
Inference of performance annotations in Web
Service composition models

Antonio García-Domínguez1, Inmaculada Medina-Bulo1, and Mariano
Marcos-Bárcena2

1Department of Computer Languages and Systems, University of Cádiz,
C/Chile 1, CP 11003, Cádiz

{antonio.garciadominguez,inmaculada.medina}@uca.es
2Department of Mechanical Engineering and Industrial Design, University of Cádiz,

C/Chile 1, CP 11003, Cádiz
mariano.marcos@uca.es

Abstract. High-quality services must keep working reliably and effi-
ciently, and service compositions are no exception. As they integrate
several internal and external services over the network, they need to be
carefully designed to meet their performance requirements. Current ap-
proaches assist developers in estimating whether the selected services can
fulfill those requirements. However, they do not help developers define
requirements for services lacking performance constraints and historical
data. Manually estimating these constraints is a time-consuming process
which might underestimate or overestimate the required performance,
incurring in additional costs. This work presents the first version of two
algorithms which infer the missing performance constraints from a service
composition model. The algorithms are designed to spread equally the
load across the composition according to the probability and frequency
each service is invoked, and to check the consistency of the performance
constraints of each service with those of the composition.

Keywords: service level agreement, load testing, UML activity diagrams, ser-
vice oriented architecture, service compositions.

1 Introduction

Service-oriented architectures have been identified as an effective method to
reduce costs and increase flexibility in IT [1]. Information is shared across the
entire organization and beyond it as a collection of services, managed according
to business needs and usually implemented as Web Services (WS).

It is often required to join several WS into a single WS with more function-
ality, known as a service composition. Workflow languages such as WS-BPEL
2.0 [2] or BPMN [3] have been specifically designed for this, letting the user
specify the composition as a graph of activities.

Just as any other software, service compositions need to produce the required
results in a reasonable time. This is complicated by the fact that service com-
positions depend on both externally and internally developed services and the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aston Publications Explorer

https://core.ac.uk/display/161815559?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

network. For this reason, there has been considerable work in estimating the
quality of service (QoS) of a service composition from its tasks’ QoS [4,5] and
selecting the combination of services to be used [6].

However, these approaches assume that the services already exist and in-
clude annotations with their expected performance. For this reason, they are
well suited with bottom-up approaches to developing service compositions. On
the other hand, they do not fit well in a top-down approach, where the user
defines the composition and its target QoS before that of the services: some of
them might not even be implemented yet. Historical data and formal service
level agreements will not be available for these, and for new problem domains,
the designer might not have enough experience to accurately estimate their QoS.

Inaccurate QoS estimates for workflow tasks incur in increased costs. If the
estimated QoS is set too low, the workflow QoS might not be fulfilled, violating
existing service level agreements. If it is set too high, service level agreements
will be stricter than required, resulting in higher fees for external services and
higher development costs for internal services.

In absence of other information, the user could derive initial values for these
missing estimates according to a set of assumptions. For instance, the user might
want to meet the workflow QoS by splitting the load equally over all tasks
according to the probability and frequency they are invoked, requiring as little
performance as possible. Nevertheless, it might be difficult to calculate these
values by hand for complex compositions where some services are annotated.

In this work we propose two algorithms designed to assist the user in this
process, following the assumptions above. The algorithms derive initial values for
the response time under a certain load of all elements in a service composition
model inspired on UML activity graphs. The algorithms have been successfully
integrated into the models of an existing model-driven SOA methodology.

The structure of the rest of this text is as follows: in section 2 we describe the
generic graph metamodel both inference algorithms work with. The algorithms
are described in detail in sections 3 and 4. Section 5 discusses the adaptations
required to integrate them into an existing model-driven SOA methodology.
Section 6 evaluates the algorithms and the tools. Finally, related works are listed
and some conclusions are offered, along with an outline of our future work.

2 Graph metamodel

The inference algorithms are defined for a generic graph metamodel. The meta-
model is a simplification of UML activity diagrams, and uses mostly the same
notation. The new global and local performance constraints are represented as
stereotyped annotations.

A simplified UML class diagram for the ECore [7] graph metamodel is shown
in figure 1. Graphs contain a set of FlowNodes and FlowEdges and have
a manual global PerformanceAnnotation, which indicates all paths in the
graph should finish in less than secsTimeLimit seconds while handling concur-
rentRequests requests concurrently. There are several kinds of FlowNodes:

Activities encapsulate some behavior, described textually in the attribute name.
Activities can have manual or automatic performance annotations.

Initial nodes are the starting execution points of the graphs. One per graph.
Final nodes end the current execution branch. There can be more than one.
Decision nodes select one execution branch among several, depending on whether

the condition for their outgoing edge holds or not. Only the outgoing FlowEdges
from a DecisionNode may have a non-empty condition and a probability
less than 1.

Fork nodes split the current execution branch into several parallel branches.
Join nodes integrate several branches back into one, whether they started off

from a decision node or a fork node. This is a simplification from UML,
which uses different elements to integrate each kind of branch: join nodes
and merge nodes, respectively.

Gra ph

Pe rform a nce Annota t ion

concu rre n tRe que s t s : EDoub le Ob je ct
s e cs Tim e Lim it : EDoub le Ob je ct Flow Node

FlowEdge

con d it ion : ESt ring
p roba b ility : EDoub le Ob je ct

Act ivity

na m e : ESt ring

In it ia lNode Fina lNode ForkNode

JoinNode De cis ionNode

0 ..*

0 ..1

0 ..1

incom ing0 ..*

ou tgoing

0 ..*

t a rge t0 ..1

s ou rce

0 ..1

0 ..*

m a nua l : EBoole a n

Fig. 1. Graph metamodel used in both algorithms

A sample model using this metamodel is shown in figure 2, which describes
a process for handling an order. Execution starts from the initial node, and
proceeds as follows:

1. The order is evaluated and is either accepted or rejected.
2. If rejected, close the order: we are done.
3. Otherwise, fork into 2 execution branches:

(a) Create the shipping order and send it to the shipping partner.
(b) Create the invoice, send it to the customer and receive its payment.

4. Once these 2 branches complete their execution, close the order.

There are two manual performance annotations: a global one (using the
<<gpc>> stereotype) and a local one (using <<pc>>). The whole process must
be able to serve 5 concurrent requests in less than 1 second, and evaluating an
order should be done in 0.4 seconds at most with 5 concurrent requests.

Evaluate
Order

< < gpc> >

concurrentRequests = 5

t im eLim it = 1

< < pc> >

concurrentRequests = 5

t im eLim it = 0.4

m anual = t rue

< < pc> >

concurrentRequests = 5

t im eLim it = 0.2

m anual = false

< < pc> >

concurrentRequests = 4

t im eLim it = 0.2

m anual = false

< < pc> >

concurrentRequests = 4

t im eLim it = 0.2

m anual = false

< < pc> >

concurrentRequests = 4

t im eLim it = 0.4

m anual = false

[e lse] (p = 0 .8)

[re ject ed] (p = 0 .2) Close
Order

Create
Shipping Order

Create
Invoice

Perform
Paym ent

m anual = t rue

Fig. 2. Sample graph model

3 Inference of concurrent requests

The first algorithm infers the number of concurrent requests that must be han-
dled at each activity in the graph before its time limit in order to meet the
performance requirements of the whole graph. It performs a pre-order breadth-
first traversal of every node and edge in the graph, starting from the initial node
and caching intermediate results. The algorithm annotates each activity with its
expected number of concurrent requests C(x). The definition of C(x) depends
on the element type:

– InitialNode: C(x) is the value of the attribute concurrentRequests of the
global performance annotation of the graph.

– FlowEdge: C(x) = P (x)C(s), where x is the edge, s is the source node of
x, P (x) is the value of the attribute probability of x and C(s) is the computed
number of concurrent requests for s. Most edges have P (x) = 1, except those
which start from a decision node.

– JoinNode: the least common ancestor LCA(P) of all the parent nodes
P is computed. This least common ancestor is the point from which the
conditional or parallel branches started off. If LCA(P) is a decision node,
C(x) =

∑
p∈P C(p), as requests can only visit one of the branches. Other-

wise, it is a fork node, and C(x) = maxp∈P C(p), as requests can visit all
the branches at the same time.
To compute the LCA of several nodes, the naive method described by Ben-
der et al. [8] works best for the sparse graphs which usually result from
modeling service compositions. For a graph with n vertexes and e edges, its

preprocessing step requires O(n + e) operations and each query performed
may require up to O(n2) operations. This only needs to be done once for
each join node.

– Otherwise, C(x) = C(i), where i is its only incoming edge. If the node is an
activity with a manual performance annotation, the inferred value should
match its value. Otherwise, the user will need to confirm if the annotation
should be updated.

Using these formulas, computing C(Create Invoice) for the example shown
in figure 2 would require walking back to the initial node, finding an edge with
a probability of p = 0.8, no merge nodes and a global performance annotation
for G = 5 concurrent requests. Therefore, C(Create Invoice) = pG = 4.

4 Inference of time limits

The algorithm required to infer the time limits for each activity in the graph is
more complicated than the previous one. It adds time limits to the activities in
each path from the initial node to any of the final nodes, ensuring the inferred
time limits meet several assumptions.

This section starts with the requirements imposed on the results of the al-
gorithm and lists the required definitions. The rest of the section describes the
algorithm and shows an example of its application.

4.1 Design requirements

The inferred time limits must meet the following requirements:

1. The sum of the time limits of the activities in each path from the initial node
to any of the final nodes must be less than or equal to the global time limit.

2. Available time should be split equally over the activities without any manual
performance annotations. We cannot blindly assume that one activity will
need to be more efficient than another. Ideally, we would like to split evenly
the load over all activities.

3. Time limits should not be lower than strictly required: better performing
systems tend to be more expensive to build and maintain.

4.2 Definitions

To describe the algorithm, several definitions are needed. These definitions con-
sider paths as sets of activities, rather than sequences of nodes.

– M(a) is true if the activity a has a manual time limit.
– A(a) is true if the activity a has an automatic time limit.
– U(p) = {a|a ∈ p ∧ ¬(A(a) ∨M(a))} is the set of all activities in the path p

which do not have time limits. These are said to be unrestricted.

– F (p) = {a|a ∈ p ∧ ¬M(a)} is the set of all activities in the path p which do
not have manual time limits. These are said to be free.

– TL(G) is the manual time limit for every path in the graph G.
– TL(a) is the current time limit for the activity a.
– TL(p) =

∑
a∈P∧(M(a)∨A(a)) TL(a) is the sum of the time limits in the path

p.
– TM (p) =

∑
a∈(p−F (p)) TL(a) is defined as the sum of the manual time limits

in the path p.
– SA(p, G) = TL(G) − TM (p) is the slack which can be split among the free

activities in path p of the graph G.
– TE(p, G) = SA(p, G)/(1 + |F (p)|) is an estimate of the automatic time limit

each free activity in path p would obtain using only the information in that
path. More restrictive paths will have lower values of TE(p, G).

4.3 Description of the algorithm

The algorithm follows these steps:

1. All automatic time limits are removed.
2. The set P of all paths from the initial node to each final node is calculated.
3. For each path p ∈ P in ascending order of TE(p, G), so the more restrictive

paths are visited first:
(a) If SA(p, G) = 0, the condition |F (p)| > 0 is evaluated. If it is true,

there is at least one free activity in p for which no time limit can be set.
The user is notified of the situation and execution is aborted. Otherwise,
processing will continue with the next path.

(b) If SA(p, G) < 0, then TM (p) > TL(G) holds, by definition. This means
that the sum of the manual time limits in p exceeds the global time limit.
The user is notified of the situation and execution is aborted.

(c) Otherwise, SA(p, G) > 0. If |F (p)| > 0∧|U(p)| > 0, all activities in U(p)
will be updated to the time limit (TL(G)− TL(p))/|U(p)|.

4.4 Example

To infer the automatic time limits of the running example shown in figure 2, we
first need to list all existing paths:

– p1 = {Evaluate Order,Close Order}.
TE(p1, G) = (1− 0.4)/(1 + 1) = 0.3.

– p2 = {Evaluate Order,Create Shipping Order,Close Order}.
TE(p2, G) = (1− 0.4)/(1 + 2) = 0.2.

– p3 = {Evaluate Order,Create Invoice,Receive Payment,Close Order}.
TE(p3, G) = (1− 0.4)/(1 + 3) = 0.15.

p3 has the lowest value for TE , so it is visited first. “Create Invoice”, “Perform
Payment” and “Close Order” are in U(p3), so they are updated to l = (1 −
0.4)/3 = 0.2.

p2 is visited next. Only “Create Shipping Order” is in U(p2), so it is updated
to l = (1− 0.6)/1 = 0.4.

p1 is visited last. U(p1) = ∅, so nothing is updated, and we are done.

5 Integration in a SOA methodology

The algorithms described above work on a generic graph metamodel which needs
to be adapted to the metamodels used in specific technologies and methodologies.
In this section we show how the metamodel and the algorithms were adapted
and integrated into a SOA methodology: SODM+Testing.

Existing methodologies reduce the development cost of SOAs, but do not
take testing aspects into account [9]. SODM+Testing is a new methodology that
extends SODM [10] with testing tasks, techniques and models.

5.1 Metamodel adaptation

The original SODM service process and service composition metamodels were
a close match to the generic graph metamodel described in section 2, as they
were also based on UML activity graphs. Service process models described how
a request for a service offered by the system should be handled, and service
compositions provided details on how the tasks were split among the partners
and what messages were exchanged between them.

SODM+Testing refactors these models using the generic graph metamodel
as their core. Each class in the SODM process and composition metamodels can
now be upcasted to the matching class of the generic graph metamodel both
inference algorithms are based on. For instance, ProcessFlowEdge (class of
all flow edges in the SODM service process metamodel) has become a subclass
of FlowEdge (class of all flow edges in the generic graph metamodel).

The generic core differs slightly from that in figure 1. FlowEdges are split
into ControlFlows and ObjectFlows, and performance annotations have
also been split into several types according to their scope. In addition, the
SODM+Testing service composition metamodel has been extended so activi-
ties can contain action sub-graphs with their own local and global performance
annotations.

5.2 Tool implementation

SODM+T is a collection of Eclipse plug-ins that assists the SODM+Testing
methodology with graphical editors for the SODM+Testing service process and
composition models. It is available under the Eclipse Public License v1.0 [11].

To ensure the inference algorithms can be applied, models are validated au-
tomatically upon saving, showing the usual error and warning markers and
Quick Fixes. Validation has been implemented using Epsilon Validation Lan-
guage (EVL) scripts [12] and OCL constraints.

The algorithms are implemented in the Epsilon Object Language (EOL) and
can be launched from the contextual menu of the graphical editor. The EOL
scripts include two supporting algorithms for detecting cycles in graphs and
computing the least common ancestor of two nodes [8].

6 Evaluation

In this section we will evaluate each algorithm, pointing out their current lim-
itations and how we plan to overcome them. Later on, we will evaluate their
theoretical performance. Finally, we will discuss the current state of SODM+T.

6.1 Inference of concurrent requests

This algorithm performs a breadth-first traversal on the graph, and assumes the
number of concurrent requests has already been computed for all parent nodes.
For this reason, it is currently limited to acyclic graphs. We intend to extend the
model to allow loops, limiting their maximum expected number of iterations.

The algorithm requires edges to be manually annotated with probabilities.
These could be simply initialized to assume each branch in each decision node
has the same probability of being activated, in absence of other information.

The algorithm assumes only the current workflow is being run, thereby pro-
viding a best-case scenario. More realistic estimations would be obtained if re-
strictions from all workflows in the system were aggregated.

Assuming the naive LCA algorithm has been used, this algorithm completes
its execution for a graph with n nodes after O(n3) operations, as its outer loop
visits each node in the graph to perform O(n2) operations for JoinNodes and
O(1) operations for the rest. This is a conservative upper bound, as the O(n2)
time for the naive LCA algorithm is for dense graphs, which are uncommon in
service compositions.

6.2 Inference of time limits

As there must be a finite number of paths in the graph, the current version
requires the graph to be acyclic, just as the previous algorithm. The algorithm
could reduce paths with loops to regular sequences, where the activities in the
loop would be weighted to take into account the maximum expected number of
iterations.

The algorithm only estimates maximum deterministic time limits. Probabil-
ity distributions are not computed, as it does not matter which path is actually
executed: all paths should finish in the required time.

In addition, the user cannot adjust the way in which the available slack
is distributed to each task. For instance, the user might know that a certain
task would usually take twice as much time as some other task. Weighting the
activities as suggested above would also solve this problem.

Finally, like the previous algorithm, the time limit inference algorithm is
currently limited to the best-case scenario where only the current workflow is
being run.

A formal proof of the correctness of the time limit inference algorithm is out-
side the scope of this paper. Nevertheless, we can show that the results produced
by the algorithm meet the three design requirements listed in § 4.1. We assume

the model is valid (acyclic and weakly connected, among other restrictions) and
that the algorithm completes its execution successfully:

1. The first requirement is met by sorting the paths from most to least restric-
tive. For the i-th path pi, only the nodes for which pi provides the strictest
constraints (that is, U(pi)) are updated so TL(pi) < TL(G).
Since the activities from the previous (and stricter) paths were not changed,
TL(pj) < TL(G), j ≤ i. Once all paths have been processed, TL(p) < TL(G)
holds for all p ∈ P .

2. The second requirement is met by simply distributing equally the available
slack using a regular division.

3. The third requirement is met by visiting the most restrictive paths first, so
activities obtain the strictest time limits as soon as possible, leaving more
slack for those who can use it.

The running time of the algorithm is highly dependent on the number of
unique paths in the graph. With no loss of generality, we assume all forks and
decision nodes are binary. If there are b decision and fork nodes in total among
the n nodes, there will be 2b unique paths to be considered.

Enumerating the existing paths requires a depth-first traversal of the graph,
which may have to consider the O(n2) edges in the graph. Each path in the
graph will have to be traversed a constant number of times to compute TE(p, G),
SA(p, G), |F (p)| and other formulas which require O(n) operations.

Therefore, the algorithm requires O(n2 + n2b) time. We can see that the
number of forks and decisions has a large impact on the running time of the
algorithm. This could be alleviated by culling paths subsumed in other paths.
We are also looking into alternative formulations which do not require all paths
to be enumerated.

6.3 SODM+T

SODM+T has been successfully used to model the abstract logic required to
handle a business process from a medium-sized company, generating performance
annotations for graphs with over 60 actions nested in several activities.

However, SODM+T could be improved: future versions will address some of
the issues found during this first experience. WSDL descriptions and test cases
(for tools such as soapUI [13] or JUnitPerf [14]) need to be generated from the
models. Performance annotations should be more fine-grained, letting the user
specify only one of the attributes so the other is automatically inferred.

Finally, the tools could be adapted to other metamodels more amenable to
code generation. Business Process Modeling Notation [3] models are a good can-
didate, as partial automated translations to executable forms already exist [15].

7 Related work

Several UML profiles for modeling the expected performance of a system have
been approved by the Object Management Group: SPTP [16], QFTP [17] and

MARTE [18]. To study the feasibility of our approach, we have kept our con-
straints much simpler, but we intend to adapt them to either SPTP or QFTP
in the future.

Existing works on performance estimation in workflows focus on aggregating
workflow QoS from task QoS, unlike our approach, which estimates task QoS
from workflow QoS. Silver et al. [19] annotated each task in a workflow with
probability distributions for their running times, and collected data from 100
simulation runs to estimate the probability distribution of the running time of
the workflow and validate it using a Kolmogorov-Smirnov goodness-of-fit test.
Simulating the workflow allows for flexibly modeling the stochastic behavior of
each service, but it has a high computational overhead due to the number of
simulation runs that are required. Our work operates directly on the graph, im-
posing less computational overhead, but only modeling deterministic maximum
values.

Other authors convert workflows to an existing formalism and solve it us-
ing an external tool. The most common formalisms are layered queuing net-
works [20], stochastic Petri networks [21] and process algebra specifications [22].
These formalisms are backed by in-depth research and the last two have solid
mathematical foundations in Markov chain theory. However, they introduce an
additional layer of complexity which might discourage some users from apply-
ing these techniques. Our work operates on the models as-is, with no need for
conversions. This makes them easier to understand.

Finally, some authors operate directly on the workflow models, as our ap-
proach does. The SWR algorithm proposed by Cardoso et al. [4] computes
workflow QoS by iteratively reducing its graph model to a single task. SWR
only works with deterministic values, like our algorithms, but its QoS model is
more detailed than ours, describing the cost, reliability and minimum, average
and maximum times for each service. We argue that though average and mini-
mum times might be useful for obtaining detailed estimations, they provide little
value for top-down development, which is only interested in establishing a set
of constraints which can be used for conducting load testing and monitoring for
each service. However, cost and reliability could be interesting in this context as
well.

It is interesting to note that Cardoso et al. combine several data sources to
estimate the QoS of each task [4]: designer experience, previous times in the
current instance, previous times in all instances of this workflow, and previous
times in all workflows. The designer is responsible for specifying the relative
importance of each data source. Results from our algorithms could be used as
yet another data source.

Our metamodels have been integrated into SODM+Testing, a SOA model-
driven methodology which extends the SODM methodology [10] with testing
aspects. Many other SOA methodologies exist: for instance, Erl proposes a high-
level methodology focused on governance aspects in his book [1] and IBM has
defined the comprehensive (but proprietary) SOMA methodology [23]. SODM
was selected as it is model-driven and strikes a balance between scope and cost.

8 Conclusions and future work

Service compositions allow several WS to be integrated as a single WS which
can be flexibly reconfigured as business needs change. However, setting initial
performance requirements for the integrated services in a top-down methodology
so the entire composition works as expected without incurring additional costs
is difficult. At an early stage of development, there is not enough information to
use more comprehensive techniques.

This work has presented the first version of two algorithms which infer miss-
ing information about response times under certain loads from models inspired
in UML activity graphs. Though a formal proof was outside the scope of this
paper, we have found them to meet their design requirements: they infer local
constraints which meet the global constraints, distribute the load equally over
the composition and allow for as much slack as possible.

These algorithms and their underlying metamodel have been successfully
integrated into a model-driven SOA methodology, continuing the previous work
shown in [9]. The tools [11] implement a graphical editor which allows the user to
define performance requirements at several levels and offers automated validation
and transformation.

Nevertheless, the algorithms and tools could be improved. The underlying
metamodel should allow for partially automatic annotations and use weights
for distributing the available slack between the activities. In the future, the
annotations could be adapted to the OMG SPTP [16], QFTP [17] or MARTE [18]
UML profiles.

The algorithms will be revised to handle cyclic graphs and aggregate con-
straints for a service from several models. The performance of the time limit
inference algorithm depends on the number of unique graphs from the initial
node to each final node in the tree. We are looking into ways to reduce the
number of paths which need to be checked.

Finally, it is planned to adapt the tools to service composition models more
amenable to executable code generation, such as BPMN [3], and to generate test
cases for existing testing tools such as soapUI [13] or JUnitPerf [14].

References

1. Erl, T.: SOA: Principles of Service Design. Prentice Hall, Indiana, EEUU (2008)
2. OASIS: Web Service Business Process Execution Language (WS-BPEL) 2.0. http:

//docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html (April 2007)
3. Object Management Group: Business Process Modeling Notation (BPMN) 1.2.

http://www.omg.org/spec/BPMN/1.2/ (January 2009)
4. Cardoso, J., Sheth, A., Miller, J., Arnold, J., Kochut, K.: Quality of service for

workflows and web service processes. Web Semantics: Science, Services and Agents
on the World Wide Web 1(3) (April 2004) 281–308

5. Hwang, S., Wang, H., Tang, J., Srivastava, J.: A probabilistic approach to modeling
and estimating the QoS of web-services-based workflows. Information Sciences
177(23) (2007) 5484–5503

6. Yu, T., Zhang, Y., Lin, K.: Efficient algorithms for web services selection with
end-to-end QoS constraints. ACM Transactions on the Web 1(1) (2007)

7. Eclipse Foundation: Eclipse Modeling Framework. http://eclipse.org/
modeling/emf/ (2010)

8. Bender, M.A., Pemmasani, G., Skiena, S., Sumazin, P.: Finding least common
ancestors in directed acyclic graphs. Proceedings of the 12th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’01) (2001) 845–853

9. García-Domínguez, A., Medina-Bulo, I., Marcos-Bárcena, M.: Hacia la integración
de técnicas de pruebas en metodologías dirigidas por modelos para SOA. In: Actas
de las V Jornadas Científico-Técnicas en Servicios Web y SOA, Madrid, España
(October 2009)

10. de Castro, M.V.: Aproximación MDA para el desarrollo orientado a servicios de
sistemas de información web: del modelo de negocio al modelo de composición de
servicios web. PhD thesis, Universidad Rey Juan Carlos (March 2007)

11. García-Domínguez, A.: Homepage of the SODM+T project. https://neptuno.
uca.es/redmine/projects/sodmt (March 2010)

12. Kolovos, D., Paige, R., Rose, L., Polack, F.: The Epsilon Book. http://www.
eclipse.org/gmt/epsilon (2010)

13. eviware.com: Homepage of soapUI. http://www.soapui.org/ (2009)
14. Clark, M.: JUnitPerf. http://clarkware.com/software/JUnitPerf.html (Octo-

ber 2009)
15. Küster, T., Heßler, A.: Towards transformations from BPMN to heterogeneous

systems. In Mecella, M., Yang, J., eds.: BPM2008 Workshop Proceedings, Milan,
Italy (September 2008)

16. Object Management Group: UML Profile for Schedulability, Performance, and
Time (SPTP) 1.1. http://www.omg.org/spec/SPTP/1.1/ (January 2002)

17. Object Management Group: UML Profile for Modeling Quality of Service and
Fault Tolerance Characteristics and Mechanisms (QFTP) 1.1. http://www.omg.
org/spec/QFTP/1.1/ (April 2008)

18. Object Management Group: UML Profile for Modeling and Analysis of Real-
Time Embedded systems (MARTE) 1.0. http://www.omg.org/spec/MARTE/1.0/
(November 2009)

19. Silver, G.A., Maduko, A., Rabia, J., Miller, J., Sheth, A.: Modeling and simulation
of quality of service for composite web services. In: Proceedings of 7th World
Multiconference on Systemics, Cybernetics and Informatics, International Institute
of Informatics and Systems (November 2003)

20. Petriu, D.C., Shen, H.: Applying the UML Performance Profile: Graph Grammar-
based Derivation of LQN Models from UML Specifications. In: Proceedings of the
12th International Conference on Computer Performance Evaluation: Modelling
Techniques and Tools (TOOLS 2002). Volume 2324 of Lecture Notes in Computer
Science. Springer Berlin, London, UK (2002) 159—177

21. López-Grao, J.P., Merseguer, J., Campos, J.: From UML activity diagrams to
Stochastic Petri nets: application to software performance engineering. SIGSOFT
Softw. Eng. Notes 29(1) (2004) 25–36

22. Tribastone, M., Gilmore, S.: Automatic extraction of PEPA performance models
from UML activity diagrams annotated with the MARTE profile. In: Proceedings
of the 7th International Workshop on Software and Performance, Princeton, NJ,
USA, ACM (2008) 67–78

23. Ghosh, S., Arsanjani, A., Allam, A.: SOMA: a method for developing service-
oriented solutions. IBM Systems Journal 47(3) (2008) 377–396

