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Abstract By performing the exact inverse transformation, a periodic solution to channel model is
constructed and used in an NFT-based communication system. The achievable mutual information is
calculated using the non-uniform probability distribution for transmitted symbols for different link lengths.

Introduction
Nonlinear Fourier transform (NFT) has been
shown to be a highly promising tool in overcoming
the detrimental impact arising due to the Kerr non-
linearity in fibre-optic systems1,2. However, the
NFT-based transmission concept still has some
unresolved problems2. One of the challenges of
implementing the NFT in Optical communications
is to control the duration of modulated signal at
the transmitter (Tx): we wish to make it as short
as possible to have a larger net data rate and
system’s spectral efficiency (SE)3,4. That dura-
tion can be controlled by, e.g., using the recent
NFT-based modulation technique named the b-
coefficient modulation1, resulting in optical sig-
nals having a finite controllable duration. An-
other solution to this problem is to find a peri-
odic solution to the channel model (the nonlin-
ear Schödinger equation, NLSE, for our current
work) with the required duration, i.e. with a pre-
defined signal period. So we can use the signals
extended by a cyclic prefix, similar to OFDM. This
approach was investigated in5,6, where due to the
challenging complexity of exact inverse transfor-
mation, an approximation technique was adopted
to construct a signal at Tx. To this aim, the ran-
dom data is mapped on the separation of complex
points in the so-called main spectrum of a per-
turbed plane wave, given this separation is small
enough7,8. This limitation constrains the class of
available signals to a set with a confined band-
width and signal power, and renders a QAM con-
stellations with a small minimum distance. The
latter leads to a larger bit error rate due to the
presence of numerical error and optical noise. In
this work, for the first time, we construct an ex-
act periodic solution to the NLSE with arbitrary
period, which has enough degrees of freedom to
provide a truly 2-dimensional constellation.

Nonlinear spectrum for periodic signals
NFT provides an infinite number of solutions to
NLSE, parametrised through the associated non-

linear spectra (NS). For the periodic NFT (PNFT),
the NS consists of auxiliary and main spectrum
(eigenvalues) parts7. For a periodic solution con-
taining N eigenvalues in its NS, there are 4N de-
grees of freedom available for modulation: 2N

from the complex eigenvalues positions and 2N

attributed to the auxiliary spectrum. In this work
we use for the modulation only the main spec-
trum part of NS. Since it is necessary to have
at least two independent parameters to make up
a QAM constellation (after determining the sig-
nal period), we work with signals having only two
complex eigenvalues in their NS. Such signals
can be constructed considering the associated
Zakharov-Shabat system of equations5,7, consti-
tuting the forward PNFT. Then, the periodic NLSE
solutions can be generated through solving a set
of involved differential equations describing the
evolution of auxiliary spectrum7,9. Solving such
a complicated system is not feasible for com-
munication purposes even for the simplest case.
Therefore, a change of variable, called the Abel
map, is usually implemented to turn this compli-
cated evolution into a linear relations in time and
distance7. In this way, an exact periodic solution
to the NLSE can be obtained. Then to construct a
periodic solution to the NLSE we need to evaluate
a multi-dimensional Fourier series called the Rie-
mann theta function7,9. This approach again de-
mands a considerable amount of computational
resource, which makes it hardly possible to im-
plement in communications. However, assuming

Fig. 1: The nonlinear spectrum of a periodic solution with
circles representing the discrete spectrum.
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Fig. 2: B2B error for different locations
of the eigenvalue with <λ = a, =λ = b

and a, b defined in Fig. 1.

Fig. 3: Signal power for different
locations of the eigenvalue with <λ=a,
=λ=b and a, b defined in Fig. 1.

Fig. 4: The received constellation at
z = 1120 km for a 64-QAM signal with

power P = −2.72 dBm.

some symmetry in the main spectrum, one can
reduce this function into simpler one-dimensional
elliptic functions10. The main spectrum exam-
ple allowing such a reduction is shown in Fig. 1,
with three pairs of complex conjugate eigenvalues
{−a+bi,ci, a+bi}10. Parameters a and b carry the
data and can be recast as a QAM symbol. Pa-
rameter c is then determined by the choice of a
and b and by the desired solution period value.

Probabilistic shaping
The numerical accuracy of performing the inverse
PNFT (as explained above) and direct PNFT11

depends on the number of time samples, signal
power, and the particular location of eigenvalues.
The back-to-back (B2B) error without any random
noise shows the dependence of the numerical ac-
curacy on the location of eigenvalues, Fig. 2. This
error is defined as the Euclidean distance be-
tween the transmitted and received eigenvalue.
Simulation results show that the B2B error and
the error at the receiver after a noisy transmis-
sion have similar patterns with regard to their de-
pendence on the eigenvalues location, which yet
again, verifies that the main contributor to the
overall error is the numerical one for the PNFT.
Here, a Gaussian mixture model of the channel
is considered, where the conditional probability
P (λ̂) of the received eigenvalue, λ̂, on the trans-
mitted one, λ, is assumed to be Gaussian with a
λ-dependent variance σλ. Therefore we have3,12:

P (λ̂) =
∑
λ∈Λ

PλN (λ̂;λ, σλ). (1)

with Λ being the main spectrum set, Pλ the prob-
ability of sending λ and N (λ̂;λ, σλ) denotes a
Gaussian distribution for random variable λ̂ with
mean λ and variance σλ. The standard devia-
tion, σλ, is estimated from the received points.
As mentioned before, σλ has the same pattern
as the B2B error shown in Fig. 2 which in turn

depicts a considerable variation between different
points. This in fact, suggests that we can apply a
non-uniform probability distribution for the trans-
mitted symbols, in which the constellation points
that contribute more to the overall error are used
less frequently. On the one hand, our exclud-
ing the eigenvalues with high contribution to EVM
leads to a better Q2-factor, but reduces the mu-
tual information (MI). Hence, keeping the constel-
lation size, M , and the main spectrum, Λ, fixed,
we optimise Pλ in (1) to have the maximum MI,
I(λ̂, λ). This is numerically done for each signal
power and link length, and for each value of pa-
rameters the EVM is used to calculate σλ.
Simulation results
At the Tx the bit stream is mapped onto the QAM
constellation following a non-uniform probability
mass function which is obtained from the B2B er-
ror distribution or the receiver EVM. In the first set
of simulations, from the chosen eigenvalues set
we have the signal power P=−2.7 dBm. Accord-
ing to Fig. 3, P can be controlled through chang-
ing the location of eigenvalues, for example by in-
creasing =λ while keeping the signal bandwidth
fixed. Considering the signal power (Fig. 3 in ar-
bitrary units for different locations of the eigenval-
ues) along with the B2B error (Fig. 2), one can
realise that the B2B error does not directly de-
pend on the signal power. Therefore, the average
launch power does not vary with uniform or non-
uniform symbol allocation if the distribution is de-
termined with respect to the B2B error. According
to each symbol, a periodic signal is produced fol-
lowing the steps in10 and cyclically extended to
the size of chromatic dispersion memory. The
burst of symbols then is formed by packing sev-
eral signals and sent to the link with lumped am-
plification and a fibre with loss coefficient α=0.2

dB/km, dispersion parameter β=−20 ps2/km, and
Kerr nonlinearity parameter γ = 1.3/W/km.

At the Rx, the main spectrum of the signal
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Fig. 5: a) the Q2-factor calculated from the EVM, and b)
directly calculated BER against distance for 64-QAM with

uniform and non-uniform transmitter symbol probability with
average P = −2.72 dBm signal power.

is calculated by the PNFT11 and the transmitted
data are retrieved. A simple blind phase estima-
tion is used to equalise some distortions which
are mainly coming from signal broadening and in-
sufficient cyclic prefix. The length of cyclic prefix
is fixed to the signal broadening after 1000 km.

Fig. 5 shows the Q2-factor calculated from the
EVM at the receiver and the BER (directly calcu-
lated from counting the mismatches between the
Tx and Rx symbol streams) vs different propaga-
tion distances. From this figure one can compare
the results when a uniform and non-uniform distri-
bution for the transmitted symbols is considered.
These result are calculated for 200 transmissions
of symbol bursts, each having the length 12×M ,
where M is the size of constellation. As it can
be seen from Fig. 5, a considerable improvement
of 2 dB in the Q2-factor can be earned by the
probabilistic shaping of constellation. However,
a more informative figure is the maximum achiev-
able error-free MI or SE for various link lengths.
Thanks to the used exact inverse PNFT, a full
control over the signal’s power and time duration
makes it possible to optimise the signal in terms of
its parameters, and to find the maximum SE. The
achievable MI in bits per symbol for a discrete-
modulation NFT system with one eigenvalue is
presented in Fig. 6. It is worth noting that these
results are to be compared with other discrete
NFT communication systems such as eigenvalue
communication in which the throughput of the
system is smaller when compared to a continu-
ous spectrum modulation3.

Conclusion
For the first time, an exact inverse transformation
for PNFT is performed and the resulted signal is
used in a fibre-optic communication system. Con-
sidering the B2B error caused by the numerical
routines inaccuracy, a probabilistic shaping for a
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Fig. 6: Achievable mutual information versus distance for a
signal with average power of P = −2.72 dBm with uniform
and non-uniform probability distribution of the transmitted

symbols.

Gaussian mixed model is applied, leading to a 2-
dB gain in the Q2-factor and improvement in the
achievable MI.
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