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Abstract. We evaluate multiple market-based measures for US
and eurozone individual bank tail risk and banksystemic risk. We

apply statistical extreme value analysis to the tails of bank eq-

uity capital losses to estimate the likelihood of individual institu-

tions’ financial distress as well as individual banks’ exposure to

each other (“contagion risk”) and to global shocks (“extreme sys-

tematic” risk). The estimation procedure presupposes that bank

equity returns are “heavy tailed” and “tail dependent” as iden-

tifying assumption. We also assess to what extent magnitudes

of tail risk and systemic risk have been altered by the global fi-

nancial crisis. Using both US and eurozone banks allows one to

make a cross-atlantic comparison of the financial systems’ riskiness

and financial stability. For Europe we assess the relative impor-

tance of cross-border bank spillovers as compared to domestic bank

spillovers. The results suggest, inter alia, that both tail risk and

systemic risk in the US are higher than in the eurozone. We cannot

generally conclude that domestic eurozone spillover risk dominates

cross-border eurozone spillover risk. Finally, tail risk and systemic

risk have increased over time on both sides of the Atlantic.

1. Introduction

The banking and economic crisis that started in 2007 has reminded

everybody that financial systems - and the banking sector in particular

- are inherently fragile and that financial stability should not be taken

for granted. The negative impact on the real economy is undeniable

although spectacular contractions in real economic activity have been

smoothened by the sustained efforts of central banks and national gov-

ernments to stabilize the financial system.1 Banks not only play a key

Date: This draft March 2013.

Key words and phrases. Banking, Systemic Risk, Asymptotic Dependence, Mul-

tivariate Extreme Value Theory,

JEL classification: G21, G28, G29, G12, C49.
1see e.g. Aizenman et al. (2011) for a multi-country panel data study on the

link between financial expansions and contractions and their real economic impact.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aston Publications Explorer

https://core.ac.uk/display/161815604?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 S. STRAETMANS AND S. CHAUDHRY

role in the money creation process and in the international payments

system but bank credit is also a determining factor in the financing of

investment and growth. Moreover, monetary history learns that badly

managed situations of financial instability have sometimes turned the

real economy into depression and hyperinflation. Thus, monitoring

(preventive action) or restoring (curative action) financial stability has

regained central bankers’ and supervisory authorities’ attention as one

of the top priorities.

The ongoing global financial crisis has clearly revealed the limitations

of the existing regulatory framework. Whereas the Basel I and Basel

II accords mainly focussed on monitoring the financial soundness of

individual banks, there is by now growing consensus that regulators also

have to consider a bank’s contribution to overall systemic instability by

e.g. taking into account a bank’s inter-linkages with other banks. The

crisis has indeed shown that financial regulation and supervision should

focus more on systemic risk. The minimum requirements envisaged in

the Basel III accord aim at establishing rules that take account of this

systemic risk. Systemic risk indicators could e.g. be used as a basis to

impose taxes or capital surcharges on systemically important financial

institutions (provided one reaches consensus over what systemic risk

exactly is), see e.g. Acharya et al. (2010).

Measuring individual risks and systemic risks is a complex affair

in highly developed financial systems. Moreover, pre-crisis structural

shifts in developed financial systems suggest that systemic risk mea-

surement and monitoring cannot be approached in a purely static fash-

ion. The paper will mainly focus on comparing the financial stability of

the US and eurozone financial systems. We believe such a cross-atlantic

comparison makes sense because of the perception that banking con-

solidation and financial deregulation has been stronger in the US than

in the eurozone during the last 10 to 15 years. More specifically, while

there has been considerable bank consolidation within individual in-

dustrialized nations in recent years, cross-border bank mergers and

acquisitions (for example within Europe) have generally been less fre-

quent (Group of Ten, 2001). On the one hand, the removal of US

regulatory barriers to universal and cross-state banking has led to the

emergence of large and complex banking organizations (LCBOs) that

have not only become “too big to fail” but also “too complex” to fail.

The European banking market, on the other hand, still seems more

fragmented despite the introduction of the single currency.2 Eurozone

2Usign a comparable methodology to ours, Hartmann et al. (2006) were unable to

identify structural breaks in their systemic risk indicators around the introduction

of the single currency (1999). We will therefore not test for a euro effect in this
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retail banking is generally far less integrated than wholesale banking

and banks’ capital market-related activities. Also, cross-border bank

consolidation (M&A activity) has been relatively modest as compared

to the US. This relatively lower degree of European banking market in-

tegration may be due to cross-country legal and tax barriers, differing

national supervisory rules, cultural differences or geographic distance,

see e.g. Berger et al. (2003) or Heuchemer and Kleimeier (2009). It will

be interesting to see whether and to what extent this differing degree of

banking market integration across the two continents is also reflected

into indicators of systemic risk. Next to making a cross-atlantic com-

parison, we also identify bank spillover (contagion) likelihoods within

and across the European countries in our sample.3 As to date, Eu-

ropean banks are still supervised by national regulators which implies

cross-country differences in regulation and supervision may explain dif-

ferences in domestic bank spillovers. Thus, this justifies an evaluation

of spillover likelihoods on both a continent level as well as a country

level. In addition, we are also interested in comparing eurozone do-

mestic spillover effects with eurozone cross-border spillover effects: if

systemic risk is related to the degree of European banking integration,

we expect countries with strong banking ties to exhibit comparable in-

tensities of domestic and cross-border spillover; whereas cross-border

contagion is expected to be lower for country pairs with banking sectors

that do not have much involvement. If domestic and cross-border con-

tagion likelihoods are found to be of comparable magnitude throughout

the eurozone, this would further strengthen the argument in favor of

a more eurozone-wide financial regulatory and supervisory framework,

e.g. an EU Banking Union.4

The fact that supposed triggers of systemic instability like e.g. the

degree of interbank interconnectedness, the location of banks within

paper. However, this does not necessarily imply that the single currency did not

impact financial integration and systemic risk. Monetary integration has been a

gradual process spread out over half a decade preceding 1999 which makes it likely

that the effects on systemic risk have also been spread out over time. Structural

change tests probably lack sufficient statistical power to detect breakpoints when

shifts are so gradual. Alternatively, it is of course possible that monetary integration

did not impact systemic risk: stronger cross-border crisis propagation mechanisms

resulting from the introduction of a eurozone-wide money market could have been

neutralized by better risk sharing and a better ability of a deeper market to absorb

shocks (i.e. the same or even lower systemic risk).
3In this paper we use the terms “spillover” and “contagion” interchangeably.
4The EU’s banking union plans seek to place eurozone banks under the overar-

ching supervision of the ECB, followed by the creation of a bank resolution scheme

for the bloc and, eventually, a common deposit scheme.
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the interbank “network” or the correlations between loan portfolios are

often difficult to observe constitutes an additional complication when

assessing financial stability. Therefore, a majority of the empirical

banking stability literature has proposed more indirect “market-based”

indicators of systemic risk. In particular, all kinds of co-movement

measures for bank equity returns have been applied. Probably the

oldest strand of literature on bank equity “spillovers” applies event

study methodology to measure the impacts of specific bank distress

or bank failures on other banks’ stock prices, see e.g. Swary (1986),

Wall and Peterson (1990) or Slovin, Sushka and Polonchek (1999).

Other authors applied various regression approaches to link abnormal

bank stock returns to asset-side risks, including those related to ag-

gregate shocks, see e.g. Smirlock and Kaufold (1987) or Kho, Lee and

Stulz (2000). De Nicolo and Kwast (2002) use a proxy of banking

consolidation as explanatory variable for the changes in bank equity

return correlations over time. Gropp and Moerman (2004) measure

conditional co-movements of large abnormal bank stock returns and of

equity-derived distances to default. Gropp and Vesala (2004) use an

ordered logit specification to identify spillovers between banks based

on the changes in their distances to default. More recent market-based

measures of systemic risk include the Shapley Value (Tarashev et al.

(2010)), Conditional Value-at-Risk (Adrian and Brunnermeier (2010))

and Marginal Expected Shortfall (Acharya et al. (2010) or Brownlees

and Engle (2011)).5 Whereas the literature described above mainly

focused on identifying contagion-type bank equity spillovers, other pa-

pers argued that banking crises are related to macro shocks on an

aggregate level. Using historical data on banking panics and business

cycle proxies going back to the 19th Century, Gorton (1988) shows

that business cycles have often been leading indicators of bank panics.

Gonzalez-Hermosillo et al. (1997) do the same for the 1994-1995 Mex-

ican crisis and Demirgüc-Kunt and Detragiache (1998) provide further

5Alternative approaches to systemic risk modelling have been developed that do

not depend on market variables like e.g. stock prices, CDS spreads or distance-

to-default. Deposit withdrawals or survival times of healthy banks during banking

crises have been studied by e.g. Saunders and Wilson (1996) and Calomiris and

Masson (1997, 2000). A more recent literature tries to related bank contagion risk

to central bank data on interbank exposures, see e.g. Upper and Worms (004), De-

gryse and Nguyen (2004), Lelyveld and Liedorp (2004) or Mistrulli (2005). Purely

theoretical models of bank contagion have been proposed by e.g. Allen and Gale

(2000) or Freixas et al. (2002). Bisias et al. (2012) provide a a comprehensive

survey of 21 systemic risk indicators that have been proposed through time (both

market-based and others).
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multi-country evidence. Hellwig (1994) suggests that the fact that de-

posit contracts are noncontingent on the state of the macro economy

may also partly explain their vulnerability towards aggregate shocks.

The systemic risk indicators we are going to work with in this paper

complement both the contagion literature as well as the literature on

aggregate macro shocks destabilizing the banking system.

This paper partly builds on the statistical extreme value (EVT) ap-

proach followed by e.g. Hartmann et al. (2006) towards identifying

systemic risk.6 In line with the existing empirical systemic risk liter-

ature reviewed above which distinguishes between “bank contagion”

and “aggregate macro shocks” as different forms of bank instability,

we distinguish conditional “co-crash” indicators between bank equity

returns (to identify “spillover” or “contagion” risk) from crash proba-

bilities of bank stock returns conditional on aggregate shocks (to iden-

tify “extreme systematic risk” or “tail-0”). Notice the proposed risk
indicators are also market-based indicators because they make use of

banks’ equity returns. More specifically, the EVT approach presup-

poses that bank stocks are efficient in the sense that large daily losses

in bank stocks are not sunspots but fundamentals-based and reflect

that banks are financial distressed. Moreover, joint sharp falls in bank

stocks reflect the risk of a problem in one bank spreading to other

banks (“contagion” risk). Finally, joint sharp falls in individual bank

stocks and a non-diversifiable risk factor like the market index reflect

the extreme systematic risk exposure of an individual bank to aggregate

shocks.7

The probabilistic spillover measures that we also refer to as “spillover”

risk or “contagion” risk in this paper are related to a large body of

6Other applications of multivariate EVT towards assessing asset market linkages

during stress periods include Longin and Solnik (2001) and Poon et al. (2004) for

stock markets, Hartmann et al. (2003a/b) for currency linkages and Hartmann et

al. (2004) for stock-bond linkages.
7Market-based indicators of tail risk or systemic risk also have their limitations.

First, by definition they are unsuited to evaluate the systemic risk contribution of

non-listed banks (and one knows that some of the non-listed banks can be quite

big and potentially systemically important indeed). Another point of discussion is

that market-based indicators are supposed to act as “canaries in the coal mine”

or “early warning indicators” of accumulating systemic risks. This can only be

the case if bank stocks are informationally efficient and thus fully reflect balance

sheet risks and relationships between different banks’ risks due to interbank lending,

overlapping loan portfolios or other sources of common exposures. However, some

of the mentioned information like interbank interconnectedness is not publically

available. Also, balance sheet risks have been increasingly shifted off the balance

sheet partly due to financial deregulation. Thus, the presumption that bank stocks
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literature on theoretical and empirical financial contagion. Several de-

finitions of bank “contagion” co-exist in this literature but Hartmann

et al. (2006) summarize five identification criteria: (i) bad news about

one financial institution adversely affects other financial institutions

or a decline in an asset price leads to declines in other asset prices

; (ii) the interdependence between asset price declines during stress

periods differs from those observed in normal times (regular “interde-

pendence”); (iii) the co-movements between bank stocks are in excess

of what can be explained by economic fundamentals; (iv) the events

constituting contagion are negative “extremes”, such as bank failures

or bank equity capital meltdowns, so that they correspond to crisis

situations; (v) bank stock co-movements are the result of propagations

over time rather than being caused by the simultaneous effects of com-

mon shocks. Most empirical strategies to identify contagion only reflect

the first criterion (i) and widely differ on the other points. The cru-

cial distinction between our EVT approach and previous approaches

to measuring systemic risk is that we strongly emphasize criterion (iv),

i.e. we focus on events that are severe enough to basically always be

of concern for regulators and supervisors caring about financial stabil-

ity.8 Some of the other mentioned criteria have their own rationale, but

more regular shock transmission is not necessarily something regulators

or policymakers need to care about if financial stability is their main

concern. The shock propagation criterion (v) is certainly interesting

to investigate but dynamic spillovers are virtually non-existent in daily

are efficiently priced and that market-based indicators may therefore be forward-

looking is probably a too strong assumption. We nevertheless believe that market-

based indicators may be a useful tool in that they may at least partly reflect the

risks that threaten banks.
8In terms of definition, the Marginal Expected Shortfall (MES) and the Con-

ditional Value-at-Risk (CoVaR) come close to our indicators as they are also

probabilistic-based: MES is the expected loss on individual bank equity capital

conditional on large market portfolio losses. CoVaR is the Value-at-Risk (VaR) of

the financial system conditional on institutions being under distress. In contrast

to previous approaches towards modelling market linkages and spillovers that were

often correlation-based, both MES, CoVaR and our indicators allow for non-linear

dependence in the data. There are, however, also two major differences between

MES, CoVaR and our approach. First, we also consider purely multivariate mea-

sures of spillover risk whereas both MES and CoVaR are bivariate in nature. Sec-

ond, and most importantly, the current empirical literature on CoVaR and MES

does not evaluate these indicators very deep into the joint tail of bank stock re-

turns; one may actually wonder whether one truly captures systemic events with

the latter indicators. This constitutes the main difference with our approach, cf.

criterion (iv) to identify contagion.
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return data and one probably needs to use high frequency data in order

to identify intra day bank contagion. We leave this for future research.

The current study contributes to existing studies on banking system

stability in different dimensions. First, and as a “prequel” to study-

ing bank risk spillovers, we estimate extreme downside risks of single

financial institutions’ bank capital as a “summary statistic” of these

institutions’ overall risk-taking behavior. We distinguish between the

tail index, tail quantiles and expected shortfalls as measures of extreme

downside risk for bank equity capital. Although so-called integrated

risk management is increasingly important, different types of bank risks

are still too often separately monitored or managed. However, when

bank stocks are efficiently priced, it is reasonable to assume that dif-

ferent types of bank risk (credit risk, liquidity risk, operational risk,

interest rate risk or trading risk) should be jointly reflected in the evo-

lution of the market value of bank equity. Thus, when news is revealed

about one of these risk sources, we assume it is directly discounted in

the market value of the bank equity capital. Poorly monitored traders

in dealing rooms of big international banks accumulating huge trading

losses constitute only one example. Furthermore, we know that huge

losses arising from one of these bank risks could even drive financial

institutions into overnight financial distress, see e.g. Danielsson and de

Vries (1997) for examples. We use the resulting sharply negative stock

market reactions as price information to identify our downside risk in-

dicators. Second, we perform a cross-atlantic comparison of systemic

risk over time (we earlier motivated why a cross-atlantic comparison

would make sense from an economic point of view). There are hardly

any papers that compare the two continents in terms of systemic risk

apart form the Hartmann et al. (2006) paper. Third, the current study

imposes the identifying restriction of “tail dependence” on the systemic

risk indicators’ estimation procedure. Loosely speaking, a pair of bank

stock return losses (1 2) (0 0) is tail dependent when the con-

ditional co-crash likelihood does not vanish to zero in the tail area,

i.e., lim→∞  {1   |2  }  0 Previous studies that applied

extreme value techniques towards measuring bank spillovers like e.g.

Hartmann et al. (2006) or de Jonghe (2010) allowed for tail inde-

pendence; but this implies that the systemic risk estimates may have

underscored the true value if the data were actually tail dependent.

Moreover, imposing tail dependence is a reasonable assumption given

the interconnectedness of banks via interbank markets and via their

common asset exposures, see e.g. de Vries (2005). The tail dependence

assumption is not only statistically convenient but also economically

relevant because it renders conservative estimates (i.e. upperbounds)
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for the proposed systemic risk indicators; we believe this is a desir-

able property of systemic risk indicators that are primarily used for

“prudential” motives of regulatory and supervisory bodies. Fourth,

our indicator of extreme systematic risk can be conditioned on many

different sources of non-diversifiable risk. Previous studies typically

conditioned the tail- on an index for bank stocks or a general stock

market index, see e.g. Straetmans et al. (2008). Given the fact that

real estate and sovereign debt played a key role in the recent systemic

banking crisis, we condition the tail- both on traditional factors like

a banking and general stock market index but also on a real estate

and sovereign debt country index.9 Fifth, we apply Huang’s (1992)

expectational linkage measure in a banking context as an indicator of

multivariate contagion risk.10 The indicator reflects the expected num-

ber of banks jointly triggered into distress when at least one bank in

the system is distressed or failed. To our knowledge, we are the first

to apply this multivariate measure of extreme co-movement to bank-

ing. Last but not least, the performed tail risk and tail co-movement

analysis is performed for an extended sample encompassing the demise

of Lehman Brothers as well as the eurozone sovereign debt crisis up to

June 2011. This enables us to compare pre-crisis and crisis estimates

of downside risk and systemic risk indicators as well as to compare our

results with previous cross-atlantic comparisons like in Hartmann et al.

(2006) that do not use the crisis data11

The used data are daily bank stock returns in euro area countries

and the United States between April 1992 and June 2011. We choose

15 banks per continent based on the criteria of balance-sheet size and

involvement in interbank lending. Our sample represents the systemi-

cally most relevant financial institutions, but neglects a large number

of smaller banks. Several selected banks were financially distressed

during parts of the sample and also global markets were characterized

by severe episodes of stress: the systemic banking crisis that developed

after the Lehman debacle and the ongoing eurozone sovereign debt cri-

sis constitute the most notorious episodes in our sample. All in all, we

have about 5,000 stock price observations per financial institution.

9Co-crash probabilities of bank equity capital can be conditioned on virtually any

factor of interest provided the conditioning factor’s data frequency and availability

is identical to that of the bank’s equity prices. As such, these types of extreme

probabilities can also be seen as a device for macro stress tests.
10Previous research has used this indicator of extreme co-movement to assess

international stock market linkages (Straetmans, 1998), stock-bond linkages (Hart-

mann et al., 2004) or currency linkages (Hartmann et al., 2010).



SYSTEMIC RISK 9

Anticipating our results, we find that extreme downside risk of US

bank equity capital (tail quantiles and expected shortfalls) seems to

dominate its eurozone equivalent, but only over the crisis sample. Sec-

ond, multivariate spillover (contagion) risk for US banks also exceeds

its equivalent for European banks. Third, upon “dissecting” the multi-

variate spillover risks into bivariate spillover risk probabilities for pairs

of US banks and pairs of eurozone banks separately, we find that US

contagion probabilities dominate both eurozone domestic and cross-

border contagion probabilities. Domestic contagion dominates cross-

border contagion for Italy and Spain but not for Germany and France.

The highest spillover found is also the cross-border spillover between

Italy and Spain. The domestic vs. cross-border contagion outcomes

are such that we cannot generally conclude that domestic eurozone

contagion dominates cross-border eurozone contagion (or vice versa).

Fourth, and in line with the multivariate spillover risk estimates, the ef-

fects of macro shocks emphasized by the estimated tail-s are somewhat

higher for the US than for the eurozone, although not for all considered

conditioning factors. The tail- estimates are found to be surprisingly

high, even for the pre-crisis periods, which illustrates the relevance of

aggregate risks for banking system stability. Individual banks seem

most exposed to sharp drops in a banking index but exposures towards

real estate and sovereign debt shocks are far from negligible either and

have grown in importance during the recent crisis. Last but not least,

upon comparing pre-crisis estimates with crisis estimates, both our in-

dicators of downside risk and systemic risk have increased through time

in a statistically and economically significant way; but the indicators

already exhibit time variation for rolling sample estimates in the pre-

crisis period showing that time variation is a structural phenomenon

that is not limited to the systemic banking crisis only.12 Our results

partly confirm the outcomes of the preceding studies like Hartmann

et al. (2006), Acharya et al. (2010) and Gorton (2010) but there are

also some striking discrepancies which will be discussed more in-depth

when going through the empirical results.

12Insofar as equality tests aim to detect structural change, candidate-break dates

are chosen exogenously, i.e. we split the sample according to generally accepted

dates for the start of the crisis. Previous work that looked into financial system

stability, see e.g. Hartmann et al. (2006), implemented endogenous stability tests

like the Quintos et al. (2001) procedure. However, the former test is designed to

look into the temporal stability of the tail dependence parameter and not on the

systemic risk indicators themselves. Given that we restrict the tail dependence

parameter to be equal to 1 ( = 1), this type of endogenous structural change test

would not make sense for the current paper.
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The paper is structured as follows. The next section discusses in-

dicators of downside bank risk (2.1) and systemic risk (2.2). We dis-

tinguish tail-VaR and expected shortfall indicators for banks’ equity

capital downside risk measures. For systemic risk, we both consider

multivariate spillover (or contagion) indicators as well as an aggregate

tail- indicator. Section 3 presents estimation procedures for both

measures as well as test statistics to compare differences in tail risk

and systemic risk across continents and across time. Empirical results

are summarized in Section 4. After a short description of data selec-

tion and descriptive statistics (4.1) we discuss full sample, pre-crisis

and crisis estimates of downside risk (4.2) bank spillover risk (4.3) and

extreme systematic risk (4.4) for both the euro area and the US. The

extreme systematic risk measure (tail-) is conditioned on a multitude

of factors including real estate and sovereign debt indices. We also as-

sess whether the downside risk and systemic risk indicators significantly

differ across continents and across time. The final section concludes.

All individual bank outcomes are provided in appendix.

2. Indicators of downside risk and systemic risk

We introduce extreme downside risk (“tail risk”) measures for finan-

cial institutions. Next, several systemic risk indicators are considered

that either reflect multivariate bank contagion or individual banks’ sen-

sitivity to system-wide non-diversifiable shocks

2.1. Extreme downside risk of bank equity. We define (in)solvency

risk as the probability of adverse shocks in the market value of the

bank’s equity capital relative to other liabilities. Provided financial

markets process information in a more or less efficient way, problems

with e.g. the credit portfolio, interbank liquidity constraints or failing

asset-liability management will be reflected in the bank’s stock price.

Thus, the market-based measure of “bank tail risk” that we will use

can be seen as an umbrella for many different types of financial risk

including e.g. liquidity risk, credit risk, operational risk or interest rate

risk.

We define downside risk measures for financial institutions by ex-

ploiting the empirical stylized fact that equity returns of financial in-

stitutions - just like all other financial returns - exhibit “heavy” tails,

see e.g. Mandelbrot (1963) for an early reference to non-normality and

fat tails in financial markets. Let  stand for the dividend-corrected

stock price of a financial institution. Define  = − ln ( /−1 ) as the
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loss distribution we are interested in.13 Loosely speaking, the heavy tail

feature implies that the marginal tail probability for  as a function of

the corresponding quantile can be approximately described by a power

law (or “regularly varying” tail):

(2.1)  {  } ≈ L ()−  large,

and where L () stands for a “slowly varying” function.14
The so-called tail index  determines the tail probability decay if

one looks at more extreme parts of the distributional support. Clearly,

lower values of  imply a slower decay to zero and a higher tail proba-

bility for given  The regular variation property implies that all distri-

butional moments higher than , i.e.,  []     are unbounded.

In contrast, all statistical moments exist (and are thus bounded) for

e.g. the thin-tailed normal distribution , i.e.,  [] ∞, ∀ Popular
distributional models like the Student-t, the class of symmetric sta-

ble distributions or the Generalized Autoregressive Conditional Het-

eroscedasticity (GARCH) model all exhibit fat tails. The exceedance

probability in (2.1) is defined for given values of the barrier or Value-

at-Risk (VaR) level . Alternatively, the tail-VaR  can be calculated

for a given value of the tail probability 

Although VaR is a crucial part of a financial risk manager’s toolkit,

it is not a “coherent” risk measure and alternative risk measures have

therefore been proposed like e.g. the conditional expected loss on a

bank’s equity capital given a sharp fall in that equity capital (  ).

However, it can be easily shown that the expected shortfall is closely

related to VaR:

(2.2)  ( −  |   ) =


− 1 

which shows that the expected shortfall is a linear transformation of

 within an EVT framework. The expected shortfall indicator signals

the risk manager how severe the violation of the VaR boundary may

be whereas a calculated VaR quantile in itself does not provide that

information.

2.2. Systemic risk indicators. In line with the downside risk mea-

sures introduced in the previous subsection, the systemic risk indicators

we introduce are market-based in the sense that they require the input

13For sake of convenience, negative equity returns (losses on equity capital) are

mapped into positive numbers which implies that all formulae of downside risk

measures will be defined for the distribution’s upper tail.
14This implies that lim

−→∞
L () L () = 1 and   0
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of extreme stock price movements. Extreme co-movements, as mea-

sured by co-crash (or co-distress) probabilities between stock returns

of individual banks, are meant to capture “spillover” or “contagion”

risk. The co-crash probabilities can be evaluated for bank pairs (bi-

variate spillover risk) but also for more than two banks (multivariate

spillover risk). We will therefore consider both options. Extreme co-

movements between individual banks’ stock returns and the returns of

a general stock market index or another measure of non-diversifiable

risk (the so-called “tail-”) are used to assess the exposure to aggregate

shocks. In what follows, we define the contagion measures (spillover

probabilities between bank stocks) and the tail- in more detail.

Starting with the contagion measures, consider a banking system

consisting of  banks (either referring to the same country or conti-

nent). As previously, the upper tail observations for  ( = 1 · · ·  )
reflect bank ’s stock return losses. For sake of convenience, the “cri-

sis” levels or quantiles  ( = 1 · · ·  ) are chosen such that the
corresponding tail probabilities are equal across banks:

(2.3)  {1  1} = · · · =  {  } = · · · =  {  } .

The inverse marginal quantile functions  = (1− )
−1
() relate

the excess probability  =  {  } to the corresponding return
quantile . Keeping the significance level  equal across risky posi-

tions makes sense because it allows one to rank banks according to the

extreme downside risk of the banks’ equity capital. The crisis barri-

ers  generally differ across banks, because the marginal distribution

functions  {  } = 1−() are bank specific. The crisis levels

 can be interpreted as Value-at-Risk (VaR) levels that will on aver-

age only be exceeded once in 1 time periods, i.e., once in −1 days
if the data frequency is daily.15 Suppose now that we want to know to

what extent financial distress at one bank tends to affect other banks

and tends to ripple through the system. One identification approach

is to calculate the probability of joint distress on a set of  −  bank

stocks, conditional on the near-insolvency (or distress) of another set

15Most financial institutions also calculate Value-at-Risk (VaR) levels for the

(same) 5% and 1% significance levels. This makes the riskiness of different banks’

positions comparable provided the risk calculations are made public.
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of    banks. Elementary probability calculus learns that

 | = 
n\

=+1
  ()

¯̄̄\

=1
   ()

o
=


nT

=1  ()
o


nT

=1  ()
o ,(2.4)

see Hartmann et al. (2003a, 2003b, 2006) who provide earlier appli-

cations of this multivariate contagion measure to evaluate the breadth

of currency crisis and the systemic risk in the banking sector, respec-

tively. Taking into account that the marginal probabilities obey (2.3),

statistical independence of bank stock returns is sufficient to reduce

the indicator to −. This provides a lower bound against which

the dependent cases can be judged. We limit ourselves to calculating

two special cases of this indicator in the empirical section. First, we

calculate the multivariate conditional probability for  = 1 which im-

plies evaluating the systemic co-crash probability for a whole banking

system of  − 1 banks conditioned on a single distressed bank:

 |1 = 
n\

=2
  () |1  1 ()

o
=

1


 {1  1 ()  · · ·    1 ()  · · ·     ()}(2.5)

Notice the bank contagion measure stays invariant to the choice of

the conditioning bank because of the marginal probability equality as-

sumption in (2.3). For conditioning sets   1, this would no longer

be the case because the denominator probability 
nT

=1  ()
o

in (2.4) depends on the banks included in the L-dimensional set. Bi-

lateral ( = 2 and  = 1) bank contagion probabilities constitute a

second special case of (2.4). We will compare eurozone domestic and

cross-border bank contagion by averaging the bilateral domestic and

cross-border contagion probabilities.

The main advantage of the bank contagion measure (2.4) is that one

can condition on specific banks depending on e.g. size, leverage, ge-

ographical location. This may bring more clarity as to which banks

are more often at the origin of widespread systemic crises. Risk man-

agers can calculate such an indicator to stress test what may happen to

certain institutions when other institutions in the system collapse. Sim-

ilarly, knowing the “hot spots” is useful for the supervisory surveillance

of international financial markets. Obviously, the previous indicator al-

lows for a nearly unlimited amount of possible conditioning bank sets.
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This flexibility in conditioning is at the same time a disadvantage be-

cause it may not always obvious what the relevant conditioning set of

banks should be. Moreover, one would like to limit the dimensionality

of the estimation problem by not having to calculate so many contagion

probabilities. The probabilistic measure (2.4) simply leaves too many

degrees of freedom in that respect. The multivariate generalization of

the two-dimensional “conditional expectation indicator” presented in

Hartmann et al. (2004) constitutes an attractive alternative as conta-

gion indicator. It boils down to the conditional expectation [| ≥ 1]
where  stands for the number of banks that are jointly triggered into

distress. It reflects the expected number of distressed banks in the fi-

nancial system given at least one distressed bank. The “crash” number

 is defined as the sum of  indicator variables:

(2.6)  =

X
=1

1 {  ()} ,

where 1 {·} equals one for a financially distressed bank and zero oth-
erwise. As before, we assume that the marginal distribution functions

of the individual bank return losses satisfy the equality condition (2.3).

Elementary probability theory (definition of conditional expectation)

leads to the chain of equalities:

(2.7) [| ≥ 1] =  []

 { ≥ 1} =
P

=1 {  ()}

nS

=1  ()
o ,

and where the denominator of (2.7) is defined as


n[

=1
  

o
= 1−  {1 ≤ 1 · · · ≤  · · ·   ≤ } 

see e.g. Straetmans (1998) or Hartmann et al. (2004) for further de-

tails. In contrast to the previous contagion indicator (2.4), the expec-

tations measure in (2.7) is not conditioned on specific distressed banks:

the event that at least one of the banks gets distressed constitutes the

conditioning event (but one does not need to specify which bank that is

to calculate the conditional expectation).16 Indicator (2.7) summarizes

systemic risk in one single number. Taking into account the restriction

16This “invariance” poperty is also characteristic for e.g. the Bae et al. (2003)

multinomial logit approach towards identifying financial contagion but the latter

approach does not enable evaluating true tail co-comovements deep into the distri-

butional tail.
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in (2.3), the conditional expectation indicator further specializes to:

(2.8) [| ≥ 1] = 


nS

=1  ()
o 

which solely reflects dependence in the multivariate tail. In other

words, this variant of the -measure is not “contaminated” by any

information on the marginal distributions’ bank returns. Under the

special case of statistical independence, the expectational linkage mea-

sure reduces to [| ≥ 1] = 
.³
1− (1− )


´
which acts as a

lower bound to the true degree of bank contagion.17

Up to now, we considered indicators that measure the likelihood that

distressed banks trigger other banks into distress as in some domino

“cascade”. A second class of banking system risk indicators is a bivari-

ate version of (2.4), with () = (1 2) and where the conditioning set

refers to extreme downturns of a “market portfolio”  or some other

indicator of non-diversifiable aggregate risk. This “tail-” measure re-

flects “extreme systematic risk” and can be seen as a tail equivalent of

the classic regression-based CAPM-, see Hartman et al. (2006) and

Straetmans et al. (2008). Denote the (log) return losses on the market

portfolio by  and let  be the common tail probability, then the

multivariate probability measure in (2.5) reduces to:

(2.9)

 {2  2 () |   ()} =  {1  1 ()     ()}




The indicator reflects how likely it is that an individual bank’s equity

capital drops sharply overnight, if there is an extreme negative system-

atic shock. Under the special case of statistical dependence, the tail-

reduces to 2 =  which acts as a lower bound to the true value

of extreme systematic risk. Our analysis of extreme aggregate risk in

this paper encompasses a variety of choices for  ranging from bank

stock indices, general stock indices, real estate indices and sovereign

bond indices.

3. Estimation of tail risk and systemic risk indicators

When asking different people, consensus will probably not arise on

what extreme and systemic events are. On the other hand, most would

probably agree that the recent (or current?) banking and financial

17It can be easily shown that lim→0 { | ≥ 1} = 1 This simply reflects that
full statistical independence is a sufficient condition for tail independence.
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crisis has a systemic character which implies that the frequency (a

few times a century?) and severity of such systemic events is suffi-

ciently important to justify its measurement and monitoring. Upon

assuming parametric probability distributions as the true underlying

distributional model, the calculation of the proposed univariate and

multivariate measures of tail risk and systemic risk is straightforward

because it only requires the estimation of the distributional parame-

ters by, e.g., maximum likelihood techniques. However, if one makes

the wrong distributional assumptions, the tail risk and systemic risk

estimates may be severely biased due to misspecification. As there is

no evidence that stock returns are identically distributed - even less so

for the crisis situations we are interested in - we want to avoid very

specific distributional assumptions for bank stock returns. Therefore,

univariate tail risk measures and multivariate systemic risk indicators

will be quantified with semi-parametric estimation procedures. First,

we discuss semi-parametric estimators of extreme downside risk (tail

indices, tail quantiles and conditional expected shortfalls) before turn-

ing to estimation procedures for the systemic risk indicators. We end

the section with some testing procedures for testing the null hypotheses

of no structural change and absence of cross sectional differences in tail

risk and systemic risk.

3.1. Estimating downside bank risk. We earlier noticed that bank

stock returns - like all other financial returns - exhibit heavy tails:

 {  } = L ()−
with  large and where L () L () converges to 1 for large  and

  0 Under some mild extra conditions this class of distributions

obeys the following 2nd order expansion for large :

(3.1)  {  } ' −
¡
1 + − + 

¡
−

¢¢


as  ∞ and     0 see de Haan and Stadtmüller (1996).18 We

are now interested in estimating the quantile  for extremely low values

of  ≡  {  }  An intuitive derivation of such a quantile estimator
proceeds as follows (see de Haan et al. (1994) and Danielsson and de

Vries (1997) for the original references). Let e  1 but close to 1,
and   1, where  is the sample size and e,  stand for the in sample
and out of sample tail probabilities, respectively. We want to estimate

18The scaling constant  together with the second order term − leads to an
approximation of the slowly varying function L() ≈ 

¡
1 + −

¢
which converges

to  for large ; but the convergence goes quicker for larger . Higher values of 

imply that the second order tail expansion comes closer to a pure Pareto-type tail

decline.
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the out of sample quantile  by using the empirical counterpart of the

in sample quantile  By using the above expansion, we get:
 '  ()

− £
1 + −

¤
and e '  ()−

h
1 + 

−
i


Division of  and  and rearranging renders

 ' 
µe


¶1Ã1 + −
1 + 

−
!1



Ignore the second term and replace  by its empirical counterpart
− (1 ≤ · · · ≤ − ≤ · · · ≤ ) for which  is closest

to e. The “tail cut-off point” − is the lower bound of the set

of upper order extreme returns used to identify the tail quantile with

 the number of extremes used in estimation. The extreme quantile

estimator then becomes:

(3.2) b ' −

µ




¶1


De Haan et al. (1994) establish consistency and asymptotic normal-

ity of the estimator. The tail-VaR estimator b extends the empirical
distribution function outside the domain of the sample by means of its

asymptotic Pareto tail from (2.1).19 The quantile estimator requires

an estimate for the tail index . In line with the majority of empiri-

cal studies on heavy tails and extreme events, we use the Hill (1975)

estimator:

(3.3) b = Ã 1


−1X
=0

ln

µ
−
−

¶!−1


where  has the same value and interpretation as in (3.2). Further

details on the Hill estimator and related procedures to estimate the tail

index are provided in Jansen and De Vries (1991) or the monograph by

Embrechts et al. (1997). Finally, an estimator for the expected equity

capital loss given a sharp fall in the equity capital (previously denoted

as “expected shortfall”) easily follows by imputing the Hill statistic

19The quantile estimator (3.2) can be seen as the 1rst order Taylor approxima-

tion of (2.1) with 

(−) b an estimator of the constant term in the slowly

varying function L() How good this approximates the true tails has been pre-

viously studied by e.g. Danielsson and de Vries (1997). We performed our own

simulation study for a variety of data generating processes and found that the per-

formance of the quantile estimator is quite satisfactory. Details of the simulation

studies are available from the authors upon request.



18 S. STRAETMANS AND S. CHAUDHRY

(3.3) and the quantile estimator (3.2) in the definition of the expected

shortfall (2.2):

(3.4) b ( − b |  b ) = bb− 1 
Notice the Hill statistic (3.3) and the quantile estimator (3.2) still re-

quire selecting a value for. Goldie and Smith (1987) suggest to select

 such as to minimize the Asymptotic Mean-Squared Error (AMSE)

of the Hill statistic. Such a minimum should exist because of the bias-

variance trade-off that is characteristic for the Hill estimator. Bal-

ancing the bias and variance constitutes the starting point for most

empirical techniques to determine . We determined  by looking

at both the curvature of so-called Hill plots b = b () as well as im-
plementing the Beirlant et al. (1999) algorithm to minimize a sample

equivalent of the AMSE.

3.2. Estimating the systemic risk indicators. Whereas the prob-

ability measures in (2.4)-(2.5)-(2.9) require estimation of multivariate

probabilities defined on the intersection of sets, i.e.,


n\

=1
  

o
=  {1  1 · · ·   · · ·   } 

the multivariate probability in the denominator of expectational link-

age measure (2.8) is defined on a union of sets, i.e.,


n[

=1
  

o
= 1−  {1 ≤ 1 · · · ≤  · · ·   ≤ } 

These differing conditioning probability spaces also require different

estimation approaches. In order to estimate multivariate probabilities

of the first type 
n\

=1
  

o
 we follow Ledford and Tawn’s

(1996) approach (see also Poon et al. (2004), Hartmann et al. (2006)

and Straetmans et al. (2008) for other applications in financial eco-

nomics and banking). To identify the dependence structure between

sharp falls in the market value of banks’ equity capital, it is conve-

nient to transform the original return series such that they exhibit an

identical marginal distribution. After such a transformation, differ-

ences in joint tail probabilities across banking systems (e.g. eurozone

versus the US) can be solely attributed to differences in the tail de-

pendence structure of the extremes and are thus not contaminated by

any marginal influences or asymmetries. This is different from e.g.

correlation-based measures that are still influenced by the differences

in marginal distribution shapes. We decided to map the bank stock
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returns (1 · · ·   · · ·  ) to unit Pareto marginals (see Draisma

et al., 2001): e =
1

1−  ()
  = 1 · · ·   ,

with  (·) representing the marginal cumulative distribution function
(cdf) for 

20 Since the marginal cdfs are unknown, we have to replace

them with their empirical counterparts. For each  this leads (with a

small modification to prevent division by 0) to:

(3.5) e =
1

1−
(+ 1)

  = 1 · · ·   ,

where 
= (  = 1 · · ·  ). This variable transform allows

one to rewrite the joint tail probability occuring in (2.4), (2.5) and

(2.9) to exhibit a common exceedance quantile :


n\

=1
  ()

o
= 

n\

=1

e  
o
,

and where  = 1. The common quantile  enables one to reduce the

multivariate estimation problem to a univariate exceedance probability

by taking the cross-sectional minimum of the  (transformed) bank

return series:

(3.6) 
n\

=1

e  
o
= 

½


min
=1

³ e

´
 

¾
= 

n emin  
o
.

This marginal tail probability can be calculated assuming that the

auxiliary variable’s tail inherits the original bank returns’ fat tail prop-

erty. In other words, we assume that

(3.7) 
n emin  

o
≈ L()−,

with  large ( small) and where L() is a slowly varying function.
Obviously, higher (lower) values of  imply lower (higher) values of

the original joint probability 
n\

=1
  

o
 The auxiliary vari-

able’s tail index  is therefore also dubbed the “tail dependence” pa-

rameter that governs the dependence structure of the original returns.

The case  = 1 is of particular interest. One can easily see why by

substituting (3.7) back into systemic risk measures (2.5)-(2.9)-(2.4).

Starting with the simplest case of a single conditioning asset as in

(2.5)-(2.9), substituting (3.7) into these co-crash probability measures

20Ledford and Tawn (1996) transform the marginal distributions to identical unit

Fréchet marginals. Draisma et al. (2001) propose the alternative Pareto transform

and demonstrate that these two differing transformations lead to almost the same

outcomes for the joint dependence structure and joint probabilities.
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renders L()1−. This conditional probability stays bounded away
from zero when  grows large provided  = 121 When conditional

co-crash probabilities like L()1− do not vanish when  → ∞ the

corresponding return vectors for which the co-crash probabilities are

defined are classified as “tail dependent”. In general, the tail index 

of the auxiliary variable emin reflects whether the original return vector

components (1 · · ·   · · ·  ) exhibit tail dependence ( = 1) or

tail independence (  1). For multiple conditioning assets as in (2.4),

the multivariate co-crash probabilities in denominator and numerator

can be identified by means of (3.7) which renders the expression

(3.8)

µL1 ()
L2 ()

¶
2−1

The above discussion on tail dependence vs. tail independence makes

clear that tail dependence in (2.4) requires 1 = 2 = 1.

Whether return series exhibit tail dependence or not ultimately re-

mains an empirical issue. Hartmann et al. (2004) test the null hy-

pothesis of tail dependence for pairs of stock and bond return indices.

They found that tail dependence could not be rejected in a majority of

cases and therefore imposed tail dependence on the estimates. There

are strong theoretical arguments to impose tail dependence for vectors

of bank stock returns as well. For example, de Vries (2005) argues

that bank linkages (via e.g. the interbank market, common asset expo-

sures) can be either “strong” or “weak”, depending on whether bank

stock returns exhibit tail dependence or tail independence. Assum-

ing that different banks’ asset portfolios contain common investments,

de Vries shows that bank stock returns are tail dependent (tail in-

dependent) across banks whenever the common risk exposures of the

banks’ portfolios are heavy tailed (thin tailed). Assuming that com-

mon underlying risk drivers exhibit heavy tails seems reasonable given

the predominance of fat tails in financial markets. Imposing tail depen-

dence has several advantages. First, the estimation risk of the systemic

risk indicators is reduced because there is no need to estimate the tail

dependence parameter. Also, expression (3.8) makes clear that the cor-

responding systemic risk indicator becomes independent from the crisis

level  upon assuming tail dependence ( disappears from the expres-

sion). This invariance is convenient because it makes a discussion on

the required extremity of the threshold  redundant. Most importantly,

21Conform with the second order expansion in (3.1), L() ≈ 
¡
1 + −

¢
which

implies that L() approaches  when  grows large.



SYSTEMIC RISK 21

however, imposing tail dependence produces upper bounds for the sys-

temic risk measures under consideration. We believe that interested

parties like financial regulators, central banks etc. prefer conservative

measures instead of measures that bear the risk of underestimating the

true potential of financial fragility.

The steps (3.5), (3.6) and (3.7) imply that the estimation of multi-

variate probabilities can be reduced to a univariate estimation problem

that is well-known. Univariate tail probabilities for fat-tailed random

variables - like in (3.6) - can be estimated by using the semi-parametric

probability estimator from de Haan et al. (1994):

(3.9) b = b n emin  
o
=




(−)


−,

where the “tail cut-off point” − is the (−)-th ascending order

statistic from the cross-sectional minimum series emin. This is the

inverse of the quantile estimator (3.2) for calculating the tail-VaR in

the univariate section.

An estimator of the multivariate spillover risk indicator in (2.5) easily

follows by using (3.9) and dividing with :

 |1 =
b


=



(−)


1−(3.10)

for large but finite  = 1. For  = 2, this reduces to the tail-

 estimator. When the original return vector exhibits tail indepen-

dence (  1)  the systemic risk estimator is a declining function of

the threshold  and eventually reaches zero if  →∞ However, when

 = 1 as we impose throughout the paper, systemic risk is no longer

influenced by changes in . We determine the nuisance parameter 

by plotting the estimated probability against  and by selecting  in

a stable region.

The alternative systemic risk measure in (2.4) is defined on another

type of failure region which implies it cannot be estimated by using the

Ledford and Tawn approach (1996). Under fairly general conditions

the joint probability in the denominator of (2.4) can be expressed as a

function of the marginal tail probability :

(3.11) 
n[

=1
  

o
≈  ( · · ·   · · ·  )
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and with (·) being the so called “Stable Tail Dependence Function”
or tail copula  . This tail copula is formally defined as

(3.12)  ( · · ·   · · ·  ) = lim
→0

1



n[

=1
  ()

o


see Huang (1992). The curvature of (·) completely determines the
dependence structure between the  components in the tail area. A

basic property of (·) constitutes the inequality
 ≤  ( · · ·   · · ·  ) ≤ .

Equality holds on the left-hand side if the bank stock returns are com-

pletely mutually dependent in the tail area, while equality on the right

hand side obtains if the return series are mutually independent in the

tail area.

The estimation of (3.11) either requires adopting a specific func-

tional form for the  , like in Longin and Solnik (2000), or non-

parametric estimation. Since a unique parametrization for the 

does not exist, we prefer a semi-parametric estimation method based

on the highest order statistics. Semi-parametric estimation exploits the

linear homogeneity property of the tail copula function:  ( · · ·  ) =
 ( · · ·  )    1 For a sufficiently large scaling factor the quan-

tiles  ( = 1 · · ·  ) in (3.12) are shifted inside the observable re-
turn data sample and the joint probability can be estimated using the

empirical distribution function (i.e. by counting the exceedances). Ex-

ploiting linear homogeneity with  = 1  1 and replacing the joint

probability in the denominator of (2.8) by its tail copula approximation

renders:

[| ≥ 1] =



nS

=1  ()
o

≈ 

 ( · · ·   · · ·  )
≈ 

 (1 · · ·  1 · · ·  1) (3.13)

The denominator can be further rewritten using the STDF definition

(3.12). Set  =   1 and  = 1 in (3.12). Upon substituting (3.12)

into (3.13) one obtains

[| ≥ 1] ≈ 




n[

=1
 ≥ 

¡



¢ o 
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Clearly, the quantiles 

¡



¢
are inside the sample boundaries of the

historical return data which enables estimation of  [·] in a nonpara-
metric way. In order to turn this expression into an estimator we

replace  1 and 2 by their empirical counterparts:

(3.14) [| ≥ 1] ≈ 



1


P

=1 I
n[

=1
  −

o 
and where the denominator is an estimator of the stable tail de-

pendence function  (1 · · ·  1 · · ·  1)  The upper order statistic −
estimates the quantile 

¡



¢
and I {·} stands for the indicator func-

tion. The threshold parameter  plays a similar role as the parameter

 in the Hill estimator (3.3): it determines how many extreme returns

are used in estimating [| ≥ 1] Just like the multivariate spillover
risk indicator in (3.10), the estimator (3.14) is invariant to changes in 

(or, alternatively, to choices in the crisis quantiles ) The homogene-

ity property of the -function in (3.13) indeed implies that  disappears

form numerator and denominator. Thus, a discussion on the proper

choice of  - and thus the area on which one wants to evaluate sys-

temic risk - becomes redundant as systemic risk estimators like (3.10)

or (3.14) render a single “asymptotic” value.

Estimation of [| ≥ 1] still requires choosing a value for . Huang
(1992) suggests selecting  such as to minimize the Asymptotic Mean-

Squared Error (AMSE) of estimator b (1 · · ·  1 · · ·  1). Such a mini-
mum should exist because of the bias-variance trade-off that is charac-

teristic for this estimator. Alternatively, we determine  by calculating

(3.14) over a whole range of  and looking at the curvature of the

corresponding plots b = b ().
3.3. Hypothesis testing. We like to know whether tail risk and sys-

temic risk of banking systems significantly change over time (“struc-

tural” change) but we also like to make cross-atlantic comparisons

between these different risk measures over a common sample period

(cross sectional equality). For  → 0 as  → ∞ it has been

shown that the tail index statistic
√
 (b− ) and tail quantile statis-

tic
√


ln( )

h
ln

()
()

i
are asymptotically normal, see Haeusler and Teugels

(1985) and de Haan et al. (1994) for a derivation of these respective

results. Asymptotic normality also holds for the tail probability esti-

mator (3.9) we use for calculating multivariate spillover risk measures

like (2.4)-(2.5) as well as tail- in (2.9) because all these estimators

make use of the de Haan et al. (1994) quantile estimator. Finally, for
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 → 0 as   → ∞ Huang (1992) derived the asymptotic normal-

ity of the stable tail dependence function statistic
√

³b − 

´
for tail

dependent random vectors.22 Given the mentioned estimators’ asymp-

totic normality property, a test for the equality of tail indices, tail quan-

tiles, tail probabilities or tail copulae (either across continents or across

time), readily follows by implementing a conventional  -statistic:

(3.15)  =
c1 − c2


³c1 − c2´ ,

with s.e [·] denoting the standard deviation of the estimation differ-
ence. The estimator c either stands for the Hill statistic (3.3), the
tail quantile estimator (3.2), the tail probability estimator (3.9) or the

tail dependence function estimator (3.14). Given the consistency and

asymptotic normality properties of c, the test statistic  is approxi-
mately standard normally distributed in sufficiently large samples.23

The question arises how the standard error s.e.[] in the denominator

of (3.15) is calculated. Given the temporal dependence in the data (se-

rial correlation and above all volatility clustering in bank stock returns)

as well as cross sectional dependence, the denominator’s standard er-

ror 
³c1 − c2´ is block bootstrapped using 1,000 replications and

block lengths equal to 13 with  the sample size, see Hall et al. (1995)

for a theoretical justification and Straetmans et al. (2008) for an earlier

extreme value application.

Given the enormous amount of possible comparisons that can be

made (pre-crisis vs. crisis and cross-continent) for individual bank tail

risk and systemic risk, we do not include the disaggregated testing

results but they are available upon request from the authors. In con-

trast, we do report equality tests on a more aggregate level, i.e. we test

whether US and eurozone sample means of the considered risk mea-

sures differ across time and across the continents in a statistically and

economically significant way.

Finally, notice that candidate-break dates are chosen exogenously,

i.e. we split the sample according to generally accepted dates for the

start of the crisis. Previous work that looked into financial system

stability, see e.g. Hartmann et al. (2006), implemented endogenous

22For random vectors that exhibit tail independence, the limiting distribution of

the stable tail dependence function estimator becomes degenerate.
23One can safely assume that  comes sufficiently close to normality for empir-

ical sample sizes as the ones used in this paper (see our own simulations that are

available upon request).
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stability tests like the Quintos et al. (2001) procedure. However, the

former test is designed to investigate the temporal stability of the tail

index (or, alternatively, the tail dependence parameter). Given that

our framework restricts the tail dependence parameter to be equal to

1, this type of endogenous structural change test would not make sense

in the current paper.

4. Empirical results

We first discuss the data selection and some descriptive statistics.

Second, we investigate the tail risk properties of individual banks like

the tail index, the tail quantile and expected shortfall of the banks’

equity capital. Multivariate bank spillover probabilities are considered

in the 3rd subsection. Finally, we consider indicators of extreme sys-

tematic risk (or “tail-”) for different conditioning risk factors. We

further distinguish between US banks and eurozone banks and try to

assess which continent is the riskier one, either in terms of tail risk or

systemic risk. We also assess whether and to what extent tail risk and

systemic risk have shifted through time (and more specifically after

the outbreak of the financial crisis). We therefore consider rolling, pre-

crisis and crisis estimates of our tail risk and systemic risk indicators.

Subsample estimates are complemented with test statistics assessing

cross sectional and time series differences of the considered risk mea-

sures. August 7, 2007 is taken as the starting point of the crisis but

our conclusions remain robust (i.e. subsample estimates hardly alter)

upon considering the Lehman debacle as the start of the crisis. As for

the pre-crisis and crisis tail- with respect to a PIIGS sovereign debt

index, we took December 15, 2009 as start of the eurozone sovereign

debt crisis.

4.1. Data and descriptive statistics. We collect daily stock price

data from Datastream (dividend-corrected total return indices) for 15

euro area banks and 15 US banks. For sake of comparison, we con-

sider those banks from the Hartmann et al. (2006) study that are still

listed today. The Hartmann et al. study selected banks on the basis of

size and interbank activity and we believe that the remaining banks are

still systemically important according to these two criteria. Stock price

series start on 2 April 1992 and end on 24 June 2011, which implies

5,016 return observations per bank. For sake of the tail- calculations,

we downloaded Datastream-calculated bank indices, stock indices, real

estate indices and sovereign debt indices. Bank indices and general

stock indices are sampled over the same time period as the individ-

ual bank stocks. A US real estate index is sampled over the same time
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period as the banks while eurozone country real estate indices are down-

loaded from 23 September 1993 onwards (we take the starting point in

Datastream of the German real estate index as the cutoff point). An

unweighted average of PIIGS 10-year benchmark government debt in-

dices (total return index) is constructed from 31 March 1999 onwards.

This marks the starting point of the Greek sovereign debt total return

index in Datastream). Consistent with the bank stocks, real estate and

bond series end on 24 June 2011.

Table A.1 in Appendix A report standard descriptive statistics (re-

turn average, standard deviation, skewness and kurtosis) for the 30

individual bank stock return series. We further distinguish sample mo-

ments for the full sample period, pre-crisis and crisis episodes. Means

and standard deviations are expressed in percentages. As starting point

of the crisis, we select August 7, 2007.24

Full sample mean returns are basically zero, as one would expect,

whereas full sample standard deviations of returns tend to be around

2. Upon comparing pre-crisis and crisis estimates, however, all crisis

mean returns fall sharply below their pre-crisis levels (they all become

negative) whereas the opposite holds for the crisis variances. Com-

paring sample means and variances across both sides of the Atlantic,

one cannot conclude that one continent dominates the other one either

in terms of average return or volatility: the full sample US mean and

volatility dominate their euro area counterparts but this outcome is

not robust for the subsamples. Also, the full sample and pre-crisis re-

sults indicate little skewness but strong leptokurtosis. Nonsurprisingly,

skewness and kurtosis seem to have increased during the crisis in the

majority of cases. We also performed some hypothesis tests (not in-

cluded in the table) on the subsample moment estimates. Sample aver-

ages significantly dropped and variances significantly increased during

the crisis: the majority of shifts is even statistically significant a the

1% level. The Jarque-Bera normality test rejects the null hypothesis

of normality for all considered samples although statistical rejections

seem strongest for the crisis sample. The testing results are available

upon requests but are omitted for sake space considerations.

4.2. Downside risk estimates of individual bank equity cap-

ital. The high kurtosis of bank stock returns reflects that they are

non-normally distributed or “heavy tailed”. We exploit this property

24Break results are robust to choosing other economically relevant breakpoint

like e.g. the Lehman debacle. The same holds true for other breakpoint tests

considered throughout the paper.
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to calculate alternative downside risk measures like tail-VaR or con-

ditional expected shortfall for banks’ equity capital. To address this

issue more systematically, we report in Tables A.2 (US and eurozone;

full sample), A.3 (eurozone; pre-crisis and crisis samples) and A.4 (US;

pre-crisis and crisis samples) estimates of the tail index b and corre-

sponding values of Tail-VaR and expected shortfall. A graphical sum-

mary of these results are provided in Figure 1. The banks are named

on the horizontal axis. Eurozone and US results are reported in the

left and right columns of the figure matrix, respectively. The results

on tail indices, tail quantiles and expected shortfalls correspond with

the upper, middle and lower row of the figure matrix, respectively.

[insert Figure 1]

Extreme quantiles are calculated for p-values equal to 0.2% and

0.1%. The corresponding tail-VaR’s are expected to be violated every

500 days and every 1,000 days, respectively. We also report expected

shortfall estimates conditioned on either the p% tail-VaR’s or on cri-

sis barriers  = 25% or 50%. Given the extreme quantile estimatesb nearly always fall below , expected shortfalls conditioned on the

threshold  are the more extreme expected shortfall measure.25

It turns out that the tail indexes vary around 3, which is in line with

the evidence presented in Jansen and De Vries (1991) for general stocks

and Hartmann et al. (2006) for bank stocks. Tables A.2, A.3 and A.4

and Figure 1 also reveal a lot of heterogeneity in tail risk across indi-

vidual banks and across time. Comparing pre-crisis results with crisis

results, one observes that the majority of bank stock returns seems

to exhibit more tail risk during the crisis which is hardly surprising

(crisis spikes in the return data induce lower values of the tail index

which in turn produce higher values of tail-VaR and expected short-

fall). Whereas US Hill estimates all dropped over time, the temporal

25One may argue that this is still not at the very extreme end of the tail. Indeed,

previous research often estimated extreme quantiles much further into the left tail

of bank stock returns: Hartmann et al. (2006) conditioned extreme quantiles on

p-values of 0.05% and 0.02% (producing tail-VaR’s that are expected to be violated

every 7,5 and 19 years, respectively). However, the tail-VaR estimator (3.2) is

unbounded from above which implies that estimates above 100% cannot be ruled

out. Such a quantile estimate would be pretty meaningless from an economic point

of view indicating that one can lose more than the initial investment. The extreme

quantile indeed exceeds its economically meaningful upperbound of 100% when

one tries to calculate tail-VaR’s on the 2007-2010 crisis sample for p-values below

0.05%. This is why we conditioned on higher p-values for the univariate downside

risk analysis.
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behavior of eurozone Hill estimates is less straightforward: some euro-

zone bank tails even seem to have become thinner which is somewhat

counterintuitive. Some drops in -estimates are such that the crisis

values fall below 2, especially for the US bank panel. As noticed in

the methodology section,   2 implies an unbounded variance for the

corresponding bank stock return series (this invalidates the use of tra-

ditional risk measures such as standard deviations or CAPM-0 which
require the existence of the secnd moment or   2) For Allied Irish

Banks we even observe a crisis value b = 08  1 signifiying that even
the population mean of the bank return series does no longer exist.

Nonsurprisingly, the full sample values for the tail index and the dif-

ferent tail risk measures often lie in between the pre-crisis and crisis

values. Banks that experienced financial distress in the crisis period

or that were involved in some form of government bailout over the

sample period typically show spectacular increases in tail risk during

the crisis period, see e.g. Commerzbank, Deutsche Bank, Natixis, ING

or Allied Irish Bank in the eurozone and Citigroup in the US.26 Bank

of America’s tail risk is also noteworthy: it played an active role in

rescuing other financial institutions. Bank of America bought ailing

financial institutions like Countrywide Financial (mortgages) and Mer-

ril Lynch (the acquisition of Merril Lynch being financially supported

by the US government). However, huge trading losses at Merill Lynch

nearly brought down Bank of America themselves in 2009.27

Upon comparing the tail quantiles (middle row in Figure 1) and ex-

pected shortfalls (bottom row in Figure 1) across the continents, US

tail risk estimates exceed eurozone tail risk estimates for the crisis sam-

ple; whereas continental tail risk seems of comparable magnitude before

the crisis erupted. A more elaborate discussion of the statistical and

economic significance of these differences in point estimates is provided

below.

26Deutsche Bank is generally seen as one of the key players in boosting the CDO

market which caused the subprime mortgage crisis but the bank never became so

financially distressed that it needed state aid or other rescue packages. The crisis

tail risk of 18.6% is nevertheless substantial due to the importance of its investment

leg and resulting trading losses. The French bank Natixis was also strongly involved

in investment banking and subprime products in particular. Its shareholder value

dropped dramatically over the crisis sample but the bank did not need to be bailed

out by the French government.
27Nonsurprisingly, the banks exhibiting the highest tail risks during the crisis

sample are most of the time also those that experienced the lowest capital buffers

in the considered cross section of US and eurozone banks at the start of the crisis

in August 2007.
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The economic interpretation of the outcomes on an individual bank

basis is rather straightforward. For example, consider the subsample

results for Citigroup. The tail index of Citigroup dropped from 3 to

1.8 indicating that the probability mass in the tails spectacularly in-

creased during the crisis period. Nonsurprisingly, the crisis values of

extreme quantiles and expected shortfall measures have skyrocketed as

compared to their pre-crisis levels. Citigroup’s 0.1% Tail-VaR has quin-

tupled since the outbreak of the crisis (from 11% to a record 65.1%).

The pre-crisis  = 01% VaR of 11% implies that a daily erosion of Cit-

igroup’s market value of equity capital with 11% or more is expected

to happen once every 1,000 days = 1 000260 ≈ 38 years. The corre-
sponding ( = 01%) expected shortfall of 5.4% implies that once the

tail-VaR of 11% is exceeded, the expected loss given this exceedance

equals an “additional” 5.4%. All these numbers are much higher during

the crisis period.

Upon comparing pre-crisis and crisis values for tail risk, the point

estimates for   and  ( −  |   ) change quite dramatically

indeed. To assess whether the crisis altered the tail risk properties in a

statistically and economically significant way, we applied the equality

test statistic  (3.15) to test the null hypothesis of structural change

(time variation) or cross sectional equality of the tail index and the

corresponding tail-VaR on the individual bank level. We find that

Tail-VaR differences across time and across individual banks differ in

a statistically and economically significant way for the vast majority

of banks. Statistically significant differences in the Hill estimates for

the tail index changes are found to be less predominant which suggests

that temporal tail-VaR changes are mainly driven by changes in the

scaling constant rather than shifts in the tail index.28

To simplify cross-continent and cross-time comparisons of tail risk,

we also present tail risk results and accompanying test statistics on

a more aggregate level in Tables 1 and 2, respectively. Based on the

point estimates in Tables A.2, A.3 and A.4, Table 1 reports estimated

means, medians and standard deviations for the US and the eurozone

and for the pre-crisis and crisis episodes separately. The Table reveals

that US tail risk measures exceed their European counterparts for the

full sample as well as for the crisis sample but extreme downside risk

seems of comparable magnitude in the pre-crisis periods. Upon com-

paring tail risk for pre-crisis and crisis samples, we see that tail indices

28Similar results are found in Straetmans et al. (2008) for the tails of US sectoral

stock indices and with the 9/11 terrorist attacks as sample midpoint.
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decline and accompanying tail risk increases for both continents. Fi-

nally, notice that mean and median estimates are nearly always close

to each other. Table 2 contains the corresponding mean equality tests

for the tail index and the (p=0.1%) tail quantile. Equality of the conti-

nental means is tested across time (panel I) as well as across continents

(panel II). In order to perform the tests, we first calculate the cross sec-

tional mean for bank tail indices and tail quantiles per continent and

for the pre-crisis and crisis sample separately. Next, we apply a sim-

ple t-test for (time series/cross sectional) equality of sample averages.

The approximate normality of the tail index and tail quantile estima-

tors (3.3)-(3.2) ensures that the test statistic based on their averages

also exhibits normal critical values. Panel I shows that tail quantiles

strongly increase in the crisis period for both continents. But one can

also observe that the upward shifts in eurozone tail risk is not caused

by fatter tails because the mean tail indices for European banks hardly

change over time. Thus, for European banks, the increase in tail risk

seems solely driven by changes in the scaling constants of the bank

stock returns. Turning to the cross sectional equality tests in panel II,

we see that statistically significant cross continent differences between

tail indices and accompanying tail quantiles only appear for the crisis

sample which confirms our observations from Table 1.

[insert Tables 1, 2]

As a complement to our pre-crisis and crisis subsample estimates, we

also calculated truly time varying tail risk measures by conditioning on

rolling samples. Figure 2 shows the evolution of (average) rolling Hill

estimates and (average) rolling expected shortfalls for the US and the

Eurozone countries as well as Germany, France and Spain. The figure

shows that tail risk measures have been strongly time varying even

before the 2007 crisis struck. We see a clear downward trend in the

tail index (increased tail risk) for the US and the eurozone banks (top

row of the graph) which explains the increase in the expected shortfall

measure (bottom row of the graph) for US and eurozone banks; but

tail indices again started to rise (and expected shortfalls started to

fall) towards the end of the sample. The pictures also clearly show

that US tail risk only exceeds euro area tail risk since the outbreak of

the crisis. Within Europe, the tail risk for French banks dominates that

of Spanish banks during the banking crisis whereas German banks take

some intermediate position. In the pre-crisis sample, Spanish banks are

the riskier ones whereas German and French banks exhibit comparable

tail riskiness. This may be due to the fact that Spanish banks were less

strongly exposed to the US subprime mortgage crisis and the PIIGS
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sovereign debt crisis if one compares this with German and French

banks. Furthermore, the Spanish real estate bubble burst did not yet

fully materialize in the considered sample which may also explain the

lower tail risk values (EBA, 2011).

[insert Figure 2]

4.3. Bank contagion risk. In this subsection we distinguish between

three different bank contagion measures: the multivariate probability

and expectation indicators in eqs. (2.5)-(2.8) as well as the bivariate

contagion probabilities for bank pairs based on co-crash probability

(2.9). The latter bilateral co-crash probability indicator requires replac-

ing the conditioning non-diversifiable risk factor in the tail- formula

(2.9) by capital losses on individual bank stocks, i.e.  = 1We try

to address three main issues. First, does contagion risk increase over

time and if so, for which continent is the change most striking? Sec-

ond, how does eurozone contagion risk compare to US bank contagion

risk? In other words, is one banking system more prone to multivari-

ate bank spillovers than the other one? Finally, how large is eurozone

bank contagion risk within (i.e. “domestic” contagion ) and across (i.e.

“cross-border” contagion) the eurozone countries? Whether domestic

bank spillovers dominate cross-border bank spillovers within the eu-

rozone is relevant for the ongoing debate whether eurozone financial

regulation and supervision can stay organized at the national level or

not.

[insert table 3]

The multivariate spillover risk measures  { | ≥ 1} and  |1 as
defined in (2.8)-(2.5) can already shed some light on the first two is-

sues. Estimates of these measures are reported in Table 3. The in-

dicators are calculated for the US and eurozone banking systems as

a whole ( = 15 banks each) but also for the three main eurozone

countries separately (Germany, France, Spain;  = 3 banks each).

By construction, 1 ≤  { | ≥ 1} ≤ 15 for the eurozone and US

banking system whereas 1 ≤  { | ≥ 1} ≤ 3 for the considered eu-
rozone countries. The lower bound reflects complete tail independence

whereas the upper bound can only be reached under complete tail de-

pendence. Obviously, the  { | ≥ 1} indicators are only comparable
across continents or countries provided they span the same number of

banks. The same holds for the  |1 indicator. In other words, cross
continent (US vs. euro area) and cross country (Germany vs. France

vs. Italy) comparisons for  { | ≥ 1} or  |1 make sense but com-
parisons between continental and country outcomes are meaningless:
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the number of banks for which the country and continental systemic

risk indicators are calculated are not the same.

Panel I of Table 3 contains estimation results for both indicators and

for varying sets of banks (continent-wide or separate European coun-

tries) whereas Panels II and III report the corresponding structural

change and cross sectional equality tests to assess whether multivariate

contagion risk varies over time or differs across continents and coun-

tries, respectively. Equality tests across countries, continents and time

can be performed using the earlier introduced  -test in (3.15)The eco-

nomic interpretation of the point estimates b and b |1 is straightfor-
ward.29 For example, the US crisis value b = 433 reflects the expected
number of US banks triggered into distress if at least one out of 15 US

banks is known to be distressed. In other words, more than one quarter

of the US banking system threatens to be destabilized (43315 ≈ 29%)
if at least one bank is known to be distressed. As concerns the eco-

nomic interpretation of the other multivariate measure b |1 , consider
e.g. the eurozone crisis value 15|1 = 1036%. This probability implies
that if one of the 15 eurozone banks is triggered into distress, there is a

10.36% chance that all 15 banks undergo the same fate. This meltdown

probability even equals 22.75% for the US crisis sample which implies

that there is a chance of 1out of 4 that the whole US financial system

will collapse if one systemic bank collapses.

Let us now refocus on the three research questions earlier mentioned.

As concerns the time variation of systemic risk, it is obvious from the

table that all crisis sample estimates of multivariate contagion risk

dominate their pre-crisis counterparts irrespective of the considered in-

dicator, continent or country. To clarify this further, we also include

the systemic risk measures’ growth rates across the two subsamples

(%∆ column). For example, the expected number of joint crashes for

the US banking system as a whole has increased from b = 294 in the
pre-crisis period to b = 433 in the crisis period (representing a 47%

increase). The other US indicator for multivariate bank contagion ren-

ders pre-crisis and crisis values of 11.70% and 22.75%, respectively (or

an increase by 94%). The relative increase in global eurozone systemic

risk is of a similar magnitude. On the eurozone country level, it does

not come as a surprise that Spain stands out with the largest increase in

systemic risk for both indicators whereas Germany has experienced the

29The conditioning event differs for both measures: whereas the -indicator

conditions on at least one bank being in distress, the |1 -indicator conditions
on one single bank in the system being in distress. However, in both cases, the

indicator values are invariant to which banks are actually the conditioning ones.
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smallest increase. France takes on an intermediate position. Finally

notice that the systemic risk increase seems more pronounced when

considering the b |1 measure. As a complement to the percentage
increase calculations, we also explicitly test for time variation in the

multivariate contagion indicators using the  -test in (3.15), see panel

II of the table. Apart from Germany, both systemic risk indicators rise

in a statistically significant way for all considered cases.

The second issue we want to clarify concerns the cross-continent and

cross-country differences in systemic risk. First and foremost, the table

shows that the US banking system seems more fundamentally unstable

than its eurozone counterpart irrespective of the considered systemic

risk indicator or (sub)sample, i.e.    and     The

cross sectional equality tests in panel III indeed reveal that multivariate

contagion risk always dominates its eurozone counterpart irrespective

of the considered indicator or time period. As concerns eurozone con-

tagion on a country level we observe that     

and      for both the pre-crisis and the crisis

sample. However, these domestic contagion differences between France,

Germany and Spain are only statistically significant for the crisis sam-

ple.

The remaining question of interest is to know how important eu-

rozone cross-border contagion is as compared to eurozone domestic

contagion. In case of segmented (or poorly integrated) national bank-

ing sectors, domestic bank contagion is expected to dominate cross-

border contagion. On the other hand, the exposures of Northern

European banks to Southern European PIIGS debt is expected to

have raised cross-border contagion effects. Notice that the impact

of PIIGS countries bank distress on overall eurozone financial insta-

bility has already implicitly been taken into account in the calcula-

tion of the eurozone-wide values of  and  in Table 3; but these

multivariate indicators do not provide information on the magnitudes

of bilateral domestic and cross border eurozone contagion linkages.

To that aim, we first calculate bivariate bank contagion probabilities

 {2  2() |1  1 ()} for all possible 2
15 = 105 eurozone bank

pairs that can be drawn from our eurozone bank sample. Next, we cal-

culate sample averages across these 105 bank co-crash probabilities in

order to obtain domestic contagion effects per country (average across

bank pairs of the same country) and cross-country contagion effects

(average across country pairs). Table 4 summarizes these contagion

probability averages. The left panel contains averages of the bilateral
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co-crash probabilities for the domestic pairs per country.30 The middle

panel contains cross-border co-crash probability averages per country

pair (lower middle panel) and per country (upper middle panel). The

right panel reports US bilateral bank contagion results as a benchmark

of comparison with the eurozone results.

The economic interpretation of the numbers is relatively straightfor-

ward. For example, the 59.5% Spanish domestic contagion probability

for the crisis sample is the average of 3 bilateral co-crash probabilities

defined on the bank trio Banco SantanderBBVA and Banco Espanol;

whereas the pre-crisis value of 21% for the GE-FR country pair is

obtained by averaging the joint crash probabilities for all 9 pairs of

German and French banks; the pre-crisis cross-border value of 26.3%

for Germany is obtained by averaging all 36 bilateral contagion prob-

abilities between German and non-German banks etc.

[insert table 4]

First of all, we see that US contagion probabilities usually domi-

nate their eurozone counterparts. Domestic eurozone contagion prob-

abilities only dominate cross-border eurozone contagion probabilities

for Italy and Spain. For Germany, domestic and cross-border conta-

gion effects seem of comparable magnitude and for France cross-border

contagion even slightly exceeds domestic contagion! The central role

German and French banks play within the eurozone financial system

may explain this outcome. The cross-border contagion probabilities for

different country pairs (lower middle panel) enable one to compare con-

tagion for PIIGS country pairs, non-PIIGS country pairs and “mixed”

pairs between PIIGs and non-PIIGS banks. The highest cross-border

contagion value is between the two biggest PIIGS countries Italy and

spain (average value of 60.2%). Also, Germany and France seem to ex-

hibit stronger contagion linkages with Italy and Spain than with each

other. But cross-border contagion linkages of Germany and France with

Greece and Portugal remain relatively small. Finally, cross-border con-

tagion effects from smaller PIIGS countries Greece, Ireland and Portu-

gal to the rest of Europe seem modest. Summarizing, it is difficult to

draw general conclusions about domestic eurozone contagion dominat-

ing cross-border eurozone contagion (or vice versa) because the magni-

tudes of domestic contagion and cross-border contagion seem to large

30Obviously, domestic contagion probabilities are only identifiable for countries

that have at least two banks in the sample. This is only the case for Germany,

France, Italy and Spain. As for Ireland, Greece, the Netherlands and Portugal,

they are represented by a single bank in the sample which implies that domestic

contagion is nonidentifiable.
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depend on the considered countries and country pairs. This observation

differs from Hartmann et al. (2006) who found evidence that domestic

eurozone contagion still dominates cross-border eurozone contagion.

In order to better grasp how multivariate contagion risk evolves over

time, we show rolling sample estimates of our two multivariate systemic

risk indicators for the US, the eurozone, Germany, France and Spain in

Figure 3. The top left figure shows the rolling expected number of bank

crashes for the US and the eurozone, i.e., 1 ≤  { | ≥ 1} ≤ 15The
bottom left figure contains the rolling expected number of bank crashes

for Germany, France and Spain, i.e., 1 ≤  { | ≥ 1} ≤ 3 The two
remaining figures show the rolling multivariate contagion probability

( |1 ) for the US and the eurozone (top right) and for Germany, France
and Spain (bottom right). We observe a temporal increase for both

the expected number of joint bank crashes as well as the multivariate

contagion probability regardless the continent considered. The risk

measures are time varying even before the start of the financial crisis

in 2007. However, the increase in the risk measure is very high after

the crisis. Moreover, the systemic risk measures for the US are much

higher than for the eurozone. Comparing systemic risk for the three

large European countries reveals that both the expected number of

joint bank crashes as well as the multivariate contagion probability is

the lowest in Germany.

[Insert Figure 3]

4.4. Aggregate banking system risk. In this subsection we evalu-

ate the exposure of the banks’ equity capital to large adverse move-

ments in “aggregate” shocks. The term “aggregate” in this context

refers to a macro economic shock that should be sufficiently global

in nature such that it is non-diversifiable. We calculate our indicator

of “extreme systematic risk” (or “tail-”) for different candidate-risk

factors. First, we use the banking industry sector index and a gen-

eral stock index for the euro area and the US, respectively. We also

condition on a world-wide banking sector sub-index and a world-wide

general stock index. Given that housing busts played a central role in

triggering banking gloom at both sides of the Atlantic, we also calcu-

late co-crash probabilities of bank stocks conditioned on sharp drops in

real estate housing indices. Finally, we assess the impact of the euro-

zone sovereign debt crisis on the market value of euro area bank equity

capital. To that aim we condition the tail- on an equally weighted
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average portfolio of the PIIGS countries’ sovereign bond total return

indices.31

Estimates of tail- are obtained via (3.10) and are summarized in

Tables A.5 (US and eurozone; full sample), A.6 (eurozone; pre-crisis

and crisis subsamples) and A.7 (US; pre-crisis and crisis subsamples)

and for the different conditioning risk factors. A graphical summary

of tail- results is provided in the bar graph panels of Figure 4. As

in Figure 1, the banks are named on the horizontal axis and eurozone

and US results are reported in the left and right columns of the figure

matrix, respectively. The tail- in the top row, middle row and bottom

row are conditioned on a continental bank index, a continental stock

market index and a world bank index, respectively.

[Insert Figure 4]

The reported tail-s in the Appendix tables and Figure 4 have a

straightforward economic interpretation. For example, the pre-crisis

value 28.8 in the row “BNP” and column “eurozone bank” in Panel I

of table A.6 means that a very large downturn in the euro area banking

index during the pre-crisis era is associated with a 28.6% probability

that BNP Paribas Bank faces a daily stock price decline of comparable

magnitude. In other words, even before the systemic banking crisis

struck, a daily sharp drop in the bank index is expected to coincide

with a comparably large drop in BNP Paribas stock nearly one out of

three times. Moreover, BNP’s propensity towards co-crashing with the

eurozone banking index has nearly tripled to 68.1% during the crisis

period (Panel II of the same table).

Going more systematically up and down the columns as well as left

and right in the rows in tables A.5-A.6-A.7, a number of empirical

regularities can be observed. First, nearly all tail-s spectacularly in-

crease in the crisis period, see also Figure 4? Second, tail- differ

quite considerably across banks but are nevertheless remarkably high

regardless the subsample or continent. They are higher than in previ-

ous studies like Hartmann et al. (2006) or de Jonghe (2010), even for

the pre-crisis sample, but this is due to the fact that we impose the tail

dependence coefficient to be equal to 1. As a result, we get much higher

values of tail- that may be seen as conservative upperbounds to the

31Most studies on bond markets and contagion consider cross country yield

spreads as the variable of interest. However, given the fact that we are inter-

ested in the impact on bank stock returns, we decide to condition on bond index

returns instead of yield spreads. Moreover, and in contrast to bank stock returns,

yield spreads exhibit high persistence which may produce erroneous outcomes for

our systemic risk indicators.
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true value of extreme systematic risk. Third, US bank exposures to

non-diversifiable shocks often exceed their European counterparts but

are less dispersed than the eurozone bank exposures (as measured by

the cross sectional volatility of the tail-). Fourth, although we do

not explicitly test for the existence of a relation between bank size and

systemic risk, bigger banks often seem to exhibit larger tail-see for

example the relative large values of extreme systematic risk for Bank of

America, JP Morgan, Citigroup and Wells Fargo in the US or the Ger-

man, French and Spanish banks in the eurozone. This confirms findings

by De Jonghe (2010) who establishes a cross sectional relation between

tail- and bank size.32 Fifth, comparing the magnitudes of the tail-

across different conditioning risk factors, the tail co-movements with

the banking portfolio seems strongest but the impact of adverse real

estate shocks on the banks’ equity capital should also not be underes-

timated, see also Pais and Stork (2010) for previous evidence on the

impact of real estate shocks. Finally, bank exposures to sovereign debt

are low prior to the outbreak of the sovereign debt crisis (this is hardly

surprising given that pre-crisis market values of public debt were nearly

flat); but the PIIGS tail- doubled or tripled afterwards. Still, their

crisis values are much lower than eurozone bank exposures to shocks

that propagate via a eurozone banking index.33

To assess to what extent the observed differences in tail- estimates

truly differ across banks or across time, we implement the same equality

test  (3.15). The quantile estimator (3.10) used to calculate tail-

is approximately normally distributed in sufficiently large samples. We

find that the vast majority of tail- increases over time (structural

change) and differs across banks and conditioning risk factors (cross

sectional equality) in a statistically and economically significant way.34

Analogous to what we did for the univariate tail risk measures, we

also present the tail- and some accompanying test statistics in a

more aggregate way for the entire US and eurozone. This makes it

32Related to the size hypothesis, Hartmann et al. (2006) find that smaller banks

in peripheral eurozone countries (like some of the smaller PIIGS countries Greece,

Portugal or Ireland) seem less exposed to aggregate risk. Their larger focus on

local businesses and resulting absence of international diversification may explain

this stylized fact. The current cross section does not contain a sufficient amount of

these peripheral banks to enable us to make the same observation.
33Despite the Spanish real estate bubble burst and the perceived large exposures

to PIIGs sovereign debt of especially French banks, it is surprising to see this is not

reflected in market-based measures of systemic risk like the tail-
34We omitted the individual testing outcomes due to the large amount of testing

results but they are available upon request from the authors.
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even easier to eyeball certain patterns or tendencies in the results.

Based on the point estimates in Tables A.5, A.6 and A.7, Table 5

reports estimated tail- means, medians and standard deviations for

the US and the eurozone and for the pre-crisis and crisis episodes sep-

arately. The aggregate results show a large time variation and het-

erogeneity in tail- across continents and conditioning risk factors.

The table confirms that US tail- dominate eurozone tail- for most

factors. In fact, the pre-crisis magnitudes of US tail- are compara-

ble to the crisis magnitudes of euro zone tail- Comparing the tail-

averages across different conditioning risk factors, one can see that

       for eurozone banks and

a similar inequality seems to hold for US bank outcomes. That tail-

are most exposed to shocks transmitted via the continental banking in-

dex is conform the intuition. Notice also the stronger exposures of US

banks to real estate shocks during the crisis period (the pre-crisis ex-

posures are of similar magnitude) which should not surprise given that

the subprime mortgage crisis originated in the US. Finally, and just as

for the univariate tail risk measures, one also observes that means and

medians in Table 5 do not differ much. Table 6 therefore only reports

mean equality tests for the tail- measures and distinguishes between

tests for structural change (Panel I) and cross sectional equality (panel

II). Given the approximate normality of the tail- estimator (3.10), the

test statistic that compares average tail- is also normally distributed.

The test statistics confirm that (i) average tail- have risen over time

for both the US and eurozone (panel I); (ii) the average US exposure

to aggregate shocks seems stronger than its eurozone counterparts re-

gardless the sample period (pre-crisis vs. crisis) or conditioning risk

factors.

[insert table 5, 6]

5. Conclusions

In this paper we exploit techniques borrowed from multivariate ex-

treme value analysis in order to measure alternative indicators of down-

side bank risk and systemic risk. The indicators are market-based

because they use stock market (extreme) returns as input. We com-

pare tail risk and systemic risk estimators across continents (US vs.

eurozone) and across time (i.e. did tail risk and systemic risk change

over time in an economically and statistically significant way?). Tail

risk refers to the downside risk in banks’ equity value. Given that sharp

falls in (the market price of) equity can drive banks into overnight finan-

cial distress and near-insolvency, one can also interpret these downside
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risk measures as capturing the banks’ solvency risk. Obviously, banks

with more probability mass in the lower equity return tails will also ex-

hibit more solvency risk according to this measure. The proposed sys-

temic risk measures are two-fold and either capture extreme spillovers

among banks (“contagion risk”) or reflect the exposure of banks to ex-

treme systematic shocks (“tail-”). The contagion risk measures are

defined as multivariate probabilities of joint sharp drops in the market

value of bank equity capital and are both evaluated across bank pairs

as well as in a purely multivariate fashion, i.e. for the US and eurozone

banking system as a whole. The tail- indicator is defined as a co-crash

probability of individual bank equity capital and conditioning macro

factors including a banking stock index, a general stock index, a real

estate index and an equally weighted government bond portfolio con-

sisting of Portuguese, Italian, Irish, Greek and Spanish (PIIGS) debt.

Conditioning on sharp drops in the real estate index enables one to

identify the banks’ exposure to real estate bubble bursts. Conditioning

on sharp falls in the PIIGS index produces exposures of the eurozone

banks to fluctuations in the market value of PIIGS debt (US bank

exposures to PIIGS shocks have not been considered). The current

study can be seen as an extension of the Hartmann et al. (2006) study

on cross-atlantic banking system stability because we use comparable

EVT techniques and US and eurozone bank panels. We have, however,

a much longer price history at our disposal including the 2007-2009

systemic banking crisis. This enables us to investigate the stability of

tail risk and systemic risk over time (for example, whether the crisis

significantly increased risk indicators). The systemic risk indicators

also differ from the ones used in previous studies: the tail- indicator

is conditioned on a wider set of non-diversifiable risk factors (for ex-

ample, we also condition on real estate and sovereign debt risk factors

as they played a prominent role in triggering the most recent banking

crisis). We also apply a new multivariate spillover risk indicator to

the entire banking system, see Huang (1992) for earlier applications

on other financial assets. The most important difference between what

we do and previous work lies in the fact that the considered systemic

risk indicators assume so-called “tail dependence” as an identifying re-

striction. We argue that tail dependence is an economically meaningful

restriction which produces estimates that act as upperbounds for the

true underlying systemic risk. From the perspective of regulators and

supervisors, this seems a desirable property as they are supposed to

monitor and safeguard financial system stability.

Turning to the estimation results, we distinguish between univari-

ate results on downside bank risk and multivariate results on systemic
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risk. The outcomes on the extreme downside risk proxies (tail index,

tail quantile, tail conditionally expected shortfall) for bank stocks indi-

cate that US banks are riskier than their European counterparts. The

multivariate bank spillover indicators for the euro area seem to be sig-

nificantly lower than in the US. Domestic (bilateral) linkages in the

euro area also fall below extreme (bilateral) linkages among US banks.

We cannot generally conclude that domestic (bilateral) eurozone link-

ages dominate cross-border (bilateral) eurozone linkages or vice versa.

In fact, we observe a large heterogeneity in domestic and cross-border

eurozone contagion depending on the considered countries or country

pairs. As concerns the second indicator of systemic risk, US tail-

dominate their European counterparts for most of the conditioning risk

factors which is in line with the multivariate contagion risk outcomes.

Within a given continent, however, we observe a wide heterogeneity

in tail- outcomes across banks and conditioning factors. Nonsurpris-

ingly, bank equity capital is most reactive to shocks transmitted via a

continent’s bank index, followed by a continent’s global stock index, a

world-wide bank index and a world-wide stock index. Also, the impact

of adverse shocks in real estate is considerable for both eurozone and

US banks. The sovereign debt crisis exercises a smaller impact on the

equity capital of European banks than expected. We find the largest

impact for banks in the PIIGS countries themselves but most of the

tail- values conditioned on the sovereign debt risk factor are only half

of the values we find for other conditioning risk factors. Finally, struc-

tural stability tests for both our univariate downside risk indicators and

multivariate banking system risk indicators suggest a general increase

in tail risk and systemic risk when taking the start of the financial cri-

sis as sample split. Overall, one may conclude there is a strong need

for both continents to fine-tune existing micro-prudential and macro-

prudential regulations and supervision. How this will materialize is the

subject of ongoing discussion and lobbying.

–––––––––
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Figure 1. Univariate tail risk measures (tail indices,
tail quantiles and expected shortfalls) for US and eu-

rozone banks: pre-crisis vs. crisis results
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Note: For Eurozone banks 1 to 15 in the bottom axis represent Commerzbank, Deutsche, BGBerlin, BNP Paribas, SocGen, Natixis, Intesa, Unicredit, Santander, BBVA, Espanol, ING, Alpha, AIB and BCP respectively.
For US banks 1 to 15 represent Citi, JPMorgan, BoA, WellsFargo, BNY, SStreet, Ntrust, USBanc, PNC, Keyco, SunTrust, Commerica, BBT, Fifth3rd and Region respectively.
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Figure 2. Extreme systematic risk for US and eurozone
banks: pre-crisis vs. crisis results and different condition-

ing risk factors
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Figure 3. Time varying tail risk: (rolling) Hill esti-
mates and expected shortfalls for US and eurozone banks
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Figure 4. Time varying systemic risk: (rolling) ex-

pected co-crash indicators and co-crash probabilities for

US and eurozone banks
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Table 1. Tail risk masures for selected eurozone and US
banks: full sample, pre-crisis and crisis

Bank b b ()  (  )  (b ())
 = 02%  = 01%  = 25%  = 50%  = 02%  = 01%

Panel I: eurozone banks full sample estimates

mean 2.8 11.9 15.5 14.6 29.0 7.2 9.6

median 2.8 11.2 14.2 14.0 28.0 6.0 7.6

s.e. 0.3 3.3 4.8 3.1 6.2 4.0 5.7

Panel II: eurozone banks pre-crisis estimates

mean 2.9 9.0 11.6 13.6 27.0 4.9 6.5

median 3.0 9.0 11.3 12.7 25.3 4.4 5.5

s.e. 0.4 1.4 2.1 3.0 6.1 1.6 2.4

Panel III: eurozone banks crisis estimates

mean 2.7 18.0 23.5 14.5 29.1 11.3 14.9

median 2.7 16.3 20.7 14.5 29.0 9.8 12.5

s.e. 0.8 7.9 11.1 3.8 7.7 7.5 10.4

Panel IV: US banks full sample estimates

mean 2.3 14.2 19.5 20.4 40.8 12.1 16.7

median 2.2 13.3 17.9 20.4 40.8 10.9 14.9

s.e. 0.3 3.0 4.8 4.8 9.7 5.4 8.1

Panel V: US banks pre-crisis estimates

mean 2.9 8.0 10.2 13.3 26.7 4.3 5.5

median 3.0 8.0 10.1 12.7 25.5 3.8 4.9

s.e. 0.2 1.0 1.4 1.4 2.7 0.9 1.2

Panel VI: US banks crisis estimates

mean 2.0 30.7 43.9 25.7 51.5 32.9 47.2

median 2.0 29.0 39.3 24.0 48.1 27.3 39.1

s.e. 0.21 8.5 13.5 5.5 10.9 15.9 24.8

Note: Sample means, medians and standard deviations for the tail index  the tail

quantile  and the expected shortfall ES are reported across the time series dimension

(pre-crisis vs. crisis) and the cross sectional dimension (US vs. eurozone). The dis-

aggregated results that underpin mean and median calculations are reported in Tables

A.2, A.3 and A.4 in Appendix. The nuisance parameter  equals 120 and 219 for full

sample eurozone and US banks (median values across US and eurozone). The pre-crisis

and crisis  for the eurozone banks is 103 and 41 respectively whereas it is 188 and 75

for the US banks.
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Table 2. Univariate tail risk proxies: testing for cross
sectional equality and structural change

Panel I: Structural change tests

1 = 2 1 () = 2 ()

US mean 12.5*** -9.6***

eurozone mean 0.9 -4.0***

Panel II: Cross-sectional equality tests

 =   = 
Pre-crisis mean 0.3 2.2**

Crisis mean 3.2*** -4.5***

Note: the table reports t-tests for equal sample means (Hill and

quantile estimates) and is approximately normally distributed.

Sample averages are denoted with upper bars. The upper panel

compares pre-crisis and crisis sample averages of the Hill estimates

and the quantile estimates for each continent separately. The lower

panel compares continental averages for the pre-crisis sample and

the crisis sample separately. (One-sided) rejections at the 5%, 2.5%

and 1% significance level are denoted with *, ** and ****, respec-

tively. The significance level  on which the tail quantile estimatorb is conditioned equals 0.1%
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Table 3. Indicators of multivariate bank spillover risk

panel I: Multivariate indicators

 { | > 1} Multiprob (|1 ).
full pre crisis %∆ full pre crisis %∆

United States (=15) 3.64 2.94 4.33 47.27 14.31 11.70 22.75 94.44

eurozone (=15) 2.41 2.08 2.94 41.35 7.37 6.59 10.36 57.21

Germany (=3) 1.35 1.34 1.41 5.22 24.84 25.67 29.61 15.35

France (=3) 1.53 1.39 1.68 20.86 32.72 27.97 49.07 75.44

Spain (=3) 1.58 1.45 1.97 35.86 35.30 28.81 60.30 109.3

Panel II: Structural change tests (pre=crisis)

 =   = 
US -2.66*** -2.90***

eurozone -2.66*** -3.32***

GE -0.75 -0.89

FR -3.47*** -2.99***

ESP -5.10*** -3.42***

Panel III: Cross sectional tests

 

pre-crisis crisis pre-crisis crisis

US=eurozone 6.41*** 3.42*** 6.36*** 3.41***

FR=GE 1.03 3.24*** 1.35 4.37***

ESP=FR 1.28 3.39*** 0.45 2.15***

ESP=GE 2.09** 5.99*** 1.76 4.21***

Note: Panel I reports estimation results for multivariate spillover risk measures for

| = 1 and  |1 whereas Panels II and III report the corresponding cross sectional
equality tests and structural change tests to assess whether multivariate contagion risk

varies over time or differs across continents and countries, respectively. The nuisance

parameter "m" for eurozone and US banks is 200, 150 and 50 for the full sample,

the pre-crisis and the crisis, respectively. For German, French and Spanish banks the

parameter "m" is selected as 300, 250 and 100 for the full sample, the pre-crisis and the

crisis, respectively. (One-sided) rejections at the 5%, 2.5% and 1% significance level are

denoted with *, ** and ****, respectively.
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Table 4. Bilateral extreme bank linkages: comparing
US with eurozone

eurozone US

Domestic (per country) cross-border (per country)

country full pre crisis pairs full pre crisis full pre crisis

GE 27.2 28.1 31.6 GE 26.3 24.2 30.5 CITIG 42.4 32.3 49.0

FR 16.7 13.9 19.5 FR 22.7 18.6 26.3 J MORGAN 42.9 32.3 55.4

IT 42.6 28.1 60.9 IT 31.0 20.4 38.7 BAMERICA 49.6 33.0 51.8

ESP 44.6 31.8 59.5 ESP 30.7 22.4 38.4 FARGO 45.7 31.5 55.1

cross-border (per country pair) BNYORK 39.4 32.2 47.4

GE-FR 21.9 21.0 25.5 SSTREET 40.5 33.1 44.3

GE-IT 34.9 28.1 46.3 NTRUST 37.7 32.6 48.2

GE-ESP 35.9 30.0 45.5 BCORP 43.0 31.1 52.4

GE-NL 36.0 14.0 39.7 PNC 43.3 36.1 53.2

GE-GR 17.1 37.9 21.3 KEYCO 47.9 35.7 48.4

GE-IRE 20.4 14.9 29.8 SUNTRUST 46.5 37.8 51.3

GE-POR 21.6 19.8 19.0 COMERICA 47.2 35.8 52.7

FR-IT 29.6 21.2 40.2 BBT 43.2 31.3 49.7

FR-ESP 30.6 22.9 39.5 53BANCO 43.8 30.7 46.4

FR-NL 40.9 24.7 42.7 REGION 45.6 35.0 43.7

FR-GR 20.3 13.6 24.5

FR-IRE 25.4 16.1 27.5

FR-POR 19.8 16.6 19.3

IT-ESP 43.6 30.0 60.2

IT-NL 39.8 31.2 51.0

IT-GR 17.8 13.7 23.4

IT-IRE 23.8 17.5 25.8

IT-POR 24.2 18.3 22.7

ESP-NL 39.3 33.6 48.1

ESP-GR 20.4 14.7 26.8

ESP-IRE 23.5 20.2 28.3

ESP-POR 25.6 21.6 30.5

NL-GR 23.0 17.2 28.0

NL-IRE 28.0 24.1 29.8

NL-POR 28.8 26.0 27.5

GR-IRE 26.5 16.9 22.2

GR-POR 24.1 15.3 24.2

IRE-POR 23.5 19.1 18.4

Note: Each cell is a sample average of co-crash probabilities for bank pairs. The panel "domestic"

contains averages of all bilateral co-crash probabilities for bank pairs within Germany, France , Italy

and Spain (we only consider the eurozone countries that have more than one bank in the sample).

Cross-border contagion can either be calculated per eurozone country pair or per eurozone country.

The panel "cross-border (per pair)" reflects averages of cross-border co-crash probabilities between

bank pairs originating from the indicated eurozone country pair. The panel "cross-border (per

country)" reports averages of cross-border co-crash probabilities between bank pairs of the indicated

country with all other foreign eurozone banks. The "US" panel reports averages of bilateral linkage

probabilities between each of the 15 US banks with respect to each other. The nuisance parameter

 for the full sample, the pre-crisis and the crisis is 200, 172 and 69, respectively for all pairs.
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Table 5. extreme systematic risk for selected eurozone
banks and US banks: full sample, pre-crisis and crisis

Aggregate risk factor (index)

Bank stock global bank global stock real estate PIIGS

Panel I: eurozone banks full sample estimates

mean 48.0 45.8 44.4 42.5 32.9 19.7

median 46.8 44.7 43.4 41.2 36.3 20.1

s.e. 9.0 8.4 8.4 6.9 6.8 2.0

Panel II: eurozone banks pre-crisis estimates

mean 43.7 42.6 40.2 40.0 32.6 13.8

median 42.1 41.6 39.5 38.7 33.4 13.7

s.e. 8.2 7.2 6.0 5.8 5.5 0.8

Panel III: eurozone banks crisis estimates

mean 62.5 58.7 58.4 55.6 44.4 21.3

median 64.3 60.6 63.1 58.0 42.8 20.8

s.e. 8.5 7.6 7.5 6.5 8.7 2.8

Panel IV: US banks full sample estimates

US bank US stock global bank global stock real estate

mean 63.7 52.1 46.6 45.2 43.2

median 62.8 50.8 46.1 44.8 43.1

s.e. 3.9 2.5 1.9 2.1 1.3

Panel V: US banks pre-crisis estimates

mean 60.0 49.9 44.9 44.5 36.7

median 61.2 49.4 44.8 44.1 36.3

s.e. 3.3 2.8 1.7 2.1 1.0

Panel VI: US banks crisis estimates

mean 72.6 63.8 54.5 53.5 61.3

median 71.2 63.4 53.8 52.7 61.7

s.e. 5.1 2.8 2.1 2.1 2.7

Note: Sample means, medians and standard deviations for the tail- estimates are reported

across the time series dimension (pre-crisis vs. crisis) and the cross sectional dimension (US

vs. eurozone). The tail- is estimated according to (3.10). The table reports results

conditional on different aggregate risk factors (PIIGS tail- estimates are only calculated

for eurozone banks). The disaggregated results that underpin mean and median calculations

are reported in Tables A.5, A.6 and A.7 in Appendix. The nuisance parameter equals 400

for full sample eurozone and US banks if the conditioning aggregate risk factor is either a

bank index or stock index. The parameter  is 300 in case the conditioning aggregate risk

factor is a real estate index and it is 65 if the aggregate risk factor is the so-called PIIGS

index. The parameter  is determined by the Hill estimator. The pre-crisis and crisis  for

the eurozone banks and US banks is 340 and 138, respectively, if the conditioning aggregate

risk factor is either the bank index or the stock index, and it is 258 and 103 in case of the

real estate index as a conditioning aggregate risk factor, and 59 and 17 if the PIIGS index

is the conditioning aggregate risk factor.
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Table 6. Extreme systematic risk: testing for cross sec-
tional equality and structural change

Conditioning aggregate risk factor

bank stock global bank global stock real estate PIIGS

Panel I: structural change tests

US mean -8.0*** -13.8*** -13.9*** -11.6*** -33.6*** -

eurozone mean -6.2*** -6.0*** -7.3*** -7.0*** -4.5*** -10.0***

Panel II: Cross-sectional equality tests

pre-crisis mean -7.2*** -3.6*** -2.9*** -2.9*** -2.9***

crisis mean -4.0*** -2.4*** 2.0* 1.8 -7.2***

Note: This table reports the structural change tests and the cross-sectional equality tests

for extreme systemic risk. Panel I reports the mean structural change tests for the US and

the eurozone conditioning on six (five in case of the US) market factors. Panel II reports the

mean cross-sectional equality tests across US and eurozone for pre-crisis and crisis periods

separately conditioning on five different market factors. (One-sided) rejections at the 5%,

2.5% and 1% significance level are denoted with *, ** and ****, respectively.
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Table A.1. US and eurozone bank stock returns: de-
scriptive statistics

full sample pre-crisis crisis

    1 1 1 1 2 2 2 2

Panel I: eurozone banks

COMMERZ -0.016 2.4 -0.2 15.9 0.033 1.9 0.1 9.9 -0.208 3.8 -0.2 10.7

DEUTSCHE 0.013 2.2 0.2 13.4 0.035 1.8 -0.1 7.6 -0.074 3.3 0.4 10.7

BGBERLIN -0.007 2.3 -0.6 28.9 0.000 2.3 -1.1 34.6 -0.035 2.6 0.6 14.6

BNP 0.031 2.3 0.3 10.7 0.050 2.1 0.1 7.3 -0.033 3.2 0.4 10.0

SOCGEN 0.030 2.4 0.05 9.7 0.064 2.0 0.05 7.5 -0.103 3.5 0.1 7.3

NATIXIS 0.007 2.4 0.7 23.4 0.035 1.6 0.4 10.2 -0.105 4.2 0.6 11.3

INTESA 0.026 2.4 0.2 8.6 0.056 2.3 0.3 6.8 -0.095 2.9 0.01 10.2

UNICREDIT 0.023 2.4 0.6 12.1 0.060 2.1 1.0 13.2 -0.126 3.4 0.3 7.9

SANTANDER 0.043 2.1 0.1 10.3 0.061 1.9 -0.1 9.0 -0.031 2.8 0.5 9.4

BBVA 0.041 2.0 0.2 10.2 0.067 1.8 0.02 9.5 -0.066 2.6 0.5 8.8

ESPANOL -0.007 2.1 -12.1 509.9 0.014 2.1 -15.3 639.9 -0.088 2.1 0.2 5.8

ING 0.029 2.7 -0.03 21.1 0.062 2.0 -0.1 11.7 -0.100 4.4 0.1 12.3

ALPHA 0.027 2.5 0.3 9.3 0.079 2.1 0.5 14.0 -0.179 3.6 0.2 4.0

AIBANK -0.032 3.5 -2.8 93.7 0.070 1.6 -0.3 10.7 -0.435 7.2 -1.5 27.1

BCP -0.009 1.7 0.01 11.7 0.038 1.5 -0.1 14.9 -0.196 2.4 0.3. 6.4

average 0.014 2.36 0.048 1.94 -0.125 3.47

Panel II: US banks

CITIG 0.013 3.1 -0.4 43.0 0.078 2.0 0.1 8.6 -0.241 5.6 -0.3 19.5

J MORGAN 0.038 2.5 0.3 15.1 0.049 2.1 0.1 9.3 -0.007 3.9 0.3 10.8

BAMERICA 0.012 2.8 -0.3 33.2 0.050 1.7 -0.2 6.8 -0.140 5.2 -0.1 13.6

FARGO 0.046 2.4 0.8 28.5 0.062 1.6 0.1 6.0 -0.014 4.4 0.7 12.8

BNYORK 0.040 2.4 -0.04 19.5 0.063 1.9 0.1 8.7 -0.051 3.7 -0.03 14.5

SSTREET 0.038 2.8 -6.1 212.2 0.059 1.9 -0.2 10.5 -0.044 5.0 -5.4 108.7

NTRUST 0.040 2.2 0.4 16.5 0.057 1.8 0.6 10.3 -0.030 3.2 0.2 13.2

BCORP 0.053 2.2 0.2 19.8 0.070 1.8 0.5 22.3 -0.016 3.5 0.03 10.5

PNC 0.030 2.4 -1.4 71.0 0.041 1.6 -0.2 8.8 -0.010 4.1 -1.2 36.9

KEYCO 0.004 2.8 -0.5 44.2 0.041 1.6 0.1 7.2 -0.140 5.2 -0.3 16.5

SUNTRUST 0.016 2.5 -0.4 28.6 0.047 1.5 -0.1 7.3 -0.106 4.8 -0.2 10.6

COMERICA 0.025 2.3 -0.2 16.5 0.040 1.6 -0.6 15.9 -0.035 4.0 0.05 7.4

BBT 0.039 2.1 0.2 21.2 0.055 1.5 0.5 9.6 -0.027 3.6 0.1 10.9

53BANCO 0.014 3.1 -0.3 67.4 0.045 1.6 0.3 6.2 -0.107 6.2 -0.2 21.9

REGION 0.003 3.0 -0.6 51.8 0.042 1.5 0.3 9.9 -0.150 5.8 -0.3 16.9

average 0.027 2.57 0.053 1.71 -0.074 4.55

Note: The (full) sample mean, standard deviation, skewness and kurtosis are denoted by    and

 Subsample moments indexed with 1 and 2 represent pre-crisis and crisis values. Sample means and

standard deviations are expressed in percentages. August 7, 2007 is taken as starting point of crisis.
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Table A.2. Full sample tail risk indicators for eurozone
and US banks

Bank   ()  (  )  ( ())

 = 02%  = 01%  = 25%  = 50%  = 02%  = 01%

Panel I: eurozone banks

COMMERZ 2.5 12.9 17.0 16.2 32.4 8.4 11.0

DEUTSCHE 2.8 10.9 14.0 13.6 27.3 6.0 7.6

BGBERLIN 3.0 11.3 14.2 12.4 24.8 5.6 7.1

BNP 2.5 11.2 15.7 16.5 29.4 6.6 10.4

SOCGEN 2.8 11.9 15.3 13.9 27.8 6.6 8.5

NATIXIS 2.3 13.0 17.4 18.6 37.1 9.6 12.9

INTESA 3.2 10.6 13.2 11.4 22.8 4.8 6.0

UNICREDIT 2.7 11.6 15.0 14.9 29.8 6.9 8.9

SANTANDER 3.0 10.1 12.7 12.3 24.6 5.0 6.3

BBVA 2.7 10.0 12.9 14.4 28.8 5.8 7.4

ESPANOL 2.8 8.9 11.4 14.0 28.0 5.0 6.4

ING 2.6 14.9 19.4 15.5 31.0 9.2 12.0

ALPHA 3.2 11.0 13.6 11.3 22.7 5.0 6.2

AIBANK 2.1 22.0 30.7 23.0 46.0 20.2 28.2

BCP 3.3 7.9 9.8 11.1 22.2 3.5 4.3

Panel II: US banks

CITIG 2.2 17.1 23.5 21.5 43.0 14.7 20.2

J MORGAN 2.6 12.3 16.0 15.4 30.7 7.6 9.8

BAMERICA 2.1 16.3 22.6 22.6 45.2 14.7 20.4

FARGO 2.2 13.1 17.9 20.7 41.5 10.9 14.9

BNYORK 2.6 11.8 15.4 15.9 31.8 7.5 9.8

SSTREET 2.4 13.4 17.8 17.6 35.3 9.4 12.5

NTRUST 2.8 10.2 13.0 13.9 27.8 5.6 7.2

BCORP 2.2 13.3 18.3 21.7 43.4 11.5 15.9

PNC 2.5 11.4 15.0 16.8 33.5 7.6 10.1

KEYCO 2.2 15.6 21.3 20.4 40.8 12.7 17.4

SUNTRUST 1.9 17.2 24.8 28.0 56.0 19.3 27.8

COMERICA 2.4 12.4 16.6 17.8 35.6 8.9 11.8

BBT 2.5 10.8 14.3 16.8 33.6 7.3 9.6

53BANCO 1.9 18.8 27.1 28.0 55.9 21.0 30.3

REGION 1.9 19.6 28.4 29.0 58.0 22.7 32.9

Note: Estimators for the tail index  the tail quantile  and the expected shortfall ES

are given in eqs. (3.3), (3.2) and (3.4). The nuisance parameter  denoting the number of

extreme returns used in estimation equals 120 and 219 for the eurozone banks and the US

banks, respectively.
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Table A.3. Tail risk indicators for selected eurozone
banks: pre-crisis and crisis estimates

Bank   ()  (  )  (b ())
 = 02%  = 01%  = 25%  = 50%  = 02%  = 01%

Panel I: pre-crisis estimates

COMMERZ 3.0 9.0 11.3 12.2 24.5 4.4 5.5

DEUTSCHE 3.2 8.4 10.4 11.3 22.5 3.8 4.7

BGBERLIN 2.7 11.4 14.8 14.7 29.4 6.7 8.7

BNP 2.7 9.0 14.8 14.9 26.3 4.7 8.8

SOCGEN 2.9 9.6 12.2 13.2 26.5 5.1 6.4

NATIXIS 3.4 6.6 8.1 10.4 20.8 2.7 3.4

INTESA 3.7 9.1 10.9 9.2 18.4 3.3 4.0

UNICREDIT 3.4 8.3 10.2 10.5 21.1 3.5 4.3

SANTANDER 3.1 9.0 11.3 12.2 24.3 4.4 5.5

BBVA 2.6 9.2 12.1 15.9 31.9 5.9 7.7

ESPANOL 2.3 9.3 12.6 19.8 39.6 7.4 10.0

ING 2.4 11.8 15.8 18.2 36.3 8.6 11.5

ALPHA 3.1 8.7 10.9 12.0 24.1 4.2 5.3

AIBANK 3.0 7.2 9.1 12.7 25.3 3.7 4.6

BCP 2.5 7.6 10.0 16.8 33.6 5.1 6.8

Panel II: crisis estimates

COMMERZ 2.7 19.7 25.4 14.5 29.0 11.4 14.7

DEUTSCHE 2.4 18.6 24.7 17.4 34.7 12.9 17.2

BGBERLIN 2.7 14.1 18.4 15.1 30.2 8.5 11.1

BNP 2.7 16.3 21.2 15.1 30.2 9.9 12.8

SOCGEN 3.1 16.3 20.4 12.1 24.2 7.9 9.8

NATIXIS 2.1 27.1 37.8 23.2 46.5 25.2 35.1

INTESA 2.6 15.8 20.7 16.1 32.2 10.2 13.3

UNICREDIT 2.8 17.3 22.2 14.1 28.2 9.8 12.5

SANTANDER 2.9 13.5 17.1 13.1 26.2 7.0 8.9

BBVA 2.8 13.2 16.9 14.3 28.5 7.5 9.6

ESPANOL 3.9 8.5 10.1 8.5 17.0 2.9 3.4

ING 2.4 25.4 33.8 17.3 34.7 17.6 23.4

ALPHA 3.8 13.9 16.6 8.8 17.6 4.9 5.9

AIBANK 0.4 40.4 54.1 18.4 36.7 29.6 39.7

BCP 3.4 10.2 12.5 10.2 20.4 4.2 5.1

Note: Estimators for the tail index  the tail quantile  and the expected shortfall ES

are given in (3.3), (3.2) and (3.4). The table distinguishes pre-crisis from crisis estimates

(sample splits on August 7, 2007). The nuisance parameter  equals 103 and 41 for the

pre-crisis and the crisis samples, respectively.
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Table A.4. Tail risk indicators for selected US banks:
pre-crisis and crisis estimates

Bank   ()  (  )  ( ())

 = 02%  = 01%  = 25%  = 50%  = 02%  = 01%

Panel I: pre-crisis estimates

CITIG 3.0 8.8 11.0 12.2 24.5 4.3 5.4

J MORGAN 3.0 9.2 11.7 12.5 25.1 4.6 5.9

BAMERICA 2.8 8.7 11.2 14.2 28.4 5.0 6.4

FARGO 3.1 6.9 8.7 12.1 24.2 3.3 4.2

BNYORK 3.2 8.2 10.1 11.3 22.7 3.7 4.6

SSTREET 2.6 10.0 13.1 16.1 32.1 6.4 8.4

NTRUST 2.8 8.4 10.7 13.5 27.0 4.6 5.8

BCORP 2.6 9.0 11.8 16.1 32.3 5.8 7.6

PNC 3.0 7.4 9.4 12.7 25.5 3.8 4.8

KEYCO 2.8 8.0 10.3 14.1 28.3 4.5 5.8

SUNTRUST 2.9 6.8 8.7 13.5 26.9 3.7 4.7

COMERICA 3.0 7.3 9.2 12.7 25.5 3.7 4.7

BBT 2.8 7.0 8.9 13.7 27.3 3.8 4.9

53BANCO 3.0 7.3 9.2 12.5 25.1 3.7 4.6

REGION 3.0 7.0 8.9 12.6 25.2 3.5 4.5

Panel II: crisis estimates

CITIG 1.8 43.9 65.1 32.8 65.6 57.7 85.5

JP MORGAN 2.1 24.8 34.9 23.9 47.7 23.7 33.3

BAMERICA 1.6 46.9 71.5 39.1 78.1 73.2 111.8

WELLS FARGO 1.9 31.3 45.4 29.0 58.0 36.3 52.7

BNYORK 2.1 23.2 32.2 22.6 45.3 21.0 29.2

SSTREET 1.9 29.8 43.1 28.5 57.0 34.0 49.2

NTRUST 1.9 22.8 32.6 26.9 53.8 24.5 35.1

BCORP 1.9 25.6 36.7 26.7 53.3 27.3 39.1

PNC 2.1 23.1 31.9 21.9 43.8 20.2 28.0

KEYCO 2.1 34.1 47.7 23.7 47.3 32.3 45.2

SUNTRUST 2.3 29.0 39.3 19.6 39.1 22.7 30.7

COMERICA 2.0 27.6 38.8 24.0 48.1 26.6 37.3

BBT 2.5 18.9 25.0 17.1 34.2 12.9 17.1

53BANCO 1.9 42.8 61.9 28.3 56.6 48.5 70.0

REGIONS 2.1 36.5 50.5 22.0 44.0 32.2 44.5

Note: Estimators for the tail index  the tail quantile  and the expected shortfall ES

are given in (3.3), (3.2) and (3.4). The table distinguishes pre-crisis from crisis estimates

(sample split equals August 7, 2007). The nuisance parameter  equals 188 and 75 for the

pre-crisis and the crisis samples, respectively.
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Table A.5. Extreme systematic risk for selected euro-
zone banks and US banks: full sample results

Bank Aggregate risk factor (index)

bank stock world bank world stock real estate PIIGS

Panel I: eurozone banks

COMMERZ 54.7 52.1 50.6 49.3 22.6 33.0

DEUTSCHE 56.5 53.5 53.1 50.7 23.1 32.2

BGBERLIN 34.4 33.9 32.3 32.8 22.8 35.6

BNP 28.6 28.8 27.9 27.8 25.8 35.0

SOCGEN 56.6 52.4 50.6 47.2 38.8 33.1

NATIXIS 44.2 41.4 43.0 39.7 39.1 33.5

INTESA 46.8 44.7 42.8 40.6 35.1 33.2

UNICREDIT 48.8 45.9 44.9 41.2 37.0 33.0

SANTANDER 57.7 55.8 51.6 49.6 39.1 33.4

BBVA 58.4 56.6 52.4 50.5 38.0 33.1

ESPANOL 44.8 41.8 41.2 39.3 36.3 35.8

ING 57.0 55.3 53.5 49.3 38.7 32.1

ALPHA 40.2 38.7 37.7 37.4 35.9 34.5

AIBANK 46.3 43.8 43.4 42.2 36.7 34.2

BCP 44.5 41.7 40.5 39.8 25.0 25.0

Panel II: US banks

CITIG 67.0 55.0 50.4 48.9 44.7

J MORGAN 69.2 57.9 50.0 48.8 43.0

BAMERICA 72.7 53.6 48.4 45.9 43.1

FARGO 62.8 49.8 44.0 42.7 44.3

BNYORK 61.4 53.3 46.1 45.5 41.4

SSTREET 59.9 53.8 45.9 47.7 43.1

NTRUST 58.2 54.7 45.4 47.5 42.3

BCORP 61.0 50.5 45.1 43.5 41.8

PNC 64.1 50.8 44.8 44.0 42.9

KEYCO 63.8 50.5 46.3 44.5 43.6

SUNTRUST 66.1 50.8 48.2 44.9 42.6

COMERICA 64.7 52.1 46.8 44.4 46.0

BBT 62.6 50.5 45.6 43.1 43.4

53BANCO 59.8 49.1 44.7 42.4 40.9

REGION 61.4 48.8 47.3 44.8 44.5

Note: The tail- estimator is given by (3.10). The table reports results conditional

on different aggregate risk factors (results conditional to the PIIGS factor are only

calculated for eurozone banks). The nuisance parameter  denoting the number

of extreme returns used in estimation equals 400 for both the eurozone banks and

the US banks.
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Table A.6. Extreme systematic risk for selected euro-
zone banks: pre-crisis vs. crisis results

Bank Aggregate risk factor (index)

bank stock world bank world stock real estate PIIGS

Panel I: pre-crisis estimates

COMMERZ 50.3 49.2 44.7 44.5 35.3 13.2

DEUTSCHE 54.3 50.7 47.8 47.5 35.6 13.4

BGBERLIN 35.4 35.0 32.6 33.2 30.6 14.1

BNP 28.8 29.6 28.6 28.5 25.7 15.1

SOCGEN 50.8 47.6 45.3 43.7 33.5 12.8

NATIXIS 37.6 37.3 36.5 36.0 33.3 14.1

INTESA 42.1 41.1 39.5 38.7 32.5 14.2

UNICREDIT 44.8 42.8 38.7 37.6 34.5 13.7

SANTANDER 53.7 51.4 47.9 46.4 40.1 13.6

BBVA 53.6 52.2 47.4 47.7 38.9 13.1

ESPANOL 38.3 36.6 36.5 36.4 36.1 15.5

ING 51.1 50.5 45.6 45.9 33.0 13.1

ALPHA 35.1 36.0 35.4 36.3 36.5 14.4

AIBANK 41.2 41.6 40.8 40.9 23.6 13.7

BCP 38.1 37.5 35.7 36.6 24.2 13.1

Panel II: crisis estimates

COMMERZ 61.9 58.5 65.8 61.9 55.1 25.4

DEUTSCHE 63.4 61.1 63.4 61.7 52.1 18.1

BGBERLIN 41.5 40.6 40.8 40.2 35.3 17.8

BNP 68.1 61.9 63.1 58.0 33.7 20.8

SOCGEN 65.8 60.3 63.4 57.1 52.6 19.8

NATIXIS 61.1 58.8 63.7 58.5 54.8 19.6

INTESA 66.1 63.7 56.6 55.0 48.2 25.1

UNICREDIT 68.4 63.7 59.5 58.3 51.3 24.0

SANTANDER 73.5 67.4 63.1 59.8 42.8 19.2

BBVA 73.9 68.4 64.6 61.7 40.6 21.0

ESPANOL 64.3 60.6 58.5 56.9 41.4 20.5

ING 66.4 64.3 64.0 60.3 54.3 19.2

ALPHA 52.3 49.9 47.0 46.4 41.1 21.6

AIBANK 54.2 50.8 50.2 49.2 32.2 20.8

BCP 56.2 51.0 52.7 48.8 31.2 27.1

Note: The tail- estimator is given by (3.10). The table reports results conditional

on different aggregate risk factors. The table distinguishes pre-crisis estimates form

crisis estimates (sample mid-point equals August 7, 2007; the sample split for the

PIIGS tail- equals December 15, 2009). The nuisance parameter equals  = 340

and  = 138 for pre-crisis and crisis samples, respectively.
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Table A.7. Extreme systematic risk for selected US
banks: pre-crisis vs. crisis results

Bank Aggregate risk factor (index)

bank stock world bank world stock real estate

Panel I: pre-crisis estimates

CITIG 62.5 55.2 47.4 47.6 36.2

JP MORGAN 63.9 55.5 48.3 48.6 37.1

BAMERICA 65.0 49.0 45.9 44.8 36.8

FARGO 57.8 47.0 43.3 42.3 35.8

BNYORK 62.0 51.4 45.8 44.9 38.1

SSTREET 57.5 51.1 44.8 45.8 35.7

NTRUST 57.5 51.8 45.0 48.0 37.4

BCORP 55.0 47.6 42.4 42.3 35.8

PNC 61.2 48.5 44.0 43.4 36.1

KEYCO 62.2 49.4 45.2 44.6 38.0

SUNTRUST 63.6 50.5 44.5 43.5 36.3

COMERICA 61.6 49.4 45.6 44.1 38.8

BBT 59.0 47.9 44.7 43.3 36.6

53BANCO 55.6 46.5 42.1 42.1 36.0

REGION 56.0 47.2 44.1 42.5 35.8

Panel II: crisis estimates

CITIG 73.1 63.4 57.6 57.1 59.9

JP MORGAN 82.7 69.8 57.3 54.8 67.0

BAMERICA 80.8 66.7 58.5 58.5 63.3

WELLS FARGO 80.3 63.1 53.5 52.7 61.7

BNYORK 66.4 65.2 51.4 52.3 62.5

SSTREET 66.1 66.4 54.0 54.2 61.7

NTRUST 69.4 64.9 51.5 51.9 61.7

BCORP 75.5 66.1 54.6 54.8 66.1

PNC 70.1 60.3 53.8 52.5 58.9

KEYCO 70.1 59.8 53.3 50.4 58.9

SUNTRUST 72.0 61.1 55.9 52.7 58.3

COMERICA 71.2 64.0 53.8 53.5 60.7

BBT 73.1 61.7 53.5 52.1 62.1

53BANCO 68.7 61.4 52.9 52.3 58.3

REGIONS 70.1 63.1 55.3 52.5 58.9

Note: the tail- estimator is given by (3.10). The table reports results

conditional on different aggregate risk factors. The table distinguishes pre-

crisis estimates form crisis estimates (sample mid-point equals August 7,

2007). The nuisance parameter equals  = 340 and  = 138 for pre-crisis

and crisis samples, respectively.
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