetone 
(8 mL) were added methanol (10 mL) and glacial acetic acid (553 μL). 
The solution was stirred for 8 h at room temperature. Then, the 
reaction mixture was neutralized by triethylamine concentrated 
under reduced pressure. The resulting residue was partitioned 
between saturated aq. NaHCO3 and ethyl acetate. The organic layers 
were washed with brine, dried over MgSO4, filtered and 
concentrated to dryness under reduced pressure. Purification of the 
crude product by column chromatography (silica gel, hexane/ ethyl 
acetate 8/2) gave the pure alcohol 10 (893 mg, 98% yield) as 

colourless syrup. Data for 10: []D
20 = - 97.2 (c = 0.01, CHCl3). 1H-NMR 

(400 MHz, CDCl3): 1.32 (3H, s, CH3), 1.51 (3H, s, CH3), 3.08 (1H, t, J 
= 6.4, OH), 4.00 (2H, d, J = 6.0, H-1a,b), 4.42-4.52 (1H, m, H-6a), 4.53-
4.56 (2H, m , H-3 and H-6b), 4.63 (1H, td, J = 6.0, 1.2, H-5), 4.87 (1H, 
dd,  J = 6.0, 1.6, H-4), 7.43 (2H, t, J = 7.6, 2×Hm), 7.56 (1H, tt, J = 7.6, 
1.2, Hp), 8.08 (2H, d, J = 7.2, 2×Ho). 13C-NMR (100 MHz, CDCl3): 24.8 
(CH3), 26.1 (CH3), 64.1 (C-1), 64.3 (C-6), 82.5 (C-4), 84.6 (C-5), 85.4 (C-
3), 101.4 (C-2), 113.7 (C(CH3)2), 128.5 (Cm), 129.6 (Cipso), 129.7 (Co), 
133.3(Cp), 166.2 (COPh). IR (CHCl3, cm-1): 3489 (br), 2956 (w), 2114 
(m, N3), 1720 (s), 1270 (s), 709 (s). HRMS required for C16H19N3O6Na+ 
is 372.1166, found 372.1166. 
 
6-O-benzyl-3,4-O-isopropylidene-β-D-psicofuranosyl cyanide 1111 

Spiroketal 8 (38.0 g, 0.11 mol) was placed in a 1L 3 neck round 
bottom flask equipped with a thermometer and pressure equalising 
dropping funnel and then cooled to -20 °C under an inert atmosphere 
of nitrogen. Trimethylsilyl cyanide (40.7 mL, 0.32 mol) was then 
added dropwise, followed by trimethylsilyl 
trifluoromethanesulfonate (22.9 mL, 0.16 mol). The reaction mixture 
was then stirred for 2 h at the same temperature (-20 °C). After this 
time, it was quenched with saturated sodium bicarbonate solution. 
The mixture was partitioned between saturated aq. NaHCO3 and 
dichloromethane and the aqueous layer treated with sodium 
hypochlorite. The combined organic layers were washed with brine, 
dried over MgSO4, filtered and concentrated to dryness under 
reduced pressure. Purification of the crude product by column 
chromatography (silica gel, isohexane/ ethyl acetate 75/25) gave the 
title compound 11 (20.4 g, 58% yield) as colourless syrup. Data for 

11: Oil. []D
20= - 29.0 (c = 0.01, CHCl3). 1H-NMR (400 MHz, CDCl3): 

1.34 (3H, s, CH3), 1.52 (3H, s, CH3), 2.61 (1H, br, OH), 3.54-3.65 (2H, 
m, 2×H-6), 3.89 (2H, s, 2×H-1), 4.42 (1H, m, H-5), 4.50 (1H, d, J = 12.1, 
H-7a), 4.69 (1H, d, J = 12.1, H-7b), 4.90 (1H, d, J = 5.9, H-3), 5.09 (1H, 
d, J = 5.8, H-4), 7.30-7.36 (5H, m, 5×Harom). 13C-NMR (100 MHz, CDCl3): 
24.5 (CH3), 25.7 (CH3), 64.9 (C-1), 70.1 (C-6), 73.5 (C-7), 82.9 (C-2), 
83.3 (C-3), 84.9 (C-5), 85.2 (C-4), 113.9 (C(CH3)2), 120.0 (CN), 127.9 
(Cp), 128.1 (Co), 128.5 (Cm), 137.3 (Cipso). IR (CHCl3, cm-1): 3298 (br), 
2940 (w), 1714 (m), 1453 (m), 1360 (m). 
 
 

((3aR,4R,6R,6aR)-6-azido-2,2-dimethyl-6-((prop-2-yn-1-

yloxy)methyl)tetrahydrofuro[3,4-d][1,3]dioxol-4-yl)methyl 

benzoate 2a 

Azido alcohol 10 (500 mg, 1.43 mmol) was dried by evaporation of 

freshly distilled acetonitrile and dissolved in the same solvent (8.4 

mL). To the resulting solution were added BEMP (497 L, 1.72 mmol) 

followed by the suitable propargyl bromide (2.15 mmol) dropwise at 

0°C under a nitrogen atmosphere. The reaction mixture was stirred 

at the same conditions until TLC indicated completion of the reaction 

(2-4h). The resulting solution was partitioned between phosphate 

buffer solution pH 7.00 and ethyl acetate. The organic layers were 

washed with 10% NaCl aq. solution, dried over MgSO4, filtered and 

concentrated to dryness under reduced pressure to afford the crude 

residue as brown oil which in the majority of cases was used crude in 

the following cycloaddition step owing to spontaneous reactivity and 

in an effort to maximise overall yield. The characterisation for the 

purified intermediates is described below. 

Chromatography of the crude residue over silica gel (hexane/ethyl 

acetate 8/2) gave the pure 2a (299 mg, 54% yield). Data for 2a: 

Colourless oil, []D
20= - 86.5 (c = 0.02, CHCl3). 1H-NMR (400 MHz, 

CDCl3):  1.21(3H, s, CH3), 1.49 (3H, s, CH3), 2.42 (1H, t, J = 2.4, H-3’), 

3.89 (2H, s, H-1a,b), 4.25 (2H, d, J = 2.0, H-1’a,b), 4.33-4.49 (3H, m, H-

3, H-6a,b), 4.54 (1H, td, J = 6.4, 1.6, H-5), 4.80 (1H, dd, J = 6.4, 1.6, H-

4), 7.39 (2H, t, J = 8.0, 2×Hm), 7.51 (1H, t, J = 7.2, Hp), 8.02 (2H, d, J = 

7.6, 2×Ho). 13C-NMR (100 MHz, CDCl3): 25.1 (CH3), 26.5 (CH3), 59.1 (C-

1’), 64.2 (C-6), 70.4 (C-1), 75.2 (C-3’), 79.3 (C-2’), 82.5 (C-4), 85.0 (C-

5), 85.5 (C-3), 100.7 (C-2), 114.0 (C(CH3)2), 128.5 (Cm), 129.7 (Cipso), 

129.8 (Co), 133.4 (Cp), 166.3 (COPh). IR (CHCl3, cm-1): 3292 (w), 2927 

(w), 2116 (m, N3), 1721 (s), 1270 (s), 1270 (s), 1068 (m), 711 (s). HRMS 

required for C19H22N3O6
+ is 388.1503, found 388.1505. 
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2-Azido-2-deoxy-3,4-O-isopropylidene--D-psicofuranose 12 

To a solution of compound 10 (75 mg, 0.21 mmol) in freshly distilled 

THF (1.5 mL), a solution of NaHDMS (47 mg, 0.26 mmol) was added 

dropwise at 0 °C under nitrogen atmosphere. After 5 min, propargyl 

bromide (36 μL, 0.32 mmol) was added and the reaction mixture was 

stirred for 4 h. Afterwards, saturated aq. NH4Cl was added and the 

resulting emulsion was extracted with ethyl acetate and washed with 

brine. The organic layers were dried over MgSO4, filtered and the 

solvent evaporated under reduced pressure. Chromatography of the 

crude residue over silica gel gave azidoalkyne 2a (hexane/ethyl 

acetate 8/2) as the minor product (9 mg, 11% yield) and 

debenzoylated psicofuranose 12 (hexane/ethyl acetate 6/4) as major 

product (36 mg, 70% yield). Data for 12: Colourless syrup, 1H-NMR 

(400 MHz, CDCl3): 1.27 (3H, s, CH3), 1.46 (3H, s, CH3), 2.27 (2H, br, 

2×OH), 3.65-3.74 (2H, m, H-6a,b), 3.91 (2H, s, H-1a,b), 4.33 (1H, td, J = 

6.0, 1.6, H-5), 4.46 (1H, d, J = 6.0, H-3), 4.75 (1H, dd,  J = 6.0, 1.6, H-

4). 13C-NMR (100 MHz, CDCl3): 23.4 (CH3), 25.2 (CH3), 62.4 (C-6), 63.4 

(C-1), 81.1 (C-4), 84.7 (C-3), 86.6 (C-5), 100.3 (C-2), 112.6 (C(CH3)2). 

 

General Procedure for Sonogashira Coupling 

To a stirring suspension of aryl iodide (4.2 mmol),  

dichlorobis(triphenylphosphine)palladium(II) (30 mg, 0.042 mmol), 

copper(I) iodide (4 mg, 0.021 mmol) and freshly distilled 

diethylamine  (50  mL) was added propargyl alcohol  (4.2 mmol)  

dropwise under a N2 atmosphere.  

The resulting reaction mixture was stirred for 5 h at room 

temperature. After this time, diethylamine was removed under 

reduced pressure and the crude product was partitioned between 

water and diethyl ether. The combined organic layers were washed 

with brine, dried (MgSO4), filtered and concentrated under reduced 

pressure. 

 

General procedure for O-alkylation and intramolecular 1,3-dipolar 
cycloaddition14 
 
Azido alcohol 10 (500 mg, 1.43 mmol) was dried by evaporation of 
freshly distilled acetonitrile and dissolved in the same solvent (8.4 

mL). To the resulting solution BEMP (497 L, 1.72 mmol) and the 
suitable propargyl bromide (2.15 mmol) were added drop-wise at 0 
°C under a nitrogen atmosphere. The reaction mixture was stirred 
under these conditions until TLC indicated completion of the reaction 
(2-4 h). The resulting solution was partitioned between phosphate 
buffer solution pH 7 and ethyl acetate. The organic layers were 
washed with 10% NaCl aq. solution, dried over MgSO4, filtered, and 
concentrated under reduced pressure to afford the crude residue as 
brown oil which in the majority of cases was used as telescoped 
material in the following cycloaddition step owing to spontaneous 
reactivity and in an effort to maximise overall yield. Thus, the crude 
azido alkyne 2a-k was dissolved in toluene (28.6 mL) and refluxed 
until TLC analysis showed full conversion to corresponding triazolo-
oxazine 16a-k (16-24 h). The solvent was removed under reduced 
pressure and the residue was purified on silica gel.  
 
((3aR,4R,6R,6aR)-2,2-dimethyl-3a,6a-dihydro-4'H,6H,6'H-
spiro[furo[3,4-d][1,3]dioxole-4,7'-[1,2,3]triazolo[5,1-c][1,4]oxazin]-
6-yl)methyl benzoate 16a 

Chromatography of the crude residue over silica gel (hexane/ethyl 

acetate 6/4) gave the pure triazolooxazine 16a (282 mg, 95% yield). 

Data for 16a: Colourless oil, []D
20= - 11.87 (c = 0.0016, CHCl3). 1H-

NMR (400 MHz, CDCl3): .37 (3H, s, CH3), 1.60 (3H, s, CH3), 4.19 (1H, 

d, J = 8.0, H-1a), 4.23 (1H, d, J = 8.2, H-1b), 4.55-4.69 (3H, m, H-5, H-

6a,b), 4.83 (1H, d, J = 15.2, H-1’a), 5.04 (1H, d, J = 15.2, H-1’b), 5.16 (1H, 

d, J = 6.0, H-3), 5.30-5.31 (1H, m, H-4), 7.43 (2H, td, J = 7.8, 1.6, 2×Hm), 

7.52 (1H, s, H-3’), 7.55 (1H, tt, J = 7.3, 1.2, Hp), 8.06 (2H, dd, J = 8.0, 

1.6, 2×Ho). 13C-NMR (100 MHz, CDCl3): 25.3 (CH3), 26.8 (CH3), 62.5 (C-

1’), 64.5 (C-6), 69.1 (C-1), 83.2 (C-4), 85.2 (C-3), 86.3 (C-5), 93.1 (C-2), 

114.4 (C(CH3)2), 128.1 (C-3’), 128.3 (Cm), 129.7 (Cipso), 129.8 (Co), 

131.4 (C-2’), 133.1 (Cp), 166.1 (COPh). IR (CHCl3, cm-1): 2923 (w), 1721 

(s), 1269 (s), 1094 (s), 1068 (m), 713 (s). HRMS required for 

C19H22N3O6
+ is 388.1503, found 388.1506. 

 

((3aR,4R,6R,6aR)-2,2,3'-trimethyl-3a,6a-dihydro-4'H,6H,6'H-
spiro[furo[3,4-d][1,3]dioxole-4,7'-[1,2,3]triazolo[5,1-c][1,4]oxazin]-
6-yl)methyl benzoate 16b 
Chromatography of the crude residue over silica gel (hexane/ethyl 

acetate 6/4) gave the pure triazolooxazine 16b (304 mg, 96% yield). 

Data for 16b: Colourless oil, []D
20= - 24.82 (c = 0.01, CHCl3). 1H-NMR 

(400 MHz, CDCl3): .38 (3H, s, CH3), 1.59 (3H, s, CH3), 2.27 (3H, s, 

3×H-4’), 4.15 (1H, d, J = 12.8, H-1a), 4.22 (1H, d, J = 12.4, H-1b), 4.53-

4.67 (3H, m, H-5, H-6a,b), 4.73 (1H, d, J = 14.8, H-1’a), 4.95 (1H, d, J = 

14.8, H-1’b), 5.15 (1H, d, J = 6.0, H-3), 5.28 (1H, dd, J = 6.0, 2.8, H-4), 

7.43 (2H, t, J =7.2, 2×Hm), 7.55 (1H, t, J = 7.6, Hp), 8.06 (2H, d, J = 7.8, 

2×Ho). 13C-NMR (100 MHz, CDCl3): 10.0 (C-4’), 25.3 (CH3), 26.8 (CH3), 

62.3 (C-1’), 64.6 (C-6), 68.9 (C-1), 83.2 (C-4), 85.1 (C-5), 86.1 (C-6), 

93.0 (C-2), 114.4 (C(CH3)2), 127.8 (C-3’), 128.7 (Cm), 129.8 (Cipso), 

129.9 (Co), 133.0 (Cp), 137.0 (C-2’), 166.1 (COPh). IR (CHCl3, cm-1): 

2989 (w), 1719 (s), 1269 (s), 1096 (s), 1068 (m), 709 (s). HRMS 

required for C20H24N3O6
+ is 402.1660, found 402.1658. 

 

((3aR,4R,6R,6aR)-3'-ethyl-2,2-dimethyl-3a,6a-dihydro-4'H,6H,6'H-
spiro[furo[3,4-d][1,3]dioxole-4,7'-[1,2,3]triazolo[5,1-c][1,4]oxazin]-
6-yl)methyl benzoate 16c 
Chromatography of the crude residue over silica gel (hexane/ethyl 

acetate 6/4) gave the pure triazolooxazine 79c (255 mg, 82% yield). 

Data for 79c: Colourless oil, []Y
20= - 27.26 (c = 0.015, CHCl3). 1H-NMR 

(400 MHz, CDCl3): .26 (3H, t, J = 7.6, 3×H-5’), 1.38 (3H, s, CH3), 1.59 

(3H, s, CH3), 2.67 (2H, q, J = 7.6, 2×H-4’), 4.17 (1H, d, J = 12.8, H-1a), 

4.22 (1H, d, J = 12.8, H-1b), 4.54-4.67 (3H, m, H-5, H-6a,b), 4.76 (1H, d, 

J = 14.8, H-1’a), 4.97 (1H, d, J = 14.8, H-1’b), 5.15 (1H, d, J = 6.0, H-3), 

5.29 (1H, dd, J = 5.6, 2.8, H-4), 7.43 (2H, t, J =7.6, 2×Hm), 7.55 (1H, t, J 

= 7.2, Hp), 8.05 (2H, d, J = 7.8, 2×Ho). 13C-NMR (100 MHz, CDCl3): 13.2 

(C-5’), 18.5 (C-4’), 25.3 (CH3), 26.8 (CH3), 62.4 (C-1’), 64.6 (C-6), 68.9 

(C-1), 83.3 (C-4), 85.1 (C-5), 86.1 (C-6), 93.1 (C-2), 114.3 (C(CH3)2), 

127.3 (C-3’), 128.3 (Cm), 129.8 (Cipso), 129.8 (Co), 133.1 (Cp), 142.8 (C-

2’), 166.1 (COPh). IR (CHCl3, cm-1): 2978 (w), 1720 (s), 1271 (s), 1098 

(s), 1069 (m), 712 (s). HRMS required for C21H26N3O6
+ is 416.1803, 

found 416.1809. 

 

((3aR,4R,6R,6aR)-2,2-dimethyl-3'-(naphthalen-2-yl)-3a,6a-dihydro-
4'H,6H,6'H-spiro[furo[3,4-d][1,3]dioxole-4,7'-[1,2,3]triazolo[5,1-
c][1,4]oxazin]-6-yl)methyl benzoate 16d 
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Chromatography of the crude residue over silica gel (hexane/ethyl 

acetate 8/2) gave the pure triazolooxazine 16d (433 mg, 94% yield). 

Data for 16d: Colourless oil, []D
20= - 36.46 (c = 0.015, CHCl3). 1H-NMR 

(400 MHz, CDCl3): 1.42 (3H, s, CH3), 1.63 (3H, s, CH3), 4.29 (1H, d, J = 

12.8, H-1a), 4.34 (1H, d, J = 12.4, H-1b), 4.70-4.77 (3H, m, H-5, H-6a,b), 

4.81 (1H, d, J = 15.2, H-1’a), 4.97 (1H, d, J = 15.2, H-1’b), 5.29 (1H, d, J 

= 6.0, H-3), 5.39 (1H, dd, J = 5.6, 2.4, H-4), 7.40-7.46 (3H, m, H-Naph, 

2×Hm), 7.47-7.55 (4H, m, 3×H-Naph, Hp), 7.89-7.91(2H, m, 2×H-

Naph), 8.09-8.015 (3H, m, H-Naph, 2×Ho). 13C-NMR (100 MHz, CDCl3): 

25.4 (CH3), 26.9 (CH3), 63.2 (C-1’), 64.6 (C-6), 69.1 (C-1), 83.2 (C-4), 

85.3 (C-5), 86.3 (C-6), 93.5 (C-2), 114.5 (C(CH3)2), 125.2, 125.5, 126.3, 

126.6 (Naph), 127.4 (C-3’), 128.4 (Cm), 128.5,129.3 (Naph), 129.7 

(Cipso), 129.8 (Co), 129.9 (Naph), 131.4 (C-2’), 133.1 (Cp), 133.9 (Naph), 

141.0 (Cipso-Naph), 166.2 (COPh). IR (CHCl3, cm-1): 2990 (w), 1719 (s), 

1271 (s), 1097 (s), 1069 (s), 1025 (m), 751 (s), 710 (s). HRMS required 

for C29H28N3O6
+ is 514.1973, found 514.1970. 

 

((3aR,4R,6R,6aR)-2,2-dimethyl-3'-phenyl-3a,6a-dihydro-
4'H,6H,6'H-spiro[furo[3,4-d][1,3]dioxole-4,7'-[1,2,3]triazolo[5,1-
c][1,4]oxazin]-6-yl)methyl benzoate 16e 
Chromatography of the crude residue over silica gel (hexane/ethyl 

acetate 8/2) gave the pure triazolooxazine 16e (291 mg, 44% yield 

over two steps) as a white solid. Data for 16e: Mp = 72-73°C. []D
20= 

- 31.6 (c= 0.01, CHCl3). 1H-NMR (400 MHz, CDCl3): 1.40 (3H, s, CH3), 

1.61 (3H, s, CH3), 4.25 (1H, d, J = 12.8, H-1a), 4.29 (1H, d, J = 12.8, H-

1b), 4.58-4.72 (3H, m, H-5, H-6a,b), 5.01 (1H, d, J = 15.2, H-1’a), 5.21 

(1H, d, J = 15.2, H-1’b), 5.21 (1H, d, J = 6.0, H-3), 5.33 (1H, dd, J = 5.8, 

2.8, H-4), 7.35(1H, t, J = 7.2, H-7’), 7.40-7.47 (4H, m, 2×H-6’,  2×Hm), 

7.55 (1H, t, J = 7.2, Hp), 7.62 (2H, d, J = 7.6, 2×H-5’), 8.06 (2H, d, J = 

7.2, 2×Ho). 13C-NMR (100 MHz, CDCl3): 25.3 (CH3), 26.8 (CH3), 63.4 (C-

1’), 64.6 (C-6), 68.8 (C-1), 83.3 (C-4), 85.2 (C-3), 86.3 (C-5), 93.3 (C-2), 

114.4 (C(CH3)2), 126.2 (C-5’), 127.2 (C-2’), 128.2 (C-7’), 128.4 (Cm), 

129.0 (c-6’), 129.8 (Cipso), 129.9 (Co), 130.3 (C-4’), 133.1 (Cp), 141.4 (C-

3’), 166.2 (COPh). IR (CHCl3, cm-1): 2924 (w), 2358 (s), 1719 (s), 1270 

(s), 1097 (s), 1069 (s),1025 (m), 749 (s), 709 (s). HRMS required for 

C25H26N3O6
+ is 464.1816, found 464.1813. 

 

((3aR,4R,6R,6aR)-3'-(4-chlorophenyl)-2,2-dimethyl-3a,6a-dihydro-
4'H,6H,6'H-spiro[furo[3,4-d][1,3]dioxole-4,7'-[1,2,3]triazolo[5,1-
c][1,4]oxazin]-6-yl)methyl benzoate 16f 
Chromatography of the crude residue over silica gel (hexane/ethyl 

acetate 8/2) gave the pure triazolooxazine 16f (320 mg, 45% yield 

over two steps ) as white solid. Data for 16f: Mp = 74-75°C. []D
20= - 

28.7 (c= 0.01, CHCl3). 1H-NMR (400 MHz, CDCl3): 1.39 (3H, s, CH3), 

1.61 (3H, s, CH3), 4.25 (1H, d, J = 12.8, H-1a), 4.29 (1H, d, J = 12.8, H-

1b), 4.57-4.72 (3H, m, H-5, H-6a,b), 4.99 (1H, d, J = 15.2, H-1’a), 5.19 

(1H, d, J = 15.2, H-1’b), 5.21 (1H, d, J = 6.0, H-3), 5.32 (1H, dd, J = 6.0, 

2.8, H-4), 7.41-7.45 (4H, m, 2×H-6’,  2×Hm), (2H, d, J = 7.2,  2×H-5’), 

8.06 (2H, d, J = 7.2, 2×Ho). 13C-NMR (100 MHz, CDCl3): 25.3 (CH3), 26.8 

(CH3), 63.3 (C-1’), 64.6 (C-6), 68.8 (C-1), 83.2 (C-4), 85.2 (C-3), 86.3 (C-

5), 93.5 (C-2), 114.5 (C(CH3)2), 127.3 (C-5’), 127.9 (C-2’), 128.4 (Cm), 

128.9 (C-4’), 129.3 (C-6’), 129.8 (Cipso), 129.9 (Co), 133.1 (Cp), 134.0 (C-

3’), 166.1 (COPh). IR (CHCl3, cm-1): 2988 (w), 1718 (s), 1491 (m), 1271 

(s), 1090 (s), 1069 (s), 1025 (m), 1001 (s), 752 (s), 711(s). HRMS 

required for C25H25N3O6Cl+ is 498.1432, found 498.1426. 

 

((3aR,4R,6R,6aR)-3'-(4-methoxyphenyl)-2,2-dimethyl-3a,6a-
dihydro-4'H,6H,6'H-spiro[furo[3,4-d][1,3]dioxole-4,7'-
[1,2,3]triazolo[5,1-c][1,4]oxazin]-6-yl)methyl benzoate 16g 
Chromatography of the crude residue over silica gel (hexane/ethyl 

acetate 7/3) gave the pure triazolooxazine 16g (303 mg, 43% yield 

over two steps) as white solid. Data for 16g: Mp = 128-129°C. []D
20= 

- 32.6 (c= 0.01, CHCl3). 1H-NMR (400 MHz, CDCl3): 1.39 (3H, s, CH3), 

1.60 (3H, s, CH3), 3.84 (3H, s, OCH3), 4.23 (1H, d, J = 12.4, H-1a), 4.28 

(1H, d, J = 12.8, H-1b), 4.58-4.71 (3H, m, H-5, H-6a,b), 4.97 (1H, d, J = 

14.8, H-1’a), 5.17 (1H, d, J = 15.2, H-1’b), 5.20 (1H, d, J = 6.4, H-3), 5.32 

(1H, dd, J = 5.8, 2.8, H-4), 6.98 (2H, d, J = 8.8, 2×H-6’)  7.42 (2H, t, J = 

7.6, 2×Hm), 7.52-7.56 (1H, m, Hp), 7.52 (2H, d, J = 8.8, 2×H-5’), 8.06 

(2H, d, J = 7.2, 2×Ho). 13C-NMR (100 MHz, CDCl3): 25.3 (CH3), 26.8 

(CH3), 55.3 (OCH3), 63.4 (C-1’), 64.7 (C-6), 68.8 (C-1), 83.3 (C-4), 85.2 

(C-3), 86.3 (C-5), 93.4 (C-2), 114.4 (C(CH3)2), 114.5 (C-6’), 123.0 (C-4’), 

126.8 (C-2’), 127.5 (C-5’), 128.3 (Cm), 129.8 (Cipso), 129.9 (Co), 133.1 

(Cp), 141.2 (C-3’), 160.0 (C-7’), 166.1 (COPh). IR (CHCl3, cm-1): 2938 

(w), 1720 (s), 1507 (s), 1271 (s), 1248 (s), 1098 (s), 1069 (s), 1025 (m), 

753 (s), 711(s). HRMS required for C26H28N3O7
+ is 494.1922, found 

494.1922. 

 

((3aR,4R,6R,6aR)-3'-(4-fluorophenyl)-2,2-dimethyl-3a,6a-dihydro-
4'H,6H,6'H-spiro[furo[3,4-d][1,3]dioxole-4,7'-[1,2,3]triazolo[5,1-
c][1,4]oxazin]-6-yl)methyl benzoate 16h 
Chromatography of the crude residue over silica gel (hexane/ethyl 

acetate 8/2) gave the pure triazolooxazine 16h (296 mg, 43% yield 

over two steps d ) as colourless oil. Data for 16h: []D
20= - 32.6 (c= 

0.01, CHCl3). 1H-NMR (400 MHz, CDCl3): 1.39 (3H, s, CH3), 1.61 (3H, s, 

CH3), 4.24 (1H, d, J = 12.4, H-1a), 4.29 (1H, d, J = 12.8, H-1b), 4.57-4.72 

(3H, m, H-5, H-6a,b), 4.98 (1H, d, J = 15.2, H-1’a), 5.18 (1H, d, J = 15.2, 

H-1’b), 5.21 (1H, d, J = 6.0, H-3), 5.32 (1H, dd, J = 6.0, 2.8, H-4), 7.14 

(2H, t, J = 8.8, 2×H-6’), 7.42 (2H, app t, J = 8.0, 2×Hm), 7.55 (1H, t, J = 

7.2, Hp), 7.59 (2H, dd, J = 8.2, 5.2, 2×H-5’), 8.06 (2H, d, J = 7.2, 2×Ho). 
13C-NMR (100 MHz, CDCl3): 25.3 (CH3), 26.8 (CH3), 63.3 (C-1’), 64.6 (C-

6), 68.8 (C-1), 83.2 (C-4), 85.2 (C-3), 86.3 (C-5), 93.4 (C-2), 114.5 

(C(CH3)2), 116.1 (d, 2JCF = 22, C-6’), 126.5 (d, 4JCF = 3, C-4'), 127.5 (C-

2’), 127.9 (d, 3JCF = 8, C-5’), 128.4 (Cm), 129.7 (Cipso), 129.8 (Co), 133.1 

(Cp), 140.5 (C-3’), 162.5 (d, 1JCF = 246, C-7’), 166.1 (COPh). IR (CHCl3, 

cm-1): 2933 (w), 1719 (s), 1505 (s), 1272 (s), 1099 (s), 1069 (s), 1026 

(m), 759 (s), 711(s). HRMS required for C25H25N3O6F+ is 482.1722, 

found 482.1720. 

 

((3aR,4R,6R,6aR)-3'-(3-fluorophenyl)-2,2-dimethyl-3a,6a-dihydro-
4'H,6H,6'H-spiro[furo[3,4-d][1,3]dioxole-4,7'-[1,2,3]triazolo[5,1-
c][1,4]oxazin]-6-yl)methyl benzoate 16i 
Chromatography of the crude residue over silica gel (hexane/ethyl 
acetate 8/2) gave the pure triazolooxazine 16i (268 mg, 39% yield 

over two steps) as colourless oil. Data for 16i: []D
20 = - 40.2 (c= 0.01, 

CHCl3). 1H-NMR (400 MHz, CDCl3): 1.40 (3H, s, CH3), 1.61 (3H, s, CH3), 
4.24 (1H, d, J = 12.8, H-1a), 4.30 (1H, d, J = 12.8, H-1b), 4.58-4.71 (3H, 
m, H-5, H-6a,b), 5.00 (1H, d, J = 15.2, H-1’a), 5.21 (1H, dd, J = 15.2, H-
1’b), 5.22 (1H, d, J = 6.0, H-3), 5.32 (1H, dd, J = 6.0, 2.8, H-4), 7.05 (1H, 
td, J = 8.4, 1.6, H-7’), 7.32-7.45 (5H, m, H-5’, H-8’, H-9’, 2×Hm), 7.35 
(1H, dd, J = 13.6, 6.4, H-7’), 7.42 (2H, t, J = 8.0, Hm), 7.55 (1H, t, J = 
6.8, Hp), 8.07 (2H, d, J = 7.6, 2×Ho). 13C-NMR (100 MHz, CDCl3): 25.3 
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(CH3), 26.8 (CH3), 63.3 (C-1’), 64.6 (C-6), 68.8 (C-1), 83.2 (C-4), 85.2 
(C-3), 86.3 (C-5), 93.5 (C-2), 113.1 (d, 2JCF = 23, C-5’), 114.5 (C(CH3)2), 
115.0 (d, 2JCF = 22, C-7’), 121.7 (d, 4JCF = 3, C-9’), 128.2 (C-2’), 128.4 
(Cm), 129.7 (Cipso), 129.9 (Co), 130.6 (d, 3JCF = 8, C-8’), 132.4 (d, 3JCF = 8, 
C-4’), 133.1 (Cp), 140.3 (d, 4JCF = 3, C-3’), 163.2 (d, 1JCF = 245, C-6’), 
166.1 (COPh). IR (CHCl3, cm-1): 2987 (w), 1718 (s), 1270 (s), 1097 (s), 
1070 (s), 1026 (m), 754 (s), 711(s). HRMS required for C25H25N3O6F+ 
is 482.1722, found 482.1722. 
 
((3aR,4R,6R,6aR)-3'-(2-fluorophenyl)-2,2-dimethyl-3a,6a-dihydro-
4'H,6H,6'H-spiro[furo[3,4-d][1,3]dioxole-4,7'-[1,2,3]triazolo[5,1-
c][1,4]oxazin]-6-yl)methyl benzoateSpirocylic triazolo-oxazine 16j 
Chromatography of the crude residue over silica gel (hexane/ethyl 

acetate 8/2) gave the pure triazolooxazine 16j (310 mg, 45% yield 

over two steps) as colourless oil. Data for 16j: []D
20  = - 36.5 (c= 0.01, 

CHCl3). 1H-NMR (400 MHz, CDCl3): 1.39 (3H, s, CH3), 1.60 (3H, s, CH3), 

4.25 (1H, d, J = 14.0, H-1a), 4.29 (1H, d, J = 13.6, H-1b), 4.59-4.74 (3H, 

m, H-5, H-6a,b), 4.92 (1H, dd, J = 15.8, 2.4, H-1’a), 5.09 (1H, dd, J = 15.8, 

2.4, H-1’b), 5.20 (1H, d, J = 6.0, H-3), 5.34 (1H, dd, J = 5.6, 2.8, H-4), 

7.11 (1H, t, J = 8.4, H-6’), 7.26 (1H, t, J = 8.4, H-8’), 7.35 (1H, dd, J = 

13.6, 6.4, H-7’), 7.42 (2H, t, J = 8.0, 2×Hm), 7.55 (1H, t, J = 6.8, Hp), 7.98 

(1H, td, J = 7.6, 1.6, H-9’), 8.07 (2H, d, J = 7.2, 2×Ho). 13C-NMR (100 

MHz, CDCl3): 25.3 (CH3), 26.8 (CH3), 63.8 (d, 5JCF = 18, C-1’), 64.7 (C-

6), 68.8 (C-1), 83.2 (C-4), 85.2 (C-3), 86.3 (C-5), 93.6 (C-2), 114.4 

(C(CH3)2), 115.7 (d, 2JCF = 21, C-6’), 118.1 (d, 2JCF = 15, C-4'), 124.8 (d, 
4JCF = 3, C-8'), 128.3 (Cm), 129.6 (C-2’), 129.7 (Cipso), 129.8 (Co), 129.9 

(d, 5JCF = 4, C-9’) 130.2 (d, 3JCF = 9, C-7’), 133.1 (Cp), 136.1 (C-3’), 162.5 

(d, 1JCF = 244, C-5’), 166.1 (COPh). IR (CHCl3, cm-1): 2986 (w), 1720 (s), 

1272 (s), 1097 (s), 1101 (s), 1069 (m), 757 (s), 711(s). HRMS required 

for C25H25N3O6F+ is 482.1722, found 482.1722. 

 

((3aR,4R,6R,6aR)-2,2-dimethyl-3'-(4-pentylphenyl)-3a,6a-dihydro-
4'H,6H,6'H-spiro[furo[3,4-d][1,3]dioxole-4,7'-[1,2,3]triazolo[5,1-
c][1,4]oxazin]-6-yl)methyl benzoate 16k 
Chromatography of the crude residue over silica gel (hexane/ethyl 

acetate 8/2) gave the pure triazolooxazine 16k (235 mg, 93% yield). 

Data for 16k: Colourless oil, []D
20  = - 28.5 (c = 0.01, CHCl3). 1H-NMR 

(400 MHz, CDCl3): 0.89 (3H, tJ = 7.2, 3×H-8’), 1.25-1.33 (4H, m, 

2×H-6’, 2×H-7’), 1.33 (3H, s, CH3), 1.60 (3H, s, CH3), 1.64 (2H, quint, J 

= 7.2, 2×H-5’), 2.63 (2H, td, J = 7.8, 2.4, 2×H-4’), 4.17 (1H, d, J = 12.8, 

H-1a), 4.23 (1H, d, J = 12.8, H-1b), 4.54-4.67 (3H, m, H-5, H-6a,b), 4.74 

(1H, d, J = 14.8, H-1’a), 4.95 (1H, d, J = 15.2, H-1’b), 5.14 (1H, d, J = 6.0, 

H-3), 5.298 (1H, dd, J = 6.0, 2.4, H-4), 7.43 (2H, t, J =7.2, 2×Hm), 7.55 

(1H, t, J = 7.2, Hp), 8.05 (2H, d, J = 7.2, 2×Ho). 13C-NMR (100 MHz, 

CDCl3): 14.0 (C-8’), 22.4 ( C-7’), 25.0 (C-4’), 25.3 (CH3), 26.8 (CH3), 28.6 

(C-5’), 31.5 (C-6’), 62.5 (C-1’), 64.6 (C-6), 68.9 (C-1), 83.2 (C-4), 85.1 

(C-5), 86.1 (C-6), 93.1 (C-2), 114.3 (C(CH3)2), 127.6 (C-3’), 128.3 (Cm), 

129.8 (Cipso), 129.8 (Co), 133.1 (Cp), 141.7 (C-2’), 166.1 (COPh). IR 

(CHCl3, cm-1): 2931 (w), 1720 (s), 1450 (m), 1271 (s), 1097 (s), 1070 

(m), 711 (s). HRMS required for C21H26N3O6
+ is 416.1803, found 

416.1809. 

 

3,4-O-isopropylidene spirocyclic triazolo-oxazine nucleoside 17a 
Benzoate ester 16a was dissolved in a solution of 7 N NH3/MeOH 

(0.06 M concentration) and the resulting solution was stirred for 4 h. 

After evaporation of the solvent under reduced pressure, the crude 

product was purified on silica gel. Chromatography of the crude 

residue over silica gel (hexane/ethyl acetate 1/1) gave the pure 

spironucleoside 17a (358 mg, 98% yield). Colourless needle crystals 

were obtained after recrystallisation with chloroform/hexane 1/3. 

Data for 17a: Mp = 130-132 °C. []D
20  = - 120.80 (c = 0.0025, CHCl3). 

1H-NMR (400 MHz, CDCl3):  1.39 (3H, s, CH3), 1.61 (3H, s, CH3), 3.84 

(1H, ddd, J = 11.2, 9.6, 4.0, H-6a), 3.86-3.96 (1H, m, H-6b), 3.98 (1H, d, 

J = 12.4, H-1a), 3.21 (1H, bdd, J = 9.8, 2.4, OH), 4.31 (1H, d, J = 12.4, 

H-1b), 4.55 (1H, m, H-5), 4.88 (1H, d, J = 15.2, H-1’a), 4.97 (1H, d, J = 

15.2, H-1’b), 5.20 (1H, d, J = 6.0, H-3), 5.29 (1H, dd, J = 6.0, 2.0, H-4), 

7.54 (1H, s, H-3’). 13C-NMR (100 MHz, CDCl3): 24.6 (CH3), 26.1 (CH3), 

62.4 (C-6), 63.8 (C-1’), 69.7 (C-1), 82.2 (C-4), 86.2 (C-3), 88.4 (C-5), 

94.4 (C-2), 113.9 ( C(CH3)2), 128.4 (C-3’), 132.3 (C-2’). IR (CHCl3, cm-1): 

3352 (br), 2927 (w), 1095 (s), 1044 (m). HRMS required for 

C12H18N3O5 is 284.1241, found 284.1242.  

 

General procedure for benzoyl and isopropyl group removal to 

give 18a-k14 

Protected spirocyclic triazolo-oxazine nucleoside 16a-k (0.65 mmol) 

was dissolved in a solution of 7 N of NH3 in MeOH (10.8 mL) and the 

resulting solution was stirred at room temperature until TLC 

indicated the reaction was complete (ca. 4h). After evaporation of all 

volatiles under reduced pressure, the crude residue was dissolved in 

a solution of methanol/water 8/2 (26 mL) and Dowex® 50WX8 

hydrogen form (3.38 g) was added in one portion. The resulting 

suspension was stirred vigorously for 4-6 h at 50 °C, then the resin 

was filtered off and washed with methanol. The filtrate was 

concentrated to dryness under reduced pressure to afford a crude 

residue which was purified by column chromatography. 

 

(2R,3R,4S,5R)-5-(hydroxymethyl)-4,5-dihydro-3H,4'H,6'H-

spiro[furan-2,7'-[1,2,3]triazolo[5,1-c][1,4]oxazine]-3,4-diol 18a 

Chromatography of the crude residue over silica gel 

(dichloromethane/methanol 9/1) gave the pure anomeric 

spironucleoside 18a (88 mg, 56% yield) as colourless syrup. Data for 

18a: []D
20  = - 38.31 (c = 0.0065, CH3OH). 1H-NMR (400 MHz, CD3OD): 

3.64 (1H, dd, J = 12.0, 6.4, H-6a), 3.73 (1H, dd, J = 12.0, 4.0, H-6b), 

4.02 (1H, d, J = 12.4, H-1a), 4.03-4.07 (1H, m, H-5), 4.21 (1H, d, J = 

12.8, H-1b), 4.44 (1H, d, J = 4.8, H-3), 4.62 (1H, dd, J = 6.6, 4.8, H-4), 

4.73 (1H, d, J = 15.2, H-1’a), 4.89 (1H, d, J = 15.2, H-1’b), 7.46 (1H, s, 

H-3’). 13C-NMR (100 MHz, CD3OD): 63.1 (C-1’), 64.0 (C-6), 70.1 (C-1), 

72.6 (C-4), 77.0 (C-3), 86.6 (C-5), 94.2 (C-2), 128.9 (C-3’), 134.4 (C-2’). 

IR (CH3OH, cm-1): 3360 (br), 2924 (m), 1615 (br), 1093 (s), 1020 (s). 

HRMS required for C9H14N3O5
+ is 244.0928, found 244.0928. 

 

(2R,3R,4S,5R)-5-(hydroxymethyl)-3'-methyl-4,5-dihydro-

3H,4'H,6'H-spiro[furan-2,7'-[1,2,3]triazolo[5,1-c][1,4]oxazine]-3,4-

diol 18b 

Chromatography of the crude residue over silica gel 

(dichloromethane/methanol 9/1) gave the pure spironucleoside 18b 

(78 mg, 47% yield) as colourless syrup. Data for 18b: []Y
20  = - 57.1 (c 

= 0.01, CH3OH). 1H-NMR (500 MHz, CD3OD): 2.26 (3H, s3×H-4’), 

3.77 (1H, dd, J = 12.0, 6.0, H-6a), 3.86 (1H, dd, J = 12.0, 3.5, H-6b), 4.12 
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(1H, d, J = 12.5, H-1a), 4.15-4.20 (1H, m, H-5), 4.31 (1H, d, J = 12.5, H-

1b), 4.56 (1H, d, J = 5.0, H-3), 4.73 (1H, dd, J = 6.5, 5.0, H-4), 4.80 (1H, 

d, J = 15.0, H-1’a), 4.94 (1H, d, J = 15.0, H-1’b). 13C-NMR (125 MHz, 

CD3OD): ppm 9.5 (C-4’), 62.8 (C-1’), 64.0 (C-6), 69.8 (C-1), 72.6 (C-4), 

76.9 (C-3), 86.5 (C-5), 94.2 (C-2), 130.6 (C-3’), 137.8 (C-2’). IR (CH3OH, 

cm-1): 3321 (br), 2993 (m), 1099 (s), 1071 (m). HRMS required for 

C10H16N3O5
+ is 258.1084, found 258.1086. 

 

(2R,3R,4S,5R)-3'-ethyl-5-(hydroxymethyl)-4,5-dihydro-3H,4'H,6'H-

spiro[furan-2,7'-[1,2,3]triazolo[5,1-c][1,4]oxazine]-3,4-diol 18c 

Chromatography of the crude residue over silica gel 

(dichloromethane/methanol 9/1) gave the pure spironucleoside 18c 

(90 mg, 51% yield) as colourless syrup. Data for 18c: []Y
20  = - 34.6 (c 

= 0.01, CH3OH). 1H-NMR (400 MHz, CD3OD): 1.25 (3H, tJ = 7.6, 

3×H-4’), 2.67 (2H, q, J = 7.6, 3×H-3’), 3.75 (1H, dd, J = 12.0, 6.4, H-6a), 

3.84 (1H, dd, J = 12.0, 3.6, H-6b), 4.12 (1H, d, J = 12.4, H-1a), 4.13-4.18 

(1H, m, H-5), 4.30 (1H, d, J = 12.4, H-1b), 4.55 (1H, d, J = 4.8, H-3), 4.72 

(1H, dd, J = 6.4, 4.8, H-4), 4.81 (1H, d, J = 15.2, H-1’a), 4.96 (1H, d, J = 

15.2, H-1’b). 13C-NMR (100 MHz, CD3OD): 13.6 (C-5’), 18.9 ( C-4’), 63.0 

(C-6), 64.0 (C-1’), 70.0 (C-1), 72.7 (C-4), 76.9 (C-3), 86.4 (C-5), 94.2 (C-

2), 130.2 (C-2’), 143.6 (C-3’). IR (CH3OH, cm-1): 3392 (br), 2922 (m), 

1642 (br), 1101 (s), 1033 (s), 940 (m). HRMS required for C11H18N3O5
+ 

is 272.1241, found 272.1242. 

 

(2R,3R,4S,5R)-5-(hydroxymethyl)-3'-(naphthalen-2-yl)-4,5-dihydro-

3H,4'H,6'H-spiro[furan-2,7'-[1,2,3]triazolo[5,1-c][1,4]oxazine]-3,4-

diol 18d 

Chromatography of the crude residue over silica gel (hexane/ ethyl 

acetate 15/85) gave the pure spironucleoside 18d (120 mg, 50% 

yield) as white solid. Data for 18d: Mp = 101-102°C. []Y
20  = - 65.5 (c 

= 0.01, CHCl3). 1H-NMR (400 MHz, CDCl3): 3.89 (1H, bd, J = 11.6, H-

6a), 4.00 (1H, bd, J = 11.6, H-6b), 4.09 (1H, br, OH), 4.12 (1H, d, J = 

12.8, H-1a), 4.25-4.28 (1H, m, H-4), 4.37 (1H, d, J = 12.4, H-1b), 4.55 

(1H, br, OH), 4.66 (1H, d, J = 15.6, H-1’a), 4.75 (1H, br, H-3), 4.78 (1H, 

d, J = 15.2, H-1’b), 5.10 (1H, br, OH), 5.26 (1H, br, H-5), 7.30 (1H, d, J 

= 7.2, H-Naph), 7.34-7.51 (3H, m, 3×H-Naph), 7.93 (3H, t, J = 8.4, 3×H-

Naph). 13C-NMR (100 MHz, CDCl3): 62.1 (C-6), 62.8 (C-1), 68.9 (C-1’), 

70.9 (C-5), 76.4 (C-3), 85.2 (C-4), 93.4 (C-2), 124.9, 125.3, 126.4, 

126.5, 126.9 (Naph), 127.5 (C-3’), 128.6 (Naph), 129.6 (C-2’), 130.8, 

131.2, 133.9 (Naph), 140.6 (Cipso-Naph). IR (cm-1): 3381 (br), 2992 (w), 

1211 (s), 1095 (s), 1076 (m), 777 (m), 751 (s). IR (CHCl3, cm-1): 3349 

(br), 2926 (w), 1103 (s), 1035 (m), 777 (m), 757 (s). HRMS required 

for C19H20N3O5
+ is 370.1397, found 370.1399. 

 

(2R,3R,4S,5R)-5-(hydroxymethyl)-3'-phenyl-4,5-dihydro-

3H,4'H,6'H-spiro[furan-2,7'-[1,2,3]triazolo[5,1-c][1,4]oxazine]-3,4-

diol 18e 

Chromatography of the crude residue over silica gel (hexane/ ethyl 

acetate 1/9) gave the pure spironucleoside 18e (139 mg, 67% overall 

yield) as white foam. Data for 18e: []D
20  = - 36.1 (c= 0.01, CHCl3). 1H-

NMR (400 MHz, CD3OD): 3.80 (1H, dd, J = 12.0, 6.4, H-6a), 3.80 (1H, 

dd, J = 12.4, 3.2, H-6b), 4.20 (1H, d, J = 12.0, H-1a), 4.19-4.23 (1H, m, 

H-5), 4.38 (1H, d, J = 12.4, H-1b), 4.64 (1H, d, J = 5.2, H-3), 4.73 (1H, 

dd, J = 6.4, 5.2, H-4), 5.02 (1H, d, J = 15.2, H-1’a), 5.17 (1H, d, J = 15.2, 

H-1’b), 7.38 (1H, t, J = 7.6, H-7’), 7.48 (2H, t, J = 7.6, 2×H-6’), 7.62 (2H, 

d, J = 8.0, 2×H-5’). 13C-NMR (100 MHz, CD3OD): 63.8 (C-6), 63.9 (C-1’), 

69.8 (C-1), 72.7 (C-4), 77.0 (C-3), 86.6 (C-5), 94.5 (C-2), 127.3(C-5’), 

129.3(C-2’), 130.1 (C-6’), 130.5 (C-7’), 131.5 (C-4’), 142.2 (C-3’). IR 

(CH3OH, cm-1): 3324 (br), 2922 (m), 1438 (s), 1101 (s), 1045 (s), 1006 

(s), 943 (m). HRMS required for C25H26N3O6
+ is 464.1816, found 

464.1813. 

 

(2R,3R,4S,5R)-3'-(4-chlorophenyl)-5-(hydroxymethyl)-4,5-dihydro-

3H,4'H,6'H-spiro[furan-2,7'-[1,2,3]triazolo[5,1-c][1,4]oxazine]-3,4-

diol 18f 

Chromatography of the crude residue over silica gel (hexane/ ethyl 

acetate 1/9) gave the pure spironucleoside 18f (145 mg, 63% overall 

yield) as colourless oil. Data for 18f: []D
20  = - 31.0 (c= 0.01, CHCl3). 

1H-NMR (500 MHz, CD3OD): 3.77 (1H, dd, J = 12.2, 6.0, H-6a), 3.85 

(1H, dd, J = 12.2, 3.0, H-6b), 4.17 (1H, d, J = 12.5, H-1a), 4.15-4.19 (1H, 

m, H-5), 4.35 (1H, d, J = 12.5, H-1b), 4.61 (1H, d, J = 5.0, H-3), 4.75 (1H, 

dd, J = 7.0, 5.0, H-4), 5.03 (1H, d, J = 15.5, H-1’a), 5.15 (1H, d, J = 15.5, 

H-1’b), 7.47 (2H, d, J = 8.5, 2×H-6’), 7.60 (2H, d, J = 8.5, 2×H-5’). 13C-

NMR (125 MHz, CD3OD): 62.4 (C-6), 63.5 (C-1’), 68.4 (C-1), 71.3 (C-4), 

75.6 (C-3), 85.2 (C-5), 93.2 (C-2), 127.3 (C-5’),128.9 (C-6’), 129.0 (C-

2’), 129.4 (C-4’), 133.7 (C-7’), 139.7 (C-3’). IR (CH3OH, cm-1): 3361 (br), 

2922 (m), 1636 (w), 1491 (s), 1090 (s), 1037 (s), 1002 (s), 943 (m), 831 

(m). HRMS required for C15H17N3O5Cl+ is 354.0851, found 354.0851. 

 

(2R,3R,4S,5R)-5-(hydroxymethyl)-3'-(4-methoxyphenyl)-4,5-

dihydro-3H,4'H,6'H-spiro[furan-2,7'-[1,2,3]triazolo[5,1-

c][1,4]oxazine]-3,4-diol 18g 

Chromatography of the crude residue over silica gel 

(dichloromethane/methanol 95/5) gave the pure spironucleoside 

66g (118 mg, 52% overall yield). White needle crystals were obtained 

after recrystallisation with hexane/Et2O/CH3OH 6:3:1. Data for 66g: 

Mp = 119-120°C. []D
20  = - 51.3 (c= 0.01, CHCl3). 1H-NMR (400 MHz, 

CD3OD): 3.80 (1H, dd, J = 12.4, 6.4, H-6a), 3.84 (3H, s, OCH3), 3.88 

(1H, dd, J = 12.0, 3.2, H-6b), 4.18 (1H, d, J = 12.4, H-1a), 4.18-4.22 (1H, 

m, H-5), 4.36 (1H, d, J = 12.8, H-1b), 4.63 (1H, d, J = 5.2, H-3), 4.78 (1H, 

dd, J = 6.4, 5.2, H-4), 5.00 (1H, d, J = 15.2, H-1’a), 5.12 (1H, d, J = 15.2, 

H-1’b), 7.02 (2H, d, J = 8.8, 2×H-6’), 7.52 (2H, d, J = 8.8, 2×H-5’). 13C-

NMR (100 MHz, CD3OD): 55.8 (OCH3), 63.9 (C-6), 64.0 (C-1’), 69.8 (C-

1), 72.7 (C-4), 77.0 (C-3), 86.6 (C-5), 94.5 (C-2), 115.5 (C-6’), 123.9 (C-

3’),128.7 (C-5’), 129.0 (C-2’), 142.2 (C-4’), 161.2 (C-7’). IR (CH3OH, cm-

1): 3373 (br), 2925 (m), 1615 (m), 1508 (s), 1249 (s), 1097 (s), 1038 

(s), 999 (s), 943 (m), 833 (m). HRMS required for C16H20N3O6
+ is 

494.1922, found 494.1922. 

 

(2R,3R,4S,5R)-3'-(4-fluorophenyl)-5-(hydroxymethyl)-4,5-dihydro-

3H,4'H,6'H-spiro[furan-2,7'-[1,2,3]triazolo[5,1-c][1,4]oxazine]-3,4-

diol 18h 

Chromatography of the crude residue over silica gel (hexane/ ethyl 

acetate 1/9) gave the pure spironucleoside 18h (175 mg, 80% overall 

yield) as white solid. Data for 18h: []D
20  = - 40.8 (c= 0.01, CHCl3). 1H-

NMR (400 MHz, CD3OD): 3.76 (1H, dd, J = 12.5, 6.3, H-6a), 3.86 (1H, 

dd, J = 12.5, 3.3, H-6b), 4.18 (1H, d, J = 12.2, H-1a), 4.16-4.20 (1H, m, 

H-5), 4.36 (1H, d, J = 12.6, H-1b), 4.62 (1H, d, J = 4.9, H-3), 4.76 (1H, t, 
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J = 6.2, H-4), 5.03 (1H, d, J = 15.3, H-1’a), 5.15 (1H, d, J = 15.3, H-1’b), 

7.21 (2H, t, J = 8.7, 2×H-6’), 7.60 (2H, dd, J = 8.4, 5.4, 2×H-5’). 13C-

NMR (100 MHz, CD3OD): 63.8 (C-6), 63.9 (C-1’), 69.8 (C-1), 72.7 (C-4), 

77.0 (C-3), 86.6 (C-5), 94.9 (C-2), 117.0 (d, 2JCF = 22, C-6’), 128.0 (C-

4’),129.3 (d, 3JCF = 9, C-5’), 130.8 (C-2’), 141.5 (C-3’), 164.1 (d, 1JCF = 

277, C-7’). IR (CH3OH, cm-1): 3363 (br), 2921 (m), 1646 (m), 1506 (s), 

1230 (m), 1098 (s), 1038 (s), 1004 (s), 944 (m), 838 (m). HRMS 

required for C15H17N3O5F+ is 338.1147, found 338.1147. 

 

(2R,3R,4S,5R)-3'-(3-fluorophenyl)-5-(hydroxymethyl)-4,5-dihydro-

3H,4'H,6'H-spiro[furan-2,7'-[1,2,3]triazolo[5,1-c][1,4]oxazine]-3,4-

diol 18i 

Chromatography of the crude residue over silica gel (hexane/ ethyl 

acetate 1/9) gave the pure spironucleoside 18i (162 mg, 74% overall 

yield) as colourless oil. Data for 18i: []D
20  = - 46.6 (c= 0.01, CHCl3). 

1H-NMR (400 MHz, CD3OD): 3.79 (1H, dd, J = 12.0, 6.3, H-6a), 3.86 

(1H, dd, J = 12.0, 3.2, H-6b), 4.17 (1H, d, J = 12.7, H-1a), 4.17-4.21 (1H, 

m, H-5), 4.35 (1H, d, J = 12.6, H-1b), 4.63 (1H, d, J = 4.9, H-3), 4.77 (1H, 

t, J = 6.3, H-4), 5.02 (1H, d, J = 15.3, H-1’a), 5.15 (1H, d, J = 15.3, H-1’b), 

7.09 (1H, td, J = 8.3, 2.2, H-7’), 7.33-7.40 (2H, m, H-5’, H-9’), 7.46 (1H, 

m, H-8’). 13C-NMR (100 MHz, CD3OD): 63.8 (C-6), 63.9 (C-1’), 69.8 (C-

1), 72.7 (C-4), 77.0 (C-3), 86.6 (C-5), 94.6 (C-2), 113.8 (d, 2JCF = 23, C-

5’), 115.9 (d, 2JCF = 22, C-7’), 123.0 (d, 4JCF = 3, C-9’), 131.0 (C-2’), 132.0 

(d, 3JCF = 9, C-8’), 133.9 (d, 3JCF = 8, C-4’), 141.0 (d, 4JCF = 2, C-3’), 164.6 

(d, 2JCF = 243, C-6’). IR (CH3OH, cm-1): 3362 (br), 2921 (m), 1496 (m), 

1102 (s), 1043 (s), 1005 (s), 943 (m), 821 (m). HRMS required for 

C15H17N3O5F+ is 338.1147, found 338.1147. 

 

(2R,3R,4S,5R)-3'-(2-fluorophenyl)-5-(hydroxymethyl)-4,5-dihydro-

3H,4'H,6'H-spiro[furan-2,7'-[1,2,3]triazolo[5,1-c][1,4]oxazine]-3,4-

diol 18j 

Chromatography of the crude residue over silica gel (hexane/ ethyl 

acetate 1/9) gave the pure spironucleoside 18j (160 mg, 73% overall 

yield) as colourless oil. Data for 18j: []D
20  = - 48.2 (c= 0.01, CHCl3). 

1H-NMR (400 MHz, CD3OD): 3.68 (1H, dd, J = 12.0, 6.3, H-6a), 3.75 

(1H, dd, J = 12.0, 3.3, H-6b), 4.08 (1H, d, J = 12.4, H-1a), 4.06-4.10 (1H, 

m, H-5), 4.25 (1H, d, J = 12.6, H-1b), 4.52 (1H, d, J = 4.9, H-3), 4.66 (1H, 

t, J = 6.0, H-4), 4.78 (1H, d, J = 15.4, H-1’a), 4.90 (1H, d, J = 15.4, H-1’b), 

7.11 (1H, t, J = 10.8, H-6’), 7.19 (1H, t, J = 7.6, H-8’), 7.33 (2H, dd, J = 

14.3, 6.9, H-7’), 7.46 (1H, t, J = 7.2, H-8’). 13C-NMR (100 MHz, CD3OD): 

63.9 (C-6), 64.0 (C-1’), 70.0 (C-1), 72.7 (C-4), 77.1 (C-3), 86.6 (C-5), 

94.6 (C-2), 117.0 (d, 2JCF = 24, C-6’), 119.2 (d, 2JCF = 26, C-4’), 126.0 (d, 
4JCF = 4, C-8’), 130.9 (d, 5JCF = 3, C-9’), 131.8 (d, 3JCF = 10, C-7’), 132.0 

(C-2’), 137.3 (C-3’), 160.6 (d, 2JCF = 240, C-5’). IR (CH3OH, cm-1): 3381 

(br), 2922 (m), 1496 (m), 1102 (s), 1043 (s), 1004 (s), 945 (m), 823 

(m). HRMS required for C15H17N3O5F+ is 338.1147, found 338.1147. 

 

(2R,3R,4S,5R)-5-(hydroxymethyl)-3'-pentyl-4,5-dihydro-

3H,4'H,6'H-spiro[furan-2,7'-[1,2,3]triazolo[5,1-c][1,4]oxazine]-3,4-

diol 18k 

Chromatography of the crude residue over silica gel (hexane/ ethyl 

acetate 2/8) gave the pure spironucleoside 18k (140 mg, 69% yield) 

as colourless syrup. Data for 18k: []D
20  = - 47.2 (c = 0.01, CHCl3). 1H-

NMR (400 MHz, CD3OD): 0.92 (3H, tJ = 6.6, 3×H-8’), 1.26-1.39 (4H, 

m, 2×H-6’, 2×H-7’), 1.63 (2H, quint, J = 7.2, 2×H-5’), 2.63 (2H, t, J = 

7.6, 2×H-4’), 3.74 (1H, dd, J = 12.0, 6.3, H-6a), 3.84 (1H, dd, J = 12.0, 

3.2, H-6b), 4.11 (1H, d, J = 12.8, H-1a), 4.12-4.16 (1H, m, H-5), 4.29 

(1H, d, J = 12.6, H-1b), 4.54 (1H, d, J = 4.9, H-3), 4.70 (1H, app t, J = 

5.5, H-4), 4.78 (1H, d, J = 15.0, H-1’a), 4.89 (1H, d, J = 13.0, H-1’b). 13C-

NMR (100 MHz, CD3OD): 14.3 (C-8’), 23.4 ( C-7’), 25.5 (C-4’), 29.8 (C-

5’), 32.5 (C-6’), 62.9 (C-1’), 64.0 (C-6), 70.1 (C-1), 72.6 (C-4), 77.0 (C-

3), 86.2 (C-5), 94.2 (C-2), 130.4 (C-2’), 142.5 (C-3’). IR (CH3OH, cm-1): 

3321 (br), 2922 (s), 1636 (br), 1456 (m), 1100 (s), 1036 (s), 941 (m). 

HRMS required for C14H24N3O5
+ is 314.1716, found 314.1710. 

(3aR,4R,6S,6aS)-2,2-Dimethyl-3a,6a-dihydro-4'H,6H,6'H-

spiro[furo[3,4-d][1,3]dioxole-4,7'-[1,2,3]triazolo[5,1-

c][1,4]oxazine]-6-carbaldehyde 19 

Primary alcohol 17a (0.97 mmol) was dissolved in dichloromethane 

(10 mL). Sodium bicarbonate (2.91 mmol) and Dess-Martin 

periodinane (1.16 mmol) were added sequentially in one portion at 

0°C and the resulting mixture stirred vigorously at the same 

temperature until TLC analysis showed the reaction was complete (2 

h). The reaction was quenched with 10% thiosulfate aq. solution (2 

mL) and the mixture partitioned between saturated aq. NaHCO3 and 

dichloromethane. The organic layer was washed with brine, dried 

over MgSO4, filtered and concentrated to dryness under reduced 

pressure. Chromatography of the crude residue over silica gel 

(dichloromethane/methanol 95/5) gave the pure aldehyde 19 (217 

mg, 80% yield) as white solid. Data for 19: Mp = 74-75 °C. []D
25 = - 

60.0 (c = 0.01, l = 0.025 dm, CHCl3). 1H-NMR (400 MHz, CDCl3):  1.38 

(3H, s, CH3), 1.58 (3H, s, CH3), 4.26 (1H, d, J = 12.8, H-1a), 4.33 (1H, d, 

J = 12.8, H-1b), 4.63 (1H, d, J = 1.2, H-3), 4.84 (1H, d, J = 15.2, H-1’a), 

4.98 (1H, d, J = 6.0, H-5), 5.08 (1H, d, J = 15.2, H-1’b), 5.50 (1H, dd, J = 

5.8, 1.3, H-4), 7.55 (1H, s, H-3’), 9.31 (1H, s, H-6). 13C-NMR (100 MHz, 

CDCl3): 24.6 (CH3), 26.1 (CH3), 62.4 (C-6), 63.8 (C-1’), 69.7 (C-1), 82.2 

(C-4), 86.2 (C-3), 88.4 (C-5), 94.4 (C-2), 113.9 (C(CH3)2), 128.4 (C-3’), 

132.3 (C-2’). IR (CHCl3, cm-1): 2990 (w), 1732 (m, C=O), 1377 (m), 1211 

(m), 1096 (s), 864 (m), 732 (s). HRMS required for C12H18N3O5 is 

284.1241, found 284.1242. 

 

Diethyl (2-((3aR,4R,6R,6aR)-2,2-dimethyl-3a,6a-dihydro-

4'H,6H,6'H-spiro[furo[3,4-d][1,3]dioxole-4,7'-[1,2,3]triazolo[5,1-

c][1,4]oxazin]-6-yl)vinyl)phosphonate 20 

Sodium hydride (60 % dispersion in mineral oil, 59 mg, 1.47 mmol) 

was suspended in dry THF (1 mL) at 0 °C under an inert atmosphere 

of argon. A solution of tetraethyl methylenediphosphonate (443 mg, 

1.54 mmol) in dry THF (0.5 mL) was then added dropwise. The 

suspension was allowed to warm to room temperature and stirred 

for 45 min. Reaction mixture cooled down to 0°C and a solution of 

aldehyde 19 (197 mg, 0.70 mmol) in THF (1.5 mL) added dropwise. 

The resulting mixture was allowed to warm to room temperature and 

stirred for 2 h. The reaction mixture was treated with methanol, 

diluted with saturated NaHCO3 solution and extracted with ethyl 

acetate. The organic phase was then washed with brine, dried over 

MgSO4, filtered and concentrated to dryness under reduced 

pressure. Chromatography of the crude residue over silica gel 

(dichloromethane/methanol 96/4) gave 218 mg (80% yield) of 20 as 
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an inseparable 1:4 mixture of E and Z alkene isomers. Data for Z-

isomer 20: Colourless syrup. []D
25  = + 84.0 (c = 0.01, l = 0.025 dm, 

CHCl3).1H-NMR (400 MHz, CDCl3):  122-1.38 (6H, m, 6×H-9), 1.40 

(3H,s, CH3), 1.53 (3H,s, CH3), 3.97-4.07 (4H, m, 4×H-8), 4.10-4.15 (2H, 

m, H-3, H-4), 4.22 (1H, d, J = 12.8, H-1a), 4.32 (1H, d, J = 13.2, H-1b), 

4.82 (1H, d, J = 15.2, H-1’a), 4.90 (1H, q, J = 7.6, H-5), 4.96 (1H, d, J = 

5.7, H-7), 5.09 (1H, d, J = 15.2, H-1’b), 5.63 (1H, dd, J = 5.7, 3.2, H-6), 

7.53 (1H, s, H-3’). 13C-NMR (100 MHz, CDCl3): 16.3 (d, 3JCP = 5, C-9), 

26.0 (CH3), 26.7 (CH3), 61.8 (d, 2JCP = 7, C-8a), 61.9 (d, 2JCP = 6, C-8b), 

62.4 (C-1’), 68.1 (C-1), 80.2 (C-3), 82.6 (C-5), 91.8 (C-2), 94.5 (d, 3JCP = 

11, C-5), 114.3 (C(CH3)2), 114.6 (C-7), 128.1 (C-3’), 131.1 (C-2’), 115.7 

(d, 2JCP = 14, C-6). IR (cm-1): 2987 (w), 1251 (s, P=O), 1099 (s), 1026 (s, 

P-O-C), 968 (s), 797 (m). HRMS required for C17H27N3O7P+ is 416.1587 

found 416.1581. 

Diethyl (2-((3aR,4R,6R,6aR)-2,2-dimethyl-3a,6a-dihydro-

4'H,6H,6'H-spiro[furo[3,4-d][1,3]dioxole-4,7'-[1,2,3]triazolo[5,1-

c][1,4]oxazin]-6-yl)ethyl)phosphonate 21 

In a hydrogenation vessel, vinyl phosphonate 20 (218 mg 0.52 mmol) 

was dissolved in methanol (4 mL) and Pd/C 10% (22 mg) was added 

in one portion. The reactor was purged three times with N2 and the 

mixture was agitated for 5 min. After purging with H2 three times, 

the reactor was pressurised to 4 bar and the resulting suspension 

stirred vigorously for 6 h. The catalyst was filtered, and the filtrate 

was evaporated to dryness. Purification of the crude product by 

column chromatography (silica gel, dichloromethane/ methanol 

96/4) gave pure alkyl phosphonate 21 (214 mg, 94% yield) as 

colourless oil. Data for 21: Colourless syroup. []D
25 = -380.0 (c = 0.01, 

l = 0.025 dm, CHCl3). 1H-NMR (400 MHz, CDCl3):  1.31 (6H, td, J = 7.1, 

1.9, 6×H-9), 1.35 (3H,s, CH3), 1.53 (3H,s, CH3), 4.05-4.13 (4H, m, 4×H-

8), 4.09 (1H, d, J = 12.9, H-1a), 4.21 (1H, d, J = 12.8, H-1b), 4.61 (1H, t, 

J = 6.8, H-5), 4.80 (1H, d, J = 15.2, H-1’a), 5.05 (1H, d, J = 15.1, H-1’b), 

5.08-5.11 (2H, m, H-3, H-4), 7.51 (1H, s, H-3’). 13C-NMR (100 MHz, 

CDCl3): 16.4 (d, 3JCP = 6, C-9), 22.0 (d, 1JCP = 142, C-7), 22.1 (d, 2JCP = 4, 

C-6), 24.5 (CH3), 25.9 (CH3), 61.5 (d, 2JCP = 6, C-8a), 61.6 (d, 2JCP = 7, C-

8b), 62.4 (C-1’), 68.7 (C-1), 81.2 (C-3), 82.5 (d, 3JCP = 19, C-5), 85.5 (C-

4), 91.5 (C-2), 113.6 (C(CH3)2), 127.8 (C-2’), 131.2 (C-3’). IR (CH3OH, 

cm-1): 2983 (br), 1376 (m), 1234 (s, P=O), 1212 (s, P=O), 1098 (s, P-O-

C), 1029 (P-O-C), 963 (m). HRMS required for C17H29N3O7P+ is 

418.1743 found 418.1736. 

 

(2-((2R,3R,4S,5R)-3,4-Dihydroxy-4,5-dihydro-3H,4'H,6'H-

spiro[furan-2,7'-[1,2,3]triazolo[5,1-c][1,4]oxazin]-5-

yl)ethyl)phosphonic acid 23 

Phosphonate nucleoside 21 (213 mg, 0.51 mmol) was dissolved in a 

solution of methanol/water 8/2 (20 mL) and Dowex® 50WX8 

hydrogen form (2.7 g) was added in one portion. The resulting 

suspension was stirred vigorously for 4 h at 50°C, then the resin was 

filtered off and washed with methanol. The filtrate was concentrated 

to dryness under reduced pressure to give diol 22 as yellow oil. This 

crude residue was dissolved in anhydrous dichloromethane (2 mL) in 

10 mL round bottom flask. 2,6-Dimethylpyridine (672 μL, 6.12 mmol) 

was added under inert atmosphere, followed by 

bromo(trimethyl)silane (538 μL, 4.08 mmol). Reaction mixture was 

stirred for 2 h, then quenched with ammonium hydroxide aq. 

solution (5 mL). Aqueous phase was washed up with isohexane (1 

mL), concentrated to dryness under vacuum to afford a crude residue 

which was purified by mass directed prep HPLC using a XBridge dC18 

5μ OBD 30×100mm prep column. RP-HPLC was conducted an elution 

gradient of 1–100% B over 11.40 min, where A is H2O in 10mM 

Ammonium Acetate and B is CH3CN, to gave pure phosphonate 

nucleoside 23 (31 mg, 12% over two steps). Data for 23: Colourless 

oil. []D
25  = - 44.0 (c = 0.01, l = 0.025 dm, CHCl3). 1H-NMR (400 MHz, 

CD3OD):  1.69-1.91 (2H, m, 2×H-7), 1.95-2.05 (2H, m, 2×H-6), 4.13 

(1H, d, J = 12.6, H-1a), 4.28 (1H, d, J = 12.6, H-1b), 4.41 (1H, dd, J = 

4.6, 3.2, H-4), 4.46 (1H, td, J = 6.8, 3.1, H-5), 4.82 (1H, d, J = 15.1, H-

1’a), 5.00 (1H, d, J = 15.1, H-1’b), 5.23 (1H, d, J = 4.3, H-3), 7.59 (1H, 

s, H-3’). 13C-NMR (100 MHz, CD3OD): 22.6 (d, 3JCP = 3, C-6), 23.1 (d, 
1JCP = 85, C-7), 61.6 (C-1’), 69.9 (C-1), 71.8 (C-5), 77-3 (C-3), 81.8 (d, 
4JCP = 15, C-4), 92.0 (C-2), 127.6 (C-2’), 133.5 (C-3’). 31P-NMR (200 

MHz, CD3OD): 29.43. IR (CH3OH, cm-1): 3094 (br), 1628 (m), 1396 (s, 

P=O), 1066 (s, P-O-C), 915 (m). HRMS required for C10H17N3O7P+ is 

322.080 found 322.080. 

6-O-Benzyl-2-deoxy-3,4-O-isopropylidene-2-aminomethyl--D-

psicofuranose 24 

Lithium aluminium hydride (2.38 g, 62.6 mmol) was placed in a three 

necked round bottom flask equipped with thermometer, pressure 

equalising dropping funnel and stirrer under a nitrogen atmosphere. 

Anhydrous diethyl ether (50 mL) was charged at 0 °C, maintaining an 

internal temperature of less than 25°C. A solution of psicofuranosyl 

cyanide 11 (10.0 g, 31.3 mmol) in anhydrous diethyl ether (50 mL) 

was then added dropwise at 0 °C with careful control of the 

exotherm. The reaction mixture was allowed to warm to room 

temperature and stirred for 2 h. Excess LiAlH4 was carefully 

quenched with 7 mL of AcOEt at 0 °C added dropwise (CARE: violent 

reaction). The following treatment with 1.0 M K2CO3 gave a white 

precipitate that was removed under filtration over celite. The filtrate 

was evaporated under reduced pressure to afford the crude residue 

as colourless oil, which was pure enough to be used immediately for 

the next step. Purification of the crude product by column 

chromatography (silica gel, ethyl acetate / methanol / ammonium 

hydroxide 95/4/1) gave the pure amino alcohol 24 (9.9 g, 98% yield) 

as a colourless oil. Data for 24: Oil. []D
25 = + 7.2 (c = 0.01, l = 0.025, 

CHCl3). 1H-NMR (400 MHz, CDCl3): 1.33 (3H, s, CH3), 1.53 (3H, s, 

CH3), 2.88 (1H, d, J = 13.0, H-1’a), 3.04 (1H, d, J = 13.0, H-1’b), 3.53 

(1H, dd, J = 10.4, 4.3, H-6a), 3.60 (1H, dd, J = 10.4, 4.3, H-6b), 3.71 (1H, 

d, J = 11.8, H-1a), 3.81 (1H, d, J = 11.8, H-1b), 4.18 (1H, q, J = 4.1, H-5), 

4.51 (2H, s, 2×H-7), 4.53-4.60 (1H, m, H-3), 4.72 (1H, dd, J = 6.5, 4.4, 

H-4), 7.25-7.36 (5H, m, 5×HArom). 13C-NMR (100 MHz, CDCl3): 24.5 

(CH3), 26.6 (CH3), 45.3 (C-1’), 62.8 (C-1), 70.4 (C-6), 73.5 (C-7), 82.1 

(C-4), 83.0 (C-2), 84.1 (C-5), 85.7 (C-3), 114.0 (C(CH3)2), 127.9 (Cp), 

127.9 (Co), 128.5 (Cm), 137.6 (Cipso). IR (CHCl3, cm-1): 3200 (br), 2931 

(m), 1559 (m), 1381 (m), 1210 (m), 1072 (s), 866 (m). HRMS required 

for C17H26NO5
+ is 324.181, found 324.180. 

General procedure for sulfonyl amido ester protection: 
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To a stirred solution of telescoped amino alcohol 24 (1.0 eq.) in 

CH2Cl2 (0.1 M concentration), triethylamine (4.0 eq.), 4-

dimethylaminopyridine (1.0 eq.) and an appropriate sulfonyl chloride 

(3.0 eq.) were added sequentially at 0 °C. The resulting mixture was 

allowed to warm to room temperature and stirred for 16 h. The 

reaction mixture was poured into water and the water layer was 

extracted with dichloromethane. The combined organic extracts 

were washed sequentially with 1.0 M HCl, water and brine. dried 

over MgSO4, filtered and concentrated to dryness under reduced 

pressure and purified by column chromatography. 

 

6-O-Benzyl-2-deoxy-3,4-O-isopropylidene-1-O-mesyl-2-

mesylaminomethyl--D-psicofuranose 25a16 

Chromatography of the crude residue over silica gel (isohexane/ 

ethyl acetate 1/1) gave the pure sulfonyl amidoester 25a (979 mg, 

66% o.y.) as colourless oil. Data for 25a: Oil. []D
20= + 3.1 (c = 0.01, 

CHCl3). 1H-NMR (400 MHz, CDCl3): 1.32 (3H, s, CH3), 1.51 (3H, s, 

CH3), 2.74 (3H, s, NHSO2CH3), 3.05 (3H, s, SO3CH3), 3.29-3.30 (2H, m, 

2×H-1’), 3.59 (1H, dd, J = 10.4, 2.4, H-6a), 3.71 (1H, dd, J = 10.4, 2.4, 

H-6b), 4.10-4.16 (1H, m, H-5), 4.31 (1H, d, J = 10.8, H-1a), 4.36 (1H, J = 

10.8, H-1b), 4.54 (1H, d, J = 12.0, H-7a), 4.59 (1H, d, J = 12.0, H-7b), 

4.78 (1H, d, J = 6.0, H-3), 5.10 (1H, t, J = 5.2, H-4), 7.77 (1H, dd, J = 8.0, 

4.4, NH), 7.28-7.36 (5H, m, 5×Harom). 13C-NMR (100 MHz, CDCl3): 25.2 

(CH3), 27.0 (CH3), 37.4 (SO3CH3), 40.0 (NHSO2CH3), 46.9 (C-1’), 69.0 

(C-1), 69.6 (C-6), 73.7 (C-7), 81.6 (C-4), 83.4 (C-3), 84.4 (C-2), 84.5 (C-

5), 114.1 (C(CH3)2), 128.0 (Cp), 128.2 (Co), 128.6 (Cm), 137.0 (Cipso). IR 

(CHCl3, cm-1): 3282 (br), 2936 (m), 2359 (w), 1559 (m), 1327 (m), 1175 

(m), 1075 (s), 967 (m). HRMS required for C19H29NO9S2Na+ is 

502.1181, found 502.1176. 

 
6-O-Benzyl-2-deoxy-3,4-O-isopropylidene-1-O-tosyl-2-

tosylaminomethyl--D-psicofuranose 25b 

Chromatography of the crude residue over silica gel (isohexane/ 

ethyl acetate 6/4) gave the pure sulfonyl amidoester 25b (1.22 g, 62% 

o.y.) as foamy gum. Data for 25b: []D
20  = + 3.9 (c = 0.01, CHCl3). 1H-

NMR (400 MHz, CDCl3): 1.22 (3H, s, CH3), 1.32 (3H, s, CH3), 2.41 (3H, 

s, PhCH3), 2.42 (3H, s, PhCH3), 2.95 (1H, dd, J = 12.4, 2.8, H-1’a), 2.98 

(1H, dd, J = 12.6, 10.0, H-1’b), 3.47 (1H, dd, J = 10.4, 2.0, H-6a), 3.59 

(1H, dd, J = 10.4, 2.0, H-6b), 3.86-3.89 (1H, m, H-5), 4.01 (1H, d, J = 

10.4, H-1a), 4.10 (1H, d, J = 10.4, H-1b), 4.56 (1H, d, J = 12.4, H-7a), 

4.62 (1H, d, J = 12.4, H-7b), 4.70 (1H, d, J = 6.0, H-3), 4.86 (1H, t, J = 

5.6, H-4), 6.01 (1H, dd, J = 9.6, 2.8, NH). 7.25 (2H, d, J = 8.0, 2×Hm Tol), 

7.30 (2H, d, J = 8.4, 2×Hm Tol), 7.32-7.37 (5H, m, 5×Harom Ph), 7.54 (2H, 

d, J = 8.0, 2×Ho Tol), 7.54 (2H, d, J = 8.4, 2×Ho Tol). 13C-NMR (100 MHz, 

CDCl3): 21.5 (PhCH3), 21.7 (PhCH3), 25.1 (CH3), 26.9 (CH3), 47.4 (C-1’), 

69.0 (C-6), 69.2 (C-1), 73.6 (C-7), 81.2 (C-4), 83.5 (C-3), 84.2 (C-5), 84.3 

(C-2), 113.9 (C(CH3)2), 126.8 (Co Tol), 127.8 (Co Tol), 128.3 (Cp Ph), 

128.6 (Co Ph), 128.7 (Cm Ph), 129.8 (Cm Tol), 132.4 (Cipso Tol), 136.9 

(Cipso Ph), 143.4 (Cp Tol), 145.0 (Cp Tol). IR (CHCl3, cm-1): 3270 (br), 

2926 (w), 2359 (w), 1189 (s), 1176 (s), 1120 (m), 988 (m). HRMS 

required for C31H37NO9S2Na+ is 654.1807, found 654.1802. 

 

6-O-Benzyl-2-deoxy-3,4-O-isopropylidene-1-O-nosyl-2-

nosylaminomethyl--D-psicofuranose 25c 

Chromatography of the crude residue over silica gel (isohexane/ 

ethyl acetate 6/4) gave the pure sulfonyl amidoester 25c (2.15 g, 97% 

o.y.) as white solid. Data for 26c: Mp = 96-97 °C. []D
25 = + 2.1 (c 

=0.01, CHCl3). 1H-NMR (400 MHz, CDCl3): 1.29 (3H, s, CH3), 1.43 (3H, 

s, CH3), 3.52-3.61 (2H, m 2×H-6), 4.00 (1H, d, J = 16.0, H-1’a), 4.11 (1H, 

d, J = 12.0, H-1a), 4.19 (1H, d,  J = 16.0, H-1’b), 3.20-4.22 (1H, m, H-5), 

4.35 (1H, d, J = 10.5, H-1b), 4.51 (1H, d, J = 11.6, H-7a), 4.55 (1H, d, J = 

6.2, H-3), 4.57 (1H, d,  J = 11.6, H-7b), 4.66 (1H, dd, J = 6.8, 4.1, H-4), 

7.26-7.35 (5H, m, 5×Harom Ph), 8.00 (2H, d, J = 8.0, 2×Ho NHNs), 8.26-

8.33 (5H, m, 4×Harom ONs, NH), 8.31 (2H, d, J = 8.0, 2×Hm NHNs). 13C-

NMR (100 MHz, CDCl3): 24.6 (CH3), 25.8 (CH3), 53.3 (C-1’), 69.3 (C-1), 

70.3 (C-6), 73.6 (C-7), 82.0 (C-2), 82.6 (C-4), 82.9 (C-5), 84.4 (C-3), 

115.5 (C(CH3)3), 124.1 (Co NHNs), 124.2 (Cm ONs), 128.0 (Co Ph), 128.1 

(Co ONs), 128.6 (Cp Ph), 129.5 (Co NHNs), 130.5 (Cm Ph), 137.4 (Cipso 

Ph), 141.2 (Cipso NHNs), 144.2 (Cispo ONs), 150.7 (Cp NHNs), 150.9 (Cp 

ONs). IR (CHCl3, cm-1): 3108 (w), 2357 (w), 1532 (s, N-O), 1350 (s, N-

O), 1172 (m), 1082 (m), 978 (w). HRMS required for C23H27N2O8S+ is 

491.1488, found 491.1482. 

 

General procedure for Sulfoazetidine Spirocyclization 

Sodium hydride (60 % dispersion in mineral oil, 10 eq.) was placed in 

a three necked round bottom flask equipped with thermometer, 

stirrer bar and pressure equalising dropping funnel under a nitrogen 

atmosphere. It was then charged with anhydrous DMF (0.05M) at 0 

ºC, maintaining an internal temperature less than 25°C. A solution of 

suitable sulfonyl amidoester 25a-c in anhydrous DMF (0.05 M) was 

then added dropwise over 15 min and and stirred for a further 15 

min at 0ºC with careful control of exotherm. The reaction was 

allowed to warm to room temperature and stirred until TLC analysis 

showed complete reaction (16-48 h). The excess of NaH was 

quenched by careful dropwise addition of methanol at 0 °C 

maintaining an internal temperature of less than 25 °C. The 

suspension was then diluted with water and extracted with 

diethylether. The combined organic extracts were washed with 

saturated aq. NH4Cl solution, dried over MgSO4, filtered and 

concentrated to dryness under reduced pressure and purified by 

column chromatography. 

 

(6R,7S,8R)-2-Aza-6-benzyloxymethyl-7,8-

(dimethylmethylenedioxy)-2-N-mesyl-5 oxaspiro[3.4]-octane 26a16 

Chromatography of the crude residue over silica gel (isohexane/ 

ethyl acetate 7/3) gave the pure mesyl spiroazetidine 26a (485 mg, 

63%) as colourless oil. Data for 26a: Oily. []D
20  = -63.7 (c = 0.01, 

CHCl3). 1H-NMR (400 MHz, CDCl3): 1.36 (3H, s, CH3), 1.42 (3H, s, 

CH3), 2.85 (3H, s, SO2CH3), 3.48 (1H, dd, J = 10.0, 2.5, H-6a), 3.52 (1H, 

dd, J = 10.0, 2.5, H-6b), 3.57 (1H, d, J = 8.8, H-1’a), 3.59 (1H, dd, J = 

10.0, 2.5, H-6b), 3.67 (1H, d, J = 8.8, H-1’b), 3.92 (1H, d, J = 8.8, H-1a), 

4-20-4.23 (1H, m. H-5), 4.21 (1H, d, J = 8.8, H-1b), 4.40 (1H, d, J = 12.0, 

H-7a), 4.50 (1H, d, J = 11.6, H-7b), 4.73 (1H, d, J = 6.0, H-3), 4.79 (1H, 

d, J = 6.0, H-4), 7.25-7.38 (5H, m, 5×Harom). 13C-NMR (100 MHz, CDCl3): 

25.2 (CH3), 27.0 (CH3), 37.4 (SO3CH3), 40.0 (NHSO2CH3), 46.9 (C-1’), 

69.0 (C-1), 69.6 (C-6), 73.7 (C-7), 81.6 (C-4), 83.4 (C-3), 84.4 (C-2), 84.5 

(C-5), 114.1 (C(CH3)2), 128.0 (Cp), 128.2 (Co), 128.6 (Cm), 137.0 (Cipso). 
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IR (CHCl3, cm-1): 2935 (w), 2359 (w), 1336 (m), 1130 (s), 1070 (m), 960 

(w). HRMS required for C18H25NO6SNa+ is 406.1295, found 406.1295. 

 

(6R,7S,8R)-2-Aza-6-benzyloxymethyl-7,8-

(dimethylmethylenedioxy)-2-N-tosyl-5 oxaspiro[3.4]-octane 26b 

Chromatography of the crude residue over silica gel (isohexane/ 

ethyl acetate 7/3) gave the pure tosyl spiroazetidine 26b (243 mg, 

54%) as colourless oil. Data for 26b: Oily. []D
20 = - 70.4 (c= 0.01, 

CHCl3). 1H-NMR (400 MHz, CDCl3): 1.29 (3H, s, CH3), 1.36 (3H, s, 

CH3), 2.45 (3H, s, PhCH3), 3.40 (2H, s, 2×H-6), 3.54 (1H, d, J = 9.6, H-

1’a), 3.57 (1H, d, J = 9.7, H-1’b), 3.67 (1H, d, J = 8.8, H-1a), 4.10-4-14 

(2H, m, H-5, H-1b), 4.37 (1H, d, J = 11.7, H-7a), 4.43 (1H, d, J = 11.7, H-

7b), 4.49 (1H, d, J = 5.9, H-3), 4.70 (1H, d, J = 5.9, H-4), 7.22-7.26 (2H, 

m, 5×Hm Tol), 7.32-7.39 (5H, m, 2×Harom Ph), 7.68 (2H, d, J = 7.9, Ho 

Tol). 13C-NMR (100 MHz, CDCl3): 21.6 (PhCH3), 25.0 (CH3), 26.4 (CH3), 

57.3 (C-1), 64.0 (C-1’), 71.5 (C-6), 73.9 (C-7), 80.9 (C-2), 82.9 (C-4), 

83.8 (C-5), 85.5 (C-3), 112.4 (C(CH3)2), 128.1 (Cp Ph), 128.2 (Co Ph), 

128.4 (Co Tol), 128.6 (Cm Tol), 129.7 (Cm Ph), 131.7 (Cp Tol), 137.0 (Cipso 

Ph), 143.9 (Cipso Tol). ). IR (CHCl3, cm-1): 2937 (w), 2359 (w), 1344 (m), 

1127 (s), 1090 (m). HRMS required for C24H29NO6SNa+ is 482.1613, 

found 482.1608. 

(6R,7S,8R)-2-Aza-6-benzyloxymethyl-7,8-

(dimethylmethylenedioxy)-2-N-nosyl-5 oxaspiro[3.4]-octane 26c 

Chromatography of the crude residue over silica gel (isohexane/ 

ethyl acetate 7/3) gave the pure nonyl spiroazetidine 26c (84 mg, 

12%) as colourless oil. Data for 26c: Oily. []D
25 = -67.2 (c= 0.01, l = 

0.025 dm, CHCl3). 1H-NMR (400 MHz, CDCl3): 1.28 (3H, s, CH3), 1.36 

(3H, s, CH3), 2.45 (3H, s, PhCH3), 3.41-3.47 (2H, m, 2×H-6), 3.57 (1H, 

d, J = 9.3, H-1’a), 3.62 (1H, d, J = 9.3, H-1’b), 3.75 (1H, d, J = 9.1, H-1a), 

4.12 (1H, t, J = 2.1, H-5),  4.20 (1H, d, J = 9.1, H-1b), 4.38 (1H, d, J = 

12.0, H-7a), 4.42 (1H, d, J = 12.0, H-7b), 4.43 (1H, d, J = 5.9, H-3), 4.70 

(1H, d, J = 6.0, H-4), 7.21-7.28 (2H, m, 2×Ho Ph), 7.35-7.42 (3H, m, 

2×Hm, Hp Ph), 7.94 (2H, d, J = 7.9, Ho Ns), 8.37 (2H, d, J = 7.9, Ho Ns). 
13C-NMR (100 MHz, CDCl3): 25.0 (CH3), 26.4 (CH3), 57.8 (C-1), 64.7 (C-

1’), 71.6 (C-6), 74.0 (C-7), 81.2 (C-2), 83.1 (C-4), 83.8 (C-5), 85.5 (C-3), 

112.6 (C(CH3)2), 124.2 (Cm Ns), 128.2 (Co Ph), 128.3 (Cp Ph), 128.6 (Cm 

Ph), 129.4 (Co Ns), 136.8 (Cipso Ph), 141.2 (Cipso Ns), 150.0 (Cp Ns). IR 

(CHCl3, cm-1): 2932 (w), 2157 (w), 1550 (s, N-O), 1349 (s, N-O), 1163 

(s), 737 (s). HRMS required for C23H27N2O8S+ is 491.1488, found 

491.1482. 

(6R,7S,8R)-2-Aza-6-benzyloxymethyl-7,8-

(dimethylmethylenedioxy)-5-oxa-2-azaspiro[3.4]-octane 28 

To a stirred suspension of K2CO3 (56 mg, 0.41 mmol) in CH3CN (1 mL) 

was added a solution of N-nosyl spiroazetidine 26c (100 mg, 0.20 

mmol) in CH3CN (1 mL) under N2 atmosphere followed by thiophenol 

(21 μL, 0.61 mmol). The reaction mixture was stirred for 18 h, diluted 

with ethyl acetate, washed with brine, dried over MgSO4, filtered and 

concentrated to dryness under reduced pressure. Purification was 

performed by mass directed prep HPLC using a XBridge dC18 5μ OBD 

30×100mm prep column. RP-HPLC was conducted with an elution 

gradient of 1–100% B over 11.40 min, where A is H2O in 10mM 

Ammonium Acetate and B is CH3CN and gave pure azetidine 

spironucleoside 27 (29 mg, 48%). Data for 27: Oily. []D
25 = -56.0 (c= 

0.01, l = 0.025 dm, CH3OH). 1H-NMR (400 MHz, CDCl3): 1.35 (3H, s, 

CH3), 1.41 (3H, s, CH3), 3.44 (1H, dd, J = 10.2, 3.0, H-6a), 3.48 (1H, dd, 

J = 10.2, 3.0, H-6b), 3.59 (1H, d, J = 10.1, H-1’a), 3.76 (1H, d, J = 10.3, 

H-1’b), 3.87 (1H, d, J = 10.3, H-1a), 4.08 1H, d, J = 10.2, H-1b), 4.19 (1H, 

t, J = 2.6, H-5), 4.39 (1H, d, J = 11.8, H-7a), 4.48 (1H, d, J = 11.8, H-7b), 

4.76 (1H, d, J = 6.0, H-3), 4.82 (1H, d, J = 6.0, H-4), 5.04 (1H, br, NH), 

7.22-7.38 (5H, m, 5×Harom). 13C-NMR (100 MHz, CDCl3): 25.1 (CH3), 

26.4 (CH3), 52.6 (C-1’), 59.2 (C-1), 71.5 (C-6), 73.9 (C-7), 83.1 (C-4), 

83.9 (C-5), 84.5 (C-2), 85.4 (C-3), 112.5 (C(CH3)2), 128.0 (Co), 128.1 

(Cp), 128.6 (Cm), 137.0 (Cipso). IR (CH3OH, cm-1): 2936 (m), 1556 (m), 

1380 (s), 1280 (s), 1160 (s), 1051 (s), 871 (s). HRMS required for  

C7H14NO4
+ is 306.170 found 306.170. 

 

General procedure for O-deprotection 

Isopropylidene sulfoazetidine spironucleoside 26a-b was dissolved in 

a solution of methanol/water 8/2 (0.025 M concentration). Dowex® 

50WX8 hydrogen form (3.4 g/mol) was added in one portion and the 

resulting suspension was stirred vigorously at 50 °C until total 

consumption of the starting material (4-6 h), then the resin was 

filtered off and washed with methanol. The filtrate was evaporated 

under reduced pressure to afford crude benzyl ether spironucleoside 

crude as pale yellow oil. Residue was dissolved in methanol (0.1 M) 

and charged into hydrogenation vessel. Palladium on activated 

charcoal 10wt.%, (10% of weight with respect of 26a-b) was added in 

one portion. The reactor was purged three times with N2 and the 

mixture was agitated for 5 min. After purging with H2 a further three 

times, the reactor was pressurised to 4 bar and the resulting 

suspension was stirred vigorously until total consumption of the 

starting material (ca. 22 h). The catalyst was filtered off, and the 

filtrate was evaporated to dryness.  
 

(6R,7S,8R)-2-Aza-7,8-dihydroxy-6-hydroxymethyl-2-N-mesyl-5-

oxaspiro[3.4]octane 27a  
Purification of the crude product by column chromatography (silica 

gel, dichloromethane/ methanol 94/6) gave the title compound 27a 

(120 mg, 94% yield) as colourless oil. []D
25 = -32.0 (c= 0.01, l = 0.025 

dm, CH3OH). 1H-NMR (400 MHz, CD3OD): 2.94 (3H, s, SO2CH3), 3.54 

(1H, dd, J = 12.0, 4.0, H-6a), 3.67 (1H, dd, J = 12.0, 3.5, H-6b), 3.80 (1H, 

dd, J = 9.0, 1.0, H-1a), 3.85-3.88 (1H, m, H-5), 3.90 (1H, dt, J = 9.0, 1.0, 

H-1’a), 3.96 (1H, dd, J = 9.0, 0.8, H-1’b), 3.98-4.06 (2H, m, H-3, H-4), 

4.31 (1H, dd, J = 9.0, 1.0, H-1b). 13C-NMR (125 MHz, CD3OD): 34.3 

(SO2CH3), 59.2 (C-1), 61.6 (C-1’), 62.9 (C-6), 72.4 (C-3), 75.7 (C-4), 80.1 

(C-2), 85.6 (C-5). IR (CH3OH, cm-1): 3422 (br), 2963 (w), 1397 (w), 1262 

(s), 1092 (s), 1024 (s), 801 (s). 

 

(6R,7S,8R)-2-Aza-7,8-dihydroxy-6-hydroxymethyl-2-N-mesyl-5-

oxaspiro[3.4]octane 27b. 

Purification of the crude product by column chromatography (silica 

gel, dichloromethane/ methanol 95/5) gave the title compound 27b 

(215 mg, 52% yield) as amorphous solid. White needle crystals were 

obtained after recrystallisation with ethyl acetate. Mp = 96-97 °C. 

[]D
25 = -40.0 (c= 0.01, l = 0.025 dm, CH3OH). 1H-NMR (400 MHz, 

CD3OD): 1H-NMR (400 MHz, CDCl3): 2.46 (3H, s, PhCH3), 3.44 (1H, 
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dd, J = 12.2, 4.1, H-6a), 3.53 (1H, d, J = 8.6, H-1a), 3.57 (1H, dd, J = 

12.2, 3.1, H-6b), 3.67 (1H, d, J = 8.8, H-1’a), 3.71 (1H, d, J = 8.8, H-1’b), 

3.73-3.77 (1H, m, H-5), 3.87 (1H, d, J = 4.7, H-3), 3.94 (1H, dd, J = 5.7, 

4.7, H-4), 4.17 (1H, d, J = 8.6, H-1b), 7.46 (2H, d, J = 8.0, 2×Hm), 7.72 

(2H, d, J = 8.3, 2×Ho). 13C-NMR (100 MHz, CD3OD): 22.1 (PhCH3), 60.0 

(C-1), 62.7 (C-1’), 63.2 (C-6), 72.6 (C-4), 76.3 (C-3), 80.2 (C-2), 85.6 (C-

5), 130.2 (Co), 131.5 (Cm), 132.8 (Cp), 146.3 (Cipso). IR (CH3OH, cm-1): 

3347 (br), 2928 (w), 1332 (w), 1157 (m), 1090 (s), 1017 (s), 814 (m). 

HRMS required for C14H20NO6S+ is 330.101 found 330.100. 

Crystallography 

Crystal structures at 150 K for 17a and 27b were obtained using an 

Oxford Diffraction Gemini single-crystal diffractometer equipped 

with an Oxford Instruments Cryojet cooling device. Whilst a 

satisfactory solution and refinement of the structure of 17a was 

achieved, and the structure of 27b easily solved, refinement of the 

latter did not progress to a satisfactory conclusion. Diffraction data 

for 27b were therefore recollected at 150K at the EPSRC UK National 

Crystallography Service at the University of Southampton and the 

structure then refined satisfactorily as a 4-component twin. Both 

crystal structures have been deposited with the CCDC as reference 

numbers 1840501 (17a) and 1840502 (27b). 

Viruses and cells.  

The A59 strain of Mouse hepatitis virus was used in all experiments.  

17Cl-1 mouse lung fibroblast cells were grown in complete growth 

medium consisting of Dulbecco’s modified Eagle medium (DMEM; 

Invitrogen) supplemented with 10% heat-inactivated foetal bovine 

serum (FBS; Invitrogen), penicillin and streptomycin (Invitrogen), and 

nonessential amino acids (NEAA; Invitrogen).  

MTT Toxicity assay. 

MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] 

assays were used to measure cell viability of experimentally treated 

cells. 17Cl-1 cells in complete growth medium were treated with 

specified concentrations of test substance in a total volume of 2 ml 

and plated in 96-well plates at a density of about 50% confluence. 

After 72 h of treatment, 5-mg/ml MTT (Sigma) was added to each 

well in a six-well plate. Cells were then incubated at 37°C for 1 h, 

when blue coloration appeared in the majority of untreated control 

cells indicating that the MTT had been reduced to the insoluble 

compound formazan.  Assays were protected from light during MTT 

treatment.  The medium was then aspirated and replaced with 1 ml 

of dimethyl sulfoxide to solubilize the cells. Absorbance at 540 nm 

was read in a Molecular Devices plate reader and analysed by the 

SOFTmax program.  

Virus growth inhibition assay.  

17Cl-1 cells were seeded at a density of 2105 cells per well of a 12-

well tissue culture plate and allowed to adhere overnight at 37°C and 

5% CO2. Cells were pre-treated for 3h with 2 ml of complete medium 

containing 100 µl of test compounds dissolved in a vehicle of 90% 

water and 10% dimethyl sulfoxide or vehicle alone. After the pre-

treatment, cells were inoculated at a multiplicity of about 10 PFU/cell 

with MHV-A59.  After 1 h cells were rinsed three times with warm 

phosphate-buffered saline to remove any unbound virus, then 

culture medium containing the same treatment as before was 

reapplied.  14h after inoculation, cell culture medium was collected 

and stored for virus quantification. 

Virus quantification by plaque assay.  

17Cl-1 cells were seeded in 12-well tissue culture plates at 2105 cells 

per well and allowed to adhere overnight at 37°C, 5% CO2. Culture 

medium was removed and replaced with 0.5 ml of serial dilutions of 

inoculum in culture medium, then incubated at 37°C for 1 h. Inocula 

were left in place, and cells were overlaid with 0.7% agarose (Doc 

Frugal) in DMEM supplemented with 2% serum (final concentration) 

and incubated at 37°C with 5% CO2 for 2 days. Cells were fixed with 

25% formaldehyde in phosphate-buffered saline; agarose plugs were 

removed, and cells were stained with 0.1% crystal violet to visualize 

viral plaques. 

Syncytium inhibition assay. 

17Cl-1 cells were seeded in 25-cm2 flasks, pre-treated, and 

inoculated as before. Infection was allowed to proceed for 24 h 

before medium was removed, and cells were fixed and stained as 

before. Multinucleate cells, including virus-induced syncytia, were 

observed and photographed as described above. Multinucleate cells 

falling within a 4-mm2 window were counted manually for each flask. 

Statistical significance of differences between syncytium formation 

after control or experimental treatment was tested by using a two-

sample t test in Instat 3.0 (Graphpad). 
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