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Abstract: Many service components in power generation and aerospace industries operate at high tem-

peratures and stresses that make them susceptible to creep deformation and damage. Their 

complex geometries and load multi-axiality are often treated only approximately in assessing 

their structural integrity via assessment codes that are based on standard creep tests. For ex-

ample, the forward creep (defined here as constant load creep) test of round bars is not a true 

representation of the stress state that service components generally experience. The experi-

ments conducted in this work used notched bar specimens to simulate the effect of stress tri-

axiality. The results from these experiments were then used to validate a well-established 

creep ductility exhaustion damage model. Although the damage model is largely based on 

uniaxial creep rupture tests, it has been previously adapted so that it can be applied to more 

complex states of stress. Rupture calculations were conducted prior to experimental testing to 

obtain an estimation of the duration of the experiments. The finite element simulation results, 

which utilised previously developed creep deformation and damage models, were then com-

pared to the experimental data. It was shown that the model predicted the correct trend for the 

creep deformation and failure of the specimens and primary, secondary and tertiary creep 

behaviour of notched bars could be captured. The tests imply that the effective creep ductility 

was smaller at lower stresses, i.e., at slower strain rates creep strain was more damaging. 

 

1. Introduction  

 

Stainless steel is commonly used in the fabrication of components in the power generation 

industry. These components are subjected to high temperature creep during plant operation, 

typically at 550˚C, and therefore it was important to evaluate their behaviour in the creep re-

gime. Both creep deformation and creep damage play a significant role in the fitness for service 

of such components. Creep damage is a phenomenon that occurs in metals after prolonged 

exposure to high stress and high temperature and it can lead to catastrophic failure. It can ini-

tiate early in operation and develop gradually throughout the life of a component [1, 2]. The 

main aim of this research was to determine whether creep strain is more damaging to a speci-

men if accumulated more slowly. A model capable of forecasting creep damage correctly 

within a material/component can be used to estimate its creep life. With an increasing need to 

extend the lives of UK nuclear power plants, it is important to be able to accurately predict 

when failures are likely to occur so that safe operation can be achieved. It has been observed 

that the current methods for forecasting the accumulation of creep damage tend to be very 

conservative [3, 4], whereas the more modern technique reported in this work is thought to be 

more accurate, but has not been implemented extensively.  

 

Uniaxial stress relaxation behaviour has been investigated in previous research by Spindler [5]. 

Uniaxial loading conditions are not truly representative of plant operating conditions because 

complex geometries and loading conditions are often present. Notched bar tests have been con-

ducted by previous researchers to determine the multiaxial effect on creep ductility [6-8], de-

fining creep ductility as the creep strain on failure. In this research notched bar specimens have 

been used to introduce a stress triaxiality [4, 9-11]. The degree of triaxiality of the stress state 

is defined through a stress triaxiality factor, ƞ, defined as: 

 
Equation 1 

ƞ =
σp

σ̅
 



 

where σp  is the hydrostatic stress and σ̅ is the von Mises equivalent stress. A high stress triax-

iality factor accelerates structural degradation of components [11]. Ductility exhaustion, which 

is affected by the stress triaxiality factor, is postulated to be a governing factor in creep failure 

[12]. Consequently, it is important to evaluate the effects of notches on the creep deformation 

and damage for more realistic prediction of service components life. 

 

Takahashi et al [13] conducted tests at 550˚C on notched bar specimens fabricated from Type 

316FR stainless steel, a similar material to the one used in this study. They found that with an 

increase in net section stress the time to rupture was exponentially reduced. With a notch acuity 

of 2 (notch acuity is defined as a/R where a is the radius of specimen at the notched section and 

R is the radius of the notch) and a net section stress of 353MPa the time to rupture was 218 

hours. Using an identical specimen with a net section stress of 245MPa the time to rupture was 

94,177 hours. They found that extension of the specimens on failure increased with an increase 

in net section stress. With a net section stress of 353MPa the extension on failure was 39% and 

with a net section stress of 245MPa the extension on failure was 28%, these extension values 

did not include the loading phase (plastic strain). These results also showed a greater reduction 

in cross sectional area of the specimens at the notch with increased net section stress. The 

reduction of area at the notch on failure for the test with a net section stress of 353MPa was 

52% and 45% with a net section stress of 245MPa. These values for reduction in area did not 

include plastic loading strain.  

 

Spindler derived an empirical equation from multi-axial creep data of Type 316 stainless steel 

that incorporates cavity nucleation within creep behaviour[14]. The damage model presented 

is: 

 
Equation 2: 

ε̅f

εfu
= exp [p (1 −

σ1

σ̅
)] exp [q (

1

2
−

3σp

2σ̅
)] 

 

Where ε̅f and εfu are the von Mises equivalent and uniaxial strains to failure, respectively. σ1, 

σ̅ and σp are the maximum principal, von Mises equivalent and hydrostatic stresses, respec-

tively. p and q are constants based on the material and test temperature. They were calibrated 

to give the best fit for Type 316 stainless steel at 550˚C using notched bars with a notch acuity 

5 in previous research conducted by Spindler[15]. The values of p and q established by Spindler 

were 1.2 and 1.0 respectively for the material used in this study.  

 

Similar methods for assessing creep rupture of notched bars fabricated from Type 316H stain-

less steel at 550˚C have been conducted by previous researchers [2, 15]. Chang-Sik Oh et al 

achieved this by implementing a model incorporating ductility exhaustion [16, 17]. In this 

model when damage becomes unity at a gauss point all the stress components are reduced to a 

small value to simulate progressive failure. This model was found to have good agreement with 

experimental data. 

 

The main aim of these experiments was to determine whether creep strain accumulated at dif-

ferent rates was equally damaging to the specimens. Another aim was to investigate how intro-

ducing a stress triaxiality affects the level of damage accumulation. These experiments were 

also conducted to investigate whether the deformation and onset of damage could be predicted 

in notched bar rupture tests. The deformation and damage were simulated using the Spindler 

damage function and the uniaxial creep constants for this material cast. Previous research found 

that failure strain depends on the stress state [18].  



 

2.  Methodology 

 

2.1. Experimental 

 

Existing data for forward creep tests (constant load creep tests) with un-notched specimens was 

used to obtain the primary and secondary creep constants for the specific cast [4, 14, 19, 20].  

Primary creep was of the form [21]: 
Equation 3 

𝜀𝑝 = 𝐴𝜎𝑛𝑡𝑚 

And secondary creep rate of the form: 
Equation 4 

𝜀𝑆̇ = 𝐶𝜎𝑛1 

 

Forward creep tests were then conducted on notched bar specimens to investigate how intro-

ducing a stress triaxiality affects the level of damage accumulated. It was ensured that the plain 

bar specimens endure the same level of stress that the notched specimens experience on average 

across the ligament. It can therefore be expected that any change in the creep behaviour of 

notched specimens is attributed to the notch, including the increased stress triaxiality factor. 

 

Standard dead weight creep machines were used to conduct tests at 550°C. Two different types 

of creep rig were used; one design was automatically levelled and the other manually levelled. 

The automatically controlled test rigs were connected to capstans that kept the lever arms hor-

izontal during a creep test. The manually levelling rigs were adjusted in accordance to the spirit 

levels attached to them. On both rig designs the specimens were connected at the middle of the 

rig and attached to the lever arm at the top of the specimen, and a 25kN load cell at the bottom. 

On the manually controlled rigs the load cell was attached to the manual levelling device and 

on the automatic rigs it was connected to the capstan. The load cell, which was at the base of 

the rigs, and connected to the data logger, measured the applied load. Thermocouples measured 

the temperature at the top, middle and bottom of the sample together with the room tempera-

ture. 

 

The extension of the gauge length of the specimens (28.25mm) was measured using an exten-

someter and linear variable differential transformer (LVDTs). On two tests the specimen diam-

eter was also measured. A diametric extensometer provided a measurement at the notch. A data 

logger captured temperature, load and extension data throughout the test together with diameter 

when available. As an alternative to the diametric extensometer a camera system allowed meas-

urement of the complete notch profile. A USB camera (Logitech C270, 1280 X720 pixels) was 

adapted to take a zoom lens (Tokina TV lens 7900754, 1:2.5/22-88mm) and imaged the speci-

men though a 14mm diameter hole in the furnace. The sample was illuminated with a ring of 

light emitting diodes positioned around the optical axis. The camera was read out into a laptop 

and images were captured every 5 minutes. Analysis of these images provided the diameter of 

the specimen and the notch together with the notch profile throughout the test. The camera set 

up is shown in Figure 1. A focusing lens was attached to a simple webcam. This method was 

chosen because the images from the camera allowed the reduction in notch diameter, the notch 

opening and deformation of the specimen to be measured.  

 



 

 
Figure 1 - Camera set up for notch imaging 

 

The material, from which the specimens were fabricated, was a single cast of Type 316H aus-

tenitic stainless steel (internally referred to as cast 69431). The plant item from which the ma-

terial was extracted has previous service history during which it was subject to temperatures 

between 480˚C and 510˚C for 50,000 hours. This caused thermal aging which altered its creep 

characteristics, details of which are described elsewhere [22, 23]. The material was chosen 

because there was existing uniaxial creep data for this material [5, 24]. The chemical compo-

sition of the material is shown in Table 1. 

 
Table 1 - Chemical Composition of the Type 316H in Weight Percentage [15] 

Element C Si Mn S P Ni Cr Mo Co B 

wt% 0.06 0.4 0.98 0.014 0.021 11.83 17.17 2.19 0.1 0.05 

 

Creep tests of circumferentially notched bar specimens were performed and compared with 

existing data for plain bar specimens to obtain strain time data with stress triaxiality for a single 

cast of Type 316H austenitic stainless steel. It is important to note that the variation of creep 

behaviour between different casts can be significant and the use of a single cast was deliberate 

to remove this source of scatter. All cylindrical specimens were machined to meet codes of 

practice for conducting experiments with notched bars [25]. Dimensions are shown graphically 

in Figure 2 and stated in Table 2. All specimens had a notch acuity of 5 [18, 24, 26] This was 

to ensure that the notch was sharp enough to create an increased stress triaxiality and still within 

machining limits. 

 



 
Figure 2- Specimen Dimensions (tolerances of 0.01mm for machining) 

 
Table 2 - Specimen Dimensions 

Notch Acuity (a/R) R (mm) a (mm) b (mm) L (mm) 

5 0.4 2 2.83 28.25 

 

Where R was the radius of the notch, a was the radius of the specimen at the notch, b was the 

radius of the specimen away from the notch and L was the gauge length of the specimen. 

 

 

2.2. Numerical analysis 

 

Finite element simulations were conducted using Abaqus version 6.14 [27]. Initial simulations 

were conducted on a round bar specimen to ensure that elastic and plastic loading conditions 

could be accurately captured in the model. These simulations were compared with experimental 

data for the load up of uniaxial creep tests at varying stresses. Then primary and secondary 

creep were added to the model and again validated against experimental data. 

 

The next step of the simulation was introducing the notched specimen used in the tests con-

ducted for this research. A mesh sensitivity study found that the elements at the notch tip needed 

to be 0.01mm or smaller for the result to be mesh independent. Approximately 1000 structured 

quadratic elements were used. The part was axisymmetric, a further plane of symmetry was 

added along the centre line of the notch. The load was applied as a constant pressure on the top 

edge of the specimen. The analysis was conducted assuming ‘large displacements’ (NLGEOM 

ON) since the notch geometry changes substantially under load. 

 



Modelling creep of notched bars was done via employing a user subroutine to incorporate the 

empirical constants for primary and secondary creep. Tertiary creep was simulated by factoring 

the nominal strain rate by 1/(1-DC
3) using the Spindler damage model, where DC is the damage 

defined by equation 5, below. This factor has been implemented successfully in previous re-

search by Spindler on this material [28]. The Spindler damage model was based on ductility 

exhaustion and the triaxiality factor given by equation 2. These simulations were used to de-

termine the stress, strain and damage across the notched section.  

 

The following constants were used: 

 
Table 3 - Constants used in finite element simulations 

E (MPa) ν A  n m C  n1 Uniaxial  

Ductility, εfu 

165,000 0.3 1.84E-12 4.5 0.421 2.49E-27 9.17 10.7% 

(Units of A and C are such that strain rates result in absolute per hour for stress in MPa and 

time in hours). 

 

where E and ν were the Young’s modulus and Poisson’s ratio for material at 550˚C respec-

tively, (obtained from a tensile test on this material at 550˚C). A, n and m were the primary 

creep constants, and C and n1 were the secondary creep constants. These were calculated from 

experimental data on round bars fabricated from the same component and cast of 316H [24]. 

The elastic-plastic stress-strain response values were taken from a tensile test for this material 

at 550˚C conducted within this work according to ASTM [29]. A creep damage function was 

added to the user subroutine so that tertiary creep and damage could be accounted for in the 

model. This was calculated using ductility exhaustion, as shown in equation 5. 

 
Equation 5 

DC =  
ε̅c

ε̅f
 

 

where ε̅c was the accumulated von Mises creep strain and ε̅f was given by equation 2.  

 

Two different failure cases were modelled. In the first case failure was deemed to have occurred 

when the node of maximum damage reached a DC value of 1. In this work these failures were 

referred to as the Type 1 failure criterion. In the second case failure was deemed to have oc-

curred when all nodes along the line of symmetry going through centre line of the notch reached 

a DC value of 1. These were referred to as the Type 2 failure criterion. When elements reach a 

damage value of 1 (unity) the damage level does not increase any more, but the creep strain 

continues to increase towards infinity and so the load held by these elements falls and the stress 

is concentrated elsewhere, similar to methods used by previous researchers to simulate pro-

gressive failure [16, 17] (in these similar methods the material modulus and yield stress also 

reduce as damage occurs, though this does not apply here). This causes an effect similar to that 

of the elements losing stiffness. This is an approximate allowance for the initiation and propa-

gation of a crack, although the crack tip field is not modelled. 

 

3. Results 

 

3.1. Experimental 

 



The results of the tests are reported in Table 4 and shown graphically in Figures 4 to 7. Nine 

creep rupture tests were conducted on notched bar specimens with various stresses and a notch 

acuity of 5. The test with a net section stress of 260MPa was interrupted by a power cut which 

resulted in the structural integrity of the specimen being lost.  

 
Table 4 - Experimental results (test at 260MPa was interrupted by a power cut which led to damage of specimen) 

 

 

E0 and Ef were the extension after initial loading and on failure respectively. d0 and df were the 

diameter after initial loading and on failure respectively (the diameter and extension after load-

up were measured so that contraction/extension due to plasticity and creep could be separated). 

εh was the surface hoop creep strain. For a notched bar this was calculated using the following 

expression (noting that it is the hoop strain which is related to the measured diameter of the 

specimens. The diameter after initial load-up, d0, was used so that the creep strain could be 

isolated): 
Equation 6 

εh = ln (
df

d0
) 

 

ε̅skf was the skeletal Mises strain on failure. It has been determined in previous work that for a 

notched bar with notch acuity 5 that ε̅skf/ εh=-1.253 [24]. This value was validated within the 

finite element analysis conducted within this work. It was found that after 300 hours of creep 

with a net section stress of 350MPa ε̅skf was 3.9E-3 and εh was -3.1E-3, these values agreed 

with the conversion factor calculated previously by Spindler. The skeletal point is the point 

where the stress state is insensitive to the power law stress dependence of creep. It is often used 

as the point of analysis in notched bar testing [30]. 

 

The rupture time reduced with an increase in net section stress as shown in Figure 3a, the 

maximum time to rupture was 11097 hours with a net section stress of 342MPa, the minimum 

time to rupture was 23 hours with a net section stress of 500MPa. The diameter on failure 

reduced with an increase in net section stress, this can be seen graphically in Figure 3b. The 

maximum diameter on failure was on the lowest stress completed test, the diameter was 

3.79mm on failure with a net section stress of 342MPa and the smallest diameter on failure was 

from the highest stress test, 3.32mm on failure at a net section stress of 515MPa. The relation 

between diameter on failure and net section stress was a linear relationship with every 1MPa 

Net Section 

Stress 

(MPa) 

Rupture 

Time 

E0 (mm) Ef (mm) d0 (mm) df (mm) εh  

(abs) 
ε̅skf 

(abs.) 

260 >4320 0.055 - 3.95 - - - 

342 11097 0.11 0.43 3.91 3.79 -0.0312 0.0391 

390 480 0.29 0.60 3.80 3.70 -0.0267 0.0334 

432 175 0.58 1.00 3.80 3.68 -0.0321 0.0402 

436 307 0.70 1.19 3.63 3.54 -0.0251 0.0315 

469 231 0.41 0.84 3.60 3.46 -0.0397 0.0497 

500 16 1.18 1.73 3.65 3.51 -0.0391 0.0490 

500 23 - - 3.82 3.61 -0.0565 0.0708 

515 35 0.56 1.13 3.49 3.32 -0.0499 

 

0.0625 



of stress added the diameter on failure was reduced by 0.0026mm. Extension during creep was 

increased with an increased net section stress as highlighted in Figure 3c. The maximum ex-

tension during creep was 0.57mm and the minimum was 0.31mm. The relationship between 

overall specimen extension during creep and net section stress was linear, with every 1MPa of 

stress added the increase in length of specimen during creep was 0.0016mm. Figure 4 shows 

the time to rupture for various net section stresses. Figure 5 shows the creep ductility on failure 

for the notched specimens (with a/R=5), defined as the skeletal point Mises creep strain, as 

well as the creep ductility on failure for uniaxial specimens with the same cast, conducted in 

previous research [24]. The uniaxial specimens had a significantly larger creep ductility on 

failure. 

 

 

 

 
Figure 3(a,b,c) Rupture time, diameter on failure and extension during creep for various net section stresses (ini-

tial diameter 4mm for all specimens) 

 

 
Figure 4- Rupture time vs net section stress (including FEA) 

 



  

 

 
Figure 5 - Ductility of uniaxial and multiaxial specimens 

 

The lower creep ductility and reduced plastic strain during the lower net section stress experi-

ments is the reason for the reduced extension on failure and less of a reduction in diameter.  

 

 

3.2 Numerical analysis 

 

The results from the finite element model were compared with uniaxial creep data [24]. The 

model accurately predicted Elastic-Plastic Primary-Secondary (EP-PS) creep. The model ac-

curately captured the creep behaviour of round bar specimens subject to constant load creep. 

 

An elastic plastic simulation was conducted with the notched specimen, the hydrostatic, von 

Mises equivalent, maximum principal and net section stresses can be seen along the notched 

diameter in Figure 6. The stress triaxiality (Hydrostatic stress/Mises stress) and Spindler Frac-

tion along the notched diameter can be seen in Figure 7.  

 



 

 

 
Figure 6 – Maximum principal, von Mises equivalent, hydrostatic and net section stresses along the centre line 

after loading up to 342MPa (no creep) 

  

 
Figure 7 – Stress triaxiality and Spindler Fraction along the centre line after loading up to 342MPa (no creep) 

 

 

Figure 8 shows extension against time for the test at 390MPa. Figure 8 shows that the experi-

mental and FEA results were in good agreement regarding to extension at failure. The extension 

on failure was 2% higher in the experiment than the FEA, but the time to rupture was 28% 

longer in the experiment than the FEA. This showed the model was within the margin of error 



expected within creep tests and on the conservative side (the two experiments conducted at 

500MPa were 43% different in time to rupture). 

 

 
Figure 8 - Notched bar with applied net section stress 390MPa 

 

 

Creep Damage 

Figure 9 shows that in the finite element model the Mises creep strain on failure at the point of 

maximum damage increases with the average experimental Mises creep strain rate (defined 

here as failure strain/time to rupture).  

 

 
Figure 9- Mises creep strain on failure against average Mises creep strain rate (FEA) at the point of maximum 

damage 

 

 

Figure 10 shows how damage is accumulated over time at the elements of maximum and min-

imum damage across the notch ligament. Type 1 failure is defined as when the element of 



maximum damage reaches a damage value of 1. Type 2 failure is defined as when all elements 

along the notched diameter reach a damage value of 1. 

 
Figure 10 - Creep damage accumulation over time leading to failures (Net section stress 390MPa (FEA extension 

shown)) 

 

Figure 11 shows the distribution of creep damage across the notch ligament. Figure 11 predicts 

failure will have occurred at the surface earlier than it did at the Skeletal point. This agrees with 

previous notched bar FEA conducted by Spindler [24]. Other research on notched bars has used 

the Skeletal point as a focal point for analysis [30]. This shows that using the Skeletal point 

may give us an underestimate of creep damage at failure (assuming the damage model of equa-

tions 2 and 5).  

 

 
Figure 11 - Creep damage predicted across ligament as first element fails (Type 1 failure distribution) 

Figure 12 shows the experimental reduction in diameter of this specimen compared with the 

reduction in diameter obtained from the finite element model, both plotted against time. From 



this comparison, it can be seen that the reduction in diameter after loading up is captured very 

well by the finite element model as is the reduction in diameter during subsequent creep.  

 
Figure 12 - Reduction in diameter, 500MPa net section stress (data from camera) 

 

Figure 13 shows the notch opening of the same specimen from the same creep test (net section 

stress 500MPa, 550˚C) again plotted alongside the finite element simulation. Again, it can be 

seen that the finite element model accurately captures the behaviour of the specimen. Figure 

13 shows how the overall extension of the specimen is predominantly coming from the notch. 

For the test with a 500MPa net section stress the overall extension on failure was 1.73mm of 

which 1.48mm was notch opening. 85% of the specimen’s extension is from the notch, given 

that the notch only accounts for 3% of the overall length of the specimen it is clear that the 

notch is the area of greatest interest where the highest stresses and strains are apparent. This 

was confirmed by the experimental and finite element work. 

 

 
Figure 13- Notch opening, 500MPa net section stress 



 

Figure 14 shows the final image captured before failure of the specimen from the experiment 

overlayed with the corresponding FEA simulation (500MPa net section stress). This Figure 

shows the deformation of the specimen was captured by the model and the damage throughout 

the specimen can be seen. 

 

 
Figure 14- 500MPa net section stress test, FEA (Type 2 failure) and experimental (last image taken before failure 

of the specimen) 

 

 

 

4. Discussion 

 

Unsurprisingly, all the specimens failed at the notch. This was because the cross-sectional area 

was lowest at the notched section, so the net section stress was the highest at this area. Further-

more a small radius notch was used which generated a high stress concentration factor (approx-

imately 3) and induced triaxiality, which together reduce the time to rupture in a specimen [31]. 

The triaxiality at the notch peaked after initial load, the ratio of hydrostatic to Mises stress 

being almost 3 times the value experienced in cylindrical specimens [5]. 

 

As the net section stress applied to the specimens was increased the time to rupture was de-

creased, the extension on load up was increased and the creep extension on failure was in-

creased. This agrees with research conducted on similar materials that found that creep ductility 

is a function of stress, temperature and loading rates [12].  

 

The finite element model used showed very good agreement with the experimental data in the 

case of uniaxial specimens. This was expected as the constants used in the FEA had been de-

rived from the uniaxial test data. When the FEA was compared to the experimental results of 

the notched bar rupture tests it was found to be within the range of the experimental data but 

towards the conservative side rather than being the average as with the uniaxial data. Agree-



ment between the data and the model was strong with the model able to predict the notch open-

ing and reduction in area of the notched specimen accurately when compared to the data ob-

tained experimentally (with the camera set-up). The model found that damage reaches 1 (first 

element fails (Type 1 failure) approximately 40% of the way into the creep life of the specimen 

then propagates progressively faster through the specimen as creep continues until rupture of 

the specimen when all elements along the root of the notch fail (Type 2 failure). 

 

The test results and the FEA are consistent with an approximately exponential relationship 

between stress and rupture time (Fig.4). A test was started with a net section stress of 260MPa 

on the same specimen geometry and was run for over 4,000 hours and was predicted to be 

approximately one tenth of the way through its creep life from the data till that point but a 

power shutdown in the lab interrupting the furnace and integrity of the specimen led to termi-

nation of the test before rupture of the specimen.  

 

The creep strain at failure was almost twice as large for the higher stress tests than for the lower 

stress tests. This suggests that creep strain is not always equally damaging, the results suggest 

that for a fixed amount of creep strain, the slower it is accumulated the more damaging it is to 

the specimen. Previous work on this material has shown that prior plastic loading will lower 

the creep ductility of a specimen [32], suggesting that the tests conducted at a high load would 

have failed at a greater creep strain had there not been significant plastic strain at the notch 

during load up. This further confirms the view that creep strain is less damaging the faster it is 

accumulated in this material. This implies where damage is predicted from creep-fatigue cy-

cles, and hence repeat relaxations, the initial, faster, phase of relaxation may be less damaging 

than the same strain accumulated slowly. Direct demonstration of this effect is the subject of 

ongoing work by the authors. 

 

It has been postulated that the formation of creep voids/cavities are both stress and time de-

pendent [9]. Using the Monkman-Grant relationship for predicting creep cavitation suggests 

that in the longer term lower stress creep tests, more cavities will form than in the short term 

higher stress tests. The resulting lower cavity spacing could explain the failures occurring at a 

lower creep ductility/extension in the lower stress tests. However, the experimental findings 

stand alone, independent of this proffered mechanistic explanation. 

 

 

5. Conclusions 

Nine experiments with varying net section stresses were conducted on notched bar specimens 

(All specimens had a notch acuity of 5). Notched bar specimens were used to introduce a stress 

triaxiality and reduce failure times. Finite element simulations were conducted using Abaqus 

to determine the behaviour at the notch of the specimens. The conclusions drawn from this 

work were that in creep rupture as the net section stress increases the time to failure reduces 

but the creep ductility on failure increases implying the material has a time or strain rate de-

pendent creep ductility. As net section stress is increased the overall extension of the specimen 

on failure is increased and specimen diameter on failure is reduced. Moreover, the extension 

and diameter change attributable to creep also increase as the net section stress is increased, 

further confirming this material has an increased creep ductility at higher strain rates/stresses. 

As net section stress is increased, hoop and skeletal creep strains on failure are also increased. 

It has been shown that using creep constants derived from uniaxial creep data it is possible to 

accurately capture creep behaviour of notched bar specimens with a notch acuity of 5. The 

highest stress triaxiality factor (hydrostatic stress/Mises stress) occurs just away from the notch 

tip, 1.65mm from the centre line (15% of the distance from the edge of the notch to the centre 

line), the same point on the specimen where damage reaches 1 (unity) first. The higher the net 

section stress and therefore the higher the average creep strain rate in creep rupture tests, the 



higher the extension and creep ductility of the specimens on failure. This leads to the key con-

clusion drawn from this work which is that a given creep strain is more damaging the slower it 

is accumulated in creep rupture of Type 316H stainless steel (i.e., components subject to lower 

strain rates will fail at reduced ductilities). Smaller effective creep ductilities may therefore 

apply at the very slow strain rates relevant to plant operating for several decades.  
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