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Rate-distortion Optimization Using Adaptive
Lagrange Multipliers
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Abstract—In current standardized hybrid video encoders, the
Lagrange multiplier determination model is a key component
in rate-distortion optimization. This originated some 20 years
ago based on an entropy-constrained high-rate approximation
and experimental results obtained using an H.263 reference
encoder on limited test material. In this paper, we present a
comprehensive analysis of the results of a Lagrange multiplier
selection experiment conducted on various video content using
H.264/AVC and HEVC reference encoders. These results show
that the original Lagrange multiplier selection methods, em-
ployed in both video encoders, are able to achieve optimum
rate-distortion performance for I and P frames, but fail to
perform well for B frames. The relationship is identified between
the optimum Lagrange multipliers for B frames and distortion
information obtained from the experimental results, leading
to a novel Lagrange multiplier determination approach. The
proposed method adaptively predicts the optimum Lagrange
multiplier for B frames based on the distortion statistics of recent
reconstructed frames. After integration into both H.264/AVC and
HEVC reference encoders, this approach was evaluated on 36
test sequences with various resolutions and differing content
types. The results show consistent bitrate savings for various
hierarchical B frame configurations with minimal additional
complexity. BD savings average approximately 3% when constant
QP values are used for all frames, and 0.5% when non-zero QP
offset values are employed for different B frame hierarchical
levels.

Index Terms—Video compression, rate-distortion optimization,
Lagrange multiplier determination, H.264/AVC, and HEVC

I. INTRODUCTION

Video compression, has been a key enabler for video
storage, conferencing, broadcasting and streaming since the
early 1980s, when the first widely adopted international coding
standard, H.261 [1], was established. With recent advances in
video and communication technologies, the demand for video
content is ever increasing, with 73% of all Internet bandwidth
consumed by video in 2016. This figure is predicted to increase
to 82% in 2021 [2].

The latest video compression standard, High Efficiency
Video Coding (HEVC) [3], offers improved compression per-
formance over its predecessors, especially on higher resolution
video content. This improvement is due to the introduction of
new coding tools, such as more flexible macroblock sizes for
prediction and transformation, finer intra prediction modes,
improved de-blocking and loop filters, and enhanced inter-
polation in motion compensation. However the rate-distortion
optimization (RDO) module in the HEVC reference encoder
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(and also that used as the basis for many actual HEVC
deployments) employs a model almost identical to those used
in most video encoders since H.263 [4].

The RDO approach employed in both HEVC and
H.264/AVC [5] reference software (although non-normative)
is based on an entropy-constrained high-rate approximation
[6, 7]. This method formulates the coding parameter selection
problem as finding the minimum of a Lagrange cost function,
trading off rate (R) and distortion (D), and exploits the rela-
tionship between R and D using an approximate logarithmic
function with constant parameters [8]. Model parameters were
determined based on I and P frame coding results for three
sequences using H.263, and were reported to be content inde-
pendent [8]. As coding tools have advanced, especially with
the frequent use of bi-directional inter prediction and different
referencing structure in modern encoders, the optimality of
this model has not been fully re-assessed.

In this paper, we address three specific research questions
in order to improve the Lagrange multiplier (λ) determination
method in RDO:

1) Optimality – does the RDO model employed by modern
hybrid encoders still provide optimum rate distortion
(RD) performance for all I, P, and B frames?

2) Independence – are the optimum Lagrange multipliers
still approximately constant across various video content
with identical quantization parameters (QP)?

3) Predictability – if a negative answer is observed in
question 2), can any video features or coding statistics
be used to predict the optimum Lagrange multipliers?

This paper provides a comprehensive extension of our pre-
vious work in [9], where the Lagrange multiplier selection ap-
proach was originally introduced, applied to a simple Group of
Pictures (GOP) structure (GOP length 4 with non-hierarchical
B frames)1. We explore the answers to the questions proposed
above, and an adaptive λ determination model, extended
from that in [9], is presented for application scenarios with
various GOP lengths. Both hierarchical and non-hierarchical
GOP structures are employed to test the performance of this
approach.

The remainder of this paper is structured as follows. Section
II describes the RDO problem and outlines some of the most
influential Lagrange multiplier determination models. The
experiment on multiplier selection and its results are presented
in Section III. In Section IV, a content-based adaptive La-
grange multiplier determination method is proposed, while the

1We define GOP length in this paper as the number of successive bi-
directionally predicted B frames plus one.
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evaluation results of this approach are reported and discussed
in Section V. Finally, Section VI provides conclusions and
implications on future research directions.

II. BACKGROUND

This section is divided into three subsections. The first
introduces the rate distortion optimization (RDO) problem in
the context of hybrid video encoders. Previous research work
on RDO modeling is then briefly reviewed, followed by a
description of the Lagrange multiplier determination models
employed in both H.264/AVC and HEVC reference encoders.

A. The Rate Distortion Optimization Problem

Typically, hybrid video encoders select optimum coding
parameters popt by minimizing a Lagrange cost function of
rate R and distortion D [10]:

min{J},where J = D(p) + λ ·R(p), (1)

where p is the vector of coding parameters including pre-
diction modes, block partitions, etc., and λ represents the
Lagrange multiplier. This optimization process is iterated
during the compression process at various block levels for
different types of frame.

Finding the minimum of a function is a common problem
in calculus [11]. In our case this can be solved, when the cost
function J is a convex function of p, and both R and D are
continuous and differentiable everywhere [12]. The Lagrange
multiplier λ can then be derived by setting the derivative of
J to zero. Then:

λ = −∂D
∂R

. (2)

In order to determine λ, the RD curve should be known
beforehand. However, this leads to a chicken and egg problem
– it is, in general, difficult to predict accurate RD characteris-
tics of videos before encoding them. In the literature, various
solutions have been proposed to solve this problem and these
are discussed below.

B. Rate Distortion Modeling

One important group of rate distortion models are based
on the distribution of transformed residuals. For example, the
generalized Gaussian distribution based RD models, presented
in [13–15], demonstrate the precision on modeling residual
energy. This type of model is however only appropriate for
two pass compression, since its model parameters are content
dependent and they can only be determined after the first pass.
RD models based on the Cauchy distribution [16] have been
proposed which overcome this shortcoming, providing more
accurate estimation of transform residuals. It should be noted
however that the parameter determination of Cauchy distribu-
tion based RDO is difficult due to the diverging characteristic
of the model statistics. The Laplace distribution is considered
as a specific case of a generalized Gaussian distribution, and
RD models based on this [12], offer a trade-off between
prediction accuracy and algorithm complexity. Methods in this
class also include ρ-domain algorithms [17].

Another group of RDO methods employ heuristic ap-
proaches to estimate Lagrange multipliers [12]. Typical ex-
amples of these include methods based on bitrate statistics
[18, 19] and local context [20]. However this type of approach
sometimes fails to perform well due to inaccurate empirical
RD models.

Alongside advances in quality assessment [21–23], percep-
tual video compression algorithms [24–26] have been pre-
sented that achieve improved rate quality performance [27].
The structural similarity index (SSIM) [21] is one of the most
commonly used quality assessment methods for in-loop rate
quality optimization (RQO) due to its efficiency and simplicity.
Recent work, [28–30], has demonstrated the rate quality
performance improvement possible with SSIM-based RQO
when compared to conventional RDO approaches. It should
be emphasized that RQO inspired video compression is still
in its infancy, and quality metrics with lower computational
complexity (e.g. SSIM) do not always correlate well with
subjective quality opinions [23]. In contrast, more advanced
methods, such as MOVIE [22] and STMAD [31], are not
appropriate for in-loop application due to their high complex-
ity and/or latency characteristics. More recent contributions,
such as PVM (Perception-based Video Metric) [23], offer
the potential for lower latency and complexity, but are still
immature in this respect.

In the context of the above discussion, our focus in this
paper is on the enhancement of existing rate-distortion opti-
mization methods using mean squared error (MSE) to assess
video quality. While the use of perceptual metrics may provide
more robustness in the future, this approach is not applicable at
the present time due to the complexity and consistency issues
associated with existing metrics.

C. RDO in H.264/AVC and HEVC Reference Encoders

The RD model most commonly used in modern hybrid
video encoders was proposed by Sullivan and Wiegand [8]
for entropy-constrained quantization based on a high rate
approximation [6, 7], where R is formulated as the logarithmic
function of D,

R(D) = a · log2

(
b

D

)
, (3)

where a and b are two parameters characterizing the re-
lationship between R and D. According to the high rate
approximation, the distortion D can be modeled using the
quantization interval Q as:

D = Q2/3, (4)

where Q can be obtained from the quantization parameter
(QP) in H.264 or HEVC using:

Q2 = 2(QP−12)/3. (5)

If (3)-(5) are substituted into (2), it provides the result:

λ = c · 2(QP−12)/3, (6)

in which c = ln2/(3a).
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In order to determine the value of c, Sullivan and Wiegand
[8] conducted a Lagrange multiplier selection experiment on
three video sequences using an H.263 reference encoder. The
experimental results show that the parameter c is approxi-
mately independent of video content, with a fixed value of
0.85 for inter frames.

Extended from this model, the Lagrange multiplier determi-
nation approaches employed in H.264 and HEVC reference en-
coders (JM and HM respectively), as described in (7) and (8),
have been developed with the consideration of bi-directional
inter frames. In this paper, we follow the same definitions
of I, P and B frames as in the H.264/AVC [5] and HEVC
[32] standards. For clarity, we further adopt the following
definitions here. Bp frames are defined as B frames which
are inter-predicted only from temporally previous frames.
Frames using both previous and subsequent reference frames
are defined as Bb frames.

λJM,I = 0.57 · 2(QP−12)/3

λJM,P = 0.85 · 2(QP−12)/3

λJM,B = 0.68 ·max(2,min(4, (QP− 12)/6)) · 2(QP−12)/3

,

(7)
and
λHM,I = (1−max(0,min(0.5, 0.05NB))) · 0.57 · 2(QP−12)/3

λHM,P/Bp
= f · 2(QP−12)/3

λHM,Bb
= f ·max(2,min(4, (QP− 12)/6)) · 2(QP−12)/3

.

(8)
In equation (8), f is referred to as the ‘QPfactor’ in the

HEVC HM reference encoder, having a default value of
0.5. The ‘QPfactor’ can be configured differently for frames
at various temporal layers in a GOP [33, 34]. NB is the
number of consecutive Bb frames in a GOP. The Lagrange
multiplier model for the HEVC reference encoder has been
modified according to the recent recommended configurations
in JCTVC-X0038 [35] (using ‘QPfactor’ value of 1 and larger
‘QPoffset’ for each hierarchical B frames) to achieve improved
rate distortion performance. It is noted that, in H.264/AVC and
HEVC reference encoders, the Lagrange multiplier is modeled
as a function of QP, and is independent of video content.
Alternative solutions, such as [36], have also been proposed
using a fixed Lagrange multiplier to determine QPs for frames
at various hierarchical levels.

III. AN EXPERIMENT ON λ SELECTION

It was noted in Section II that the Lagrange multiplier
determination methods used in H.264/AVC and HEVC ref-
erence encoders employ a basic model whose parameter was
empirically derived in [8] using an H.263 reference encoder.
The optimality of this model has not been fully validated on
modern video encoders using different referencing structures,
which can lead to significant changes in RD characteristics.

A. Experimental Methodology

In order to investigate the optimality of the λ determination
approaches, we conducted a Lagrange multiplier selection
experiment comparing the RD performance using various
test multiplier values λtest with that using the corresponding
original multipliers λorig, derived from (7) and (8).

1. Carpet 2. Miss-America 3. Picture

4. Flag 5. Spring 6. Water

7. Flower 8. Football 9. Mobile

Fig. 1: Sample frames from test sequences used in the λ selection
experiment.

The range of λtest is given by:

0.2 ≤ λtest

λorig
≤ 5. (9)

This experiment was conducted using various test material
at CIF (352 × 288) resolution (YUV 4:2:0)2. In total nine
sequences from DynTex [37], the BVI texture database [38],
and standard test sequence pools were employed. This dataset
was further divided into three classes according to dominant
video content: (A) slow movement videos, (B) dynamic texture
clips, and (C) mixed content. TABLE I provides a list of these
sequences, while Fig. 1 shows their sample frames.

TABLE I: The video dataset used in the λ selection experiment.

Class A B C

Sequence
1. Carpet 4. Flag 7. Flower
2. Miss-America 5. Spring 8. Football
3. Picture 6. Water 9. Mobile

Source BVI & Standard DynTex Standard & DynTex

In this experiment, five subtests were conducted with dif-
ferent objectives. The first two assessed the optimality of the
model for I and P/Bp frames respectively, while the last three
investigated that for Bb frames with different GOP structures.
Note that we only modified the Lagrange multipliers for the
tested frame types. The GOP configurations for these five tests
are given in TABLE II.

JM 15.1 and HM 14.0 were used for H.264 and HEVC
respectively; identical QP values were employed for all types

2Based on computational complexity consideration, low resolution (CIF)
videos were used during the training stage. Similar parameters were obtained
when a limited number of higher resolution sequences (1920 × 1080) were
used. The performance of the proposed algorithm on a wide range of formats
(including nine HD sequences) is fully presented in Section V.
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of frames; the range of tested QP values was from 27 to 42
with an interval of 5; Main profile and non-hierarchical B
frames were selected for JM; Main profile and hierarchical B
frames were tested for HM.

It should be noted that constant QP values (QP offset
equals zero) are used for all frames in this experiment for
the HEVC HM encoder. This differs from the recommended
configurations in [33, 39] and [35], where fixed QP offset
values are used for different hierarchical B frame levels to
improve overall rate-distortion (R-D) performance. Based on
the recent work in [40], using constant QP offset values does
not always offer optimum R-D performance for all types
of content, and QP offset values in the HEVC reference
encoder should be adapted based upon video content. Since the
purpose of this paper is solely to investigate the influence of
Lagrange multipliers on R-D performance, constant QP values
are employed in our training process, as this eliminates the
confounding influence of QP offset.

B. Results for I and P/Bp Frames

The performance of the Lagrange multiplier determination
methods for I and P/Bp frames is shown in Fig. 2.(a-d), where
original multiplier values (λorig) are plotted alongside the
optimum ones (λopt). These optimum Lagrange multipliers
were selected to have the best overall RD performance for all
frames compared to the original RD curves generated using
λorig.

TABLE II: The GOP settings of the conducted λ selection tests.

Test No. i ii iii iv v

Objectives I frame P/Bp frame Bb frame
No. of frames tested 100 100 101 121 129
No. of I frames 100 1 1 1 1
No. of P/Bp frames 0 99 25 15 8
No. of Bb frames 0 0 75 105 120
GOP length 1 1 4 8 16

It can be observed that λorig curves associated with I and
P/Bp frames do correlate well with corresponding λopt values
for both H.264 and HEVC encoders, although several outliers
exist for the case of P/Bp frames. Among all 9 test sequences
and 4 QP values, only 3 λorig values out of 36 are not able
to offer optimum RD performance for H.264 P frame coding,
while 4 outliers appear for HEVC P/Bp frames. This indicates
that the original λ determination models used in both encoders
perform well for I and P frame encoding.

C. Results for Bb Frames

Fig. 2.(e,f) illustrates the test results for Bb frames with
various GOP sizes. The test multiplier values were only
applied on Bb frames, which use both temporally previous
and subsequent frames as references for inter-prediction. In
these cases, λorig values fail to correlate well with λopt

for both HEVC and H.264 regardless of whether the GOP
length is 4, 8 or 16. The failure becomes more evident for
static scene content (Class A) and dynamic textures (Class
B). These results confirm our conjecture in Section I, that
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Fig. 2: The optimum Lagrange multipliers (λopt) versus correspond-
ing original values (λorig). Results for (a) H.264 JM I frame, (b)
HEVC HM I frame, (c) H.264 JM P frame, (d) HEVC HM P frame,
(e) H.264 JM B frame for GOP length 4, 8 and 16 and (f) HEVC
HM B frame for GOP length 4, 8 and 16. The position of each
number represents the λopt values for that sequence at a given QP,
while the red curves represent the λorig values as a function of QP. In
subfigures (e) and (f), numbers in blue, pink, and black colors refer
to the results for GOP length 4, 8 and 16 respectively.

the conventional RDO module does need to be improved for
modern video encoders.

As a result of this model failure, the distortion difference
between Bb and P/Bp frames varies among test sequences.
Here we define the ratio between the mean squared error
(MSE) of P/Bp frames (MSEP ) and that of Bb frames (MSEB)
as follows (only Y components of reconstructed and original
frames are used for calculating MSE).

rMSE = MSEP /MSEB . (10)

In order to investigate the relationship between rMSE and
the mismatch between λopt and λorig for Bb frames, a second
ratio is defined as:

rλ = λopt/λorig. (11)

Fig. 4 demonstrates the relationship between rMSE and rλ
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Fig. 3: The bitrate savings at various rλ for GOP length 4, 8 and 16.
These are based on the results for all frames. Results for (a) H.264
and (b) HEVC. The position of each number represents the bitrate
saving at the corresponding rλ ratio for that sequence.

for Bb frame coding with various GOP structures. It can be
seen that the scatter plots for GOP length 4 using H.264 and
HEVC encoders both fit well to a power function, and those for
GOP 8 and 16 follow similar fitting curves as GOP 4 cases,
only with a shift to the left. Based on this observation, we
employ a four parameter power function to fit the correlation
between rλ and rMSE for all cases, as given below:

rλ,fit = f(rMSE) = a(rMSE + d)b + c. (12)

Here a, b, c and d are parameters which are determined using
the dataset in TABLE I. Values of parameter a, b and c are
2.696, 10.06, and 0.367 for H.264 JM, and 2.197, 5.196, and
0.308 for HEVC HM. Parameter d is related to GOP sizes.
For the three tested scenarios (GOP length 4, 8 and 16), the
corresponding d values are 0, 0.05 and 0.07 for H.264 JM,
and 0, 0.04, and 0.1 for HEVC HM.

The overall bitrate saving at each λopt for Bb frames over
the original RD curve using the corresponding λorig value for
three tested GOP settings is illustrated in Fig. 3. The savings
are content dependent and vary from 0% to 25% for H.264 and
from 0% to 18% for HEVC. It can also be clearly seen that,
for both encoders and all three GOP lengths, bitrate savings
are below 2% if rλ falls within the range between the two
blue dotted lines.

D. Summary

In summary, our Lagrange multiplier selection experiment
assessed the optimality of existing λ models in both H.264 and
HEVC reference encoders, and we explored the answers to the
questions proposed in Section I. Based on the experimental
results above, four important findings are summarized as
below.

1) Existing Lagrange multiplier determination models in
both H.264 and HEVC reference encoders are close to
optimum for I and P/Bp frames, but do not perform well
for Bb frames.

2) Optimum λ values for Bb frames in both encoders are
content dependent – higher for static scenes and lower
in cases with significant dynamic content.

3) Distortion statistics could be used to predict optimum
Lagrange multipliers for Bb frames.
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Fig. 4: The rMSE versus rλ. Green curves represent the fitting curves.
Results for (a) H.264 with GOP length 4, (b) HEVC with GOP length
4 , (c) H.264 with GOP 8, (d) HEVC with GOP 8, (e) H.264 with
GOP 16 and (f) HEVC with GOP 16.

IV. PROPOSED ALGORITHM

In order to adaptively predict optimum Lagrange multipliers
for Bb frames, a novel content-based determination approach
is proposed, inspired by the experimental results in Section III
and our preliminary model in [9], which uses lower Lagrange
multiplier values for dynamic scenes, and higher ones for
static content. This method operates under the assumption
that within a few temporally localized frames, providing there
are no significant content changes, the RD characteristics
are approximately uniform. Lagrange multipliers could thus
be adaptively modified according to distortion statistics from
recently encoded frames. This assumption may of course break
when there are scene cuts. To account for this, a shot cut
detector should be employed prior to λ adaptation.

A diagrammatic illustration of the proposed method is
shown in Fig. 5. Before encoding each frame, possible shot
transitions are firstly identified using a scene cut detection
approach based on histogram differences. In cases with scene
cuts, when the uniform assumption is not applicable, all
statistical variables are reset, and the original Lagrange mul-
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Fig. 5: The proposed method.

tiplier model is used. For frames without shot transitions,
only Bb frame λ values are adaptively modified if sufficient
distortion information has been recorded. The distortion of
every encoded frame is recorded to update the statistical
variables for future λ modification.

The proposed algorithm consists of three primary sub
stages: scene cut detection, distortion information updating and
Lagrange multiplier modification. These are described in detail
below.

A. Scene Cut Detection

Scene cut detection can be based on numerous measures
including histogram differences (HistD), edge change ratio,
and sum of absolute differences [41]. In the context of video
compression, we employ a simple but efficient HistD-based
approach with a constant threshold.

In our method, the normalized luma histogram of the current
frame, Histt, is firstly computed alongside that of its previous
coded frame (if applicable), Histtp . Their average absolute
difference HistDt is then compared with a fixed threshold
THSC to identify the scene cut. This process is described by
(13) and (14)

HistDt =

2L−1∑
i=0

|Histt(i)−Histtp(i)|
2L

, (13)

and{
HistDt ≥ THSC, there is scene cut in this frame
HistDt < THSC, there is no scene cut in this frame .

(14)
where L represents bit depth, and THSC is chosen as 0.002
for normalized histogram of 8 bit luminance. This value is
empirically obtained through a preliminary training process
on limited sequences, and it was found not to be significantly
sensitive to content type.

As shown in Fig. 5, when a scene cut is detected, all
existing statistical variables are reset, and the original La-
grange multipliers for this frame will be used in rate-distortion
optimization.

B. Distortion Information Updating

To adaptively adjust Lagrange multipliers, sufficient distor-
tion information – from at least one consecutive GOP must

be recorded. Here two distortion statistics, DP and DB , are
defined for P/Bp and Bb frames respectively.{

DP/B,k = MSEP/B,k, if DP/B,k−1 = 0 or k = 1
DP/B,k = θ1 ·DP/B,k−1 + θ2 ·MSEP/B,k, otherwise ,

(15)
in which DP/B,k represents the accumulated distortion DP or
DB based on frame type, having its initial value set to zero. k
is the number of P/Bp or Bb frames which have been coded,
which is counted following the encoding order. MSEP/B,k
stands for the mean squared error of the most recently coded
frame. θ1 and θ2 are pre-configured weighting parameters,
combining the existing distortion with the latest MSE. Here
θ1+θ2 = 1, and θ2 > θ1. This configuration is to place greater
emphasis on recently encoded frames.

C. Lagrange Multiplier Modification

With sufficient distortion information recorded from previ-
ously coded frames, the Lagrange multiplier for the current
Bb frame (λn) is adaptively modified from that of the most
recently coded Bb frame (λn−1) following:

λn = λn−1(a(rMSE + d)b + c), (16)

where rMSE is the distortion ratio which is derived as follows:

rMSE,n =
DP,m

DB,n
, (17)

in which m represents the number of encoded P/Bp frames
when n Bb frames have been processed.

It is noted that the proposed model predicts the optimum
Lagrange multiplier values based on the distortion statistics of
previously encoded frames rather than those for the current
frame. This may lead to a slightly inaccurate estimation,
when the rate-distortion performance between frames is not
identical. This inaccuracy can be avoided if the Lagrange
multiplier is only modified when a(rMSE + d)b + c becomes
significantly different from 1. In Section III-C, the bitrate
savings obtained using optimum Lagrange multipliers were
observed to becomes less significant (below 2%) when rλ falls
within a certain range (r1, r2). We thus exploit this observation
in our approach, keeping the modified Lagrange multiplier
constant:

λn = λn−1, if r1 <
λn
λn−1

< r2. (18)

In cases when there is significant difference between λn and
λn−1, we confine this change to within a ±5% range to avoid
noticeable quality variations, i.e.{

λn = 95% · λn−1, if λn/λn−1 < 95%
λn = 105% · λn−1, if λn/λn−1 > 105%

. (19)

Using this adaptive algorithm, Lagrange multipliers for all
Bb frames can be iteratively obtained, and used for mode,
partition and prediction selections at various levels in the rate-
distortion optimization process.
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D. Model Parameters

There are in total nine parameters employed in our adaptive
algorithm: a, b, c, d, r1, r2, θ1, θ2 and THSC. The former three
are obtained based on the power function fitting described in
Section III-C. Parameter d is related to the used GOP sizes,
and its values for GOP length 4, 8 and 16 are also determined
based on the fitting. These three GOP lengths are commonly
used in both H.264 and HEVC reference encoders. For other
GOP configurations, the value parameter d may vary and could
be obtained using the same approach.

TABLE III: Model parameters used in the proposed λ determination
method for both H.264/AVC and HEVC reference encoders.

Encoder a b c
d

GOP 4 GOP 8 GOP 16

H.264 JM 2.696 10.06 0.367 0 0.05 0.07
HEVC HM 2.197 5.196 0.308 0 0.04 0.01

Encoder r1 r2 θ1 θ2 THSC

H.264 JM 0.7 1.7 0.2 0.8 0.002
HVEC HM 0.75 1.5 0.2 0.8 0.002

Moreover, thresholding parameters r1 and r2 are configured
based on the experimental results in Fig. 3. Finally θ1 and θ2

are weighting parameters for updating distortion information.
All parameter values are listed in TABLE III.

V. RESULTS AND DISCUSSION

After integration into the H.264/AVC and HEVC reference
software, the proposed adaptive Lagrange multiplier determi-
nation method was tested on a video dataset with various
content at different resolutions. The RD performance of the
proposed method is compared with that of the original λ
determination model in both encoders under multiple test
conditions. The computational complexity of this approach is
also estimated.

A. Test Dataset

Thirty-six test clips are used, all in progressive YUV 4:2:0
format, obtained from public video databases including the
HEVC recommended test pool [39, 42], the DynTex database
[37], the BVI video texture dataset [38] alongside other com-
monly used sequences. These test sequences can be divided
into three content classes: (A) static scenes, (B) dynamic
scenes, and (C) mixed scenes, as in Section III. Videos in
each class can be further classified into four groups according
to their spatial resolutions: three at CIF (352×288) resolution,
three at 416×240, three at 832×480 and three at 1920×1080.
The latter three groups contain videos at different spatial
resolutions with identical content, in order to investigate the
influence of various resolutions. A description of these videos
is provided in Table IV, and their sample frames are shown
in Fig. 6.

In order to quantify the content of this dataset, three low-
level feature descriptors were computed for each original
video: mean spatial information (SI), colorfulness (CF) and
mean temporal information (TI). The detailed description of

TABLE IV: Test clips used for evaluation compression performance.

Group Sequence and Length Source& Class

I.A Akiyo (300f), News (300f), Silent (300f) Standard
II-IV.A Clouds (240f), Fungus (240f), Squirrel (240f) BVI

I.B Shadow (300f), Shower (250f), Wheat (250f) DynTex
II-IV.B Drops (300f), Plasma (240f), Sparkler (300f) BVI

I.C Bus (150f), Tempete (260f), Soccer (300f) Standard
II-IV.C Cactus (300f), ParkScene (240f), Tennis (240f) HEVC

these features can be found in [43, 44]. The coverage and
distribution of these features on the test dataset are shown in
Fig. 7. It is noted that this dataset offers good coverage over
these descriptors, compared with other public video databases
reported in [43].

B. Test Conditions

The proposed algorithm was fully tested under six groups
of test condition with different GOP structures (GOP length 4,
8 and 16 with hierarchical and non-hierarchical B frames), as
summarized in Table VI. Other primary configuration include:
JM 15.1 and HM 14.0 were employed as reference modules
for H.264 and HEVC respectively; uniform QPs were used for
all test frames – from 22 to 42 with an interval as 5; High
profile and Main profile were selected for H.264 and HEVC
encoders respectively; only one I frame was encoded for each
test.

The compression performance of the proposed algorithm
for both H.264 and HEVC was benchmarked against the
corresponding anchor encoders based on the Bjøntegaard delta
measurements (BD-rate and BD-PSNR) [45] for the cases (i)
all frames (ii) only Bb frames.

C. Test Results for Various GOP Structures

The average bitrate savings together with the mean PSNR
gains over the anchor encoders are shown in Table V, where
the results under various test conditions are provided for all
frames and Bb frames only. For seven test configurations, the
average BD-Rate and BD-PSNR values are summarized for
four resolution groups (I, II, III, and IV) and three content
classes (A, B and C). It can be observed that the proposed
method consistently offers superior overall performance for
different test groups (resolution) and classes (content). The
average bitrate savings for hierarchical B frame structure
configurations are approximately 3% over both H.264 and
HEVC anchor encoders. It is also noted that this improvement
becomes more significant on static and dynamic content (Class
A and B) than on video clips with mixed content (Class C)
for the various test conditions.

In order to provide some indication of perceptual quality
improvements using the proposed method, Table VII shows
additional comparative results using the PVM metric [23].
PVM was chosen as it provides improved correlation with
subjective scores across a wide variety of content types and
distortions. The results in Table VII show close agreement
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TABLE V: Summary of compression results.

Observed Frames All frames Bb frames only

Anchor Encoders H.264 JM HEVC HM H.264 JM HEVC HM

Test No. Group/Class BD-PSNR BD-Rate BD-PSNR BD-Rate BD-PSNR BD-Rate BD-PSNR BD-Rate

Test i.
(4-HB)

I 0.21dB -3.4% 0.13dB -2.5% 0.28dB -12.3% 1.31dB -15.3%
II 0.18dB -2.9% 0.13dB -2.8% 0.67dB -11.0% 1.07dB -18.9%
III 0.23dB -4.2% 0.21dB -4.3% 0.26dB -4.9% 0.72dB -13.5%
IV 0.17dB -3.1% 0.10dB -2.4% 0.51dB -9.1% 0.99dB -19.2%

A 0.11dB -2.3% 0.19dB -4.2% 1.19dB -26.7% 2.73dB -36.8%
B 0.45dB -7.1% 0.17dB -3.1% 0.10dB -1.2% 0.24dB 5.1%
C 0.03dB -0.7% 0.06dB -1.8% -0.01dB -0.0% 0.59dB -18.4%

Overall 0.20dB -3.4% 0.14dB -3.0% 0.43dB -9.3% 1.02dB -16.7%

Test ii.
(8-HB)

I 0.18dB -2.9% 0.13dB -2.5% 0.75dB -12.2% 1.16dB -13.1%
II 0.15dB -2.5% 0.12dB -2.6% 0.71dB -12.1% 0.90dB -15.2%
III 0.19dB -3.4% 0.21dB -4.3% 0.29dB -6.4% 0.51dB -9.7%
IV 0.15dB -2.6% 0.10dB -2.2% 0.55dB -10.3% 0.93dB -17.5%

A 0.14dB -3.0% 0.23dB -4.7% 1.43dB -25.3% 2.32dB -32.7%
B 0.36dB -5.6% 0.18dB -3.3% 0.26dB -4.2% 0.05dB 1.2%
C -0.00dB 0.0% 0.02dB -0.7% 0.03dB -1.2% 0.36dB -10.1%

Overall 0.17dB -2.9% 0.14dB -2.9% 0.57dB -10.2 0.88dB -13.9%

Test iii.
(16-HB)

I 0.11dB -1.7% 0.12dB -2.4% 0.50dB -8.1% 1.09dB -12.4%
II 0.13dB -2.2% 0.12dB -2.7% 0.46dB -8.7% 0.83dB -14.7%
III 0.12dB -2.0% 0.22dB -4.6% 0.16dB -3.3% 0.45dB -9.6%
IV 0.12dB -2.0% 0.09dB -2.0% 0.41dB -8.0% 0.67dB -14.1%

A 0.16dB -3.3% 0.27dB -5.7% 0.96dB -18.3% 2.06dB -30.3%
B 0.23dB -3.3% 0.11dB -2.1% 0.20dB -2.8% 0.02dB -0.4%
C -0.04dB 0.8% 0.04dB -1.1% -0.01dB 0.0% 0.20dB -7.4%

Overall 0.12dB -1.9% 0.14dB -3.0% 0.38dB -7.0% 0.76dB -12.7%

Test iv.
(4-NHB)

I 0.22dB -3.5% 0.14dB -2.6% 0.68dB -12.1% 0.97dB -12.2%
II 0.18dB -2.9% 0.13dB -2.5% 0.69dB -12.1% 0.95dB -14.9%
III 0.24dB -4.4% 0.20dB -4.0% 0.28dB -6.0% 0.57dB -9.8%
IV 0.17dB -3.1% 0.10dB -2.2% 0.58dB -8.6% 0.66dB -15.2%

A 0.15dB -3.1% 0.16dB -3.3% 1.50dB -26.2% 2.36dB -34.5%
B 0.43dB -6.7% 0.25dB -4.5% 0.17dB -2.7% 0.31dB 6.3%
C 0.02dB -0.6% 0.02dB -0.8% -0.00dB -0.2% 0.30dB -10.8%

Overall 0.20dB -3.5% 0.14dB -2.9% 0.56dB -9.7% 0.79dB -13.0%

Test v.
(8-NHB)

I 0.23dB -3.8% 0.15dB -2.9% 0.79dB -11.8% 0.96dB -12.9%
II 0.19dB -3.1% 0.14dB -3.1% 0.63dB -11.0% 0.84dB -15.8%
III 0.24dB -4.3% 0.21dB -4.4% 0.28dB -6.0% 0.48dB -9.2%
IV 0.19dB -3.4% 0.12dB -2.6% 0.53dB -9.5% 0.69dB -15.9%

A 0.20dB -4.1% 0.27dB -5.7% 1.33dB -22.9% 2.10dB -34.4%
B 0.42dB -6.3% 0.18dB -3.3% 0.33dB -5.2% 0.05dB 1.0%
C 0.02dB -0.5% 0.02dB -0.8% 0.02dB -0.7% 0.17dB -7.0%

Overall 0.21dB -3.6% 0.16dB -3.3% 0.56dB -9.6% 0.74dB -13.4%

Test vi.
(16-NHB)

I 0.22dB -3.4% 0.16dB -3.2% 0.57dB -8.9% 0.83dB -12.5%
II 0.19dB -3.3% 0.16dB -3.5% 0.48dB -8.9% 0.78dB -15.6%
III 0.21dB -3.7% 0.21dB -4.5% 0.21dB -4.1% 0.41dB -8.7%
IV 0.20dB -3.8% 0.12dB -2.6% 0.44dB -8.2% 0.63dB -15.0%

A 0.21dB -4.2% 0.34dB -7.3% 0.92dB -16.9% 1.82dB -32.8%
B 0.39dB -5.9% 0.11dB -2.1% 0.35dB -5.5% 0.02dB -0.5%
C 0.02dB -0.4% 0.03dB -1.0% 0.01dB -0.2% 0.15dB -5.6%

Overall 0.21dB -3.5% 0.16dB -3.5% 0.42dB -7.5% 0.66dB -13.0%

N.B. X-HB represents GOP length X with hierarchical B frames, in which X stands for either 4, 8, or 16. X-NHB stands for GOP length
X non-hierarchical B frames.
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Fig. 6: Sample frames from test sequences along with their class/group indices.
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Fig. 7: The feature coverage and distribution of the test dataset.

TABLE VI: Various test conditions.

Test Conditions i ii iii iv v vi

B frame type Hierarchical B Non-hierarchical B

GOP length 4 8 16 4 8 16

with the PSNR-based results in Table V, further validating the
benefits of our approach.

Example RD curves comparing the proposed method with
conventional H.264 and HEVC reference encoders for three
test sequences are shown in Fig. 8. The selected sequences
represent typical content from each class based on various
test conditions. Evident bitrate savings can be observed from
the proposed method over the anchor approach, especially for
the ‘Fungus’ sequence in Class A and ‘Shadow’ in Class B.

TABLE VII: Compression results in terms of BD-rate based on PVM.

Test JM HM Test JM HM

i. (4-HB) -5.2% -2.9% ii. (4-NHB) -5.4% -3.1%

iii. (8-HB) -4.6% -2.8% iv. (8-NHB) -6.2% -3.2%

v. (16-HB) -3.6% -2.5% vi. (16-NHB) -6.0% -3.0%

D. Test Results on Adaptive QP Configurations for HM
The proposed model was also tested on the HEVC reference

encoder using the Random Access (RA) configurations (GOP
length 8) in JCTVC-L1100 [33] and JCTVC-X0038 [35], in
which fixed non-zero QP offset values are utilized for different
B frame hierarchical levels. These configurations have been
shown to yield improved overall rate-distortion performance.
However they may also produce significant temporal quality
variations due to the large QP differences between frames.

The compression results for different test groups (classified
by resolution) are summarized in TABLE VIII. It should
be noted that our method was trained using a constant
QP configuration (QP offset equals 0). Therefore this will
clearly not be optimum when large QP offsets are employed.
Nevertheless, the proposed approach still shows consistent
overall bitrate savings across video groups at various spatial
resolutions, with an average BD-rate values at 1.1% and 0.5%
for JCTVC-L1100 and JCTVC-X0038 respectively. According
to the results in [40], the use of fixed QP offset values does
not provide optimum R-D performance for all types of content.
More significant bitrate savings may therefore be possible if
our Lagrange multiplier determination approach is combined
with a content-based adaptive QP model. This is a topic for
future research.

TABLE VIII: HEVC compression results (BD-rate against original
HEVC HM) based on the RA configurations (GOP 8) in [33] and
[35].

Test Group I II III IV

JCTVC-L1100 -1.2% -1.1% -1.2% -1.0%
JCTVC-X0038 -0.5% -0.6% -0.4% -0.4%

E. Complexity estimation
Finally, the computational complexity of the proposed al-

gorithm was estimated based on the relative execution time
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Fig. 8: RD curves for HD sequences Cactus, Drops and Squirrel under various test conditions.

of the proposed and original anchor encoders. The average
encoding times for both the proposed method and the anchor
were calculated. The results are shown in Table IX which
presents the percentage increase in encoding time for the
proposed method, referenced against the anchor. The aver-
age additional complexity of our approach was found to be
insignificant, with only 5% and 2% increases over H.264 JM
and HEVC HM modules respectively. The results also indicate
that the increases are mainly (more than 90% of the additional
complexity) due to the scene cut detection method used, which
only consumes linear time O(n) – where n is the number of
pixels in each frame. All complexity figures were obtained
using an Intel Core i7-2600 CPU @3.40Ghz PC platform.

TABLE IX: Complexity analysis.

Test JM HM Test JM HM

i. (4-HB) 6.6% 2.0% ii. (4-NHB) 4.6% 1.2%

iii. (8-HB) 6.0% 2.2% iv. (8-NHB) 2.9% 1.6%

v. (16-HB) 4.2% 1.6% vi. (16-NHB) 3.3% 1.8%

VI. CONCLUSIONS

In this paper, we conducted a Lagrange multiplier selection
experiment using modern hybrid video encoders. Experimental
results demonstrate the optimality of existing λ determination
methods in H.264/AVC and HEVC reference encoders for
encoding I and P/Bp frames, but highlight the shortcomings
of these models for Bb frames. The relationship between
two ratio indices – the distortion ratio between P/Bp and
Bb frames, and the ratio between the optimum Lagrange
multipliers and the original ones was discovered which led to
a new adaptive determination method for Bb frame encoding.
This approach has been evaluated for various content types and
test conditions. The results show consistent RD performance
improvement over the anchor encoders, for both H.264 and
HEVC with various hierarchical B-frame configurations. BD-
rate savings average 3% when constant QP values are used
for all frames, and 0.5% when non-zero QP offset values
are employed for different levels in the B-frame hierarchy. In
terms of future work, the authors suggest combining adaptive

λ determination with varied quantisation parameters, and also
performance evaluation using subjective quality assessment.
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