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Abstract. In this paper we design and evaluate methods for exploiting
temporal coherence present in video data for the task of instance object
recognition. First, we evaluate the performance and generalisation capa-
bilities of a Convolutional Neural Network for learning individual objects
from multiple viewpoints coming from a video sequence. Then, we ex-
ploit the assumption that on video data the same object remains present
over a number of consecutive frames. A-priori knowing such number of
consecutive frames is a difficult task however, specially for mobile agents
interacting with objects in front of them. Thus, we evaluate the use
of temporal filters such as Cumulative Moving Average and a machine
learning approach using Recurrent Neural Networks for this task. We also
show that by exploiting temporal coherence, models trained with a few
data points perform comparably to when the whole dataset is available.

Keywords: Object Recognition · Temporal Modeling · Deep Learning

1 INTRODUCTION

State-of-the-art object recognition using Convolutional Neural Networks (CNNs)
is commonly achieved trough class-level learning [12].

However, the approach of using large databases is somewhat unsuitable to
the widely encountered situation for intelligent agents performing tasks with
specific and individual objects in front of them. This calls for methods capable
of using only a few viewpoints of the objects of interest and being able to detect
and re-detect these objects on subsequent unseen and possibly noisy scenarios.

This motivates our work for a model trained with few data (i.e. low hundreds
of training examples per instance ,as available in a few seconds of video) that can
achieve the same level of performance as one trained with an order of magnitude
more of training data. To achieve this, we leverage the end-to-end nature of very
deep CNNs for learning and extracting features and using temporal filters for
exploiting the temporal coherence present on video data to make the predictions
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more robust against the commonly encountered changes on perspective, scale,
illumination, object’s pose and adversarial noise.

First, we explore how the way of collecting data (i.e. different distributions
of the training data) influences the performance of the CNN. This is, if acquiring
images by following a vertical-slices trajectory leads to the same level of perfor-
mance of a more methodical way, such as using a sphere with all Point-of-Views
(POV). We evaluate too if frame-to-frame training leads to better results com-
pared to skipping-frames in seeks to use data more efficiently and speed up the
training.

Then, we exploit the temporal coherence trough filters applied across frame-
to-frame CNN predictions. The first filter is a simple algorithm used for predict-
ing the next element on a sequence and consists on averaging the predictions
over a number of frames. This method already offers improvement and does not
require a training stage but does requires a careful selection of the number of
frames to be fused in order to avoid fusing a large number of predictions contain-
ing different objects. The second method is a recurrent neural network trained
to produce a sequence of predictions with temporal coherence, the architecture
is depicted in Fig. 1.
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Fig. 1. A continuous stream of images goes trough a CNN and BLSTM for producing
predictions with temporal coherence.

2 RELATED WORK

Instance-level Object Recognition (i.e. learning specific objects) was broadly
studied during the past decades trough the process of extracting and match-
ing visual feature descriptors as in [16], [1], [5]. This is not necessarily a flawed
approach per se, but one that can lead to flaws when integrating visual com-
ponents together. The effectiveness of end-to-end methods via Convolutional
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Neural Networks, specifically showcased on class-level object recognition, aims
to address such an integration problem.

CNNs tend on proposing deeper architectures for learning features at vari-
ous levels of abstraction and achieve higher generalization capabilities. Such is
case for the Inception-Resnet-V2 architecture [18]. While deeper architectures
achieve lower error rates on large-scale image classification datasets, are still
prone to recognition errors on real-world applications given a limited invariance
to rotation [3], occlusions [17] and adversarial noise [7].

On the other hand, the use of recurrent architectures on top of CNNs has
shown to be a useful approach for exploiting temporal information on video
data for tasks such as Object Recognition as in CortexNet [2], 6-D camera re-
localisation [4] and Object Tracking [19]. Within Recurrent Neural Networks,
BLSTMs [9] posits as the state-of-the-art for visual sequence learning [8].

Our recognition framework operates in a less restrictive domain compared
to existing work on data association like Object Tracking, where localization
and identity of objects is known in the first frame and the tracker finds their
localization on the subsequent ones. In contrast, no such prior information is
required and we do not assume strong saliency of objects. Finally, it’s different
from Video Classification since we do not consider motion occurring between
frames and there are multiple instances across the video data. Our model learns
from RGB images only and can operate with video data of any length.

3 METHODOLOGY

One of the aims of this work is to find efficient ways of collecting data for multi-
view Object Recognition in seeks for short training time of the model. Consid-
ering the ultimate, yet less likely in real situations, availability of an object’s
full view sphere Fig 2(a), we evaluate the following exploration trajectories: A
vertical slice from the sphere as depicted in Fig. 2(b), a circular slice situated at
45◦ from the horizon Fig. 2(c) and a sinusoidal trajectory that travels around
the sphere Fig. 2(d). Each of the trajectories generates a dataset containing
10% total images compared to the sphere. Similarly, on the CORe-50 dataset
we normal-random sampled the video clip sequences to form datasets with 10%
and 50% total images to evaluate how different distributions of the training
data (e.g. frame-to-frame vs. normal-sampled images) affects on the recognition
performance. We then perform the next steps for each training set generated.

Our approach starts with a pre-trained Network and replacing the last layer
corresponding to the Fully Connected (FC) layer that produces the output pre-
dictions (logits); the replacement involves adjusting the dimensionality corre-
sponding to the number of desired objects to learn. Then we keep all Convolu-
tional layers fixed and only the last fully connected layer is first trained, with its
weights and biases initialized with a normal-random distribution. This process
is commonly referred as using the CNN as a Feature Extractor [14] and it will
be useful for choosing hyper-parameters from the temporal filters later on. Once
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(a) Full Sphere (b) Vertical Slices (c) Circular Slices (d) Sinusoidal

Fig. 2. Proposed Trajectories for extracting images, each forming a training set with
a total of 90% less images compared to a full sphere (left) of Points of View.

the Feature Extraction model has converged, then a fine-tuning process takes
place, retraining all the variables on the network until reaching convergence.

For both training phases we used the cross entropy as loss function H on
its discrete form that reduces the error between the constructed probability
distribution q by the CNN, and the distribution p from the ground truth, as
denoted on Eq 1:

H(p, q) = −
∑
x

p(x) log q(x) (1)

Then, our approach for achieving temporal coherence is by considering both
current visual information and predictions from previous frames. This relies
on the assumption: On the stream of images, a given object is likely to persist
between adjacent frames and thus, predicted logits from the CNN must be con-
sistent over these frames. We only take into account the final predictions from
the CNN, in contrast with methodologies used on video and action classifica-
tion where information from middle and early layers is used by 3D convolutions
[13] or recurrent connections [10] for modeling motion information which is not
required for object recognition applications.

(a) T-LESS Train set (b) T-LESS Test set (c) CORe50 dataset

Fig. 3. T-LESS and CORe50 datasets images borrowed from [11] and [15] respectively,
we recommend using the digital version of this document for a closer inspection of the
instances and their ID number.
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As Temporal Filters we use two techniques: Cumulative Moving Average ,
a baseline and simple sum-rule in which an average calculation is performed over
the logits vector x from the CNN by a window size of n frames as denoted on Eq
2. The running average is applied across a continuous stream of images, consist-
ing of the training sequences concatenated for empirically searching for n with
the best trade-off between producing coherent predictions and avoiding fusing
predictions with different objects. For finding n we use the Feature Extraction
model for producing predictions using the training set and during evaluation, we
use the fine-tuned model with the testing sequences concatenated, emulating an
stream of images that an agent might receive during deployment.

xt+1 =

t−n∑
i=t

xi

n
(2)

The second technique is to use a Bidirectional Long-Short Term Mem-
ory (BLSTM) Network that takes a sequence of n predictions from the CNN
and filters them to have temporal coherence. To train the BLSTM we used the
Feature Extraction model, previously obtained, for producing sequences using
the training set and with the ground truth labels as targets to the BLSTM. We
used the same training data used for training the backbone CNN and similarly
to [2] all training video clips are concatenated and presented to the network
until convergence. We used the Feature Extraction model since has a lower per-
formance compared to the fine-tuned one (mainly because the majority of its
weights comes from a different dataset) thus, it will produce erroneous predic-
tions on the training set which allows the BLSTM to learn how to correct such
incoherent predictions. During evaluation we used the same testing set concate-
nated as for the Moving Average.

The variables from the CNN are frozen and only the gates i (input), f (forget)
and o (output) gates are trained using the activation function tanh for the h
(states) as shown in Eq 3. The weights W and biased terms b are shared across
all the cells. What makes the BLSTM unique to other recurrent approaches,
is that the model processes the data sequence in both forward and backward
ordering as shown in Fig 1.

it = σ(WT
xixt +WT

hiht−1 + bi)

ft = σ(WT
xfxt +WT

hfht−1 + bf )

ot = σ(WT
xoxt +WT

hoht−1 + bo)

ht = ot ⊗ tanh(ct)

(3)

We then concatenated the states from the forward
−→
h t and backwards

←−
h t

states and train a single layer fully connected network with no activation function
as shown on Eq 4, this is for predicting the same number of instances as in the
logits vector x:
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−→
h t = σ

(
WT−→x−→o xt +WT−→

h−→o

−→
h t−1 + b−→o

)
⊗ tanh(−→c t)

←−
h t = σ

(
WT←−x←−o xt +WT←−

h←−o

←−
h t−1 + b←−o

)
⊗ tanh(←−c t)

ht =
[−→
h t,
←−
h t

]
yt = WT

y ht + by

(4)

Since the BLSTM produces predictions for every image, we used the same
Loss function H from Eq 1 for training. The architecture is depicted in Fig 1.

4 RESULTS

The first dataset used is T-LESS [11] (Fig 3(a) and 3(b)), which contains thirty
industry-relevant objects with no significant texture and no discriminative colour,
presenting symmetries and mutual similarities in shape and/or size and some of
them are sub parts of others. T-LESS allowed us to evaluate the performance of
a CNN for multi-POV instance-level recognition when training data comes with
a nicely isolated object on a black background and testing data with increasing
complexity.

The second dataset is CORe50 [15] and contains a collection of 50 domes-
tic objects belonging to 10 categories: plug adapters, mobile phones, scissors,
light bulbs, cans, glasses, balls, markers, cups and remote controls as shown in
Fig 3(c). CORe50 allowed us to evaluate the performance of the CNN on the
presence of occlusions produced by a hand, alternating backgrounds and lighting
conditions, which are well-suited for simulating a number of robotic applications.

For evaluating, we use a single video containing all the testing scene
concatenated, which means there are different objects across the video data,
where the models has to adapt for exploiting the temporal coherence correctly.
As evaluation metric we used mean Average Precision (mAP) for T-LESS, con-
sisting of first averaging precisions per class and then globally, due to the data
unbalanced on the testing set (e.g. there are 8000 images of object 1 while only
1000 images of object 30) and Precision (P) for CORe50, which calculates the
precision across all test set.

We used Inception-Resnet-V2 [18] as the backbone CNN architecture for
extracting and learning features, since our temporal model uses the predictions
only, smaller models can be used for fitting hardware requirements. The CNN was
originally trained on the ILSVRC-2012-CLS dataset, for both re-training phases
we used the Cross entropy as Loss. For the first phase of training the FC layer we
used a batch size of 128 images and RMSProp (Root Mean Square Propagation
algorithm) for solving the optimization problem, with the hyper-parameters:
weight decay wd = 0.0004, learning rate from lr = 0.001 to lr=0.00001, decay
ρ = 0.9, momentum m = 0.9 and ε = 1−10, with decay occurring every 10 epochs
as performed on [18]. For the fine-tuning phase we selected the same optimizer
but with smaller learning rates, starting at lr = 0.0001 to lr = 0.000001.
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4.1 Data Augmentation

In T-LESS, we deal with texture-minimal objects and varying lighting condi-
tions. We initially performed the recommended data augmentation procedure in
[6] regarding random cropping and modifications to colour and illumination. Ini-
tial results showed however, that the recommended augmentation for textured
objects seems to produce inferior results when tested on texture-minimal ob-
jects. We thus do not use these data augmentation approaches for the remainder
of the experiments. Applying random rotations on-the-fly resulted more useful
on T-LESS to slightly boosting the performance. On CORe-50 we did not apply
any data augmentation technique since video data shows objects with different
pose, illumination and background conditions.

(a) T-LESS (b) CORe50

Fig. 4. Normalized confusion matrices with frame-by-frame evaluation using 100% of
training data, the instances ID numbers are consistent with Fig 3.

In Fig 4(a) and 4(b) we present the Normalized Confusion Matrices after
training the CNN models using 100% of the data from each dataset. The num-
bering used on the matrices is consistent with the instances ID number presented
in Fig 3.

T-LESS (Fig 4(a)) resulted a more challenging task for the CNN than CORe50
(Fig 4(b)), we believe this is explained in part by the texture-minimal charac-
teristic on the objects which makes them easier to be confused on cluttered,
partial and fully occluded conditions, e.g. objects like the texture-less box #27
are easily misclassified when stronger features from other objects such as the
holes from object #9 appear on the image. Additionally, the available training
data doesn’t contain occlusions or different background conditions which makes
generalization more difficult to achieve.

On CORe50 (Fig 4(b)) we notice that misclassification occurs mostly between
objects from the same classes. For example, for the case of glasses (objects la-
belled from 26-30) present the same geometry and visual information when they
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are showed from the top view, then only the temples and top-bar are visible and
thus, the model can get easily confused. This is indeed a challenging situation
that was partially solved with the temporal filters.

4.2 Sampling methods

T-LESS allowed us to test how training with views from different sampling
methods affect recognition performance. The images were obtained following
the sampling methods described above. The size of the training data from all
trajectories is 10% relative to the initial full-sphere set. For CORe50 we tested
frame-to-frame images versus normal-sampling from each training video clip,
with a total of images of 10% and 50% relative to the total amount of training
data available. We run each training session three times for 150 epochs.

Table 1. Sampling methods and amount of training data

T-LESS CORe50
Trajectory mAP Sampling Method Precision

Vertical 0.430 10% continuous frames 0.871
Circular 0.311 10% normal-random sampled 0.906

Sinusoidal 0.432 50% continuous frames 0.921
50% normal-random sampled 0.941

baseline
100% training data

0.468
baseline

100% training data
0.943

Table 1 contains the results about using trajectories for collecting data vs a
full-POV sphere. We run every training session three times, showing only the best
run. Results show that using more data leads to the best performance, however
models trained with data containing enough variability, such images coming from
the vertical or sinusoidal, offered close performance to a model trained with much
more data (e.g. 10 times more data) and allows faster convergence times for the
CNNs.

Additionally, Table 1 contains the results on CORe50 when different amounts
of data are used, comparing frame-to-frame vs normal-random sampling from
the video clips. Similarly, model trained with more data leads to the best per-
formance, and normal-sampled slightly outperforms frame-to-frame sampling.
However, interestingly the difference between 100 and 10 percent of training is
only 3.7%. These results shows that diversity on the training data are key for
training CNN models efficiently.

4.3 Temporal component

Table 2 present the mean Average Precision, when the temporal filters are used
on the models trained with 100% and 10% of data available.
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For T-LESS, the 10% of data available comes from the sinusoidal sampling
method since offered the best performance, related to the use of CMA, we varied
the averaging window from 1 to 60 frames with steps of 5, we only showed the
best performance achieved by a window with size of 25. For the Bidirectional
LSTM we varied the number of hidden states (corresponding to the number of
frames that the BLSTMs can process at the time) from 100 to 600 cells and we
varied the number of neurons on the gates, going from 200 to 1000, we report
only the best performance achieved by a length of 400 cells with 600 neurons.

frame 100 frame 234 frame 270

frame 300 frame 405 frame 550

(a) First 600 testing frames
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(b) Predictions from each model. The black line
represents the black scissors and the red one the
red and green mug.

Fig. 5. Fragment of Core50 testing sequence, showing object 13 -black scissors- and 41 -
red and green mug-. The temporal filters resulted useful for correcting misclassifications
caused by object’s pose ambiguity. Please use the electronic version for a closer view
and refer to Fig 3(c) for the numbering of the instances.

For CORe50 the 10% dataset comes from the normal-sampled method since
outperformed the frame-by-frame one. We performed a similar search for the
best window size for the CMA, which resulted in 40 and is consistent with
the one reported on [15]. For Bidirectional LSTM the architecture with highest
performance was the one with length 500 cells and 400 neurons. We used Adam
Optimizer with learning rate lr = 1e−4 during 50 epochs, selecting such a small
learning rate was crucial for training the BLSTM for avoiding the well-know
gradient vanishing problem on Recurrent Neural Networks.

Table 2. Temporal Filters

T-LESS CORe50

Model
100% training
data (mAP)

10 % training
data (mAP)

100% training
data (P)

10 % training
data (P)

CNN 0.468 0.432 0.943 0.906

CNN + CMA 0.524 0.479 0.971 0.944

CNN + BLSTM 0.563 0.550 0.991 0.979
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frame 100 frame 418 frame 480

frame 500 frame 610 frame 800

(a) First 500 testing frames
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(b) Predictions from each model. The black line
represents the Object 5 and the red one the Ob-
ject 4

Fig. 6. Fragment of T-LESS testing sequence showing objects 4 and 5. Highly occluded
conditions resulted quite challenging for the CNN and this could not be alleviated by
the use of Temporal Filters. Please use the electronic version for a closer view and refer
to Fig 3(a) for numbering of the instances.

Both temporal filters boosted the performance on the Precision (mAP on
T-LESS and P on CORe50); related to the BLSTM, the results are consistent
on works like in [20], in which the performance gets better using more cells and
with the number of neurons being not as relevant as the number of cells.

In Fig 5 and 6 we show an example of the predictions produced by the
three models (CNN, CNN + Cumulative Moving Average and CNN + BLSTM)
using a fragment of the test set with two objects. On every Figure we present
six images on the top, which corresponds to example frames from the testing
sequence. Below, we present probabilities per -frame about what object is being
predicted by each model. In order to maintain the plots readable, we only show
the Top-10 objects detected across the presented sequence.

In Fig 5 we show how both filters resulted useful for correcting the erroneous
predictions from the CNN, caused by ambiguity at the given object’s pose. This
is, some views are quite similar among the five mugs (objects label 41-45) such
as the top view. Which was alleviated by the using information from previous
frames. The first 300 frames corresponds to the black scissors (object 13) and
represented by the black line on the predictions plot. The rest 300 frames corre-
sponds to the red and green mug (object 41), represented by a red line.

In Fig 6 we show how the BLSTM performs better than the CMA, in this
case by recovering faster after a set of erroneous predictions from the CNN,
due to clutter conditions. Additionally, we present how neither of the filters
can compensate from a majority of erroneous predictions caused in this case by
highly cluttered and occluded objects. This limitation from the CNN on dealing
with clutter and occlusions is more acute for minimal-texture objects, especially
when objects are parts of other objects. We attribute the big gap on performance
between the dataset to this CNNs limitations and how to overcome them remains
as an open research question.
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All our code was developed using TensorFlow 1.5, we made use of the high
level API TF-Slim for using the pre-trained Inception-Resnet-V2 model and the
Bidirectional LSTM implementation. All models where trained using a Titan-X
GPU, using Cuda 7. A complementary video can be found here (please download
the file first, in case can’t be run directly in the browser).

5 CONCLUSIONS

In this paper we evaluated multi-view instance-level object recognition trough
exploiting the temporal-coherence present on a continuous stream of images. We
show how this way of learning can be specially useful when few data points are
desired for training the models, accelerating the training process. This is useful
for agents exploring the world in front of them and when they need to react and
use these objects without delay. The BLSTM resulted more useful for exploiting
the temporal coherence, but it does require to be trained while the simpler CMA
filter shows itself useful, with the main disadvantage being the dimensionality
of the window fusion. Overall our methods show useful improvements on the
performance of commonly employed CNNs that do not exploit the temporal
element.
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