
1 
 

Review: Importance of the alternative NF-κB activation pathway in inflammation-

associated gastrointestinal carcinogenesis. 

J Yvette Merga1,2, Adrian O’Hara1,2, Michael D Burkitt1, Carrie A Duckworth1, Christopher S 

Probert1, Barry J Campbell1, D Mark Pritchard1*. 

 

1 Gastroenterology Research Unit, Department of Molecular and Cellular Physiology, Institute 

of Translational Medicine, University of Liverpool, Liverpool, UK. 

2 These authors contributed equally to this work 

Keywords: NFκB, gastric cancer, inflammation, Helicobacter pylori, colitis 

 

* Correspondence to:  

D. Mark Pritchard  

Department of Cellular and Molecular Physiology, 

Institute of Translational Medicine, 

University of Liverpool, 

The Henry Wellcome Laboratory, 

Nuffield Building, 

Crown St., 

Liverpool. 

L69 3GE 

Tel: 0044 151 794 5772  

e-mail: mark.pritchard@liverpool.ac.uk  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CLoK

https://core.ac.uk/display/161815684?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 
 

Abstract  

Chronic inflammation is a common factor in the development of many gastrointestinal 

malignancies. Examples include inflammatory bowel disease predisposing to colorectal 

cancer, Barrett’s esophagus as a precursor of esophageal adenocarcinoma and Helicobacter 

pylori-induced gastric cancer. 

The classical activation pathway of NF-κB signaling has been identified as regulating several 

sporadic and inflammation-associated gastrointestinal tract malignancies. Emerging evidence 

suggests that the alternative NF-κB signaling pathway also exerts a distinct influence on these 

processes. This review brings together current knowledge of the role of the alternative NF-κB 

signaling pathway in the gastrointestinal tract, with a particular emphasis on inflammation-

associated cancer development. 

 

Introduction  

Members of the Nuclear Factor κ-light-chain-enhancer of activated B cells (NF-κB) family were 

initially described as transcription factors in B lymphocytes in 1986[1]. Since then, they have 

been shown to be widely expressed and are conserved across both vertebrates and 

invertebrates[2, 3]. 

The conventional model of NF-κB signaling proposes two main arms of the pathway. These 

share similar features, but are triggered independently and activate different target genes[4]. 

The classical (canonical) NF-κB activation pathway is triggered by Th1 cytokines and is typified 

by the action of RelA(p65)–NF-κB1(p50) heterodimers, whilst the alternative (non-canonical) 

activation pathway signals through the adaptor protein NF-κB-inducing kinase (NIK). 
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Activation of this mechanism leads to nuclear translocation of transcriptionally active v-rel 

avian reticuloendotheliosis viral oncogene homolog B (RelB)–NF-κB2(p52) heterodimers. 

Signaling through either pathway can influence multiple different cellular functions and can 

exert effects that may appear contradictory. For example, both pro- and anti-apoptotic 

effects, as well as proliferation[5] and senescence[6] signals have been attributed to the 

classical activation pathway of NF-κB signaling. Because of the wide variation in outcomes 

following pathway activation, it is difficult to extrapolate the effects of NF-κB signaling from 

one context to another. Recent evidence has established that alternative activation pathway 

NF-κB signaling is important during the development of several gastrointestinal (GI) 

pathologies in mouse and man. This article seeks to review this evidence and to establish 

questions for future research. 

 

Literature search strategy  

A systematic search of the English language literature listed in the PubMed database up to 5th 

November 2015 was performed based on the following search terms: 

(NF-κB2 OR NFκB2 OR NF-kappaB2 OR NFkappaB2 OR NF-kB2 OR NFkB2 OR p52 OR p100 OR 

"alternative NF-κB" OR "alternative NFκB" OR "alternative NF-kappaB" OR "alternative 

NFkappaB" OR "alternative NF-kB" OR "alternative NFkB" OR "non-canonical" OR relB OR NIK 

OR IKKa OR MAP3K14 OR CHUCK) AND (stomach OR gastric OR intestine OR intestinal OR 

gastrointestinal OR colon OR colonic OR colorectal OR colitis OR Crohn's OR bowel OR 

oesophagus OR oesophageal OR esophagus OR esophageal OR Barrett's).  
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This search generated 316 results, of which 115 articles were retained following review of 

titles and abstracts. The full texts of these articles were acquired and used as the basis of this 

article; retrieved article reference lists were searched manually for other relevant literature. 

The scope of the article has been limited to the importance of the alternative NF-κB signaling 

pathway in the gastrointestinal tract, particularly during the development of cancers and pre-

malignant pathologies. Articles discussing the liver and pancreas only have not been included. 

 

The alternative NF-κB activation pathway 

The NF-κB/Rel family includes five members: RelA(p65), c-Rel, RelB, NF-κB1(p50/p105), and 

NF-κB2(p52/p100). Each possesses a structurally conserved 300 amino-acid sequence; the 

REL homology domain (RHD). In the unstimulated state, these proteins pool as homo- or 

heterodimers (of which there are at least 15 known combinations), predominantly within the 

cytoplasm[7]. Some of these dimers function exclusively in the classical NF-κB signaling 

pathway (figure 1a) and are beyond the scope of this article. Alternative NF-κB pathway 

activation leads to translocation of NF-κB2(p52)/RelB heterodimers into the nucleus, 

following which NF-κB2(p52) and RelB directly influence gene transcription. 

NF-κB mediated transcription is regulated by the inhibitors of NF-κB (IκB) (IκBα, IκBβ, IκBε, 

and Bcl-3) which are peptides that bind NF-κB protein dimers through residues containing 6 

to 7 ankyrin repeats. Interaction of IκB proteins with NF-κB protein dimers prevents the 

nuclear translocation of the NF-κB protein dimers. NF-κB2 is synthesized as a 100kDa protein, 

p100, which has a RHD within its N-terminus and a seven ankyrin repeat domain at its C-

terminus which confers intrinsic IκB activity (figure 1b) [8]. 
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Alternative pathway NF-κB activation is characterized by processing of p100 into p52, both of 

which dimerize with RelB (Figure 1b). p100 is processed by at least two kinases, NIK and IκB 

kinase α (IKKα). These kinases can be activated by ligand interaction with several cell-surface 

receptors, including CD40 ligand binding to CD40, B-cell activating factor (BAFF) binding to its 

receptors, Lymphotoxin β interacting with LTβR, lipopolysaccharide (LPS) binding to Toll-like 

receptor 4 (TLR4) and Receptor activator of nuclear factor kappa-B ligand (RANKL) binding to 

RANK[9]. The pathway can also be activated by oncogenic viruses including Epstein-Barr 

Virus[10].  

Upon ligand binding, tumour necrosis factor receptor-associated factors (TRAFs; such as 

TRAF2 and TRAF3) are recruited either directly or via other adaptor proteins to the 

intracellular domain of the activated receptor.  Unlike TRAF2 and TRAF5 that also regulate 

classical NF-κB signaling, TRAF3 only regulates the alternative NF-κB signaling pathway and 

directly binds to NIK, regulating NIK turnover[11]. NIK is continually degraded by the 

proteasome as a result of polyubiquitination by the cellular inhibitors of apoptosis (c-IAP 

1,2)/E2 ligase complex that is also recruited to TRAF3 (figure 1b).  As a result of TRAF3 complex 

recruitment to the activated receptor, TRAF3 is targeted for degradation by the proteasome 

which allows NIK to accumulate in the cytosol (figure 1c) [12]. Cytosol accumulated NIK 

becomes phosphorylated at threonine 559 by an incompletely described mechanism that may 

involve both autophosphorylation[13], and phosphorylation via zinc-finger-protein-91[14]. 

Subsequently, Thr559-phospho-NIK phosphorylates p100 at serine (Ser) residues 866 and 870 

acting as a docking molecule for recruitment of IKKα to p100. Recruitment of IKKα leads to 

phosphorylation of the N-terminus of NF-κB2(p100) at Ser 99, 108, 115 and 123 and at C-

terminal Ser 872. Beta-transducin repeat-containing protein (beta-TrCP), a component of the 
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SCF ubiquitin ligase complex is then recruited to phosphorylated NF-κB2(p100) leading to 

polyubiquitination of NF-κB2(p100) at lysine (Lys) 855 which targets NF-κB2 for partial 

proteasomal degradation, leading to generation of NF-κB2(p52)[15]. 

Activation of the alternative NF-κB signaling pathway is generally slower (~6-8 hours) than the 

classical activation pathway, leading to a delayed but sustained response which integrates 

with the acute-phase (~1.5 hours) response driven by classical NF-κB pathway activation[9, 

16]. Emerging evidence supports the concept that classical and alternative NF-κB activation 

pathways interact to induce coordinated and sustained immunological responses. Banoth and 

colleagues recently used systems level analysis to identify stimulus-specific crosstalk between 

the TLR4-activated canonical NF-κB activation pathway and LTβR-induced alternative NF-κB 

activation pathway signaling. They identified a positive-feedback loop that sustained the NF-

κB response. Using mouse embryonic fibroblasts, they demonstrated that the LTβR signal 

prolonged the TLR4-induced RelA response, by targeting newly-synthesized p100 for 

processing to p52, allowing formation of p65(RelA)-p52(NF-κB2) dimers. This led to increased 

expression of pro-inflammatory cytokines and chemokines[17]. Understanding the 

integration of different mechanisms of NF-κB activation is a key challenge for this field. 

 

Role of the alternative NF-κB activation pathway in gut development and repair 

Whilst expression of the classical NF-κB activation pathway components RelA and c-Rel can 

be found in many tissues and cell types, in health the expression of alternative pathway NF-

κB sub-units has more frequently been demonstrated in cells of the immune system. More 

recent data have however demonstrated constitutive expression of RelB within small 

intestinal Peyer’s patches[18] and of RelB and NF-κB2 (p100) in murine gastric epithelium[19]. 
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Animal models suggest that the alternative NF-κB activation pathway components NIK, NF-

κB2 and RelB are required for the normal development of small intestinal Peyer’s patches [20, 

21]. Peyer’s patches consist predominantly of immune cells which exist in close association 

with the specialized ‘dome’-like epithelium described as follicle-associated epithelium (FAE). 

The presence of RelB-expressing cells also appears essential for the differentiation of 

enterocytes into microfold cells (M-cells) which represent approximately 5% of epithelial cells 

within FAE. Functionally, M-cells are specialized to perform luminal antigen sampling and 

immune priming[22]. M-cells have been implicated in the initiation of granulomatous lesions 

in Crohn’s disease[23] and are thought to influence responses to gastrointestinal 

infections[24, 25], and colorectal carcinogenesis[26, 27]. Tahoun and colleagues found that 

stimulation of RelB-expressing FAE enterocytes with Salmonella enterica Typhimurium 

triggered autocrine activation by RANK ligand-RANK interaction induced the transcription 

factor Snail family zinc finger-2 (Slug) and resulted in transdifferentiation into M-cells[25]. The 

expression of glycoprotein-2 (GP2), a key receptor expressed on mature M-cells also appears 

to be dependent on the nuclear translocation of RelB[28].  

Whilst there is substantial evidence that RelB is involved in the development of Peyer’s 

patches and M-cells within FAE, the mechanisms involved remain unclear. Wang and 

colleagues demonstrated that Peyer’s patch development was dependent on stimulation of 

TNFR and LTβR[29], however the precise ligands for these receptors and the downstream 

effects of signaling via this pathway during the development of Peyer’s patches, have not yet 

been defined.  

There is also evidence that alternative pathway NF-κB signaling may influence gastric 

epithelial homeostasis. Mice lacking the COOH-terminal ankyrin repeat domain of p100 
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synthesize a truncated form of NF-κB2, which lacks the IκB activity of p100 but is able to 

dimerize with other NF-κB protein family members and can translocate to the nucleus to 

influence transcription. This models unimpeded alternative pathway NF-κB activation and 

leads to persistent translocation of NF-κB2-containing dimers to the nucleus. These animals 

exhibit massive gastric antral hyperplasia, have increased lymphocyte proliferation and die 

during early postnatal life due to complications arising from gastric outlet obstruction[30]. 

 

Alternative pathway NF-κB signaling in cancers of the gastrointestinal tract 

Inflammatory mediators influence many cellular functions that may promote development of 

a malignant phenotype[31]. Since NF-κB signaling regulates innate immune responses, 

influencing the expression of a set of target genes in epithelial and immune compartments 

including cytokines (e.g. TNF, interleukin (IL)-6 and IL-1β)[6, 32, 33], their receptors (TNF 

superfamily receptors) and other inflammatory mediators, including cell adhesion molecules 

such as vascular cell adhesion protein 1 (VCAM-1)[34, 35]  as well as genes involved in 

regulating the cell cycle such as cyclins and cyclin-dependent kinases[36-38] it is unsurprising 

that these processes also influence tumorigenesis. 

The majority of studies investigating NF-κB and cancers of the gastrointestinal tract have 

focused upon the classical activation pathway family members NF-κB1, RelA (p65) and c-Rel. 

However there is emerging evidence that alternative NF-κB activation pathway family 

members also play important roles during carcinogenesis throughout the GI tract. 

Esophageal cancer 
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Two histological subtypes of esophageal cancer exist, both of which develop on a background 

of chronic inflammation. Esophageal squamous carcinoma is associated with inflammation 

induced by extrinsic stimuli including cigarette smoking and alcohol consumption. Esophageal 

adenocarcinoma is also associated with these extrinsic risk factors, but is also associated with 

chronic gastroesophageal reflux, and occurs on a background of columnar metaplasia 

(Barrett’s esophagus). The epidemiology and pathophysiology of these conditions are distinct, 

with the incidence of both conditions increasing in western populations.  

In normal squamous esophageal tissue, the expression of NF-κB proteins is relatively low. 

However tissue samples from patients with esophageal squamous cell carcinoma showed 

increased expression of NF-κB1(p50/105), NF-κB2(p52/100) and RelA up to 18-fold[39]. In 

addition the anti-tumor activity of the hypo-methylating chemotherapeutic drug decitabine 

has been associated with increased expression of NF-κB2[40]. 

There are few data addressing the role of alternative pathway NF-κB signaling in gastro-

esophageal reflux disease, Barrett’s esophagus or esophageal adenocarcinoma in humans, 

however a recent study examined the role of reflux and smoking on the expression of  

alternative pathway NF-κB signaling components in the esophageal epithelium of mice. Using 

immunohistochemical techniques, it was demonstrated that the abundance of NIK was 

increased in the presence of either cigarette smoke alone or reflux alone[41]. One of the 

challenges of investigating the function of NF-κB pathways is the need to differentiate the 

abundance of proteins that signal within the pathway and their functional effects. These data 

provide inconclusive evidence that alternative pathway NF-κB signaling is involved in 

esophageal adenocarcinoma development, but support the need for further investigation of 

alternative pathway NF-κB signaling in this context. 
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Gastric Cancer 

The most important etiological factor during gastric carcinogenesis is infection with 

Helicobacter pylori[42-46]. H. pylori infection results in stereotypical pre-malignant gastric 

pathology progressing from atrophic gastritis through metaplasia into dysplasia and cancer. 

In humans this process develops over several decades; mouse infection with the closely 

related bacterium Helicobacter felis recapitulates this sequence of pathology over an 

accelerated timescale. We recently showed that, despite heavy colonization with H. felis, 

Nfkb2-/- mice developed minimal inflammatory cell infiltration, demonstrated a blunted 

cytokine response and did not develop the pre-malignant lesions associated with chronic H. 

felis infection[19] (Figure 2a-d).  

Other data have demonstrated in-vitro relevance for this pathway in response to H. pylori in 

both gastric epithelial and immune cell culture systems[19, 45, 46]. Hirata and colleagues 

showed that IKKα accumulates in AGS cells following H. pylori infection, but this did not lead 

to NF-κB2(p100) processing to NF-κB2(p52). The consequences of this are not clear, however 

it has been postulated that accumulation of cytosolic NF-κB2(p100) may inhibit nuclear NF-

κB2(p52) interaction with chromatin, leading to an altered transcriptional fingerprint[47]. 

Separately, H. pylori activation of NF-κB was shown to occur via a pathway requiring IKKα, 

IKKβ, and NIK in MKN45 and KATO III human gastric cancer cell lines. In this context, activation 

of NIK also required signaling via the adapter proteins TRAF2 and TRAF6[48]. Further evidence 

for the involvement of NIK was provided by Neumann and colleagues [41] who demonstrated 

that activation of NF-κB by H. pylori required the formation of a complex between p21-

activated kinase 1 (PAK1) and NIK[49].  
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In addition to the evidence that H. pylori can activate NF-κB via the alternative activation 

pathway in epithelial tissue, in-vitro processing of NF-κB2(p100) to NF-κB2(p52) has also been 

demonstrated in B lymphocytes in response to H. pylori infection[50]. This may have 

implications for the development of gastric MALT lymphomas. 

Further evidence that classical and alternative pathway NF-κB activation is relevant to 

Helicobacter induced pathology comes from the evidence that clarithromycin, one of the 

antibiotics used most frequently to eradicate H. pylori, modulates H. pylori-induced activation 

of NF-κB via both activation pathways in gastric cancer cells[51]. 

Colorectal cancer 

Sporadic colorectal cancers most commonly develop from adenomatous polyps[52]. These 

lesions develop as a consequence of the acquisition of stereotypical mutations over time. 

They occur in an otherwise non-inflamed colonic mucosa, but an inflammatory response to 

adenoma development is frequently identified. Despite this, few data regarding the 

importance of the alternative activation pathway of NF-κB signaling during sporadic colorectal 

carcinogenesis exist.  

Amongst the best characterized pathways involved in colorectal carcinogenesis is the WNT 

signaling pathway.  Activation of this pathway leads to stabilization of -catenin, which is 

observed in many colonic adenomas. There is increasing evidence for crosstalk between the 

NF-κB and WNT signaling pathways, with evidence that activation of NF-κB pathways may 

accelerate the loss of APC during colorectal adenoma development[53]. However there is 

little direct evidence to suggest that alternative pathway NF-κB signaling is involved. 
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There is circumstantial evidence that alternative pathway NF-κB signaling may exert an effect 

on sporadic colonic carcinogenesis. MicroRNA miR-518a-3p was observed to be down-

regulated in colon cancers in proportion to their size and TNM stage. This microRNA targets 

NIK for degradation, therefore its down-regulation leads to increased NIK abundance and 

subsequent activation of NIK dependent NF-κB pathways[54].  

In contrast to sporadic colon cancer, more has been published regarding the impact of 

alternative pathway NF-κB signaling during the development of colitis-associated colorectal 

cancer. Individuals with chronic inflammatory bowel disease (IBD), including Crohn’s disease 

and ulcerative colitis, have an increased risk of colorectal cancer[55]. In these patients, 

colorectal tumors develop on the background of an inflamed colonic mucosa, and rather than 

developing as discrete polyps, usually arise within fields of flat dysplastic mucosa[52]. 

The most established murine model of colitis-associated cancer uses a single dose of the DNA-

damaging agent azoxymethane (AOM) followed by several doses of dextran sulfate sodium 

(DSS) to induce chronic colitis (AOM/DSS)[56]. We have reported that Nfkb2-/- mice are 

resistant to AOM/DSS-induced colitis-associated adenoma development[57]. Transgenic mice 

developed fewer dysplastic colonic lesions, were less susceptible to DSS-induced colitis 

(Figure 2i-p), and had a more robust apoptotic response following DNA damage compared to 

wild-type controls. 

In contrast to Nfkb2-/- mice, Nlrp12-/- mice exhibited increased susceptibility to AOM/DSS 

induced colitis-associated colorectal cancer; polyps isolated from these mice had increased 

activation of the alternative NF-κB activation pathway. Nlrp12-/- primary dendritic cells 

showed elevated NIK expression, p100 processing to p52 and reduced abundance of TRAF3. 
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This provides evidence for NLRP12 acting as a checkpoint on signaling via the alternative NF-

κB activation pathway during inflammation and tumorigenesis[58].  

 

Alternative pathway NF-κB signaling in conditions of the GI tract that predispose to cancer 

Gastrointestinal tract infections 

Chronic bacterial and helminth infections are established risk factors for the development of 

malignancy. The best-characterized organism is H. pylori, which plays a major role in gastric 

carcinogenesis as discussed above. Several lines of evidence have identified that alternative 

pathway NF-κB signaling is important in the host response to gastrointestinal pathogens. 

Infection with the foodborne pathogen Salmonella Typhimurium has been shown to promote 

the differentiation of M-cells in the small intestine through induction of RANK, and its ligand 

RANKL, leading to increased differentiation of M-cells and increased uptake of the pathogen. 

In addition to the evidence described above that S. Typhimurium may induce M-cell 

transdifferentiation via an alternative activation NF-κB pathway dependent mechanism  

Tahoun and colleagues[25] have also demonstrated that translocation of S. Typhimurium was 

significantly reduced in the presence of the NF-κB inhibitor SN50, suggesting that NF-κB 

signaling plays a role in enhancing S. Typhimurium translocation across the epithelium. Whilst 

this organism is not directly associated with gastrointestinal carcinogenesis, these 

mechanisms offer a paradigm by which other carcinogenic organisms may influence epithelial 

events via NF-κB signaling.  

Banoth and colleagues demonstrated that C57BL/6 mice infected with Citrobacter rodentium 

developed colitis with epithelial accumulation of p100. Nfkb2-/- mice infected with C. 
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rodentium were more susceptible to developing colitis than wild-type mice. Using reciprocal 

bone marrow transfer experiments, Nfkb2-/- mice given wild-type mouse bone marrow lost 

weight and had 100% mortality before day 10, whereas wild-type mice given either wild-type 

or Nfkb2-/- bone marrow did not lose weight or show increased mortality. These findings 

indicate that NF-κB2 expression within the non-myeloid compartment is involved in limiting 

the severity of C. rodentium associated colitis[17].  

Alternative pathway NF-κB signaling is also implicated in the orchestration of immune 

responses to gastrointestinal helminth infestation. C57BL/6 mice generate a marked Th2 

immune response following colonization with the whipworm Trichuris muris. This induces 

rapid expulsion of the helminth and clearance of infestation within 35 days of colonization. In 

contrast, Nfkb2-/- mice develop a chronic, persistent infestation with an impaired Th2 cytokine 

response[59]. More recently, an immunosuppressed man with histoplasmosis and extra-

intestinal Hymenolepis nana infection was found to possess abnormal proliferative cells which 

displayed malignant characteristics. Upon investigation, the cells were found to be consistent 

with tapeworm stem cells; this was the first report of parasite-derived cancer cells in a human, 

further demonstrating the link between infection and cancer, and highlighting its relevance 

when considering GI exposure to helminths[60]. 

Inflammatory bowel disease  

Chronic idiopathic inflammatory bowel diseases that affect the colon increase an individual’s 

risk of developing colorectal cancer in proportion to the duration of disease and the extent of 

inflammation[61-64], and evidence suggests that treatments that decrease an individual’s 

inflammatory burden, including azathioprine[65] and 5-amino salicylic acid preparations [66] 

may decrease the risk of developing colitis-associated colon cancer.  
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The alternative NF-κB activation pathway has not to date been targeted specifically for the 

development of novel therapeutics for IBD. This is likely due to the fact that most studies in 

IBD have found activation of the classical activation pathway, but not the alternative 

pathway[67-69]. For example, Ardite and colleagues used electromobility shift assays to 

detect NF-κB components in colonic biopsy samples from patients with active IBD who had 

been treated with steroids. The classical NF-κB activation pathway subunit p50 was found in 

inflamed tissue from IBD patients but p65, p52, c-Rel and RelB were not detected[67].  

In contrast to the findings in humans, mouse models of colitis induced by carrageenan and 

DSS have demonstrated that classical and alternative NF-κB signaling pathways are 

activated[70-73] during colonic inflammation. One of the earliest events in IBD is thought to 

be impairment of enteric mucosal barrier function. We have modeled this by administration 

of LPS from Escherichia coli to C57BL/6 mice and mice lacking NF-κB2. We demonstrated that 

Nfkb2-/- mice were more resistant to LPS-induced small intestinal epithelial cell shedding 

compared to wild-type mice[71] (Figure 2e-h). Separately and as described above, we 

demonstrated that the severity of DSS-induced acute colitis was reduced in Nfkb2-/- mice 

relative to wild-type mice[57](figure 2i-p). 

Our studies, and those of Banoth suggest that there may be a function for these pathways in 

the regulation of enteral inflammation, suggesting that targeting alternative pathway NF-κB 

signaling in IBD may be a fruitful avenue for further research. 

One element of IBD therapy in which tangential evidence for alternative pathway NF-κB 

signaling has been accrued is the role of functional foods. This is of particular interest in the 

context of Crohn’s disease, where dietary modification with liquid feeding has been shown to 

offer therapeutic benefits, particularly in pediatric patients. 
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A study examining the role of parenteral nutrition in IBD demonstrated that a lack of enteral 

stimulation in mice led to globally reduced expression of NF-κB proteins in Peyer’s 

patches[74]. Given the data that implicate RelB in Peyer’s patch development, and the role 

that Peyer’s patches play in immune priming these findings suggest that diet induced NF-κB 

signaling may influence GI immune tolerance.  

In contrast the use of dietary flaxseed to attempt to ameliorate experimental colitis was found 

to exacerbate DSS-induced colitis in mice, which was associated with an increase in expression 

of RelB in colonic tissue[72]. Together these studies highlight the functional effect that foods 

may have on NF-κB alternative pathway signaling in the gastrointestinal tract.  

Celiac Disease 

Gluten sensitive enteropathy, or celiac disease, confers an increased risk of small bowel 

adenocarcinoma and small bowel lymphoma, however due to the rarity of these cases it is 

difficult to accurately quantify the degree of increased risk[75]. Recent data have identified 

that increased expression of NFKB2 in patients with celiac disease, irrespective of their 

adherence to a gluten free diet[76]. Currently it is not clear whether this association has any 

impact on the prevalence or biology of small bowel malignancies. 

Discussion  

Several recent studies have highlighted the importance of alternative pathway NF-κB 

signaling in addition to the more widely studied classical NF-κB signaling pathway during the 

development and progression of both inflammation-associated cancers of the GI tract and 

sporadic cancers which have an inflammatory element. Some elements of NF-κB signaling 

pathways and their implications for disease have been well characterized, but investigation 
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in other areas is lacking. In particular, gaps exist in our understanding of these pathways in 

the formation of esophageal cancers and the role, if any, played by the gastrointestinal 

microbiome in regulating them. 

Most of the studies reported to date have relied on relatively imprecise tools to characterize 

the function of NF-κB signaling pathways, for instance the observation that NF-κB activation 

events may be localized to specific anatomical structures within in the GI tract (e.g. Peyer’s 

patches) suggests that previous studies which have assessed NF-κB activation events in whole 

tissue preparations should be interpreted with caution. Many investigations have also relied 

on either transgenic mice in which the stoichiometry of different pathway members is 

fundamentally altered, or have used semi-quantitative analyses of protein abundance to try 

to explain the complexities of these pathways. 

Banoth and colleagues have demonstrated a different approach to research in this field by 

employing systems medicine techniques to characterize interactions between multiple 

components of this complex transcriptional regulating machinery. In the future, increasingly 

complex mathematical modeling will be required to better understand how inflammation is 

regulated by NF-κB signaling in real-time, and to apply these models to complex systems, 

including the pathogenesis of cancer. To achieve this, close collaboration between 

researchers with diverse backgrounds including clinician scientists, molecular biologists and 

systems biologists will be necessary. 
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