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Small GTPases in platelet membrane trafficking

Tony G. Walsh, Yong Li, Andreas Wersäll, & Alastair W. Poole

From the School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, UK

Abstract

Our understanding of fundamental biological processes within platelets is continually evolving. A
critical feature of platelet biology relates to the intricate uptake, packaging and release of bioactive
cargo from storage vesicles, essential in mediating a range of classical (haemostasis/thrombosis)
and non-classical (regeneration/inflammation/metastasis) roles platelets assume. Pivotal to the
molecular control of these vesicle trafficking events are the small GTPases of the Ras superfamily,
which function as spatially distinct, molecular switches controlling essential cellular processes.
Herein, we specifically focus onmembers of the Rab, Arf and Ras subfamilies, which comprise over
130 members and platelet proteomic datasets suggest that more than half of these are expressed
in human platelets. We provide an update of current literature relating to trafficking roles for these
GTPases in platelets, particularly regarding endocytic and exocytic events, but also vesicle biogen-
esis and provide speculative argument for roles that other related GTPases and regulatory proteins
may adopt in platelets. Advances in our understanding of small GTPase function in the anucleate
platelet has been hampered by the lack of specificmolecular tools, but it is anticipated that this will
be greatly accelerated in the years ahead and will be crucial to the identification of novel
therapeutic targets controlling different platelet processes.
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Introduction

Membrane trafficking describes a form of cellular communication
involving the movement of cargo (e.g. proteins, lipids or patho-
gens), within membrane bound vesicles, towards spatially distinct
compartments. This is a multistep process involving initial vesicle
formation from a donor organelle membrane where cargo is pack-
aged (e.g. trans-Golgi network), movement of this ‘carrier’ vesicle
towards an acceptor organelle (e.g. early endosome) and, tether to
an acceptor with subsequent membrane fusion allowing release of
carrier cargo into the lumen of the target organelle [1]. Classically,
two of the principal roles for membrane trafficking are exocytosis
and endocytosis, which terminate or initiate at the plasma mem-
brane, respectively. At the heart of these processes is the biosyn-
thetic pathway primarily composed of the endoplasmic reticulum
(ER) and Golgi complexes to orchestrate the sorting of correctly
folded proteins into vesicles, prior to trafficking to a target orga-
nelle. These complex and tightly regulated processes are funda-
mental to eukaryotic cell function, and as such, the Nobel Prize in
Physiology or Medicine 2013 was awarded to three pioneering
scientists (Rothman, Schekman & Sϋdhof) who discovered key
molecular regulators of vesicular traffic in mammalian cells [2].

Membrane Trafficking in Platelets

Platelet activity is no exception to these fundamental trafficking
processes since they are critically reliant on exocytosis (secretion)
and endocytosis to function effectively. Furthermore, trafficking is
essential for vesicle (granule) biogenesis and maturation, which
occurs within megakaryocytes (platelet precursors) and platelets,
respectively (Figure 1) [3]. Secretion of distinctive cargo from
platelets into blood occurs from three secretory granules, α-, dense
and lysosomes. Secreted cargo is essential for limiting blood loss
following acute/traumatic vessel injury (haemostasis), but can also
exacerbate platelet activity in diseased blood vessels, causing occlu-
sive ischaemic tissue damage (thrombosis) [4]. Dense granules (~ 3–
8/platelet), are loaded with small signalling elements (ADP, ATP,
5HT, Ca2+, Mg2+ and polyphosphates), which act as autocrine/
paracrine agents to amplify platelet activation [5]. Lysosomes
(~ 1–3/platelet) are the least well-studied of platelet granules, but it
is accepted that they secrete proteolytic enzymes (cathepsins, β-
hexosaminidase) involved in clot remodelling processes [6]. On the
other hand, platelet α-granules (~ 50–80/platelet) have been the
subject of intensive investigation, mostly notably because of the
vast array of cargo (chemokines, coagulation factors, adhesive pro-
teins, antimicrobial peptides, growth factors) they release [7]. It is,
therefore, unsurprising that platelets, through secreted cargo, also
exhibit functions beyond haemostasis, such as inflammation, angio-
genesis and tissue repair [8–10]. This in turn has led to a thorough
investigation of the secretory machinery regulating platelet secre-
tion. In particular, the molecular mechanisms of granule fusion with
the plasma membrane are well described and require a number of
key Soluble N-ethylmaleimide-sensitive factor Attachment protein
REceptor (SNARE) proteins, including vesicle associated mem-
brane protein (VAMP)-8, synaptosome associated protein (SNAP)-
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23 and syntaxin 11 and regulatory proteins such as Munc18b,
Munc13-4 and syntaxin binding protein 5 (STXBP5) [11,12].

On the contrary, mechanistic insight into endocytic pathways
in platelets are less clearly defined. Interestingly, the concept of
endocytosis in platelets was first reported almost 30 years ago,
but it has only been in recent years that studies have suggested
more critical, functional roles for endocytosis in platelets
[13,14]. We have previously reported endocytosis and traffick-
ing of G-protein coupled receptors in platelets via clathrin-
dependent pathways [15]. Our understanding of platelet granule
biogenesis has been largely inferred from studies on human
patients with granule deficiencies (referred to as storage pool
deficiency) and related murine models [3]. It is believed that α-
granules are derived from the biosynthetic and endocytic path-
ways, where cargoes are initially packaged within early endo-
somes before targeting to multi-vesicular bodies (MVBs)/late
endosomes from which α-granules mature (Figure 1). The
mechanism of dense granule biogenesis is more speculative,
but is believed to require input from early endosomes, which
may mature in MVBs. It is at this point, that the different
granule types appear to mature via distinct machinery. For
instance, mutations in the NBEAL2 gene cause grey platelet
syndrome (GPS), a disorder characterised by α-granule biogen-
esis defects, but patients have normal dense granule numbers.
Similarly patients with Hermansky-Pudlack syndrome (HPS),
have deficiencies in dense granules, but not α-granules [16].
Platelet granule biogenesis, has been the subject of recent
review articles where greater detail can be found about this
process [3,17].

The purpose of this review was to explore the roles of the Rab,
Arf and Ras families of small guanosine triphosphatases

(GTPases) with respect to platelet membrane trafficking events
(exocytosis, endocytosis and granule biogenesis) and provide
speculative arguments on trafficking roles that other platelet
expressed GTPases may assume. Categorised on the basis of
sequence homology, these three families of GTPases comprise
over 130 proteins, which function as molecular switches cycling
between an inactive ‘GDP-bound’ form to an active ‘GTP-bound’
form to regulate specific effector proteins which can also function
beyond membrane trafficking events. The GTPase activities of
these proteins are regulated by two classes of proteins; guanine
nucleotide exchange factors (GEFs) which promote the GTP-
bound form, whereas GTPase-activating proteins (GAPs) accel-
erate GTP hydrolysis to inactivate the GTPase [18]. Another key
feature of these GTPases are the membrane-targeting sequences
within the C-termini of Rab and Ras GTPases and N-termini of
Arf GTPases, which control their membrane association and
biological activity through lipid modifications [19]. We acknowl-
edge there are other important regulators of vesicle trafficking in
platelets, such as cytoskeletal proteins, kinases such as PKCα and
PKD2, the large GTPase dynamin and dynamin-related protein 1
that are not discussed here, but we refer the reader to a number of
relevant publications [20–25]. We also recommend a recent
review on RhoGTPases in platelets, which details roles for spe-
cific Rho family members with respect to platelet secretion [26].

The Rab GTPase Family in Platelets

Initially described as Ras-like proteins in the brain (Rab), Rab
GTPases make up the most abundant family of small GTPases,
comprising almost 70 human members and are often described as
master regulators of vesicle trafficking within endocytic and

Figure 1. Membrane trafficking events within megakaryocytes and platelets involving Rab, Arf and Ras GTPases. (A) Granule biogenesis within the
megakaryocyte involves input from biosynthetic and (B) endocytic pathways culminating in cargo packaging into early endosomes before sorting in
immature multi-vesicular bodies (MVB I) to mature MVB II/late endosomes, or targeting to recycling endosomes. Following biogenesis, α-granules
(AG), lysosomes (LY) and dense granules (DG) mature within platelets before targeting to the plasma membrane for (C) exocytosis. Trafficking roles
for GTPases studied in megakaryocytes/platelets are highlighted in green, while roles for GTPases inferred from other cell systems are highlighted in
red.
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exocytotic pathways [27]. As a result, Rabs provide specific
membrane identity, whilst ensuring that membrane-enclosed car-
goes are trafficked to the correct cellular compartments. Based on
proteomic studies, human platelets contain over 40 Rab members,
with a range of expression levels from highly expressed Rab27B
(35,000 copies/platelet) to lowly expressed Rab22 (500 copies/
platelet, Figure 2) [28]. A seminal paper by Karniguian et al. in
1993 first described the expression of Rabs 1,3,4,6 and 8 in

human platelets, with Rabs 3,4 and 8 being phosphorylated in
response to platelet activation, but the relevance of this modifica-
tion to platelet vesicle trafficking is unknown [29]. Rabs exist in
both soluble and membrane-associated forms, the latter being
principally mediated by post-translational modification of gera-
nylgeranylation. This modification to cysteine residues within the
C-terminus of the GTPases is catalysed by Rab geranylgeranyl
transferase (RGGT), which coordinates with Rab escort proteins
(REPs) to guide targeting of the Rab protein to vesicle or plasma
membranes [27]. Notably, a naturally occurring mutation in gun-
metal mice, which causes a 75% reduction in RGGT activity due
to an autosomal recessive mutation, leads to a restricted mouse
phenotype causing thrombocytopenia, loss of platelet granule
content (both α- and dense granules) and prolonged bleeding
times [30,31]. GTP-activated Rabs can specifically interact with
numerous effectors, including vesicle tethering and fusion regu-
lators, adaptors, motor proteins, kinases and phosphatases to
regulate specific trafficking events [32]. Despite the high abun-
dance of different Rab family members, there are limited func-
tional studies on these GTPases in platelets, which likely reflects
the limited availability of reliable pharmacological or molecular
tools to target them within the anucleate platelet.

Studies in ashen mice, which lack Rab27A, suggested this Rab
GTPase member was important for dense granule secretion and
biogenesis, but it was subsequently shown that the genetic back-
ground of these mice was responsible for the granule defect
[33,34]. Further work by Tolmachova et al. clearly demonstrated
that platelets from Rab27B knockout mice (KO) exhibit a 50%
reduction in dense granule numbers and impaired dense, but not
α-, granule cargo release [35]. Notably, double KO (Rab27A/B−/-)
platelets displayed slightly exaggerated dense granule release
defects suggesting partial redundancy between isoforms, while
reduction of dense granule numbers in Rab27B KO platelets
was believed to reflect a packaging defect during megakaryocyte
maturation [35]. Griscelli syndrome (GS) is one of the earliest
examples of mutations in a Rab gene specifically implicated in
human disease, where defects in the RAB27A gene cause partial
albinism and hemophagocytic syndrome, characterised by uncon-
trolled T-cell and macrophage activation due to loss of cytolytic
granule secretion [36]. No bleeding defects have been reported in
type I GS patients, which is presumably due to compensation by
the expression of Rab27B, as described above [1]. GTP-loaded
Rab27B (and Rab27A) have been shown to directly interact with
the SNARE tethering factor Munc13-4 in platelets, mutations of
which cause familial hemophagocytic lymphohistiocytosis (FHL)
3, characterised by loss of lymphocyte cytotoxicity required for
immune defence [37]. In these patients, secretion from lytic
granules of cytotoxic T cells and natural killer cells is blocked,
as these granules fail to properly ‘fuse’ with the plasma mem-
brane [38]. Interestingly, platelets from FHL3 patients and
Unc13dJinx mice, which lack Munc13-4, have a complete ablation
of dense granule secretion, suggesting regulators other than
Rab27A/B are also important in facilitating dense granule secre-
tion [39–41]. Also importantly and in contrast to the Rab27B
knockout, Munc13-4 deficient platelets have normal granule num-
bers, suggesting other Rab27 effectors mediate granule packaging
or biogenesis. Studies in melanosomes have shown the actin
motor protein, myosin Va, can interact with Rab27 to regulate
vesicle motility, but mouse platelets lacking myosin Va have no
secretion defects [42].

In addition to Rab27 isoforms, Rab8 has been shown to regulate
dense granule secretion, through interaction with the tethering factor
synaptotagamin-like protein (SLP) 4, suggesting a highly complex
and coordinated input from different Rab GTPases to facilitate dense
granule release [43]. In the Karniguian paper, Rab8 and Rab6, were
also found associated with platelet α-granules, while a study using a

Figure 2. Ranked protein expression of 42 Rab GTPases in human
platelets as detected in the Burkhart platelet proteome screen [28].
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permeabilised platelet system showed that calcium-induced exocy-
tosis of vWF from α-granules requires Rab4 [29,44]. Rab3B directly
associated with the calcium binding protein calmodulin, which pre-
dominantly localised to the particulate fraction of human platelets,
suggesting an association of this GTPase with platelet granules and/
or the plasma membrane [45]. In other cell systems, Rab3, Rab26
and Rab37 are found associated with exocytotic vesicles, and based
on proteomic expression in platelets (Figure 2), it is, therefore,
possible that Rab37 may also have an important role in platelet
secretion [27]. Interestingly, a recent study in mast cells identified
Rab37 as a negative regulator of degranulation, which formed a
complex with Munc13-4 and Rab27 and obscured vesicle docking/
priming activity [46]. It would, therefore, be interesting to assess if
such a role is assumed by Rab37 in platelets.

Mechanistic insights into endocytic pathways in platelets have
also been uncovered. A study by Banerjee et al. revealed that
VAMP3 regulates receptor-mediated endocytosis of fibrinogen and
transferrin, most likely via a clathrin-dependent mechanism [47].
Notably, the authors also showed that fluid phase pinocytosis of
labelled dextran into platelets was only marginally affected in
VAMP3−/- platelets, consistent with a previous report suggesting
alternative endocytic pathways are present in platelets, but require
distinct mechanisms [48]. Consistent with other mammalian cells,
this internalised cargo was initially trafficked through Rab4 (early
endosomes) positive compartments, before targeting to Rab11 (recy-
cling endosomes) and vWF (α-granule) compartments. Beyond pla-
telets, Rab5 is another GTPase specifically localised to early
endosomes that regulates endocytosis and it has been recently
reported that Rab5 isoforms (A, B and C) differentially regulate
distinct endocytic pathways, presumably through interaction with
different effectors [49]. These three isoforms are relatively abundant
in human (and mouse) platelets and might be suggestive of a node
through which internalised material is differentially trafficked in
platelets towards recycling or degrading lysosomal compartments
(Figure 2). Similarly, a study in CHO cells showed that Rab15
differentially regulates early steps in endocytic trafficking [50].
Regarding ‘later’ stages in endosomal vesicle trafficking, Rab7A is
often associated with late endocytic compartments and transport to
lysosomes. Rab7B controls endosomal transport to the Golgi com-
plex, but proteomic data only supports expression of Rab7A in
platelets (Figure 2) [51]. Additionally, the presence of a Golgi
structure in platelets has been recently called into question, as
Yadav et al. could only confirm the presence of scattered Golgi
proteins, existing as separate structures whose function remained
to be determined [52].

In megakaryocytes, downregulation of Rab1B, through loss/
haplodeficiency of the transcription factor, RUNX1, alters early
vesicle transport from the endoplasmic reticulum (ER) to the
Golgi complex causing a reduction in content of the α-granule
protein von Willebrand factor (vWF) [53]. Furthermore, Ninkovic
et al. showed that fawn-hooded hypertensive rats which lack
Rab38, due to a point mutation in the gene start codon, have no
apparent dense granules within megakaryocytes or platelets [54].
A subsequent study in cultured MEG-O1 cells showed that Rab32
and Rab38 non-redundantly regulate dense granule biogenesis
and both Rab GTPases were shown to specifically traffic dense
granule cargo-containing vesicles to immature, Rab7A positive
late endosomal/MVBs [55]. As mentioned, loss of dense granules
is a classical feature of HPS, in which patients present with
numerous clinical manifestations, including a bleeding diathesis
due to loss of secreted ADP [56]. Mutations in 10 human genes
are associated with HPS, including the Rab GEFs, HPS1 and
HPS4, which specifically regulate Rab32 and Rab 38 activity,
thereby highlighting a possible role for Rab GEFs in granule
biogenesis [57]. Other regulators of Rab GTPase activity present
in platelets include the GEFs; Rab3A-interacting protein

(regulates Rabs8A and 8B), Rabex-5 (regulates Rab5a), vacuole
protein sorting (VPS) 39-like protein (regulates Rab7) and GAPs;
RabGAP1 (regulates Rab6), RabGAP1-like (regulates Rab22A)
and Rab3GAP1 (regulates all Rab3 isoforms), but there is cur-
rently no evidence supporting their functional relevance to traf-
ficking events in platelets [28]. Many questions remain for the
field of Rab GTPases in platelet function and membrane traffick-
ing. For instance, is internalised cargo trafficked to α-granules,
targeted for lysosomal degradation or simply ‘lost’ within the
Golgi or other endosomal compartments in platelets? It would
also be interesting to assess the trafficking roles other highly
expressed Rab GTPases in platelets, such as Rab10 and Rab14,
but at present there is a lack of genetic or pharmacological data to
speculate upon these roles (Figure 2).

The Arf GTPase Family in Platelets

The ADP-ribosylation factor (Arf) family of small GTPases com-
prises six founding members that are separated into three classes
largely based on sequence homology; Class I (Arfs 1–3), Class II
(Arfs 4–5) and Class III (Arf6). It is now recognised that these
Arf proteins form part of a larger family containing over 20
proteins consisting of Arf-like (Arl), Arf-related (Arfrp) and the
distally related, secretion-associated and Ras-related (Sar) pro-
teins [58]. Figure 3 details the expression profile for this family
in platelets, with the founding Arf members being the most highly
expressed and a total of 14 Arf family members have been
identified. Similar to Rab GTPases, Arfs are under tight spatial
and functional control by GEFs and GAPs, but a distinguishing
feature is the myristoylation at the N terminus which brings the
GTPase in close contact with the membrane allowing for biolo-
gical activity [59]. Arf effectors, which include coat proteins
involved in endocytosis, membrane tethers, lipid enzymes and
scaffold proteins, preferentially bind the GTP-bound form of
Arfs, but the GDP-bound form can also interact with separate
targets to regulate trafficking events [60]. Beyond trafficking-
associated functions, the Arf family also plays important roles
in cytoskeletal remodelling, cytokinesis and lipid droplet forma-
tion [60,61]. Various human diseases with mutations in Arf
family proteins have begun to emerge, but to the best of our
knowledge there are currently no reports of associated bleeding
diathesis.

Of the six Arf proteins, Arf6 has received the most attention for
its roles in platelets. Choi et al. first demonstrated that Arf6 is a key
element in platelet activation through GPVI- and PAR-mediated
signalling [62,63]. Interestingly, Arf6-GTP was the predominant
form in resting platelets and the level of this GTP-bound state rapidly
decreased upon stimulation of platelets with collagen and convulxin,
which is unusual since GTPases more commonly exist in inactive
GDP-bound states in resting cells. It is possible that under resting
conditions, platelets are undergoing active trafficking events invol-
ving Arf6, which is favourably localised to the plasma membrane.
Indeed, Arf6-GTP-mediated regulation of phospholipase D and
phosphatidylinositol 4-phosphate 5-kinase facilitates structural
changes in the plasma membrane, allowing recruitment of coat
proteins involved in clathrin-mediated endocytosis [64].
Kanamarlapudi et al. later showed that Arf6 activity was also impor-
tant for P2Y purinoceptor internalisation and subsequent trafficking
events which are critical for the resensitisation and function of these
receptors in platelets [65]. Conditional gene knockout of Arf6 in
mouse platelets resulted in only a mild platelet phenotype due to a
defect in fibrinogen uptake by platelets through integrin αIIbβ3-
mediated endocytic trafficking [66]. Deletion of Arf6 specifically
enhanced platelet spreading on fibrinogen and accelerated clot
retraction, but did not affect murine platelet aggregation, surface
αIIbβ3 activation or in vivo thrombosis. The mechanism underlying
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the enhanced platelet spreading however was not completely under-
stood and was speculated to result from more rapid recycling of
activated αIIbβ3 to and from the surface of Arf6 null platelets [66].
Notably, the earlier study by Choi et al. in human platelets reported
defective platelet aggregation with a myristoylated (myr)-Arf6 pep-
tide, which preserved Arf6-GTP upon platelet activation [62].
Importantly, the myr-Arf6 peptide also inhibited fibrinogen endocy-
tosis in human platelets, but it not clear if the functional differences
between human and mouse platelets is caused by off-target effects of
the myr-Arf6 peptide, or due to fundamental differences between
species [66].

Besides Arf6, Arf1 and Arf3 represent the most studied Arf
members in other cell systems and are more abundant in platelets
than Arf6, sharing 96% sequence identity (Figure 3). Most evidence
to date supports identical roles for these GTPases in vesicle trans-
port along the biosynthetic pathway, between the endoplasmic
reticulum and Golgi compartments, by recruiting coated vesicles
allowing for cargo selection and packaging [61]. It is tempting to
speculate critical roles for these Arfs along the biosynthetic pathway
of α-granule biogenesis within megakaryocytes, but also for their
maturation within platelets. Similar roles have been reported for
Sar1, of which the Sar1A isoform is relatively abundant in human
platelets [67]. In addition, numerous Arf regulators are present in
platelets including the GEFs; GBF1, BIG2, CYH2 and GAPs;
ArfGAP1/2, ASAP1/2, GIT1/2 and ARAP1, some of which were
found complexed within a phosphatidylinositol triphosphate

interactome at the plasma membrane of platelets to coordinate
signalling events [28,68]. Notably, work by our group demonstrated
that Arf6 also controls exocytic pathways in resting platelets, by
restraining dense granule secretion via a direct interaction with the
Arf GEF, CYH2 (cytohesin-2), which maintained Arf6 in a GTP-
bound state. Following activation, CYH2 was phosphorylated by
PKC, leading to a dissociation from and inactivation of Arf6, which
facilitated granule secretion [69]. In addition to GEFs/GAPs, pro-
tein interactions are likely to regulate Arf activity. One piece of
evidence comes from Urban and colleagues who showed that dele-
tion of Pdlim7, a PDZ-LIM family protein, resulted in unbalanced
Arf6-GDP/GTP ratios in mice, although the mechanism behind this
is not clear [70]. Interestingly, perinatal lethality due to spontaneous
systemic thrombosis was reported in these mice. However, mice
lacking platelet Arf6 have no reported incidence of spontaneous
thrombi suggesting the phenotype in Pdlim7 deficient mice is likely
independent of Arf6. Undoubtedly, much further experimental work
is required to fully understand the functional roles and regulation of
Arfs with respect to trafficking events in platelets.

The Ras GTPase Family in Platelets

The Ras sarcoma (Ras) GTPases are the second largest family of
the Ras superfamily containing 36 members classically associated
with cell proliferation, differentiation and survival, while approxi-
mately 30% of all human cancers contain Ras activating

Figure 3. Ranked protein expression of 14 Arf GTPases and 12 Ras GTPases in human platelets as detected in the Burkhart platelet proteome screen [28].

DOI: https://doi.org/10.1080/09537104.2018.1535703 Platelet GTPases and Trafficking 5



Ta
bl
e
I.
Su

m
m
ar
y
of

sm
al
l
G
T
Pa

se
s
di
sc
us
se
d
in

th
is
re
vi
ew

.M
ou
se

m
od
el
s
ar
e
de
sc
ri
be
d,

un
le
ss

ot
he
rw

is
e
st
at
ed
.S

tu
di
es

us
in
g
ph
ar
m
ac
ol
og
ic
al

in
hi
bi
to
rs

or
pe
rm

ea
bi
lis
ed

pl
at
el
et

sy
st
em

s
ar
e
no
ti
nc
lu
de
d.

E
ff
ec
t
on

gr
an
ul
e
co
un
t/c
on
te
nt
/s
ec
re
tio

n

Pr
ot
ei
n

G
en
e

A
lp
ha

D
en
se

Ly
so
so
m
e

M
od
el

R
ef
er
en
ce

R
ab
27
A

R
A
B
27
A

N
or
m
al

vW
F
le
ve
ls
,n

or
m
al

P-
se
le
ct
in

ex
po
su
re

N
or
m
al

co
un
t/5

H
T
co
nt
en
t

nd
A
sh
en

m
ou
se

(R
ab

27
a−

/-
gl
ob
al
)

B
ar
ra
l
et

al
.

(2
00
2)

R
ab
27
B

R
A
B
27
B

N
or
m
al

P-
se
le
ct
in

ex
po
su
re

R
ed
uc
ed

co
un
t/5

H
T
co
nt
en
t,
se
cr
et
io
n
de
fe
ct
-f
ur
th
er

im
pa
ir
ed

in
R
ab
27
a/
b
nu
ll

nd
R
ab

27
b−

/-
(g
lo
ba
l)

To
lm

ac
ho
va

et
al
.

(2
00
7)

R
ab
38

R
A
B
38

N
or
m
al

co
un
t,
an
d
P-
se
le
ct
in

ex
po
su
re

N
on
e
de
te
ct
ed

in
M
eg
s
or

Pl
at
el
et
s

N
or
m
al

co
un
t

FH
H
ra
t(
R
ab

38
−
/-
du
e
to

po
in
tm

ut
at
io
n
in

ge
ne

A
T
G

st
ar
t
si
te
)

N
in
ko
vi
c
et

al
.

(2
00
8)

R
ab
32

R
A
B
32

nd
B
io
ge
ne
si
s
de
fe
ct

in
M
eg
s

nd
R
ab

32
si
R
N
A

(M
E
G
-0
1
ce
lls
)

A
m
br
os
io

et
al
.

(2
01
2)

R
ab
38

R
A
B
38

nd
B
io
ge
ne
si
s
de
fe
ct

in
M
eg
s

nd
R
ab

38
si
R
N
A

(M
E
G
-0
1
ce
lls
)

A
m
br
os
io

et
al
.

(2
01
2)

A
rf
6

A
R
F
6

N
or
m
al
co
un
t,
de
cr
ea
se
d
fi
br
in
og
en

co
nt
en
t

N
or
m
al

co
un
t
an
d
se
cr
et
io
n

nd
A
rf
6f
lo
x/
fl
ox
-
P
F
4-
C
re

H
ua
ng

et
al
.

(2
01
6)

R
al
A

R
A
LA

N
or
m
al

co
un
t,
an
d
se
cr
et
io
n*

N
or
m
al

co
un
t
an
d
se
cr
et
io
n†

N
or
m
al

co
un
t
an
d

se
cr
et
io
n

R
al
A

fl
ox
/f
lo
x -
P
F
4-
C
re

W
er
sä
ll
et

al
.

(2
01
8)

R
al
B

R
A
LB

N
or
m
al

co
un
t,
P-
se
le
ct
in

ex
po
su
re

de
fe
ct
*

N
or
m
al

co
un
t
an
d
se
cr
et
io
n†

N
or
m
al

co
un
t
an
d

se
cr
et
io
n

R
al
B
fl
ox
/f
lo
x -

P
F
4-
C
re

W
er
sä
ll
et

al
.

(2
01
8)

R
-R
as
2

R
R
A
S2

G
PV

I-
sp
ec
if
ic

se
cr
et
io
n
de
fe
ct

G
PV

I-
sp
ec
if
ic

se
cr
et
io
n
de
fe
ct

nd
R
ra
s2

−
/-
(g
lo
ba
l)

Ja
na
pa
ti
et

al
.

(2
01
8)

‘*
’P

-s
el
ec
tin

ex
po
su
re

de
fe
ct

m
ar
ke
dl
y
en
ha
nc
ed

an
d
‘†
’m

ild
A
T
P
se
cr
et
io
n
de
fe
ct

in
R
al
A
/B

do
ub
le

kn
oc
ko
ut

pl
at
el
et
s,
‘n
d’

in
di
ca
te
s
no

da
ta

av
ai
la
bl
e,

‘F
H
H
’i
nd
ic
at
es

fa
w
n-
ho
od
ed

hy
pe
rt
en
si
ve
.

6 T. G. Walsh et al. Platelets, Early Online: 1–10



mutations [71]. Numerous Ras members are expressed in platelets
(Figure 3) and early studies demonstrated that Ras could be
activated following platelet stimulation [72,73]. However this
did not result in the classical activation of the MAP kinase
ERK, as is the case in nucleated cells and the relevance of K-,
N- and R-Ras GTPases in platelet function remains unclear.
Notably, mutations in four different genes associated with Ras
signalling, including K-RAS, are linked to the autosomal dominant
disorder, Noonan syndrome (NS) [74]. These patients present
with a bleeding diathesis and defects in platelet function have
been reported, although K-RAS mutations only account for < 2%
of NS patients [75,76]. Interestingly, a recent publication by
Janapati et al. demonstrated a role for R-Ras2 (TC21) in GPVI-
induced integrin activation, granule secretion and thrombus for-
mation, which acted upstream of Rap1B [77]. Rap1 (A and B) are
the most abundantly expressed Ras members in platelets and
critical roles with respect to platelet integrin activation and adhe-
siveness have been established, while roles for the much lower
expressed Rap2 (A, B and C) members remain elusive. Zhang and
colleagues demonstrated that Rap1B is also important for granule
(α- and dense) secretion, although the underlying mechanism is
not known [78]. For further information on Rap signalling in
platelets, we refer the reader to a recent review by Stefanini and
Bergmeier [79].

Of particular relevance to this review are the Ras-like (Ral)
GTPases, RalA and RalB. Like most Ras GTPases, Rals have been
implicated in numerous cellular processes including oncogenic
transformations, but have also been implicated as regulators of
vesicle trafficking [80]. They are ubiquitously expressed, with high
abundance in brain, testes and platelets sharing 82% sequence iden-
tity, with ~ 55% identity to other Ras GTPases [81]. A well-char-
acterised effector of Rals is the exocyst complex, comprising of 8
proteins (EXOC1-8) that facilitate the tethering of exocytic vesicles
to the plasma membrane [82]. Notably, all components of this
octameric complex are present in human (and mouse) platelets and
GTP-loaded Rals have been shown to bind EXOC2 and EXOC8 in a
mutually exclusive manner [83]. Similarly, other established effec-
tors of Rals include Ral binding protein (RalBP1) and phospholipase
D, but their relevance to platelet function and/or vesicle trafficking
remains to be determined. Of relevance, RalBP1 has been shown to
play a role in receptor-mediated endocytosis by interacting with
epsin homology domain proteins Reps1 and Reps2, aswell as cla-
thrin adaptor protein complex AP2, all of which are present in
platelets and are supportive of an endocytic function for platelet
Rals (Figure 1) [84].

Within platelets, Ral was found associated with dense granules
[85] and can be activated by various platelet agonists in a Ca2
+-dependent manner, while studies in endothelial cells support a
role for RalA in Weibel Palade body exocytosis [86,87].
Interestingly, it is well characterised that Ral activity is regulated
by numerous Ras GTPases, including H-Ras, R-Ras, Rap 1 (A and
B), which directly bind to and regulate Ral GEFs, including
RalGDS and RGL (1–3) [88]. Proteomic data analysis only supports
the expression of RGL2 in murine platelets, while the RalGAP α1,
α2 and β subunits are present in human (and mouse) platelets to
regulate Ral-GTP hydrolysis [28,89]. Considering the importance of
Rap to platelet secretion, if would be interesting to assess a potential
crosstalk between Rap and Ral GTPases. Functional studies invol-
ving permeabilised human platelets alluded to a role for Rals in
dense granule secretion, through an interaction with EXOC2 [90].
However, a recent study from our group demonstrated that murine
platelets lacking either RalA or RalB have no defect in dense granule
cargo release, while RalA/B double KO (DKO) platelets have only a
marginal defect which does not alter functional responses such as
aggregation and thrombus formation [91]. Interestingly, platelet sur-
face exposure of P-selectin in DKO platelets was substantially

reduced (by ~ 85%) in response to GPVI-mediated platelet activa-
tion, whereas the release of an array of soluble α-granule cargo was
unaffected. Notably, this exocytic defect in α-granule release of
P-selectin was not due to the minor reduction in secreted ADP
from dense granules. This also reveals mutually redundant traffick-
ing roles for both Ral proteins in platelets, which corroborates their
roles in development and tumorigenesis [80]. These findings raise
intriguing questions regarding exocytic trafficking processes in pla-
telets. Firstly, do ‘kiss-and-run’ secretion events occur, where solu-
ble cargo are readily released upon transient fusion of the secretory
vesicle at the plasma membrane? An alternative explanation is the
presence of P-selectin positive and negative α-granule subpopula-
tions, as it has been reported to be differentially localised to another
α-granule protein, vWF, and thereby Rals could specifically target
the P-selectin positive population [92]. Undoubtedly many questions
remain regarding theories of cargo storage in platelets and mechan-
isms controlling their trafficking and release, but these observations
reported in Ral deficient platelets offer attractive therapeutic poten-
tial [93,94].

Conclusion

It has become increasingly apparent that small GTPases play
pivotal roles in the regulation of membrane vesicle trafficking in
anucleate platelets as they do in nuclear cells. They shuttle
between cytosolic and membrane compartments, and as such
they are well positioned to control these critical cellular pro-
cesses. Our knowledge of these binary molecular switches in
platelets has accumulated in the last two decades, particularly
through research with genetic manipulation in animal models
(see Table I). Furthermore, platelet proteomic datasets have pro-
vided key expression data on an array of small GTPases, whose
relevance to platelet function remains to be determined. Crucially,
these discoveries may led to the identification of specific targets
that could pave the way for manipulating exocytic and endocytic
processes in platelets. For instance, the ability to selectively
modulate P-selectin mediated platelet-leukocyte interactions dur-
ing inflammatory pathologies, without affecting the haemostatic
properties of platelets. Reciprocally, it could be possible to selec-
tively control the endocytic uptake of plasma proteins by platelets
that could be useful for exploiting tissue regenerative roles for
platelets, but also to control the sequestration of tumor proteins by
platelets that primes distal sites, such as bone, for metastasis [95].
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