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Structure of words with short 2-length in a free product of

groups.

Ihechukwu Chinyerea,1,

aDepartment of Mathematical Sciences, University of Essex, Colchester, Essex CO4 3SQ, U.K.

Abstract

Howie and Duncan observed that a word in a free product with length at least two,
which is not a proper power and involves no letter of order two can be decomposed
as a product of two cyclic subwords each of which is uniquely positioned. Using
this property, they proved various important results about a one-relator product of
groups with such word as the relator. In this paper, we show that similar results
hold in a more general setting where we allow a certain number of elements of order
two.

Keywords: One-relator product, unique position, pictures, 2-length
2000 MSC: 20E06, 20F06, 20F10

1. Introduction

Let R be a cyclically reduced word which is not a proper power and has length at
least two in the free group F = F (X). In [12], Weinbaum showed that some cyclic
conjugate of R has a decomposition of the form UV , where U and V are non-empty
cyclic subwords of R, each of which is uniquely positioned in R i.e occurs exactly
once as a cyclic subword of R. Weinbaum also conjectured that U and V can be
chosen so that neither is a cyclic subword of R−1. A stronger version of Weinbaum’s
conjecture was proved by Duncan and Howie [4]. In this paper, a cyclic subword is
uniquely positioned if it is non-empty, occurs exactly once as a subword of R and
does not occur as a subword of R−1.

Throughout this paper G1 and G2 are nontrivial groups and R is a cyclically
reduced word in the free product G1 ∗ G2, which is not a proper power and has
length at least two. Before we can continue, we need to define the notion of n-length
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of a word. We do this in the special case when n = 2 and the word is R, but of course
the definition can be generalized to any integer n > 1 and any word in a group.

For each letter a of order 2 involved in R, let D(a) denote the number of times it
occurs in R. In other words suppose R has free product length of 2k for some integer
k > 0. Then without loss of generality, R has an expression of the form

R =
k∏

i=1

aibi,

with ai ∈ G1 and bi ∈ G2. If a
2 = 1, then we define D(a) to be the cardinality of the

set {i ∈ {1, 2, · · · , k} | ai = a or bi = a}. Denote by SR the symmetrized closure
of R in G1 ∗G2 i.e the smallest subset of G1 ∗G2 containing R which is closed under
cyclic permutations and inversion. Since D(a) is unchanged by replacing R with any
other element in SR, we make the following definition.

Definition 1. The 2-length of SR denoted by D2(SR), is the maximum D(a), such
that a is a letter of order 2 involved in R.

In this paper, we will be mostly concerned with the element R′ in SR of the form

R′ =
D2(SR)∏

i=1

aMi,

where D(a) = D2(SR) and Mi is a word G1 ∗ G2. It follows that each Mi has odd
length (as a reduced but not cyclically reduced word in the free product) and does
not involve the letter a. When we use the notation ‘‘ =” for words, it will mean
identical equality. We will use �() to denote the length operator of a reduced free
product word which is not necessarily cyclically reduced.

As mentioned in the abstract, the authors of [4] observed that in the case of
D2(SR) = 0, the word R can be decomposed as a product of two uniquely positioned
subwords. Using this property, they showed that every reduced picture over a one-
relator product with relator Rm, m ≥ 3 satisfies the small cancellation condition
C(6), from which important results about the group were proved. One of such
results is the Freiheitssatz for one-relator products which states that G1, G2 embed
in G = (G1 ∗G2)/N(Rm),m ≥ 3 under the natural homomorphisms. In this paper,
we work in a slightly more general setting where D2(SR) ≤ 2. In this setting, it is
no longer always possible that R has a decomposition into two uniquely positioned
subwords. Nonetheless, it can be shown that R has a certain structure which allows
one to obtain similar results as in [4]. This structure is captured in the following
theorem which is our main result.
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Theorem 1. Let R be a word in a free product of length at least 2 and which is not
a proper power. Suppose that D2(SR) ≤ 2. Then either a cyclic conjugate of R has
a decomposition of the form UV such that U and V are uniquely positioned or one
of the following holds:

(a) A cyclic conjugate of R has the form aXbX−1, for some word X and some
letters a, b satisfying a2 = b2 = 1.

(b) A cyclic conjugate of R has the form aXbX−1, for some word X and some
letters a, b satisfying a2 = 1 �= b2.

In Theorem 1, the requirement that D2(SR) ≤ 2 is optimal in the sense that
there is no hope to obtain such result when D2(SR) > 2. To see why this is true,
consider the word S =

∏n
i=1 abi, with a ∈ G1 and bi ∈ G2, i = 1, 2, · · · , n. Suppose

that bi �= bj for i �= j and a2 = b2i = 1 for i = 1, 2, · · · , n. It is easy to verify
that D2(SR) = n and Theorem 1 fails for n > 2. In other words, neither does
S have a decomposition into two uniquely positioned subwords, nor does it have a
decomposition of the form aXbX−1 such that a2 = 1.

In [3] (see also [13]), the term “exceptional” was used for a one-relator product
with relator of the form aXbX−1, for some word X and letters a, b (up to cyclic
permutation). In particular if p, q are the orders of a, b respectively, then the one-
relator product G is said to be of type E(p, q,m). When X is empty, G is the triangle
group of type (p, q,m). Hence, G is said to be induced by the (generalized) triangle
group of type (p, q,m) if it is of type E(p, q,m). For us, the term exceptional is
used for the subcase of E(p, q,m) when p �= q, 2 ∈ {p, q} and D2(SR) ≤ 2. In other
words, call R non-exceptional if it satisfies part (a) of Theorem 1, and exceptional
otherwise.

There is an already developed theory for one-relator products of type E(p, q,m)
(see [9, 1, 2]). Hence by Theorem 1, we can apply this theory in our setting. In
the non-exceptional case, the extra structure that a, b are both letters of order 2
(as opposed to just one of them in the exceptional case), allows us to do more. In
particular we have the following result.

Theorem 2. Let R be a cyclically reduced word in the free product G1 ∗G2 such that
D2(SR) ≤ 2. Suppose that R is non-exceptional. Then a non-trivial reduced picture
on D2 over G = (G1 ∗G2)/N(Rm),m ≥ 3 satisfies C(6).

The rest of the paper is arranged as follows. We begin in Section section 2 by
providing some literature on related results. We also recall only the basic ideas about
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pictures. In Section section 3 we prove a number of lemmas about word combinatorics
and pictures. These lemmas are then used to deduce Theorems [1– 2]. In Section
section 4 we deduce a number of applications of our results.

2. Preliminaries

Let G1 and G2 are nontrivial groups and w ∈ G1 ∗G2, a reduced word of length
at least two. Let G be the quotient of the free product G1 ∗G2 by the normal closure
of w, denoted N(w). Then G is called a one-relator product and denoted by

G = (G1 ∗G2)/N(w).

We refer to G1, G2 as the factors of G, and w as the relator. For us, w = Rm, m ≥ 3,
and R is a cyclically reduced word which is not proper power and has length at least
two. When m ≥ 4, a number of results were proved in [6, 7, 8], about G. These
results were also proved in [4] when m = 3, but not without the extra condition that
R involves no letter of order 2. We also mention that the case when m = 2 is largely
open. For partial results in this case see [5, 1, 2]. The aim of this paper is to extend
the result in [4] by allowing to an extent letters of order 2 in R. In [4] it was shown
that Rm satisfies the small cancellation condition C(2m) when D2(SR) = 0, which is
essentially an observation in [11]. A general exposition on small cancellation theory
can be found in [10]. We show that the same result holds in a more general setting,
using the idea of pictures Pictures can be seen as duals of van Kampen diagrams
and have been widely used to prove results about one-relator groups and one-relator
products. Below, we recall only basic concepts on pictures over a one-relator product.
For more details, the reader can see [6, 7, 8, 4, 2].

2.1. Pictures

Let G the one-relator product described above. A picture Γ over G on an oriented
surface Σ is made up of the following data:

(a) a finite collection of pairwise disjoint closed discs in the interior of Σ called
vertices ;

(b) a finite collection of disjoint closed arcs called edges, each of which is a simple
closed arc in the interior of Σ meeting no vertex of Γ or a simple arc joining
two vertices (possibly the same one) on Γ or a simple arc joining a vertex to
the boundary ∂Σ of Σ or a simple arc joining ∂Σ to ∂Σ;
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(c) a collection of labels (i.e elements in G1∪G2), one for each corner of each region
(i.e connected component of the complement in Σ of the union of vertices and
arcs of Γ) at a vertex and one along each component of the intersection of the
region with ∂Σ. For each vertex, the label around it spells out the word R±m

(up to cyclic permutation) in the clockwise order as a cyclically reduced word in
G1 ∗G2. We call a vertex positive or negative depending on whether the label
around it is Rm or R−m respectively. The labels in all corners of any given
region must all be non-trivial elements of the same factor group, G1 or G2.
A G1-region is one in which the labels come from G1. Similarly, a G2-region
is one in which the labels come from G2. Each arc is required to separate a
G1-region from a G2-region. This is compatible with the alignment of regions
around a vertex, where the labels spell a cyclically reduced word, so must come
alternately from G1 and G2.

For us Σ will either be the 2-sphere S2 or 2-disc D2. A picture on Σ is called
spherical if either Σ = S2 or Σ = D2 but with no arcs connected to ∂D2. If Γ is not
spherical, ∂D2 is one of the boundary components of a non-simply connected region
(provided, of course, that Γ contains at least one vertex or arc), which is called the
exterior region. All other regions are called interior regions.

We shall be interested mainly in connected pictures. A picture is connected if
the union of its vertices and arcs is connected. In particular, no arc of a connected
picture is a closed arc or joins two points of ∂Σ, unless the picture consists only
of that arc. In a connected picture, all interior regions � are simply-connected, i.e
topological discs. Just as in the case of vertices, the label around each region – read
anticlockwise – gives a word, which is required to be trivial in G1 or G2.

A vertex is called exterior if it is possible to join it to the exterior region by some
arc without intersecting any arc of Γ, and interior otherwise. For simplicity we will
indeed assume from this point that our Σ is either S2 or D2. It follows that reading
the label round any interior region spells a word which is trivial in G1 or G2. The
boundary label of Γ on D2 is a word obtained by reading the labels on ∂D2 in an
anticlockwise direction. This word (which may be assumed to cyclically reduced in
G1∗G2) represents the identity element in G. In the case where Γ is spherical, we may
assume (by capping off ∂Σ if necessary) that the underlining surface is Σ = S2. We
then define the boundary label of Γ to be the label of the exterior region, which may
be non-trivial in G1 or G2. Note that this is uniquely defined since Γ is connected.
For non-connected pictures the exterior region may in general have more than one
boundary component.

Two distinct vertices of a picture are said to cancel along an arc e if they are
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joined by e and if their labels, read from the endpoints of e, are mutually inverse
words in G1 ∗ G2. Such vertices can be removed from a picture via a sequence of
bridge moves (see Figure 1 and [4] for more details), followed by deletion of a dipole
without changing the boundary label. A dipole is a connected spherical sub-picture
that contains precisely two vertices, does not meet ∂Σ, and such that none of its
interior regions contain other components of Γ. This gives an alternative picture
with the same boundary label and two fewer vertices.

Figure 1: Diagram showing bridge-move.

We say that a picture Γ is reduced if it cannot be altered by bridge moves to a
picture with a pair of cancelling vertices. Any cyclically reduced word in G1 ∗ G2

representing the identity element of G occurs as the boundary label of some reduced
picture on D2.

Definition 2. Two arcs of Γ are said to be parallel if they are the only two arcs in
the boundary of some simply-connected region � of Γ.

We will also use the term parallel to denote the equivalence relation generated by
this relation, and refer to any of the corresponding equivalence classes as a class of
ω parallel arcs or ω-zone. Given a ω-zone with ω > 1 joining vertices u and v of Γ,
consider the ω − 1 two-sided regions separating these arcs. Each such region has a
corner label xu at u and a corner label xv at v, and the picture axioms imply that
xuxv = 1 in G1 or G2. The ω− 1 corner labels at v spell a cyclic subword s of length
ω − 1 of the label of v. Similarly the corner labels at u spell out a cyclic subword t
of length ω− 1 of the label of u. Moreover, s = t−1. If we assume that Γ is reduced,
then u and v do not cancel. In the spirit of small-cancellation-theory, we refer to t
and s as pieces.

As in graphs, the degree of a vertex in Γ is the number of zones incident on it.
For a region, the degree is the number corners it has. For some positive integer p, we
say that a vertex v of Γ satisfies the (local) C(p) condition if it is joined to at least
p zones. We say that Γ satisfies C(p) if every interior vertex satisfies C(p).
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3. Technical results

Let G be the quotient of G1 ∗G2 by N(Rm) for some natural number m ≥ 3 and
cyclically reduced word R ∈ G1 ∗G2 of length at least two. The aim of this section
is to give a number of results on the structure of R when D2(SR) ≤ 2, from which
Theorem 1 follows. It is assumed that no element of SR has the form UV , where U
and V are both uniquely positioned. In particular if D(a) ≥ 2, there exists at most
one i ∈ {1, 2, · · · , D(a)} such that Mi is uniquely positioned in the decomposition

R =
∏D(a)

i=1 aMi.

We now proceed to state and prove a number of lemmas which will be used to
prove Theorem 1.

Lemma 3. Let G = (G1 ∗ G2)/N(Rm),m ≥ 3 with D2(SR) = 1. Then R has a
cyclic conjugate of the form aM or aXbX−1, where a, b are letters of order 2 and M
does not involve any letter of order 2.

Proof. Since D2(SR) = 1, we can assume without loss of generality that R = aM ,
where a ∈ G1 ∪G2 is of order 2 and M is a word in G1 ∗G2 which does not involve
a. We now proceed to show that either M does not involve any letter of order 2 or
M can be decomposed in the form XbX−1, where b ∈ G1 ∪G2 is a letter of order 2
and X is a (possibly empty) word in G1 ∗G2.

Suppose by contradiction that M has a decomposition of the form XbY with
b2 = 1 and X �= Y −1. Without loss of generality we can assume that 0 ≤ �(X) ≤
�(Y ). If �(X) = �(Y ) > 0, then both aX and bY are uniquely positioned which is
a contradiction. There is nothing to prove if �(X) = �(Y ) = 0. Also if �(X) = 0 �=
�(Y ), we get a contradiction since ab and Y will be uniquely positioned. Hence the
inequality 0 < �(X) < �(Y ) holds.

Suppose that X2 = 1 = Y 2. Then by setting X = X1pX
−1
1 and Y = Y −11 qY1,

where X1, Y1 are (possibly empty) words in G1 ∗ G2 and p, q are distinct letters of
order 2 in G1 ∪G2, we can replace R with

R′ = pX ′qY ′,

where X ′ = (Y1bX1)
−1 and Y ′ = Y1aX1. Since a �= b, we have that X ′ �= Y ′−1. Given

that �(X ′) = �(Y ′), we easily conclude that pX ′ and qY ′ are uniquely positioned.
This is a contradiction.

Suppose thatX2 = 1 �= Y 2. By the assumption thatD2(SR) = 1, we know thatX
can not be equal to a segment of Y . Hence aX and bY are both uniquely positioned.
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This is a contradiction. Similarly, suppose that X2 �= 1 = Y 2. Since �(X) < �(Y )
and D2(SR) = 1, we have that both bY and Y a are uniquely positioned. Hence,
neither aX nor Xb is uniquely positioned. This means that X−1 is identically equal
to an initial and a terminal segment of Y . Therefore, X2 = 1. This is a contradiction.

Finally if X2 �= 1 �= Y 2, then aXb and Y are both uniquely positioned. This
contradiction completes the proof.

Lemma 4. Let G = (G1 ∗ G2)/N(Rm),m ≥ 3 with D2(SR) = 2. Then R has a
cyclic conjugate of the form aXbX−1 where a is a letter of order 2.

Proof. Since D2(SR) = 2, we can assume without loss of generality that

R = aM1aM2,

where M1,M2 ∈ G1 ∗ G2, and neither involves the letter a. By assumption M1 and
M2 can not both be uniquely positioned. Let us assume that M1 is not uniquely
positioned. If M2

1 = 1 and M2
2 = 1 hold simultaneously, then by replacing R with a

cyclic conjugate, it can be shown that R has the desired form.

Suppose that �(M1) = �(M2). We can not have M1 = M2 since R is not a proper
power. Also if M1 = M−1

2 , then there is nothing to prove. Since M1 is not uniquely
positioned, we must have that M2

1 = 1. Similarly, if M2 is not uniquely positioned,
then M2

2 = 1, contradicting the above assumption. Hence we may assume M2 is
uniquely positioned. If �(M1) = 1, then there is nothing to prove since M1 has order
2 and so R has the desired form. Hence we assume that �(M1) = �(M2) ≥ 3. Let
M1 = XpX−1 and M2 = Y qZ, with p, q ∈ G1 ∪ G2, p2 = 1, �(Y ) = �(Z) and
Y �= Z−1 (as otherwise there is nothing to prove). Then

R = aXpX−1aY qZ.

Set U = aY q, U ′ = qZa, V = ZaXpX−1 and V ′ = XpX−1aY. Clearly, V 2 �= 1 �= V ′2

since D(a) = 2. Also since Y �= Z−1, it follows that V and V ′ are both uniquely
positioned. Hence neither U nor U ′ is uniquely positioned. It is easy to see that this
means that U2 = 1 or U ′2 = 1 or U ′ = U±1. However, any such occurrence will imply
that a = q or Y = Z−1. This is a contradiction.

Now suppose that �(Mi) �= �(Mj), where i, j ∈ {1, 2} with i �= j. Note that
it is not possible to have that M2

i �= 1 �= M2
j as that will imply that aMia and

Mj are both uniquely positioned, assuming �(Mi) < �(Mj). Suppose that M2
i = 1.

Let Mi = XpX−1 and Mj = Y qZ, with p, q ∈ G1 ∪ G2, p
2 = 1, �(Y ) = �(Z) and
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Y �= Z−1. We claim that exactly one of aY or Za is uniquely positioned. This
is because if both are uniquely positioned, then there is nothing to prove. Also if
neither is uniquely positioned, then Y = Z−1. In both cases we get a contradiction.
By symmetry we assume that aY is uniquely positioned, and hence qZaMi is not.
This leads to a contradiction when �(Y ) ≥ �(Mi) since that will mean Y = Z−1.
Suppose then that �(Y ) < �(Mi). This implies that either Mi is an initial segment of
Mj or M

−1
i is a terminal segment of Mj. As M

2
i = 1, it follows that Mi is either an

initial or terminal segment of Mj. Hence, these exists some W ∈ G1 ∗G2, satisfying
�(W ) = 2n for some integer n > 0, such that either Mj = MiW or Mj = WMi.
Next, replace R by

R′ = pMpN,

where M = X−1aX and N = X−1WaX or N = X−1aWX. We consider first the
case when N = X−1WaX. In this case, the initial segment X−1W of N has length
�(X−1W ) ≥ �(X) + 2. Since D2(SR) = 2, X−1W neither involves a nor p. It follows
that aXpX−1aXp is uniquely positioned. Hence, X−1W is not uniquely positioned.
The length condition on X−1W implies that (X−1W )2 = 1. Again since D2(SR) = 2,
X does not involve a letter of order 2. So W = SxS−1X, for some (possibly empty)
word S and some letter x of order 2. Hence

R′ = pX−1aXpX−1SxS−1XaX.

Consider the cyclic subwords W1 = S−1XaXpX−1aX and W2 = pX−1Sx. Clearly,
W 2

1 �= 1 as otherwise S is empty and more importantly X2 = 1, which is a con-
tradiction. Also, W 2

2 �= 1 since p �= x. In fact, it is easy to see that both W1 and
W2 are uniquely positioned. This is a contradiction. Similar argument works when
N = X−1aWX by replacing W1 and W2 with their inverses. This completes the
proof.

The following lemma gives a necessary and sufficient condition under which the
word R has a decomposition into a pair of uniquely positioned subwords when
D2(SR) = 1.

Lemma 5. Let r be a cyclically reduced word which is not a proper power in the
free product G1 ∗ G2 such that D2(Sr) = 1. Then, r has a decomposition into two
uniquely positioned subwords if and only if �(r) > 2 and there exists r′ ∈ Sr such
that r′ = aXxY yX−1 with X, Y, x, y, a ∈ G1 ∗G2, �(Y ) ≥ 1, �(x) = �(y) = �(a) = 1,
x �= y−1 and a2 = 1.

9



Proof. Suppose that r has a decomposition into two uniquely positioned subwords
U and V . Since D(Sr) = 1, we have that �(r) > 2. Without loss of generality, it
follows that a cyclic conjugate of r has the form

r′ = aU2V U1,

where U = U1aU2 and a2 = 1. Hence U2V U1 = XYX−1 for some words X, Y ∈
G1 ∗ G2, where X is possibly empty. Since U and V are uniquely positioned in r,
we conclude that �(Y ) ≥ 3 and the first and last letters of Y are not inverses. The
result follows.

For the other direction, suppose that r′ = aXxY yX−1 withX, Y, x, y, a ∈ G1∗G2,
and satisfying �(x) = �(y) = �(a) = 1, x �= y−1 and a2 = 1. Then aXx is clearly
uniquely positioned in r since x �= y−1. For the same reason, we deduce from part(a)
of Theorem 1 that XxY yX−1 has no element of order two. In particular, this means
that Y yX−1 and its inverse do not intersect (in an initial or terminal segment). We
claim that this means that Y yX−1 is also uniquely positioned. We prove this by
contradiction by assuming that Y yX−1 is not uniquely positioned and showing that
XxY yX−1 contains an element of order two.

Let XxY yX−1 = x1x2 · · · xn, with X = x1x2 · · · xp. Suppose that Y yX−1 is
not uniquely positioned. Then, (Y yX−1)±1 is identically equal to some segment of
XxY yX−1. This segment must intersect Y yX−1. By the above discussion, we have
that Y yX−1 is identically equal to the segment

xkxk+1 · · · x�(Y yX−1)−1,

with k ≤ p. Hence, we have that the terminal segment of XxY yX−1 of length
n + 1 − k has period λ = p + 2 − k. Consider the initial segment of this periodic
segement given by

Wk = xkxk+1 · · · xn+k−(p+2).

In particular Wk is of length n − (p + 1). Note that X−1 = x−1p x−1p−1 · · · x−11 =

xn+1−pxn+2−p · · · xn. If xi = x−1i for some k ≤ i ≤ p, then we are done. Suppose not.
If xp (alternatively xk) is identified with x−1i for some k ≤ i ≤ p, then x p+i

2
= x−1p+i

2

(alternatively x k+i
2

= x−1k+i
2

). This is a contradiction. Otherwise, both xk and xp are

identified with x−1i and x−1j respectively, where 1 ≤ j ≤ i < k − 1 (since we are in
a free product). In fact, j = i + k − p < 2k − 1 − p. Choose j such that under
this periodicity, x−1j is the letter that provides the first identification with xp. We
claim that j+λ lies between k and p. To verify this claim, it is enough to show that
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p ≥ j + λ. We have that j + λ < 2k − 1− p+ λ = k + 1. Therefore, j + λ ≤ k ≤ p.
Hence xp = x−1j+λ and j+λ ≤ p. By the choice of j, we must have that k ≤ j+λ ≤ p.
This is a contradiction. Hence Y yX−1 is uniquely positioned. This completes the
proof.

By combining Lemmas [3–5], we obtain Theorem 1 as follows.

Proof of Theorem 1. By Lemmas 3 and 4, we can assume that R has the form
aM , where M is some word and a is the unique letter of order two involved in R.
Express M in the form XbY , for some (possibly empty) words X, Y of equal lengths,
and letter b. If X = Y −1, then R is exceptional, so we are done. On the other hand
if X �= Y −1, then by Lemma 5, R has a decomposition into two uniquely positioned
subwords. This contradiction completes the proof.

Lemma 6. Let Γ be a reduced picture over G = (G1 ∗ G2)/N(Rm),m ≥ 3 on D2

such that R = aXbX−1 for some letters a, b. If X involves neither a nor b, then Γ
is empty or it satisfies C(6).

Proof. Suppose that Γ is a non-empty picture over G on D2 which is reduced.
Suppose also that Γ contains some interior vertex v of degree less than six. Then v
is connected to another vertex u by a zone containing (aX)±1 or (bX−1)±1. Using
this zone, we can do bridge moves so that u and v form a dipole. This contradicts
the assumption that Γ was reduced.

As a corollary we obtain Theorem 2.

Corollary 7. (Theorem 2) Let R be a cyclically reduced word in the free product
G1 ∗ G2 such that D2(SR) ≤ 2. Suppose that R is non-exceptional. Then a non-
trivial reduced picture on D2 over G = (G1 ∗G2)/N(Rm),m ≥ 3 satisfies C(6).

Proof. If R has a decomposition into two uniqely positioned subwords, then the
result follows from [[4] Lemma 3.1]. Otherwise the result follows from Theorem 1
and Lemma 6.

4. Applications

In this section we deduce a number of applications of our results. But first, we
recall the setting.

Let G1 and G2 be non-trivial groups and R is a cyclically reduced word in G1∗G2

which is not a proper power and has length at least 2. In addition, we also require
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that no letter of order two involved in R appears more than twice i.e D2(SR) ≤ 2. For
a natural number m ≥ 3, the object of study is the group G, which is the quotient
of G1 ∗ G2 by the normal closure of Rm. Using Theorem 1, R can be classified
as exceptional and non-exceptional as described in Section section 1. We mention
applications of our results in each of the two cases beginning with the non-exceptional
case.

Theorem 8. Suppose that G is as above and R is non-exceptional. Then the fol-
lowing hold.

(a) Freiheitssatz. The natural homomorphisms G1 → G and G2 → G are injec-
tive.

(b) Weinbaum’s Theorem. No non-empty proper subword of Rm represents the
identity element of G.

(c) Word problem. If G1 and G2 are given by a recursive presentation with
soluble word problem, then so is G. Moreover, the generalized word problem for
G1 and G2 in G is soluble with respect to these presentations.

(d) The Identity Theorem. N(Rm)/[N(Rm), N(Rm)] = ZG/(1 − R)ZG as a
(right) ZG-module, where Z is the integers.

Corollary 9. There are natural isomorphisms for all k > 3;

Hk(G;−) −→ Hk(G1;−)×Hk(G2;−)×Hk(Zm;−),

Hk(G;−) ←− Hk(G1;−)⊕Hk(G2;−)⊕Hk(Zm;−);

a natural epimorphism

H2(G;−) −→ H2(G1;−)×H2(G2;−)×H2(Zm;−),

and a natural monomorphism

H2(G;−) ←− H2(G1;−)⊕H2(G2;−)⊕H2(Zm;−).

These are defined on the category of ZG-modules, Zm is the cyclic subgroup of
order m generated by R, and all these maps are induced by restriction on each factor.

Next we consider the exceptional case. Recall that R has the form aXbX−1,
for some word X and some letters a, b satisfying a2 = 1 �= b2. Let A := 〈a〉 and
X−1BX := 〈b〉 be the cyclic subgroups of G1 or G2 generated by a and b respectively.

12



A ∗B

G1 ∗G2

H

G

Figure 2: Push-out diagram.

LetH be the quotient of (A∗B) byN(Rm). Note that G can be realized as a push-out
of groups as shown in Figure 2.

This pushout representation of G is referred to as a generalized triangle group
description of G. In order for the results in [9] to hold in our case, we require it
to be maximal in the sense of [1]. Another technical requirement is that (a, b) be
admissible: whenever both a and b belong to same factor, say G1, then either the
subgroup of G1 generated by {a, b} is cyclic or 〈a〉 ∩ 〈b〉 = 1. It is very easy to verify
that these conditions are satisfied in our setting. Hence the results in [9] hold, and
so we state them without proof.

Theorem 10. Suppose that G is as above and R is exceptional. Then the following
hold.

(a) Freiheitssatz. The natural homomorphisms G1 → G, G2 → G and H → G
are all injective.

(b) Weinbaum’s Theorem. No non-empty proper subword of Rm represents the
identity element of G.

(c) Membership problem. Assume that the membership problems for 〈a〉 and
〈b〉 in G1 ∗G2 are solvable. Then the word problem for G is also soluble.

(d) Mayer-Vietoris. The pushout of groups in Figure 2 is geometrically Mayer-
Vietoris in the sense of [9]. In particular it gives rise to Mayer-Vietoris se-
quences

· · · → Hk+1(G,M) → Hk(A ∗B,M) →
Hk(G1 ∗G2,M)⊕Hk(H,M) → Hk(G,M) → · · ·

and
· · · → Hk(G,M) → Hk(G1 ∗G2,M)⊕Hk(H,M)

→ Hk(A ∗B,M) → Hk+1(G,M) → · · ·
for any ZG-module M .
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