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Abstract3

The probabilistic nature of synaptic transmission has remained enigmatic. However, recent developments have4

started to shed light on why the brain may rely on probabilistic synapses. Here, we start out by reviewing experimental5

evidence on the specificity and plasticity of synaptic response statistics. Next, we overview different computational6

perspectives on the function of plastic probabilistic synapses for constrained, statistical and deep learning. We7

highlight that all of these views require some form of optimisation of probabilistic synapses, which has recently gained8

support from theoretical analysis of long-term synaptic plasticity experiments. Finally, we contrast these different9

computational views and propose avenues for future research. Overall, we argue that the time is ripe for a better10

understanding of the computational functions of probabilistic synapses.11
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Highlights12

• Computational and experimental research suggest that synapses adapt their transmission statistics during learning13

• Optimisation of probabilistic synapses occurs jointly in pre- and postsynaptic terminals during synaptic plasticity14

• Recent developments in statistical learning point to a reevaluation of the function of probabilistic synapses in15

cortical circuits16

• Insights on the biology of probabilistic synapses may inspire new learning algorithms17

1 Introduction18

Animals have evolved in uncertain environments. For example, they have adapted to distinguish nutrition sources of19

different shapes, sizes, colours and tastes. Such perceptual uncertainty should be encoded by the brain to enable accurate20

decision making (Fiser et al., 2010; Orbán et al., 2016; Haefner et al., 2016). This link between perception and decision21

is presumably achieved through communication between different brain areas, which ultimately relies on synaptic22

transmission (Nabavi et al., 2014; Roelfsema and Holtmaat, 2018). Synaptic transmission is inherently stochastic: a23

presynaptic action potential may or may not trigger neurotransmitter release that in turn binds to postsynaptic receptors24

(Malagon et al., 2016). For synaptic transmission to successfully trigger a behavioural decision synaptic response25

statistics should be tuned during learning (Nabavi et al., 2014; Costa et al., 2017b; Roelfsema and Holtmaat, 2018).26

However, it has remained unclear exactly which aspects of probabilistic synapses should be modified during learning.27

There is wide evidence of plasticity occurring at the key components that underlie synaptic transmission statistics.28

For example, not only does plasticity change the properties and number of postsynaptic receptors, but also the intricate29

presynaptic machinery responsible for stochastic neurotransmitter release (Padamsey and Emptage, 2014; Costa et al.,30

2017b). Because synaptic plasticity is believed to underlie learning (Nabavi et al., 2014; Roelfsema and Holtmaat,31

2018), this body of experimental work suggests that the brain shapes probabilistic synapses as animals adapt to the32

environment. This has important theoretical implications (Kappel et al., 2015; Aitchison and Latham, 2015; Blundell33

et al., 2015; Costa et al., 2015), but most computational models of learning and synaptic plasticity have considered only34

changes in the mean synaptic weight (e.g. Brea et al. (2016); Bittner et al. (2017); Pereira and Brunel (2018)). Below35

we review recent experimental and theoretical developments on the plasticity and computation roles of probabilistic36

synapses.37
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Figure 1: Specificity and plasticity of probabilistic synapses. (A) Throughout the brain virtually every synapse is
probabilistic. (i) When a presynaptic spike (blue vertical line on the left) occurs a presynaptic vesicle (blue circles)
may release neurotransmitters (red dots) that bind to postsynaptic receptors (red) which elicits a postsynaptic potential
(PSP; PSPs of different amplitudes are represented by the small vertical blue lines). The key parameters that determine
the statistics of probabilistic synaptic release are the number of presynaptic release sites (N , groups of vesicles in
blue; only two release sites are represented, N1 and N2, out of the five modelled here), release probability (Prel, blue
arrows) and quantal amplitude which is proportional to the number of postsynaptic receptors, (q, red). This process
is typically modelled as a binomial probability distribution (orange histogram, with N=5, Prel = 0.5 and q = 1),
which in the limit of large N can be approximated as a Gaussian distribution (black line) with mean=NqPrel and
variance=Nq2Prel(1−Prel). (ii) Simplified representation of cortical circuits, with both excitatory (black) and inhibitory
(purple) synapses and neuron types. Each synaptic connection is stochastic (represented as a Gaussian distribution).
Two different inhibitory cell-types are represented: somatostatin (SST, dashed green circle) and parvalbumin (PV,
black circle); here these two separate inhibitory cell-types are represented as overlapping circles for simplicity. Note
that different connections exhibit statistics of different means and variances (see main text for more details). (B)
Long-term plasticity of probabilistic synapses. (i) Different induction protocols have been shown to trigger changes
in the probability of postsynaptic responses. Schematic on the left represents pre- and postsynaptic spikes in a spike-
timing-dependent plasticity protocol, which depending on the timing between pre- and postsynaptic spikes (∆t) as well
as the inter-spike interval (ISI) may lead to long-term potentiation (LTP) or depression (LTD). This in turn changes not
only the mean synaptic response, but also its variance. (ii) Modifications to probabilistic synapses during plasticity
are known to rely on specific retrograde (e.g. endocannabinoids (eCB) and nitric oxide (NO)) and anterograde signals
(glutamate (Glu)). (iii) Behavioural outcomes (e.g. reward) may rely on neuromodulation (e.g. Dopamine) to regulate
plasticity at probabilistic synapses.



2 Specificity of synaptic transmission statistics38

The probabilistic nature of synaptic transmission has been described as a binomial process (Del Castillo and Katz, 1954;39

Malagon et al., 2016; Costa et al., 2017b), which is parametrised by the (i) number of synaptic release sites N , (ii)40

presynaptic release probability Prel and (iii) quantal amplitude q – proportional to the number of postsynaptic receptors41

1 (Fig. 1Ai). Together these three parameters define the statistics of synaptic responses, with mean given by NqPrel and42

variance by Nq2Prel(1− Prel) (Fig. 1Ai).43

The exact mean and variance of synaptic transmission depends on where the synapse is located. In cortical circuits44

the statistics (e.g. means and variances) of synaptic responses exhibit a high degree variability that depends on45

cell-type (Brémaud et al., 2007), connection-type (Brémaud et al., 2007; Blackman et al., 2013; Costa et al., 2013),46

layer (Brémaud et al., 2007; Thomson, 2007), brain area (Wang et al., 2006), age (Reyes and Sakmann, 1999), and47

even species (Testa-Silva et al., 2014). For example, excitatory synapses from thalamic projections onto layer-448

granule cells are more reliable (Silver, 2003) than synapses between layer-5 pyramidal cells (Costa et al., 2013).49

Remarkably, connections from pyramidal cells onto lateral inhibitory cells can also be dramatically different: synapses50

onto somatostatin-positive interneurons cells communicate with a low basal release probability, whereas synapses onto51

parvalbumin-positive interneurons are stronger with higher release probability (Blackman et al., 2013; Costa et al.,52

2013) (Fig. 1Aii). Such high specificity of probabilistic synapses suggests that they are modified during learning.53

3 Plasticity of probabilistic synapses54

Accumulating evidence suggests that synaptic plasticity underlies learning in the brain (Nabavi et al., 2014; Roelfsema55

and Holtmaat, 2018). Synaptic plasticity not only modifies the mean synaptic response, but also its variance (Fig. 1B).56

In particular, it has been shown that long-term synaptic plasticity leads to changes in both the presynapse by modifying57

Prel and the postsynapse by modifying q (Costa et al., 2017b) (Fig. 1A,Bi). After a decade-long debate, today it is58

widely accepted that both pre- and postsynaptic physiology can be modified during long-term potentiation (LTP) and59

depression (LTD) (Padamsey and Emptage, 2014; Costa et al., 2017b). However, exactly how much each component60

is changed can have a dramatic impact on the synaptic transmission statistics (Costa et al., 2015). Using a synaptic61

plasticity model tuned to pre- and postsynaptic plasticity Costa et al. (2015) demonstrated that both mean and variance62

of synaptic responses are regulated both in vitro and in perceptual learning experiments performed in the primary63

auditory cortex of rats (Froemke et al., 2013). Interestingly, there are homeostatic forms of plasticity at the presynapse64

that compensate for altered postsynaptic function (Li et al., 2018) and modifications to the number of release sites N65

during long-term plasticity (Loebel et al., 2013; Tang et al., 2016), which may also shape the synaptic transmission66

1This is a simplified view of the complicated release machinery. For example, the quantal amplitude q also depends on the amount of
neurotransmitter per (presynaptic) vesicle and on the sensitisation of postsynaptic receptors.



statistics.67

Although the expression of synaptic plasticity can be presynaptic, its induction depends on postsynaptic activity68

(Monday and Castillo, 2017). This implies the need for retrograde signals that communicate with the presynapse. Two69

main signals have been identified: nitric oxide, which is responsible for presynaptic LTP, and endocannabinoids, which70

mediates (in part) presynaptic LTD (Andrade-Talavera et al., 2016; Monday and Castillo, 2017) (Fig. 1Bii). Interestingly,71

recent evidence shows that deficits in the retrograde signalling systems of both nitric oxide and endocannabinoids have72

been implicated in learning and memory impairments, anxiety and depression (Monday and Castillo, 2017). This may73

be due to a failure in correctly adjusting probabilistic synapses during plasticity (Hebert-Chatelain et al., 2016; Monday74

and Castillo, 2017).75

Synaptic modifications should ultimately lead to more successful behavioural outcomes. Reward-based synaptic76

plasticity provides a framework in which synapses are modified by specific neuromodulators conveying behaviour77

relevant information (Frémaux and Gerstner, 2016). One such neuromodulator is dopamine, which is known to78

correlate with reward (Stauffer et al., 2016). Moreover, dopamine and other neuromodulators regulate long-term79

synaptic plasticity (Pawlak et al., 2010; Frémaux and Gerstner, 2016), suggesting that they may also control learning at80

probabilistic synapses (Fig. 1Biii). This is consistent with recent results on neuromodulation of presynaptic long-term81

plasticity (Monday and Castillo, 2017), which has also been observed in vivo in Drosophila (Cohn et al., 2015).82

4 Computational roles of probabilistic synapses83

Despite the growing body of experimental observations suggesting a precise control of probabilistic synapses, it has84

remained unclear how these relate to computational functions. Below we highlight three key computational roles of85

probabilistic synapses and how they may be reconciled with experimental findings.86

4.1 Biophysical constraint87

It is conceivable that due to high energetic costs associated with neurotransmitter transmission synapses remain88

unreliable unless necessary (Harris et al., 2012) (Fig. 3A). This view suggest that only synapses that are important for a89

given neuronal representation or behaviour should become reliable (see Aitchison et al. (2018) for a similar argument90

at the neuronal level). Consistent with this hypothesis mathematical modelling of slice long-term synaptic plasticity91

experiments showed that after induction of long-term plasticity synapses become more reliable (Costa et al., 2015).92

This result was further supported by reanalyses of in vivo sensory perception experiments (Froemke et al., 2013; Costa93

et al., 2015). However, it has remained unclear whether synapses not only become more reliable, but aim for the most94

reliable state (i.e. minimal variance). Recently, Costa et al. (2017c) put forward a model in which synapses optimise95

their response statistics during long-term synaptic plasticity towards reliable responses (i.e. with a given mean and96
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Figure 2: Statistical long-term synaptic plasticity (statLTSP). (A) The theory proposes that during long-term potentiation
(LTP) synapses optimise their response statistics towards reliable responses (i.e. they minimise the divergence between
their current statistics and a upper bound). This can be achieved by modifying either the postsynapse (through changes
in q, red) and the presynapse (through changes in Prel, blue). (B) The StatLTSP proposal predicts a flow field of pre-
and postsynaptic changes that depend on the current state of the synapse (given a Euclidean-metric and normalised
q). (C) Theory (black) captures single experiment variability (purple) of LTP induction in Hippocampus. Predicted
flow field in the background (grey). (D) Frequency-dependent uncertainty encoding of synaptic plasticity. Plasticity
experiments suggest that not only synapses aim for reliable responses when stimulated at high frequencies (long-term
potentiation, as in (A-C))) or low frequencies (long-term depression) (Costa et al., 2015, 2017c), but also that at
intermediate frequencies (∼ 25Hz) synapses aim for maximum unreliability by setting Prel ∼ 0.5 (dashed green line,
Hardingham et al. (2007); Costa et al. (2015)). Synaptic response variance (top) is calculated using standard binomial
release statistics as Nq2Prel(1− Prel), with q = 1 and N = 5. Bottom panel illustrates the different release probability
end points as a function of long-term plasticity pairing frequency. Figure partly adapted from Costa et al. (2017c).

minimal variance) referred to as statistical long-term synaptic plasticity (statLTSP; Fig. 2A).97

StatLTSP suggests a gradual optimisation process of synaptic transmission towards a reliable target synaptic weight98

(or bound) that should be triggered with every plastic event (Fig. 2B). This theory can explain a wide range of apparently99

disparate observations of long-term potentiation (LTP) at hippocampal and visual cortex excitatory synapses. For100

long-term depression (LTD), statLTSP predicts presynaptic expression of plasticity – i.e. changing Prel more rapidly101

decreases the synaptic response statistics towards a lower reliable target. Importantly, the model captures changes in102

the synaptic transmission statistics (pre- and postsynaptic) of individual recordings (Fig. 2C) 2. How exactly would103

statLTSP be implemented at synapses remains unclear. Nevertheless, Costa et al. (2017c) identified nitric oxide and104

2This model is based on standard gradient descent using an euclidean-metric and normalised q, cross-validated using several datasets.



endocannabinoids as retrograde signals (Fig. 1Bii) encoding errors in q and Prel consistent with the predictions.105

Taken together this body of work suggest that long-term plasticity aims to reduce synaptic unreliability, consistent106

with the constraint view of stochastic synapses. However, this does not necessarily imply that synapses end up being107

reliable. First, in the intact brain during learning a mixture of LTP and LTD is likely to occur, which would maintain108

or increase response variability; second homeostatic mechanisms may control reliability due to its high energetic109

costs (as discussed above) and third, there are protocols (typically at intermediate frequencies, ∼ 25Hz) that appear110

to maximise synaptic response variability (i.e. aiming for Prel = 0.5; Hardingham et al. (2007); Costa et al. (2015);111

Fig. 2D). Interestingly, this last observation suggests a frequency-dependent variance encoding – whether synapses aim112

for minimal or maximal variance depends on the firing rate of pre- and postsynaptic neuron. The framework discussed113

here only aims to optimise the synaptic response variability without a clear behaviourally relevant task. But, it should114

be possible to extend statLTSP to explicitly relate synaptic response variability to task-relevant uncertainty encoding.115

4.2 Encoding perceptual uncertainty116
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Figure 3: Computational roles of plastic probabilistic synapses. (A) Biophysical constraints, such as limited energy
supply (Harris et al., 2012) may only allow reliable synapses to develop if necessary (e.g. during long-term plasticity)
due to the high energetic costs (represented by red colour bar) of reliable synaptic transmission. (B) It has been
postulated that the brain should also encode sensory statistics. Neurons in the brain responding to specific visual objects
(e.g. dalmatian dog) should combine contextual information when inferring the presence or absence of an object. For a
dalmatian neuron it would be important to integrate visual features such trees, dog head and animal legs (blue boxes).
The uncertainty of the connections representing different features should be proportional to how relevant that feature
is for that particular object. (C) Plastic probabilistic synapses have also been suggested to enable neural networks to
find better solutions, escaping local optimum. For example, as animals explore an environment adaptive probabilistic
synapses might enable animals to find better global paths.

To maximise chances of survival animals should encode perceptual uncertainty associated with the environment117

in which they live (Fiser et al., 2010) (Fig. 3B). A principled framework often used to describe how the brain may118

encode perceptual uncertainty is that of Bayesian inference (Berger, 2013). According to the Bayesian inference119

hypothesis the brain computes the posterior probability over latent variables (e.g. predators) given sensory stimuli (e.g.120

visual stimuli) P (latent | stimuli), which combines prior beliefs over the latent variables P (latent) with the incoming121

sensory evidence (likelihood) P (stimuli | latent).122



A growing body of work suggests that cortical circuits encode perceptual uncertainty following Bayesian inference123

ideas (Fiser et al., 2010; Ma and Jazayeri, 2014; Orbán et al., 2016; Haefner et al., 2016). Exactly how such encoding124

of perceptual uncertainty may be used or learned at the synaptic level has remained unclear. Recent proposals have put125

forward the notion of synaptic sampling (Aitchison and Latham, 2015; Kappel et al., 2015, 2018), in which each synaptic126

release or structure (i.e. dendritic spine and axonal bouton) can be interpreted as a sample from a specific posterior127

distribution. Synaptic sampling can in principle be used by postsynaptic neurons to estimate posterior distributions128

(and uncertainty) over synaptic weights. For example, Kappel et al. (2015) demonstrated that spine motility (structural129

dynamics) similar to that observed experimentally (Mongillo et al., 2017) can be interpreted as sampling from a posterior130

distribution over neural network configurations. This framework was recently extended to reward-based learning, thus131

adding a behaviourally-relevant component to previous work by the same authors (Kappel et al., 2018). An alternative132

approach is that of Aitchison and Latham (2015) in which posterior distributions representing task uncertainty are133

formally encoded over synaptic weights distribution presumably through long-term synaptic plasticity. It should be134

noted that none of these frameworks consider synapse release (binomial) statistics as introduced above (Fig. 1Ai) and135

that structural sampling (Kappel et al., 2015, 2018) operates on a slower timescale than synaptic release sampling136

(Aitchison and Latham, 2015).137

Other approaches have built on the framework of Bayesian inference to introduce gradient descent methods to138

optimise the full distribution over the weights (Blundell et al., 2015). Similarly, Bellec et al. (2018) introduced a network139

that optimally rewires as needed in a supervised learning setting closely following the synaptic sampling framework140

discussed above. Generative models are another class of probabilistic models implicitly related to Bayesian inference.141

Hierarchical variants of such models can learn progressively higher level features and uncertainty representations142

(Goodfellow et al., 2016), consistent with experimental observations in sensory neuroscience (Fiser et al., 2010; Haefner143

et al., 2016; Yamins and DiCarlo, 2016). Recently, Neftci et al. (2016) introduced a generative model with stochastic144

synapses that together with a local synaptic learning rule can be used for image-recognition tasks.145

Despite the appealing properties and growing interest on Bayesian inference for uncertainty representation at the146

synaptic level (Aitchison and Latham, 2015; Kappel et al., 2015, 2018), it has remained unclear whether synapses147

optimise are modified so as to encode some form of uncertainty. However, recent work by Costa et al. (2017c) provided148

some of the first evidence suggesting that synapses optimise their response statistics (see above). If mapped onto149

task-relevant quantities (e.g. probability of predator given auditory stimuli) this line of research may provide the first150

synaptic basis for uncertainty encoding in the brain. Additionally, there are open issues with the Bayesian hypothesis:151

first, in sampling-based frameworks it implies the need for a large number of samples to accurately estimate encoded152

uncertainty, second, full Bayesian inference requires computing a normalisation factor, which is computationally costly153

(although this can be often relaxed). Lastly, and perhaps more importantly, it is unclear whether alternative views, such154

as more standard predictive views of sensory coding are not sufficient; but, these views can be understood as special155



cases of each other (Aitchison and Lengyel, 2017).156

4.3 Escaping local optima in deep neural networks157

One recurring aspect of statistical learning is that noise injection may improve the search over the solution space.158

Simulated annealing is a well-known variation of this idea in which the level of noise added to the network starts out159

being relatively high3, but is gradually decreased over learning (Kirkpatrick et al., 1983), allowing the network to escape160

local optima and converge to a good solution (Fig. 3C). This concept is remarkably similar to the biology of plastic161

probabilistic synapses, in that synapses also change their level of noise (variance) over learning (see above) (Costa162

et al., 2015, 2017c).163

Similar principles have played an important role in the recent rise of deep learning (Goodfellow et al., 2016; Yamins164

and DiCarlo, 2016; Hassabis et al., 2017). One of the algorithms that has significantly improved performance of deep165

neural networks is Dropout (Srivastava et al., 2014). The idea is to randomly drop (i.e. momentarily remove) neurons166

with some probability during training (but not during testing), which acts as a regulariser on the network (i.e. reduces167

over-fitting) and enables uncertainty representation akin to Bayesian inference (Gal and Ghahramani, 2016). More168

recently, inspired on stochastic synaptic transmission this idea was applied at the level of synapses (DropConnect) (Wan169

et al., 2013), which randomly ’drops’ connections instead of units with a predefined probability.170

Dropout (or DropConnect) and its implications in machine learning can thus help us understand the functional utility171

of probabilistic synapses in the brain. One hypothesis is that learnable stochastic synapses could serve as a mechanism172

by which neural networks achieve better generalisation akin to the simulated annealing algorithm (Neftci et al., 2016;173

Bowers, 2017). Additionally, learning probabilistic synapses may also provide a good trade-off between exploration174

and exploitation during reinforcement learning (Seung, 2003; Blundell et al., 2015). Overall, understanding how to175

best adapt ’drop’ probabilities is a open problem in both machine learning and neuroscience, but new developments in176

statistical learning have started shedding light on this issue (Gal et al., 2017).177

5 Conclusions and future directions178

Recent technical developments on the measurement of presynaptic and postsynaptic terminals both in vitro and in179

vivo is reaching the point at which it will soon be possible to monitor the synaptic response statistics as an animal180

learns with high spatial and temporal resolution (Rey et al., 2015; Tang et al., 2016). In particular, recent advances in181

ultrafast glutamate imaging (Helassa et al., 2018) and statistical inference methods (Costa et al., 2013; Bird et al., 2016;182

Ghanbari et al., 2017) will enable accurate and optical measurements of synaptic transmission statistics. However,183

despite such fast developments in experimental neuroscience, theoretical neuroscience, with some exceptions (e.g.184

3Note that keeping the noise high throughout may hinder learning, by preventing the system from exploiting the solution space.



Seung (2003); Costa et al. (2015); Kappel et al. (2015); Aitchison and Latham (2015); Costa et al. (2017c)), has so far185

largely overlooked the role of probabilistic synapses in neural networks and synaptic plasticity.186

Combined theoretical and experimental research has suggested that synapses optimise their response statistics187

through changes in pre- and postsynaptic components (Costa et al., 2015, 2017c). In future work it would be important188

to extend these theories to also capture other puzzling experimental observations such as presynaptic homeostatic189

plasticity (Branco et al., 2008; Li et al., 2018), plastic number of release sites (Loebel et al., 2013; Tang et al., 2016),190

spine and bouton turnover (Kappel et al., 2015; Jackson et al., 2017; Mongillo et al., 2017), connection-type specificity191

(Brémaud et al., 2007; Thomson, 2007; Brémaud et al., 2007; Blackman et al., 2013; Costa et al., 2013), dependence on192

postsynaptic voltage (Sjöström et al., 2001; Branco et al., 2008), variability optimisation (Hardingham et al., 2007;193

Costa et al., 2015), and the multiple timescales and differential expression of synaptic plasticity (Costa et al., 2017b;194

Roelfsema and Holtmaat, 2018).195

On the functional side several properties may be attributed to probabilistic synapses, such as encoding perceptual196

uncertainty (Fiser et al., 2010; Aitchison and Latham, 2015), escaping local optimum (Seung, 2003; Blundell et al.,197

2015; Kappel et al., 2015, 2018), but also reflecting biophysical constraints (Harris et al., 2012; Costa et al., 2015,198

2017c) in the addition to contributing to information processing (Zhang and Peskin, 2015; Nolte et al., 2018). It is199

conceivable that plastic probabilistic synapses enable not just one, but several of these computational functions.200

Finally, recent exciting developments have led to deep neural networks that learn to encode uncertainty (Blundell201

et al., 2015; Gal et al., 2017). These developments together with the recent drive to map deep learning methods202

onto cortical circuits properties (Hassabis et al., 2017; Guerguiev et al., 2017; Costa et al., 2017a; Sacramento et al.,203

2017) will help to guide new research into the function of probabilistic synapses. However, the brain still has a204

remarkable ability to efficiently encode perceptual and task-specific uncertainty in complex environments that far205

outperforms current machine learning methods (Lake et al., 2016). Therefore, novel, unifying insights into the biology206

of probabilistic synapses also have the potential to inspire new learning algorithms.207
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Tang et al. (2016)**: Using localisation microscopy the authors revealed a new level of synaptic organisation in224

which release and postsynaptic receptors are aligned at the nano scale. This opens possibility of new level of structure225

for probabilistic synaptic transmission.226

Kappel et al. (2015)*: The authors use a model to suggest that stochastic spine motility (Mongillo et al., 2017)227

reflects probabilistic inference through sampling over network configurations.228

Orbán et al. (2016)*: In this work the authors show that many aspects of neuronal variability reflect perceptual229

uncertainty encoding.230

Malagon et al. (2016)*: The authors use recent developments to estimate binomial release statistics at single231

glutamatergic synapses.232

Bird et al. (2016)*: The authors introduce a new, more complete statistical inference method to infer both synaptic233

transmission and sort-term synaptic plasticity parameters.234

Helassa et al. (2018)*: The authors introduce novel sensors for ultrafast imaging of glutamate release. These sensors235

offer the promise to measure binomial release parameters before and after long-term plasticity induction.236

Jackson et al. (2017)*: Both synaptic boutons and spines exhibit high (and fast) turnover rates, which may be237

interpreted as a form of probabilistic synapses (Kappel et al., 2015, 2018). The authors made the interesting observations238

that these two components are regulated differentially in early stages of Alzheimer’s disease.239
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