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Abstract. Stabilization of instable periodic orbits of nonlinear dynamical
systems has been a widely explored field theoretically and in applications.
The techniques can be grouped into time-continuous control schemes based on
Pyragas, and the two Poincaré-based chaos control schemes, Ott–Gebogi–Yorke
(OGY) and difference control. Here, a new stability analysis of these two
Poincaré-based chaos control schemes is given by means of the Floquet theory.
This approach allows to calculate exactly the stability restrictions occurring for
small measurement delays and for an impulse length shorter than the length of
the orbit. This is of practical experimental relevance; to avoid a selection of the
relative impulse length by trial and error, it is advised to investigate whether
the used control scheme itself shows systematic limitations on the choice of the
impulse length. To investigate this point, a Floquet analysis is performed. For
OGY control the influence of the impulse length is marginal. As an unexpected
result, difference control fails when the impulse length is taken longer than
a maximal value that is approximately one half of the orbit length for small
Ljapunov numbers and decreases with the Ljapunov number.
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1. Introduction

Controlling chaos, or stabilization of instable periodic orbits of chaotic systems, has matured to a
field of large interest in theory and experiment [1]–[18]. Most of these techniques are applied to
dissipative systems, but with respect to applications such as suppression of transport in plasmas,
there has been recent interest also in controlling chaos in Hamiltonian systems [19]–[25] and
in the stability of periodic orbits in multidimensional systems [26]. Control of chaos in general,
however, does not rely on the existence of a Hamiltonian, so the system can be given as any
dynamical system described by a set of differential equations, or can be an experimental system.
The aim of chaos control is the stabilization of unstable periodic orbits (UPOs), or modes in
spatial systems. The central idea of the Hübler and Ott–Grebogi–Yorke (OGY) approaches to
the control of chaos is to utilize the sensitive dependence on initial conditions, be it system
variables [1], or system parameters [2] to steer the trajectory on an (otherwise unstable) periodic
orbit of the system. To accomplish this task, a feedback is applied to the system at each
crossing of a suitably chosen Poincaré plane, where the feedback is set proportional to the actual
deviation of the desired trajectory. Contrary to Pyragas control [3], where control is calculated
quasi continuously at a high sampling rate, here the approach is to stabilize by a feedback
calculated at each Poincaré section, which reduces the control problem to stabilization of an
unstable fixed point of an iterated map. The feedback can be chosen proportional to the distance
to the desired fixed point (OGY scheme), or proportional to the difference in phase space
position between the actual and last but one Poincaré section. This latter method, difference
control [4], or Bielawski–Derozier–Glorieux control, being a time-discrete counterpart of
the Pyragas approach [3], allows for stabilization of inaccurately known fixed points, and can
be extended by a memory term [27, 28] to improve stability and to allow for tracking [7] of
drifting fixed points [27].

In this paper, the stability of perturbations x(t) around an UPO being subject to a Poincaré-
based control scheme is analyzed by means of the Floquet theory [29]. This approach allows to
investigate viewpoints that have not been accessible by considering only the iteration dynamics
between the Poincaré sections, such as measurement delays and variable impulse lengths.

New Journal of Physics 10 (2008) 063006 (http://www.njp.org/)

http://www.njp.org/


3

The impulse length is, both in OGY and difference control, usually a fixed (quasi invisible)
parameter; and the iterated dynamics is uniquely defined only as long as this impulse length is
not varied. The influence of the impulse length has not been a point of consideration before; if
mentioned at all, usually a relative length of approximately 1/3 is chosen without any reported
sensitivity. Whereas for the Pyragas control method (in which the delayed state feedback
enforces a time-continuous description) a Floquet stability analysis is known [30], here the
focus is on the time-discrete control.

1.1. Floquet stability analysis

The linearized differential equations of both schemes are invariant under translation in time,
t → t + T . Hereby, we assume that the system under control is not explicitly time-dependent.
According to the theory of delay-differential equations [29], a stability condition can be derived
from a simple eigenvalue analysis of Floquet modes. The Floquet ansatz expands the solutions
after periodic solutions u(t + T ) = u(t) according to

x(t) = eγ tuγ (t). (1)

The necessary condition on the Floquet multiplier eγ T of an orbit of duration T for stability
of the solution is Reγ < 0; and x(t) ≡ 0 refers to motion along the orbit. In Poincaré-
based control, the effective motion can be transformed into the unstable eigenspace, see e.g.
appendix A in [28]; the stability is governed by the motion therein. For the case of one unstable
Lyapunov exponent, this subspace is one-dimensional.

1.2. OGY control

The method proposed by OGY [2] applies a control amplitude r(t) = ε(t)(x(t×) − x∗), in the
vicinity of a fixed point x∗. Here, ε(t) is a (possibly time-dependent) feedback gain parameter,
and x(t×) is the position of the last Poincare crossing. Without loss of generality, we can place
the fixed point at x = 0, so that the OGY feedback scheme becomes r(t) = ε(t)x(t×), where
t× ≡ t − (t mod T ) is the time of the last Poincaré crossing. Now one considers the linearized
motion in vicinity of an UPO (which is a stable periodic orbit of a successfully controlled
system). The Poincaré crossing reduces the dimensionality from N to N − 1 dimensions, in the
lowest-dimensional case from 3 to 2. In this case, it is sufficient to consider a linearized one-
dimensional time-continuous motion around the orbit, ẋ(t) = λx(t) + µr(t), which now can be
complex-valued to account for flip motion around the orbit [30], i.e. one has the dynamical
system

ẋ(t) = λx(t) + µεx(t − (t mod T )). (2)

Without control (r(t) = 0), the time evolution of this system is simply x(t) = eλt and the
Ljapunov exponent of the uncontrolled system is Reλ. Here it must be emphasized that assuming
constant λ and µ is a quite crude approximation, so only qualitative results can be concluded.
Now we see—a central observation—that no delay-differential equation [29] is obtained: As the
‘delay’ term always refers to the last Poincaré crossing, this type of dynamics can be integrated
piecewise. In the first time interval between t = 0 and t = T the differential equation reads

∀0<t<T , ẋ(t) = λx(t) + µεx(0).
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Figure 1. Impulse shapes considered for ε(t), resulting in the Floquet multipliers
(7) for a finite impulse length (a), and (10) if one also adds an additional delay
of duration s (b).

Integration of this differential equation yields

x(t) =

((
1 +

µε

λ

)
eλt

−
µε

λ

)
x(0).

This gives us an iterated dynamics (here, we label the beginning of the time period again
with t)

x(t + T ) =

((
1 +

µε

λ

)
eλT

−
µε

λ

)
x(t).

This equation allows to determine the Floquet modes x(t + T ) = eγ T x(t) by inspection. The
Floquet multiplier eγ T of an orbit, assuming an impulse duration of full orbit length, is therefore
given by

eγ T
=

(
1 +

µε

λ

)
eλT

−
µε

λ
. (3)

The remainder of the paper investigates, both for OGY and difference controls, how the Floquet
multiplier is modified for different impulse lengths.

2. Influence of impulse length: OGY case

The time-discrete viewpoint now allows the influence of timing questions on control to be
investigated. First, we consider the case that the control impulse is applied timely in the Poincaré
section, but only for a finite period pT within the orbit period (0 < p < 1) (see figure 1(a)).

This situation is described by the differential equation

ẋ(t) = λx(t) + µεx(t − (t mod T ))2((t mod T ) − p), (4)

here 2 is a step function (2(x) = 1 for x > 0 and 2(x) = 0 elsewhere). In the first time interval
between t = 0 and t = pT the differential equation reads ẋ(t) = λx(t) + µεx(0). Integration of
this differential equation yields

∀0<t6pT , x(t) =

((
1 +

µε

λ

)
eλt

−
µε

λ

)
x(0). (5)

In the second interval between t = pT and t = T , the differential equation is the same as without
control, ẋ(t) = λx(t). From this one has immediately

∀pT <t<T x(t) = eλ(t−pT )x(pT ) (6)
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Figure 2. Left panel: dependence of OGY control on the duration 16 pT 6 T
and strength of control. Control is possible within the shaded areas, where
darker shadings refer to smaller Reγ , including an optimal line in between
where Reγ → −∞. In the white areas, Reγ is positive, there the system with
applied control becomes unstable. Right panel: plot in the (p, µεp) plane, the
product µεp shows only a weak dependency on p. This supports that the linear
approximation (9) is a good approximation for (7).

and the Floquet multiplier of an orbit is given by

eγ T
= eλT

(
1 +

µε

λ
(1 − e−λpT )

)
. (7)

The consequences are shown in figure 2. One finds that in zero order the ‘strength’ of control
is given by the product pT µε; in fact, there is a weak linear correction in p. This analysis
reproduces well the experimental results of Mausbach [33]. For λpT 6 1 one has

eγ T
= eλT (1 + µεpT −

1
2µελp2 T 2 + o(p3)), (8)

i.e. the condition of a constant strength of control reads

µεpT =
1

1 − (λT /2)p
= 1 +

λT

2
p + o(p2). (9)

The result is: apart from a weak linear correction for OGY control the length of the impulse
can be chosen arbitrarily, and the ‘strength’ of control in zero order is given by the time integral
over the control impulse.

For the case where the system can only be measured delayed—by a delay time of the orbit
length and longer—stability borders [32, 33] and improved control schemes have been given
in [28, 34] and successfully applied experimentally [27, 35, 36]. In experimental situations one
often has the intermediate case that there is a measurement delay sT that is not neglectable, but
is within the orbit length. To keep the case general, we again consider a finite impulse length
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pT with 0 < p < 1 and 0 < (s + p) < 1, see figure 1(b). Again we can integrate piecewise, and
the Floquet multiplier is given by

eγ T
= eλT

(
1 +

µε

λ
e−λsT (1 − e−λpT )

)
(10)

and (7) is included as the special case of s = 0.

3. Impulse length influence: difference control

Now we analyze the difference control scheme [4]

r(t) = ε(x(t×) − x(t××)), (11)

where t× and t×× denote the times of the last and last but one Poincaré crossing, respectively.
Again the starting point is the linearized equation of motion around the periodic orbit when
control is applied. For difference control now there is a dependency on two past time steps,

ẋ(t) = λx(t) + µεx(t − (t mod T )) − µεx(t − T − (t mod T )). (12)

Although the right-hand side of (12) depends on x at three different times, it can be nevertheless
integrated exactly, which is mainly due to the fact that the two past times (of the two last
Poincaré crossings) have a fixed time difference being equal to the orbit length. This allows
not only for an exact solution, but also offers a correspondence to the time-discrete dynamics
and the matrix picture used in time-delayed coordinates.

Now also for difference control the experimentally more common situation of a finite but
small measurement delay sT is considered, together with a finite impulse length sT (here
0 < p < 1 and 0 < (s + p) < 1). An analogous calculation [34, 37] as for the OGY case can
also be performed as follows. Piecewise integration in the first interval 0 < t < T · s, where the
differential equation reads ẋ(t) = λx(t), yields again x(T · s) = eλT ·s x(0). In the second interval
T · s < t < T · (s + p) the differential equation reads

ẋ(t) = λx(t) + µε(x(0) − x(−T )).

Integration yields

∀T ·s<t<T ·(s+p)x(t) = −
µε

λ
(x(0) − x(−T )) +

(µε

λ
(x(0) − x(−T )) + eλsT x(0)

)
eλ(t−sT ),

x(T · (s + p)) = −
µε

λ
(x(0) − x(−T ))

µε

λ
(x(0) − x(−T )) + eλpT + eλ(s+p)T x(0).

For the third interval again there is no control, thus

∀T ·(s+p)<t<T , x(t) = eλ(t−(s+p)T )x(T · (s + p)).

Collecting together, we find for x(T )

x(T ) = x(0)eλT
(

1 +
µε

λ
e−λsT (1 − e−λpT )

)
− x(−T )eλT µε

λ
e−λsT (1 − e−λpT ) (13)

or, in time-delayed coordinates of the last and last but one Poincaré crossing

(
xn+1

xn

)
=

eλT

(
1 +

µε(1 − e−λpT )

λeλsT

)
−eλT µε(1 − e−λpT )

λeλsT

1 0

 (
xn

xn−1

)
.
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Figure 3. Time-continuous stability analysis of difference control with
consideration of the length of the control impulse: contour plot of the real part
of the Floquet exponent in (Imλ,µε) space for T = 1, s = 0, p = 0.3, Reλ = 0.2
(left panel) and Reλ = 0.6 (right panel). For Imλ = π one finds (above Reλ =

0.52) an island of stability, which completely disappears for p > pmax (figure 5).
The Floquet analysis shows that the impulse length is of fundamental importance
for the dynamical behavior and stability of difference control, contrary to the
situation for OGY control. The contour lines show the real part of the Floquet
multiplier for 0 (outer), −0.03 and −0.1 (inner contour).

If we identify with the coefficients of the time-discrete case, λd = eλT and µdεd = e−λsT (1 −

eλpT )µε

λ
, the dynamics in the Poincaré iteration t = nT becomes identical with the pure discrete

description; this again illustrates the power of the concept of the Poincaré map. In principle, due
to the low degree of the characteristic polynomial, one could explicitly diagonalize the iteration
matrix, allowing for a closed expression for the nth power of the iteration matrix. However, for
the stability analysis only the eigenvalues are needed. For the Floquet multiplier one has

e2γ T
= eγ T eλT

(
1 +

µε

λ
e−λsT (1 − e−λpT )

)
− eλT µε

λ
e−λsT (1 − e−λpT ). (14)

This quadratic equation yields two Floquet multipliers,

eγ T
=

1

2
eλT

(
1 +

µε

λ
e−λsT (1 − e−λpT )

)
±

1

2

√(
eλT

(
1 +

µε

λ
e−λsT (1 − e−λpT )

))2
+ 4eλT

µε

λ
e−λsT (1 − e−λpT ).

Figures 3 and 4 show, by example of Reλ = 0.2, (resp. Reλ = 0.6) that at Imλ = π for
p < pmax(Reλ = 0.2) ' 0.505401 (resp. p < pmax(Reλ = 0.6) ' 0.367) there exists an island
of stability, whose width decreases to zero for p → pmax. Here, explicitly the influence of the
impulse length can be seen. The maximal value of pmax is shown in figure 5.
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T = 1, s = 0, Reλ = 0.2 (left panel) and Reλ = 0.6 (right panel).
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Figure 5. Time-continuous stability analysis of difference control: maximal
impulse length p for different values of Reλ in the range from 0.01 to 1.0.

4. Discussion of the time-continuous model: relaxing the assumption of a constant local
Ljapunov exponent

The quantitative analysis given above was based on the model assumption that one has a
constant local Ljapunov exponent around the orbit—a condition that will almost never be
fulfilled exactly for a typical orbit of a chaotic system. To test whether this assumption is
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Figure 6. Impulse shapes ε(t) and time-varying λ(t): case of a short impulse
p < q.

crucial, the stability can be investigated for OGY control by assuming λ to be time-dependent
along the orbit. For simplicity, we consider the exemplaric case shown in figure 6 that λ(t) = λ1

for 0 < t < qT and λ(t) = λ2 for qT < t < T , generalizing the case q = 1/2 already sketched
in [37].

4.1. The case p < q of a short impulse

If we assume p < q, we have for the OGY case,

x(pT ) = (eλ1 pT (1 + (µε/λ1)) − (µε/λ1))x(0),

x(qT ) = eλ1(qT −pT )x(pT ),

x(T ) = eλ2(T −qT )x(qT ). (15)

Using λ̄ := qλ1 + (1 − q)λ2, the Floquet multiplier reads now

eγ T
= eλ̄T

(
1 +

µε

λ1
(1 − e−λ1 pT )

)
(16)

in contrast to equation (7). Again in zero order the ‘strength’ of control is given by the product
pµε; in first order λ1 pT 6 1 again the weak linear dependence on p applies,

eγ T
= eλ̄T

(
1 + µεpT

(
1 −

1

2
λ1 pT + o(p2)

))
, (17)

i.e. for a constant ‘strength’ of control, one has to fulfill

µεpT =
1

1 − (λ1 T /2)p
+ o(p2) = 1 +

λ1 T

2
p + o(p2). (18)

Thus, the value of λ1, i.e. here, the deviation of λ(t) from its average value λ̄ during the control
impulse, only contributes in first order. More complicated cases can be tackled likewise, giving
corrections for the quantitative p-dependence of the optimal control gain ε, but preserving the
qualitative behavior discussed above.

4.2. The case p > q of a long impulse

While a short impulse is the experimentally more feasible case, for completeness, also the p > q
shown in figure 7 can be investigated in this manner. Here, we have two time intervals where
the control is active; and in the second one the initial condition x(pT ) has to be distinguished
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Figure 7. Impulse shapes ε(t) and time-varying λ(t): case of a long impulse
p > q.

from the position x(0) at the last Poincaré crossing, from which the control value is calculated
and which determines the inhomogenity of the ODE.

Integration over the three time intervals yields

x(qT ) = eλ1qT x(0)
(

1 +
µε

λ1

)
− x(0)

µε

λ1
,

x(pT ) = eλ2(pT −qT )
(

x(qT ) + x(0)
µε

λ2

)
− x(0)

µε

λ2
,

x(T ) = eλ2(T −pT )x(pT ),

x(pT ) = e−λ2(p−q)T x(0)

[
eλ1qT

(
1 +

µε

λ1

)
µε

λ1

]
︸ ︷︷ ︸

x(qT )

+x(0)
µε

λ2
(e−λ2(p−q)T

− 1),

x(T ) = x(0)eλ2(1−q)T x(0)

[
eλ1qT x(0)

(
1 +

µε

λ1

)
− x(0)

µε

λ1

]
+x(0)

µε

λ2
(eλ2(1−q)T

− eλ2(1−pT )),

so that we arrive at

x(T ) = x(0)eλ̄T

[
1 +

µε

λ1
(1 − e−λ1qT ) +

µε

λ2
(1 − e−λ2(p−q)T )e−λ1qT

]
. (19)

4.2.1. Weakly nonlinear approximation for q = 1/2. As p > q, and q is a fixed value for the
given system, a discussion of pλT � 1 can no longer be based on the p → 0 case. As p is of
order 1, an expansion as above is meaningful only for the case where λT � 1, i.e. we derive an
approximation for those UPOs which have an only marginally positive Floquet multiplier. For
q = 1/2, we now explicitly discuss this ‘weakly nonlinear’ case λ1T � 1, λ2T � 1,

x(T ) = x(0)eλ̄T

[
1 +

µε

λ1

(
− λ1

T

2
+

λ2
1 T 2

8
−

λ3
1 T 3

48

)
+

µε

λ2

(
−λ2 T

(
p −

1

2

)
+

λ2
2T 2(p − 1/2)2

2

) (
−

λ1 T

2
+

λ2
1 T 2

8

) ]
= x(0)eλ̄T

[
1 + µεT

((
−

1

2
+

λ1T

8
−

λ2
1T 2

48

)
New Journal of Physics 10 (2008) 063006 (http://www.njp.org/)

http://www.njp.org/


11

+
(

−

(
p −

1

2

)
+

λ2T (p − (1/2))2

2

) (
−

1

2
+

λ1T

8

)
λ1T

)]
= x(0)eλ̄T

[
1 −

µεT

2

(
1 − λ1 T

(
p −

1

4

)
+ o(λ2

1, λ1λ2, λ
2
2)

)]
,

that is, control is kept constant in lowest order for

µεT

2
!
=

1

1 − λ1 T (p − (1/4))
' 1 + λ1 T (p − (1/4)) (20)

for orbits sharing the same value of λ̄.

4.3. Difference control and nonconstant local Ljapunov exponent

For completeness, the case of difference control is now also considered. As has been shown
before, for the case of a constant Ljapunov exponent, impulse lengths of p > 1

2 do not lead to
stable control; therefore the case p > q is completely irrelevant, and only the case p < q has to
be considered. In the first interval, λ1 is active and integration yields

x(pT ) = eλ1 pT

[
x(0)

(
1 +

µε

λ1
(e−λ1 pT

− 1)

)
− x(−T )

µε

λ1
(e−λ1 pT

− 1)

]
(21)

and the subsequent intervals have the control switched off,

x(T ) = eλ2(1−q)T x(qT ) = eλ2(1−q)T eλ1(q−p)T x(pT ) (22)

= eλ̄T

[
x(0)

(
1 +

µε

λ1
(e−λ1 pT

− 1)

)
− x(−T )

µε

λ1
(e−λ1 pT

− 1)

]
. (23)

Again we use the average value λ̄ = λ1q + λ2(1 − q) to simplify the expressions, and the
coordinates in the Poincaré countings xn+1 = x(T ), xn = x(0) and xn−1 = x(−T ). We have(

xn+1

xn

)
=

eλ̄T

(
1 +

µε

λ1

(
e−λ1 pT

− 1
))

−eλ̄T µε

λ1
(e−λ1 pT

− 1)

1 0

 (
xn

xn−1

)
, (24)

which leads to the characteristic equation for the two Floquet multipliers eγ T

e2γ T
= eγ T eλ̄T

(
1 +

µε

λ1
(e−λ1 pT

− 1)
)

− eλ̄T µε

λ1
(e−λ1 pT

− 1). (25)

This generalizes the discussion of difference control to the case of nonconstant λ.

5. Conclusions and outlook

To summarize, a new time-continuous stability analysis of Poincaré-based control methods was
introduced. This general and novel approach allows to investigate timing questions of Poincaré-
based control schemes that cannot be analyzed within the picture of the Poincaré iteration.
For both OGY and difference control it has been possible for a homogeneous case to integrate
the dynamics exactly. While for OGY control the impulse length turns out not to be crucial,
for difference control it is, and the impulse has to be shorter than a critical fraction of the
period, which is of the order of half of the period and decreases for larger Ljapunov exponents.
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Such timing dependence is not completely uncommon in feedback systems with delay; in time-
continuous feedback control, a half-period feedback resulted in an enlarged stability range [38].

Techniques of chaos control, be it Poincaré-based, following the Pyragas technique,
or open-loop [39], [40]–[43] have been of great interest not only in technical systems,
but also in biological, especially neural systems and excitable media [44, 45]. Besides the
approach of controlling pathological neural subsystems directly, the intact brain already
bears implementations of feedback control [46], implying that the failure of the respective
circuits eventually results in migraine or stroke. Also the human gait system, like virtually
any perception-motor system, performs control of a bio-mechanical system with delays; and
disturbances of the delay loops as well as the cortical control may result in tremor and
related movement disorders [47]–[50]. In the thalamocortical system, a designated impulse
shape, formed by the so-called slow waves that emerge in the cortex during S2 sleep, has
been shown to act as an open-loop controller of thalamic oscillator networks [51]. This offers
further possibilities to influence human sleep in the case of sleep disturbances: recent control
techniques by transcranial electrical or magnetic stimulation [52]–[55] have been demonstrated
to influence human sleep as well as to affect memory consolidation during sleep. In most of these
techniques, the impulse shape and relative duration of the control impulse has significant impact
on the results, thus different control goals may become accessible within the same setup. For
systematic understanding of how such control techniques influence the brain, detailed models
are of similar importance to the methodical understanding of the theoretically possible control
methods.
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