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Oceanic arcs can provide insight into the processes of crustal

growth and crustal structure. In this work, changes in crustal

thickness and composition along the Lesser Antilles Arc

(LAA) are analysed at 10 islands using receiver function (RF)

inversions that combine seismological data with vP/vS ratios

estimated based on crustal lithology. We collected seismic

data from various regional networks to ensure station

coverage for every major island in the LAA from Saba in the

north to Grenada in the south. RFs show the subsurface

response of an incoming signal assuming horizontal layering,

where phase conversions highlight discontinuities beneath a

station. In most regions of the Earth, the Mohorovičić

discontinuity (Moho) is seismically stronger than other

crustal discontinuities. However, in the LAA we observe an

unusually strong along-arc variation in depth of the strongest

discontinuity, which is difficult to explain by variations in

crustal thickness. Instead, these results suggest that in layered

crust, especially where other discontinuities have a stronger

seismic contrast than the Moho, H–K stacking results can be

easily misinterpreted. To circumvent this problem, an

inversion modelling approach is introduced to investigate the

crustal structure in more detail by building a one-

dimensional velocity–depth profile for each island. Using

this method, it is possible to identify any mid-crustal

discontinuity in addition to the Moho. Our results show a

mid-crustal discontinuity at about 10–25 km depth along the

arc, with slightly deeper values in the north (Montserrat to

Saba). In general, the depth of the Moho shows the same

pattern with values of around 25 km (Grenada) to 35 km in

the north. The results suggest differences in magmatic H2O

content and differentiation history of each island.
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1. Introduction
1.1. Overview
Subduction zones are regions on Earth where new continental crust is thought to have formed; however,

even though the origin of continental crust has been studied for a long time, major details, such as the

discrepancy in composition between average continental crust and that beneath many island arcs,

remain unclear [1,2]. A better understanding of crustal structure provides insight into the link

between subduction processes and the formation of continental crust through arc volcanism.

The Mohorovičić discontinuity (Moho), the boundary between the crust and the mantle, marks a

sharp change in seismic velocities that is thought to be due to chemical composition and/or rheology

changes. In addition to the Moho, a mid-crustal discontinuity (MCD), in some areas referred to as the

Conrad discontinuity [3], can be observed in many subduction environments (e.g. [4,5] and references

therein). Even though it is normally found to be the dominant crustal discontinuity, the Moho is

sometimes weak and difficult to resolve, especially beneath volcanic arcs [2,4].

Ideally an active source along-arc seismic experiment would be carried out to provide a comprehensive

investigation of crustal structure, but long offsets and large sources are needed. Furthermore, this option

is expensive and long offsets, which are required to guarantee that the Moho will be visible, might not

be easy to acquire in many regions such as curved island arcs (e.g. [4,6]). Passive–seismic observations

in a well-monitored arc setting provide an alternative approach. Receiver functions (RFs) and related

H–K stacking are now a common method for studying crustal structures (e.g. [2,7–15]).

The H–K stacking method makes use of the difference between P- and S-wave velocities to estimate

the depth of discontinuities at which strong changes in seismic velocities occur (termed H) and the

average vP/vS ratio between the receiver and the discontinuity (termed K; [8]). The ratio of the P- and

S-wave velocities can be used to better constrain the average material properties that are present in the

crust between the surface and the discontinuity [16]. To investigate crustal thickness, H–K stacking is

normally used with the assumption that the largest P-to-S conversions occur at the Moho.

In this work, crustal structure variation along the Lesser Antilles Arc (LAA; figure 1) is studied to

investigate potential influences of subduction on the overlying crust. Our approach integrates

seismology and petrological observations with a specific emphasis on the LAA. We use extensive

seismic data from 26 stations on 10 islands and use RFs to explore crustal discontinuities along the

arc. This is complemented by published work on reconstructed crustal structure and compositions of

fossil and currently active arcs (e.g. [2,21–23]). The results are compared with structural features and

Moho depth estimates from previous works, to propose hypotheses about the link between

subduction-related processes and the crustal structure beneath the LAA.
1.2. The Lesser Antilles Arc
The LAA (figure 1), extending some 800 km northwards from the South American continent to the

Greater Antilles, is an expression of slow (18–20 mm yr21), westward subduction of Atlantic oceanic

crust (North and South American Plates) beneath the Caribbean Plate (e.g. [24]). Subduction is sub-

orthogonal in the vicinity of Martinique, with sinistral obliquity to the north and dextral to the south

[17]. A comprehensive review of the geological and tectonic setting of the LAA is provided by Smith

et al. [25] and summarized briefly here.

Magmatism along the LAA dates from the Eocene [26]. The present-day arc consists of 11 major

volcanic islands; a string of 19 small islands (the Grenadines) lies between St. Vincent and Grenada.

Several volcanic centres in the LAA are currently or recently active, including those on Montserrat,

Martinique, Dominica and Guadeloupe and the submarine Kick-’em Jenny [27]. The variation in size

and spacing of the volcanic islands reflects spatial and temporal variation in magmatic output. Magma

production rates in the LAA are at the low end of intra-oceanic arcs worldwide (162 km3 km21 Myr21

[28]), possibly a consequence of slow convergence. The LAA lies on the eastern margin of thickened

oceanic crust of the Caribbean Plate [29], although the extent to which vestigial Caribbean Plate

material, attenuated or otherwise, is present beneath the LAA is not known.

An unusual feature of the LAA is a marked bifurcation north of Martinique into an inactive eastern limb

and active western limb; there is evidence for an abandoned, Mesozoic volcanic arc to the west of the Lesser

Antilles (the Aves Ridge), separated from the active arc by the Grenada Basin [30]. The westward jump in the

northern LAA accounts for a hiatus in volcanism there between mid- and late Miocene times. The cause of the

http://rsos.royalsocietypublishing.org/
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jump is not known. However, there is a marked change in the dip and orientation of the Wadati–Benioff zone

along the arc, interpreted by Wadge & Shepherd [24] to indicate that either a single American plate was torn

and deformed during subduction or that the North and South American plates were subducted with different

velocities. In either case, bifurcation of the LAA just north of Martinique would correspond to the triple

junction where Caribbean, North American and South American plates meet.

The division between the northern and southern parts of the LAA is also reflected in the presence and

character of the sedimentary cover. The incoming plate in the south is rich in clastic detritus from the

South American continent, partially scraped off to form the Barbados accretionary prism (e.g. [31]). To

the north, sediment supply is limited by the presence of submarine highs, such as the Tiburon Ridge,

and the incoming plate is blanketed by pelagic marine sediments. The spatial variation in sediments

plays a role in changing magma chemistry along the LAA [32].

The LAA transects five major fracture zones on the down-going plate (figure 1). The down-going

plate displays the topographic expression of strong tectonic extension including normal faults with

large amounts of rotation and dome-shaped faulted detachment surfaces, or core complexes, at the

edge of the inner valley floor. The presence of serpentine in the down-going plate, associated with

fracture zones and/or core complexes, could introduce significant H2O to the mantle wedge, perhaps

accounting for along-strike variation in magma productivity [33] and subduction zone seismicity [20].

1.3. Crustal structure of the Lesser Antilles Arc
The LAA has been the subject of three major geophysical experiments designed to elucidate crustal

structure [4,34,35], as well as an attempt to map an along-arc transect of crustal thickness using RFs

http://rsos.royalsocietypublishing.org/
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and H–K stacking [15]. In [12], they have used the same method on the island of Montserrat. Estimates of

crustal thickness (depth to Moho) beneath the arc from these studies range from 22 to 37 km. In [4], from

their along-arc survey of the southern and central part of the arc (Grenada to Guadeloupe), they reveal

the presence of two refractors that split the crust into discrete layers. Their upper layer, with an average

velocity of 6.2 km s21, has significant along-strike variation in depth and velocity. The average upper

layer thickness is 10 km, but varies from 2 to 20 km [4]. In [36], they interpreted this layer as being

built of dense, solidified volcanic rock and plutons of intermediate composition. The uppermost

portion of the upper layer has significantly lower seismic velocities and densities, and is likely to be

composed of volcaniclastic and sedimentary rocks with abundant fractures [35]. Gravity data from

Guadeloupe [37] show that this uppermost layer (vP , 6 km s21) is approximately 4 km thick. The

lower crustal layer of [4] that immediately overlies the mantle has average vP ¼ 6.9 km s21 and is

thought to represent dense, more mafic igneous rocks, including cumulates.

Two cross-arc seismic surveys, between Dominica and Guadeloupe [35] and south of Grenada [34],

provide a more detailed picture of crustal structure. The layering persists, although the overall vertical

velocity gradient is smoother than that suggested by Boynton et al. [4]. The crust between Dominica and

Guadeloupe is 26 km thick and south of Grenada it is 24 km thick. The Moho is not well resolved in either

location; mantle vP varies from 7.7 km s21 in the south to 8 km s21 in the centre. Neither survey shows any

significant deepening of the Moho beneath the active arc. West of Grenada, the Moho shallows beneath the

Grenada Basin (to less than 20 km in places), thickening to 27 km beneath the Aves Ridge. Seismic surveys

have been unable to identify unequivocally any vestiges of Caribbean Plate in the sub-arc crust.

Here, we refine the along-arc crustal image of [4] using seismic data collected from 29 remote seismic

stations along the active LAA, in combination with insights from experimental and igneous petrology, to

develop a method for constraining crustal structure using RF. Our approach, which refines a recent

investigation of Moho depths along the LAA using conventional RF analysis [15], has widespread

applicability to volcanic arcs and layered crust more generally.
2. Receiver functions and H – K stacking
We use seismic broadband stations from different networks, located on most of the major islands of the

LAA (figure 1 and table 1); for Montserrat, Guadeloupe and Martinique, more than one station is

available. For this study, we limit our catalogue to events greater than magnitude 5.5. Teleseismic

events are required (308 to 908 distance) to ensure subvertical incidence angles. Events are filtered

using a second-order Butterworth bandpass filter from 0.4 Hz to 3 Hz (after [13]). Only events with a

clear P-phase are then selected for this study.

The method uses the coda of an arriving signal, which contains mode-converted energy due to the

structure beneath the receiver [38,39]. A large velocity contrast at a seismic discontinuity leads to a

strong P-to-S-converted phase [8]. The signal at the receiver is a convolution of the initial signal with

the subsurface structure. Therefore, assuming horizontal layering, a deconvolution can be carried out

to remove the source effects and produce a sequence of pulses representing this structure by isolating

the P-to-S conversions [8,13,39,40]. This resulting sequence is called a ‘receiver function’ (RF).

In this study, the extended-time multitaper frequency-domain cross-correlation receiver function

(ETMTRF [40]) is used to create the RFs. ETMTRF, based on the work of [41], includes later arriving

multiple converted phases and has the advantage of being less sensitive to noise. We use a high-

frequency cut-off at 1.5 Hz, and for the purpose of this study three overlapping tapers are sufficient.

The radial RFs are then stacked by jackknifing [42] from 210 s to þ 30 s relative to the P-peak. This

produces a standard variation that can be used as a pointwise uncertainty for the RF. Here, the 2s

level is used. The H–K stacking method follows the work of [8–10], which involves applying a

bootstrapping algorithm [43] to determine the uncertainties of the model parameters.

Based on theoretical arrival times of converted phases, the method derives values for the depth of the

discontinuity (H) and the average P-wave to S-wave (vP/vS ¼ K) ratio of the crust between that point and

the surface. The amplitudes at the theoretical arrival times are summed as follows:

s(H, k) ¼
XN

n¼1

w1r(t1)þ w2r(t2)� w3r(t3), ð2:1Þ

where N is the number of RFs used in the stack, rn(t) is the RF amplitude at time t, which is the predicted

arrival time for the individual phases (the indices are 1 for Ps, 2 for PpPs and 3 for PsPs/PpSs), and w1,

w2 and w3 are the weighting factors with
P

wi ¼ 1.

http://rsos.royalsocietypublishing.org/


Table 1. Information on stations used in this study.

island station networka lat (deg) lon (deg) no.b time

Saba SABA NA 17.6205 263.2426 11 2008/01/01 – 2012/30/06

St. Eustatius SEUS NA 17.4928 262.9814 10 2008/01/01 – 2012/30/06

St. Kitts SKI TR 17.3338 262.7380 2 2008/01/01 – 2012/10/31

Montserratc MBBY MVO 16.6977 262.2025 3 1999/03/05 – 2008/01/29

MBFR MVO 16.6930 262.1780 1 2005/06/05 – 2008/01/29

MBGB MVO 16.7323 262.2278 5 1996/10/19 – 2008/01/29

MBGH MVO 16.7225 262.2086 9 1996/10/19 – 2008/01/29

MBLG MVO 16.7250 262.1622 4 2005/03/01 – 2008/01/29

MBRY MVO 16.7039 262.1532 5 1998/01/30 – 2008/01/29

MBWH MVO 16.7422 262.1909 1 2005/04/02 – 2008/01/29

MBBE MVO 16.7435 262.1601 0 1996/10/19 – 1998/04/12

MBGA MVO 16.7102 262.1886 0 1996/10/19 – 1998/04/12

MBGE MVO 16.6900 262.1937 0 1996/10/19 – 1998/01/23

MBHA MVO 16.7398 262.1713 0 2004/09/06 – 2008/01/29

MBLY MVO 16.7171 262.1841 0 2002/10/31 – 2006/06/21

Guadelouped DHS WI 16.2887 261.7652 6 2012/09/26 – 2013/11/13

ABD WI 16.4744 261.4881 0 2012/09/26 – 2013/11/13

CBE WI 16.0671 261.6112 0 2012/09/26 – 2013/11/13

DSD WI 16.3128 261.0661 0 2012/09/26 – 2013/11/13

MAGL WI 15.9494 261.2822 0 2012/09/26 – 2013/11/13

TDBA WI 15.8550 261.6354 0 2012/10/29 – 2013/11/13

Dominica DLPL TR 15.3324 261.2468 15 2008/06/01 – 2012/10/31

Martiniqued FDF G 14.7350 261.1463 11 1998/11/25 – 2012/30/06

BIM WI 14.5181 261.0670 0 2012/09/26 – 2013/11/13

ILAM WI 14.7745 260.8753 0 2012/12/07 – 2013/11/13

MPOM WI 14.4447 260.8588 0 2012/11/22 – 2013/11/13

St. Lucia MCLT TR 13.7115 260.9426 14 2008/01/01 – 2012/10/31

St. Vincent SVB TR 13.2745 261.2504 8 2008/01/01 – 2012/10/31

Grenada GRGR CU 12.1324 261.6540 20 2006/12/12 – 2012/30/06
aThe networks are: CU, Caribbean Network; G, Geoscope; MVO, Montserrat Volcano Observatory; NA, Netherlands Antilles Seismic
Network; TR, Eastern Caribbean Seismograph Network; WI, West Indies French Seismic Network.
bNumber of receiver functions.
cMultiple stations were used on Montserrat, but not all showed good quality events.
dData of multiple stations were observed on Guadeloupe and Martinique, but in both cases one station showed better quality
and was therefore used for the analysis.
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The weighting factors are chosen so that phases that are more apparent will be enhanced [9,13,44].

During the bootstrapping process, we compute 300 iterations, while changing the value of vP using

random, normally distributed values with 95% of the values in a range of DvP ¼+0.3 around a mean

of 6.5 km s21. At the same time, the weighting factors are chosen so that 95% fall in Dw¼+0.05

around the means of 0.6 for w1 and 0.3 for w2 (with w1 þ w2 � 1). The best estimation occurs at the

location in H–K space where the three phases are stacked coherently [8] among all possible cases in

terms of varying vP and the weighting factors.

As the assumed value of vP can also be a source of error [8,14], the mean of vP is changed in

subsequent calculations from 6.5 to 6.3 and 6.7 km s21. These values are maximum deviations of the

crustal mean vP as determined by Boynton et al. [4]. Excluding the noisy part of data from Dominica,

http://rsos.royalsocietypublishing.org/
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our test shows that the bootstrap error is either similar (Martinique, Montserrat, St. Vincent) to the

uncertainty due to the change in vP or smaller (in all other cases). In the case of the vP/vS ratio,

the bootstrap error is always larger. The larger uncertainty between the bootstrap error estimate and

the error arising from a change in the mean vP is used in this study.

In the case of Martinique, we can see a strong, well-resolved discontinuity at 28.3+1.1 km

(figure 2a). On St. Lucia, the discontinuity is placed at 46.5 km, much deeper than expected in this

area and the solution is very poorly constrained. Furthermore, on some islands H values are arguably

too shallow (e.g. St. Vincent with 19.9+0.7 km, figure 2b) to be the Moho. We note that the data are

in general noisy, as they are from island stations (figure 2c,d). To help mitigate this issue, we use the

RFs with the highest signal-to-noise (S/N) ratio and employ stacking to further improve the S/N ratio.

An explanation for the unexpectedly shallow or deep results is the existence of a weak Moho beneath

some of the islands and a stronger MCD, in which case H–K stacking cannot resolve the Moho, returning

instead the depth (H) of the MCD as the preferred result. Additionally, near-surface complexity affects

H–K results, often leading to estimates of discontinuities that do not reflect any real structure. We,

therefore, conclude that H–K stacking on its own may not be appropriate for mapping layered crustal

structure in arc settings without additional constraints. The method is limited by the fact that it will

only search for one pair of values. In the case of multiple discontinuities, however, it is likely that

peaks in the RF caused by different discontinuities will overlie each other and distort the RF to a

point where H–K stacking may find values that do not represent any real discontinuity depth and

layer vP/vS ratio.
3. Inversion for a layered crust
To overcome limitations of the H–K stacking method when applied to layered crust, we adopted a grid-

search inversion of a three-layer crust overlying the mantle within the following petrological framework:

http://rsos.royalsocietypublishing.org/
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(i) upper crustal layer composed of loosely consolidated and fractured volcanoclastic sediments and

lavas; (ii) middle crustal layer composed of plutonic rocks (solidified magma); (iii) lower crustal layer

composed of mafic and ultramafic crustal cumulates; and (iv) mantle layer (figure 3). In a subsequent

development of the model, we also consider the presence of vestigial crust of the over-riding,

proto-Caribbean plate (layer 2a).

Crustal cumulates are rocks formed by accumulation of near-liquidus phases from magmas

undergoing chemical differentiation. Cumulates consist of assemblages that represent instantaneous

solid compositions from one or more magma batches. Conversely, plutonic rocks have mineralogy

and textures consistent with protracted, in situ solidification of magmatic mushes (melt þmineral

phases) without attendant differentiation. Our three-layer crustal model is based on studies of

currently active and exposed fossil island arcs (e.g. [22,23,34,35,47,48]). The exposed arcs of Talkeetna

and Kohistan show lower crust that consists predominantly of mafic/ultramafic cumulates such as

pyroxenite, hornblendites and gabbros, whereas the middle crust is composed of evolved, often felsic,

plutonic rocks. The lithologies we see in fossil arcs are comparable to those we find in currently active

intra-oceanic arcs. Geochemistry and thermobarometry of lavas and their igneous xenoliths along the

LAA support that conclusion (e.g. [26,46,49–55]). The seismic studies of active Aleutian and Izu-Bonin
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island arcs also reveal layered crustal structures which have been similarly interpreted as mafic lower

crust and more felsic middle-upper crust based on vP and vS properties of different rock types. We

build our model and estimate of vP/vS ratios on these observations. The physical properties of the

mantle (layer 4) are fixed at: vP ¼ 8.00 km s21, vS ¼ 4.53 km s21, density ¼ 3.33 g cm23. They are

derived from [46] and represent putative mantle values beneath the LAA.

Multiple studies of currently active and fossil arcs demonstrated that, although vP and vS vary

considerably for the lower-crustal layer, the vP/vS ratio is surprisingly constant and on average lies

between 1.75 and 1.80 (e.g. [2,21,23,56,57]). A vP/vS ratio of 1.79 for the lower-crustal layer (3) is used

in our model. The middle crust (2) in our model consists of plutonic rocks of basaltic to andesite

compositions. This assumption is based on average lava composition of LAA and upper crustal

xenoliths (e.g. [26,50–53]). According to [58], plutonic rocks of this composition will have a vP/vS

ratio of 1.82 to 1.87 at mid-crustal pressures. The vP/vS ratios of the upper layer (1) are controlled

primarily by the fracture density and degree of compaction, rather than lithology. In a refinement of

our model, we also consider the presence of vestigial Caribbean Plate (layer 2a). The seismic

properties of layer (2a) are estimated from rock compositions of the Caribbean oceanic plateau [59].

The vP/vS ratio found is 1.86.

The advantage of a fixed vP/vS ratio is a significant reduction in parameter space (see the electronic

supplementary material for a comparison between modelling with and without petrological constraints).

More importantly, vP/vS ratios obtained for crustal and mantle lithology allow us to reconcile the

seismological and petrological interpretation of crustal structure. To test the reliability of the chosen

vP/vS ratios, we tested the upper and lower limits of this value for layers (2), (2a) and (3) and found

that a modification in the vP/vS ratio of+0.05 does not change the overall discontinuity depth results

significantly.

We assume that all melt has either been extracted or is isolated at a very low melt fraction along grain

boundaries. Xenoliths from the LAA contain variable, but small, amounts of melt distributed along grain

boundaries [49,50,53,55]. We discuss the seismological implication of the presence of melt below.

We set the thickness of layer (1) to be 5 km, consistent with the geophysical data of [34,37,51], and

derive its physical properties from the RF data alone. Using the method of [39], we first invert the

seismic RF (using 25 s toþ15 s after the initial P-peak) for the uppermost 5 km with an initial model

that consists of five 1 km thick subsidiary layers (1a–e) and two main crustal layers. We use a

smoothness value of 0.1 based on visual observation to create the smoothest models that still fit the

observations well. The horizontal slowness was chosen to be 0.06 s km21 (but different values have

been tested for stability of the result) and the singular-value decomposition truncation fraction was

chosen to be 0.001 to handle values close to zero. The thickness of each layer stays fixed during this

inversion. Thicknesses of the middle (2) and lower (3) crustal layers are varied within the range of

plausible values throughout different inversion runs to ensure the stability of the solution for layers

(1a–e). This first step accounts for the strong effects of the highly variable structure near the surface

on the RFs and can overcome the nonlinearity and non-uniqueness of this problem (e.g. [45]). Because

of the nature of layer (1) this inversion does not include any petrological constraints. In the second

step, we introduce a grid search to investigate the depth to the MCD and the Moho and the velocity

contrast at these discontinuities, thus defining the thickness of the middle and lower crustal layers.

Having already fixed the highly variable upper layer (1) in a previous step, it is possible to reduce the

grid search to a reasonable number of models and computation time. In this step, we introduce vP/vS

ratios based on the petrological considerations above. We keep the vP/vS ratios for individual layers

fixed but allow vP and vS to vary. This proves to be a useful constraint, further restricting the

explored parameter space. This additional step is needed to vary the thicknesses of the layers,

whereas the first step only works with fixed layer thicknesses.

A x2-misfit is used to evaluate the match of different models with the seismological data and, thus,

make them comparable. It is described by

x2 ¼ 1P
w(n)

XN

n¼1

w(n)� d(n)� s(n)

s(n)

� �2

, ð3:1Þ

where N is the number of data points and d(n), s(n) and s(n) are, respectively, the data RF, its pointwise

uncertainties obtained by the jackknife stacking, the model RF at point n and a weighting factor w(n),

which is chosen so that it forms an envelope around the maximum at 0 s (P-arrival) and decreases

exponentially to both sides (see [45] for further information). The smallest value of x2 depicts the best
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model; the uncertainties on this model are given by all models that reach 95% of this value, taken from a

x2 distribution table.

We carry out the grid search with vP/vS values as high as 2.2 to explore the possible presence of melt,

which is known to have a much greater effect on vS than on vP [60]. No low x2 solutions are obtained with

such large vP/vS values, indicating that large pockets of interconnected melt are unlikely beneath the LAA,

consistent with the H–K stacking results, as well as [15] and the textural evidence from xenoliths.
4. Results
The depth to the MCD and vP for layers (2) and (3) is in excellent agreement with previous work on

various segments of the arc [4,12,34,35,61]. The Moho was not observed seismically by Boynton et al.
[4], but was estimated to lie at about 35 km based on their gravity data. In [15], using conventional

H–K stacking, they propose that the average Moho depth beneath the LAA is 29+7 km.

The best fitting models for stations FDF and SVB can be seen in figure 4. The obtained crustal

structure (figure 5 and table 2) shows that the depths to the MCD and to the Moho are highly

variable over surprisingly short distances of tens of kilometres. In [15], they arrived at a similar

conclusion, with up to 10 km change in Moho depth across Guadeloupe alone. Furthermore, we find

that the seismic velocities of layers (2) and (3) also vary laterally. Note that uncertainties in the results

do not arise from these lateral variations. Although both discontinuities are present along the entire

LAA, beneath some islands they compete to produce either a strong Moho and weak MCD or strong

MCD and weak Moho (figure 5). For St. Eustatius and Saba, the Moho is very weak but the MCD is

very strong. Beneath Grenada, Martinique, Guadeloupe and St. Kitts, the converse is true. The depth

to the MCD varies between 11 and 25 km, while the depth to the Moho varies between 24 and 37 km

(e.g. Grenada and St. Kitts, respectively).

Our inversion approach considers only new, magmatic arc crust. We have not considered thus far the

possible presence of vestigial proto-Caribbean crust (pCc) within the arc (layer 2a). The estimated seismic

properties of this layer (vP ¼ 7.11 km s21, vS ¼ 3.97 km s21, vP/vS ¼ 1.79) are described above.

http://rsos.royalsocietypublishing.org/


S N

0 100 200 300 400 500 600 700 800

distance along the arc (in km)

de
pt

h 
(i

n 
km

)
0

10

20

30

0

10

20

30

40 40

Grenada St. Vincent

St. Lucia

Martinique

Dominica

Guadeloupe

Montserrat

St. Kitts

St. Eustatius

Saba

a,h

d
b

b

a,s1

s2

kc

h a
a

a2

a
a1

mid-crustal discontinuity
Moho
results from literature

Figure 5. Compilation of inversion results along the LAA from south (Grenada) to north (Saba) showing depths of the MCD and
Moho beneath each island based on inversion. The result from the seismic refraction carried out by Boynton et al. [4] is shown in the
background beneath Grenada to Guadeloupe. The shallower lines represent the upper boundary of the upper main crustal layer and
solutions for separate segments of the line (dashed lines); the lower lines show the MCD and its uncertainties (dotted lines). Blue
and red horizontal bars denote the best MCD (blue) discontinuity and Moho (red) estimates based on the grid-search inversion.
Uncertainties for these values can be accessed in the electronic supplementary material. In the cases of a dominating
discontinuity (i.e. a higher S-wave velocity increase than the other) the stronger and weaker discontinuities are indicated by a
thick solid bar and a thin dashed bar, respectively. Black horizontal bars indicate Moho depth results from previous studies:
a—[15], using a station in the north (1) and one in the south (2) of the island of Guadeloupe; b—[4]; c—[34]; d—[61];
h—J.O.S. Hammond (2011 personal communication); k—[35]; s—[12], showing a distinction using events from the northwest
(1) and from the south (2) of Montserrat.

rsos.royalsocietypublishing.org
R.Soc.open

sci.5:180764
10

 on November 20, 2018http://rsos.royalsocietypublishing.org/Downloaded from 
Incorporating layer (2a) into our models does not change the depths of the discontinuities in the

inversion results because the change in seismic velocity between the pCc and the adjacent crust is too

small to be identified by RFs and, hence, H–K stacking and crustal inversions. This conclusion comes

from models that included an 8 km layer (2a), consistent with the seismic refraction study of [34]

beneath the Grenada basin where the pCc is appreciably thinned. In the unlikely scenario that layer

(2a) is chosen with sufficient thickness that it takes up most of the crustal column, the MCD is

suppressed, leading to a significantly different inverted crustal structure. In our models, a 20 km layer

(2a) is found to cause such a change. However, the resultant misfit between the model and data RFs

is considerably larger in those instances, leading to the reasonable conclusion that a pCc, if present,

cannot exceed thicknesses of around 10–15 km, depending on the island, and may not be present at all.

A comparison of the depth estimates of the crustal discontinuities with those obtained from a range

of other studies along the LAA reveals a good match. For example, our estimate of the Moho depth

beneath Martinique is around 29 km, which agrees well with independent estimates from [4,61]. The

derived MCD depth agrees with estimates from [4] on every island (figure 5). The Moho depth

beneath Grenada, Martinique, Dominica and Montserrat agrees with estimates of [4,12,15,34,35,61].

A particularly interesting comparison is with the results of [4], which also show a highly variable

crustal structure with an undulating MCD, albeit of greater amplitude (figure 5).

Our preferred final, four-layer velocity model (figure 5) for the LAA is as follows. The 5 km thick

upper layer (1) has highly variable vP that we attribute to lithological heterogeneity due to the

layering of sediments and volcanics. The values have been used as a correction for the subsequent

grid search and the highly heterogeneous nature would need a more detailed investigation in the

future to draw further conclusions. P-wave velocities are 5.8–7.2 km s21 in the middle crust (layer 2)

in the depth range of 5–25 km, and 6.6–7.6 km s21 in the lower crust (layer 3) in the depth range of

24–37 km. Our RF inversion model, incorporating constraints on vP/vS based on crustal lithology,

enables us to identify two crustal layers in a way that conventional H–K stacking does not. Because of

the changing relative strengths of MCD and Moho, conventional H–K stacking would instead yield
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only the stronger of the MCD or Moho at each location, giving the illusion of even larger lateral gradients

in the depth of a single discontinuity as it switches from MCD to Moho and back again.
sos.royalsocietypublishing.org
R.Soc.open

sci.5:180764
5. Discussion and conclusion
There are different potential causes for highly varying discontinuity depths and strengths over short

distances. In the LAA, we can rule out a changing amount of subducted sediments. The subduction is

sediment rich in the south, gradually becoming more sediment poor towards the north, which does not

match the pattern observed. The most probable explanation, however, is short-wavelength variability in

the delivery of water to the arc, which in turn affects the temperature, composition and volumes of the

magma added to the crust. Variations in magmatic water contents of mantle-derived basalts influence

their phase relations and consequently the mineralogy and seismic velocities of associated cumulate

layers. Similarly, increased addition of water to the mantle wedge beneath the arc will trigger enhanced

melt production. Thus, in principle, variations in the delivery of water to the arc can effect changes in both

MCD and Moho depths. We tentatively note a spatial correlation with subducting transform faults

(figure 1), which are likely to be water rich and serpentinized. The spatial variability in seismicity along

the arc has also been attributed to the effects of the subducting fracture zones [20]. The dramatic

variations in crustal properties might suggest complicated upper mantle wedge dynamics, which would

explain why the seismic properties of the upper mantle wedge beneath the LAA appear to be isotropic [62,63].

The vP/vS ratios used in the inversion are based on samples of melt-free material. In contrast to many

other areas where RF studies have been carried out, a volcanic arc may be prone to higher melt content in

the crust. Partial melt in the crust can lead to higher vP/vS ratios to values of up to 2.0 [14]. However, H–K

stacking results from stations where the result agrees with results from the inversion and previous methods

show values lower than 1.9 on Montserrat and Martinique. The presence of melt in any of the modelled

layers will increase the vP/vS ratio. The magnitude of this effect will vary with the amount and physical

distribution of the melt. Melt-rich layers could be investigated explicitly using our methodology, by

assigning a specific, elevated vP/vS ratio to a layer. Where melt fractions are very low or melt lenses

very thin, these layers will not be readily detectable using RF methods alone. The fact that we see vP/vS

ratios consistently below 2.0 in the LAA suggests that melt fractions are consistently low. Furthermore,

petrological observations show that quartz is a very minor component in all Antilles rocks due to the

mafic nature of the arc. Therefore, its contribution to the ratio is negligible and the melt-free model

applied in this study seems appropriate for this inversion. This should not be taken to mean that melt is

absent beneath the active LAA, simply that where present it occurs in relatively small, disconnected

pockets that lie outside the resolution of seismic methods.

We have elucidated along-strike variation in crustal structure in the LAA using an approach that

integrates seismology and petrology. The first important outcome of this study is that using a

combination of local networks it is possible for the first time to get a detailed study of crustal

structure of all major islands in the LAA. Secondly, our approach affords several advantages over a

purely seismological approach, especially in arc settings at stations with high amounts of noise, where

the H–K stacking method is prone to ambiguity when used without additional constraints.

Consequently, the results are supported by data from seismology and petrology and show models

that are consistent with each. Based on our results and previous work in other arcs, we conclude that

arc crust is highly variable laterally. The strength of the Moho varies along the LAA. It is the

dominant discontinuity beneath four islands (St. Kitts, Guadeloupe, Martinique and Grenada),

whereas the MCD is dominant beneath two (Saba, St. Eustatius). The MCD can be found at depths

between 10 and 25 km (consistent with [4]) while the Moho depth varies between 25 and 45 km, with

both discontinuities being located at greater depths in the northern part of the arc. The highly

variable nature of both discontinuities can be explained by lateral variation in the mechanisms of melt

generation and differentiation along the arc arising from instabilities along the mantle–slab interface.

However, more work is needed (e.g. including petrological constraints from further islands) before a

more detailed interpretation is possible.

In this study, the advantages of a modelling technique combining seismological with petrological

results over a purely seismological approach have been demonstrated. The approach is particularly

useful when the crust is lithologically layered. In arc settings at stations with high amounts of noise, the

H–K stacking method that was used to investigate the crustal thickness is prone to misinterpretation

when used without additional constraints. Models that are derived from a combined grid-search

inversion can help interpret results from RFs and H–K stacking.
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