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1 Introduction

One of the key insights in financial economics is that asset prices can reveal the information

that traders have. Besides traditional financial markets that can aggregate information

about the state of companies or the economy as a whole, prediction markets have been used

successfully to forecast non-financial outcomes such as elections (e.g., Berg et al., 2008),

fulfilling project deadlines (e.g., Cowgill and Zitzewitz, 2015), or whether scientific studies

will be successfully replicated (e.g., Dreber et al., 2015). Thus, financial market prices can

potentially be valuable tools in helping policy makers by providing information or forecasts

in many domains. For example, regulators might learn about bank health from bond prices

and could use it for intervention decisions. And central banks already monitor asset prices

to learn about economic fundamentals or inflation expectations and use it to improve policy

(e.g., Bernanke and Woodford, 1997).

However, if policy affects asset values, then as soon as policy reacts to asset prices, it can

change the incentives of traders and affect the informativeness of prices. Most of the above

results were arguably observed in settings where traders did not anticipate that a policy

maker would react to (the information contained in) the asset prices. So an important

question is if and when traders would still trade in a way that reveals (some of) their

information if they correctly anticipate that this information is used for policy purposes.

This paper answers this question by deriving the conditions (in terms of policy maker

preferences and asset properties) under which the policy maker can and cannot learn from

prices to improve policy in equilibrium in a setting with noise. These results can be useful to

design institutions/assets that allow for better information revelation. Moreover, the paper

investigates how policy maker preferences/objectives affect how much information is revealed

by prices. Finally, I use the model to address the question of policy maker transparency,

i.e., under which conditions a policy maker should reveal her private information to other

market participants if the goal is to extract information from the market.

To answer these questions, I adapt a CARA-normal asset pricing model with noise to

include a policy maker, who moves after and potentially reacts to the financial market. The

value of the risky asset depends both on a fundamental state variable θ (which is standard)

and a policy variable i (new). Informed traders obtain signals about the state θ, so financial

market prices can potentially reveal some information about the state. The optimal policy

of the policy maker depends on the state θ, and since the policy maker is not perfectly

informed about the state θ, she tries to infer information about the state from financial

market prices and in effect policy reacts to these prices.

A potential problem in similar settings without noise—where prices react to policy and

policy reacts to prices—is that traders may not reveal their information and there may not

even exist an equilibrium (e.g., Bernanke and Woodford, 1997; Bond et al., 2010). This

is because the policy reaction to prices can punish traders for revealing their information,
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so that the pricing problem is a self-defeating prophecy (Siemroth, 2017). To give one

informal example of a self-defeating prophecy, consider a bank bond whose value depends

on the financial health of the bank (the state θ) and a regulator decision (policy decision

i). Informed traders know something about bank health that the regulator does not know.

If bank health is bad, traders can trade at low prices, but this reveals the need for an

intervention to the regulator,1 who for example gives a guarantee to the bank which improves

the asset value. Thus, the trader forecast of a low asset value is falsified by the regulator

decision and traders lose money since they sold below value. If traders, on the other hand,

trade at high prices despite low bank health, then it signals that there is no need for an

intervention, hence there is no intervention and the asset value remains low. Again, traders

lose money since they bought above value. Forward looking traders anticipate these adverse

policy reactions and therefore no equilibrium may exist. This problem can occur because

asset values are endogenous, so that the action of an agent may punish traders by affecting

asset values. To the best of my knowledge, this is the first paper to investigate the problem

of self-defeating prophecies in a noisy rational expectations equilibrium (REE) framework.

Adapting a new solution approach for noisy REE (e.g., Breon-Drish, 2015), I can solve

for equilibria with an uninformed policy maker who has general preferences allowing for

non-linear policy reaction functions, which would be hard to deal with in the standard

solution approach. I derive a sufficient and necessary condition for the existence of (partially)

revealing equilibria in a fairly general class of equilibria that includes and generalizes the

usual linear noisy REE, which answers the question under which circumstances market

prices can help policy makers.

This condition requires invertibility of a risk-weighted expectation of the asset value in

a noisy statistic of the state, which converges to the asset value evaluated at the optimal

policy in the noiseless limit.2 Thus, the condition ensures that the endogenous asset value—

after taking into account the policy reaction—really is strictly monotone in the information

that the price reveals, otherwise traders would be better off not clearing the market. Put

differently, the condition implicitly defines the set of policy maker preferences for which the

policy reaction to prices does not punish traders for revealing information. In terms of price

informativeness, if the policy maker is uninformed, then the policy maker objectives/policy

do not affect how much information is revealed in equilibrium, only whether a (partially

revealing) equilibrium exists.

In the online appendix, I also demonstrate that noise can solve the problem of self-

1Clearly, the regulator expectations about how the state maps into prices is endogenous in equilibrium.
In this example, the equilibrium candidate is that traders trade at low prices for bad bank health and
trade at high prices for good bank health, which generates a revealing price function and the expectations
described. A self-defeating prophecy is a setting where no revealing price function is an equilibrium.

2Thus, in the limit, the condition is the same as in models without noise (Siemroth, 2017), which might
justify using these simpler models in environments with “little noise.” This result can be useful for applied
theory work since the noisy setting imposes some functional form limitations that are typically not a problem
in models without noise, so the latter can analyze a broader set of applications and policies.
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defeating prophecies in some settings such as the one considered by Bernanke and Woodford

(1997): Because noise prevents full revelation of trader information, the informed retain

incentives to trade on information, making prices informative while they would not be

without noise. Thus, paradoxically, noise might sometimes improve information revelation

in settings where asset values are endogenous to policy.

If the policy maker is informed, i.e., receives imperfect private signals about the state,

then policy maker preferences not only determine whether informative equilibria exist, but

also how informative they are. Because asset values are affected by policy decisions, a policy

maker with independent information introduces additional ‘policy risk’ in asset returns

beyond the usual risk over asset fundamentals, since traders do not know the independent

information of the policy maker (which in part determines policy). This is why policy maker

preferences influence how aggressively the informed trade on information. Moreover, policy

risk can induce strategic complementarity leading to multiple equilibria, while the setting

with uninformed policy maker features unique equilibria.

Comparative statics show that more extreme policy maker preferences (in the sense

that policies with a large influence on asset values are preferred) tend to decrease price

informativeness, because the policy reaction adds risk by amplifying the asset value vari-

ance and due to the uncertainty underlying the policy reaction.3 Consequently, the model

suggests that market-based policy—which uses market information as input—works better

with policies that have a smaller impact on asset values. The comparative statics also show

that policies which move against fundamental shocks can increase information revelation

by markets, because policy dampens the asset variance from the perspective of the traders.

Since the policy maker can make better decisions and achieve a higher utility with better

information, a larger price informativeness coincides with better real decisions and welfare

in this setting. Thus, the model enables an analysis of the impact of information contained

in financial market prices on real decisions and welfare.

If the policy maker has private information, then a natural question is under which

conditions this information should be revealed publicly before trading, which is especially

important in the context of central bank transparency. The model shows that the policy

maker should reveal her information if she has extreme intervention preferences. This is

because transparency removes the policy risk for traders, while intransparency implies a

lot of policy risk for traders and therefore limits trading on information, making prices less

informative. Hence, transparency is to the policy maker’s benefit especially when policy has

a large impact on the market. However, there are cases where intransparency (not revealing

the private information) is optimal, for example if the policy maker has mild preferences such

that policy moves against fundamental shocks. In this case, policy acts like a dampening

force against asset value movements driven by fundamentals. Intransparency has a positive

3Hence, the model shows that some policy objectives interacting with fundamentals can result in excess
volatility, whereas existing explanations for this phenomenon rely on behavioral factors (e.g., Daniel et al.,
1998) or other feedback effects (e.g., Ozdenoren and Yuan, 2008).
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effect here, as it ensures that fundamentals and policy are two negatively correlated shocks

from the perspective of traders, which reduces the asset value variance.

This paper is related to the theoretical literature investigating the self-defeating prophecy

or “double endogeneity” problem, including Woodford (1994) and Bernanke and Woodford

(1997) on central banks, Birchler and Facchinetti (2007) on banking supervision with a good

description of the formal problem, Bond et al. (2010) on corrective actions, and Siemroth

(2017) unifying some of the earlier contributions and adding applications such as corporate

prediction markets. In all of these models, a decision maker reacts to information revealed

by the financial market and in turn affects asset values, which can lead to equilibrium non-

existence. Moreover, Prescott (2012) and Sundaresan and Wang (2015) study a related

problem in contingent capital models, where a mechanical rule instead of a decision maker

reacts to financial market prices, which can also cause a self-defeating prophecy problem.

None of these models feature a setting with noise, which is crucial to investigate how much

information is revealed, since equilibrium prices in the absence of noise are typically fully

revealing (e.g., Radner, 1979). This paper adds to the existing knowledge by showing that

self-defeating prophecies can occur also in settings with noise, but also that noise can solve

the self-defeating prophecy problem in some cases.

Bond and Goldstein (2015) (BG in short) analyze a related CARA-normal noisy REE

model with policy maker, but in their setting the asset value does not directly depend on

θ, only indirectly via the government action that depends on the state θ. Hence, in their

model, traders use their information to predict the government’s information and action

rather than the state. For this reason, their implications for transparency are different,

because as soon as the government’s information is public in their setting, there is no need

for traders to trade on their information, so price informativeness suffers. In the setup here,

the conclusions on transparency are more nuanced, and transparency typically helps the

policy maker to obtain more information from the market, while there are some cases where

transparency is undesirable. Moreover, the setup in BG does not allow for self-defeating

prophecies, so the present paper contributes by analyzing if and when these can arise,

which makes a major qualitative difference when equilibrium non-existence is interpreted as

breakdown of information revelation. This is especially true in my case of an uninformed

policy maker with non-linear policy rules, which allow for a larger set of applications.

BG also investigate when it pays for the government to commit itself to using more or

less financial market information to conduct policy (relative to the ex post optimal rule).

While commitment is not the focus here, my analysis contributes by parameterizing the

informed policy maker objectives and deriving the effect of preference parameters on price

informativeness, thereby answering how policy maker objectives affect the financial market.

Moreover, I contribute by discussing the possibility and causes of equilibrium multiplicity

due to the presence of the policy maker.

The current paper is also related to the literature investigating the real effects of financial
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markets via an informational channel. In most of this literature, the ‘real effect’ is the

financial market information impact on corporate decisions, as in Goldstein and Guembel

(2008); Foucault and Gehrig (2008); Ozdenoren and Yuan (2008); Goldstein et al. (2013);

Edmans et al. (2015); Dow et al. (2017). Typically, these papers rule out equilibrium

non-existence due to feedback via technical assumptions, while I highlight that these cases

can be important even from an applied point of view. In the present paper, the real effect

includes any effect of price information on third parties, which depending on the application

can include central bank policy and their consequences, banking regulation, or corporate

decisions.

2 The model

2.1 Setup

In this section, I extend a standard constant absolute risk aversion (CARA)-normal model

by introducing a policy maker. The equilibrium market clearing price p is affected by the

realization of a random noise variable u, which is independent of the state θ. In the common

interpretation, u is the aggregate net demand of noise traders, whose trading activity (due

to exogenous reasons such as liquidity shocks) is independent of the price/state.

For rational traders and the policy maker, the noise shocks introduce a difficulty in

extracting information from the price: A high asset price may indicate favorable information

about the fundamental θ, or it may indicate a lot of noise trader purchases u which are

unrelated to fundamentals. Consequently, traders and the policy maker will only be able

to make stochastic inferences about the realization of θ from the market price, and cannot

perfectly infer θ from the market price as in a model without noise (Siemroth, 2017).

In the definition of the environment I heavily borrow notation from Vives (2010), who

provides a detailed derivation of the standard linear noisy rational expectations equilibrium

without policy maker.

Assets. The financial market consists of a riskless asset (return normalized to zero) and

a risky asset. The value/payoff of the risky asset is an additively separable function of the

fundamental θ and policy choice i,

A(θ, i) = θ + f(i), (1)

with arbitrary function f : I → R. I will later have to impose more restrictions on function f

if the policy maker receives a signal. In one possible application, the asset is a bank stock, θ

is the bank health, and i is a regulator action (such as requiring more costly reserves, giving

a government guarantee, etc.) that affects the bank stock value. The regulator action might
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depend on bank health, say because the government does not want to give costly guarantees

unless bank health is very poor.

State variable and information. All random variables in the model are normally dis-

tributed.4 The fundamental or state variable is θ with common prior distributionN (θ̄, 1/τθ).

Private trader signals about θ are denoted sj = θ + εj, εj ∼ N (0, 1/τε), and the private

policy maker signal is sp = θ + εp, εp ∼ N (0, 1/τε) (in case of an informed policy maker,

otherwise no private signal). Finally, aggregate noise trader net demand is denoted by

u ∼ N (0, 1/τu). All variances are positive and finite, i.e., 0 < τθ, τε, τu < ∞, and the real-

izations of the noise variables εp, εj, u are independent of θ. The distributions of all random

variables (but not their realizations) are common knowledge.

Traders. There is a continuum of traders j ∈ [0, 1], and all j have a CARA utility

function defined over investment returns πj,

Uj(πj) = − exp(−ρjπj) with πj = (θ + f(i)− p)xj,

and net demand xj for the risky asset. A share µ ∈ (0, 1] of traders are informed, receive

conditionally independent signals sj about the realization of θ, have a coefficient of absolute

risk aversion ρI > 0, and use demand strategies XI(p, sj) : R2 → R to be specified later. A

share (1− µ) ∈ [0, 1) of traders are uninformed, have a coefficient of absolute risk aversion

ρU > 0, and use demand strategies XU(p) : R→ R to be specified later. CARA-utility func-

tions exhibit no wealth effects, hence I normalize wealth to zero without loss of generality.

As is standard, traders have no budget constraints in this model; demands are bounded by

the degree of risk aversion.

Policy maker. The policy maker (“she” throughout the paper) has a utility function

defined over state θ and policy i, U(θ, i),5 for which i(z) = arg maxi Eθ[U(θ, i)|z] exists for

any normally distributed signal z about the state θ, and is unique and continuous in z.

Uniqueness will be used to establish equilibrium uniqueness, but if we did not insist on a

unique equilibrium, then it could be relaxed. For non-triviality, I assume the optimal policy

i(z) depends on information z, otherwise the policy maker has no need to infer information

from financial market prices. I will distinguish the cases of an uninformed policy maker,

who only knows the prior distribution of θ, and an informed policy maker, who also receives

an imperfect signal sp about the state θ. The model considers settings where traders know

something about θ that the policy maker would like to know for policy purposes, and the

policy maker can try to infer information about θ from financial market prices, which may

4While Breon-Drish (2015) has shown that normality of random variables can sometimes be generalized
to random variables from the exponential family in these types of models (possibly at the cost of closed
form solutions), I will stick to normal random variables in this paper and keep the focus on the novel aspect
of the policy maker affecting asset values.

5This formulation does not allow the policy maker to derive utility from trading. While this is an
interesting extension that might add incentives to use policy to manipulate asset values in order to increase
trading profits, the focus here is on learning information from prices rather than manipulating the market,
so this question is left for future research.
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t
t = 0 t = 1 t = 2 t = 3

Nature:
draw θ ∈ Θ
and u ∈ R

Traders:
Observe sj , trade
resulting in p

Policy maker:
Observe p,
choose policy i

Payoffs realize

Figure 1: Timeline with traders and policy maker.

reveal some of the trader information (depending on the equilibrium). The label “policy

maker” suggests that the decision maker is a public sector official, but she may be any

decision maker such as a firm executive whose decision affects asset values.

The timing is as depicted in Figure 1: First, nature draws all random variables including

state θ, then trading leads to a market clearing price p, the policy maker sets i, and finally

payoffs realize. Since the policy maker can condition on the price, but traders cannot

condition on the policy, the model yields the same equilibria if we assume simultaneous

decisions of traders and policy maker.

This model nests the standard CARA-normal rational expectations model, which is the

special case f(i) = 0, i.e., where the policy maker does not affect asset values. This CARA-

normal parametrization facilitates a comparison with the existing literature, which heavily

relies on this framework since Grossman and Stiglitz (1980) and Hellwig (1980). Indeed,

Vives (2010) calls it the workhorse model in the study of financial markets with asymmetric

information.

A noisy rational expectations equilibrium with an informed policy maker is defined as

follows (the definition for an uninformed policy maker is easily adapted).

Definition 1. A noisy rational expectations equilibrium is a set of trading strategies con-

tingent on the price and available information, XI(p, sj) for all j ∈ [0, µ] and XU(p) for

all j ∈ (µ, 1], an optimal policy function i(p, sp), and a measurable price functional P (θ, u)

such that

1. the market for the risky asset clears:∫ µ

0

XI(p = P (θ, u), sj)dj +

∫ 1

µ

XU(p = P (θ, u))dj + u = 0 a.s.,

2. all traders j use optimal demand strategies given the available information,

XI(p, sj) ∈ arg max
x

Eθ,sp [Uj((θ + f(i(p, sp))− p)x)|p = P (θ, u), sj] ∀j ∈ [0, µ],

XU(p) ∈ arg max
x

Eθ,sp [Uj((θ + f(i(p, sp)− p))x)|p = P (θ, u)] ∀j ∈ (µ, 1],
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3. the policy maker sets an optimal policy given the available information,

i(p, sp) ∈ arg max
i

Eθ[U(θ, i)|p = P (θ, u), sp].

2.2 Results with an uninformed policy maker

I begin the analysis with a policy maker who does not receive an independent signal on

the fundamental θ, hence the only information available to her (apart from the prior) is

contained in market prices. Usually, the CARA-normal setup is used for its tractability and

simple closed-form solutions. However, the typical guess-and-verify approach to solving the

model, guessing a linear equilibrium price function, can only analyze cases with linear policy

reaction functions. For nonlinear reaction functions, the approach requires knowledge of the

functional form of the equilibrium price function. Thus, the approach is unsuitable to derive

a condition for equilibrium existence depending on policy maker preferences. Breon-Drish

(2015) recently demonstrated another solution approach in a model without policy maker.

Adapting this new approach in an extended model with policy maker, I can solve for

equilibria with nonlinear policy reaction functions if the policy maker is uninformed, and

can derive a condition for equilibrium existence depending on policy maker preferences.

The only other noisy model of policy maker-trader interaction that I am aware of (Bond

and Goldstein, 2015) only considers linear policy functions. Since the equilibria can be

solved in closed-form, the model is useful for many applications. The prime application is

monetary policy: There is considerable evidence that central bank policy reacts nonlinearly

or asymmetrically to changes in price levels and stock prices (e.g., Weise, 1999; Kim et al.,

2005; Surico, 2007; Ravn, 2012).

2.2.1 Equilibrium

With an uninformed policy maker, I will consider the class of equilibria where demand

functions of the informed traders are possibly nonlinear in the price but additively separable

from signal sj,

XI(sj, p) = asj − gI(p), XU(p) = −gU(p),

and where the equilibrium price function P (θ, u) is continuous.6 This class includes and

generalizes the linear equilibria solved for in the standard guess-and-verify approach. Equi-

librium existence or non-existence is understood within this equilibrium class.

Definition 2 (Quasi-linear equilibrium). The class of equilibria where the net demand

6While equilibria in the class of continuous equilibria are unique (see Breon-Drish, 2015 and Proposition
1 below), Pálvölgyi and Venter (2015) show for the classical Grossman and Stiglitz (1980)-model that
a continuum of discontinuous equilibria with varying price informativeness exists besides the standard
linear equilibrium. Thus, we may view the focus on continuous price functions as a reasonable equilibrium
refinement.
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function of the informed traders takes the form XI(sj, p) = asj − gI(p) for constant a and

function gI : R→ R, with continuous price function p = P (θ, u), is called quasi-linear.

The main question is under which conditions a (partially) revealing equilibrium exists,

i.e., in which situations the policy maker can learn from financial market prices and use the

information for policy purposes.

In the following I outline how to derive this condition. The main steps are to determine

the informational content of the equilibrium price function assuming an equilibrium exists,

then the policy reaction function, then the trader strategies, then the price function, and

finally the condition that ensures that an equilibrium indeed exists as conjectured.

Suppose a quasi-linear equilibrium exists. Recall that the equilibrium price function

P (θ, u) maps all possible realizations (θ, u) into a price p ∈ R. Since we are in equilibrium,

the market clearing condition is fulfilled. Using the form of the demand functions from

definition 2, the market clearing condition becomes∫ µ

0

asj − gI(P (θ, u))dj − (1− µ)gU(P (θ, u)) + u = 0

⇐⇒ 1

µa
(µgI(P (θ, u)) + (1− µ)gU(P (θ, u))) = θ + u/(µa).

(2)

Only the right hand side of (2) directly depends on (θ, u). Since the market clearing con-

dition has to hold for all realizations (θ, u), it implies that the left hand side has to react

to any change in θ + u/(µa). And since the left hand side depends on θ and u only via

the equilibrium price function P (θ, u), it further implies that any equilibrium price function

must change with the linear statistic z ..= θ+ u/(µa), which is a noisy signal of the state θ.

Consequently, the price function must be invertible in z and thus reveals it, so I shall write

P (z) instead of P (θ, u) in the following. Thus, if there is an equilibrium, then the policy

maker can infer the realization z from the price.

Continuity of the price function ensures that prices reveal the realization z and no

more, as later shown in the proof. The contribution of Breon-Drish (2015) and others is

to recognize that this approach allows to pin down the information set of the uninformed

(which in this section includes the policy maker) without knowing the functional form of

the equilibrium price function P (θ, u). This is extremely valuable here, since the asset value

(and hence asset price function) depends on the policy maker preferences and is therefore

not in general linear.

The policy maker reaction function to the financial market prices is

i(p) ∈ arg max
i

Eθ[U(θ, i)|p = P (z)],

and since prices reveal the statistic z, I shall abuse notation and also write i(z). Note that
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the policy reaction to prices is not a price effect in the classical sense, but a reaction to the

information contained therein.

The asset value θ+ f(i(p)) conditional on the price is normally distributed7, even if the

policy reaction function i(p) is nonlinear, since the reaction is deterministic given p. For a

normally distributed asset value, the demand functions of the informed traders with CARA

utility are

XI(sj, p) =
E[θ + f(i(p))− p|sj, p]

ρIVar(θ + f(i(p))− p|sj, p)
=

E[θ|sj, p] + f(i(p))− p
ρIVar(θ|sj, p)

=
τθ + τε + (µa)2τu

ρI

(
τθθ̄ + τεsj + (µa)2τuP

−1(p)

τθ + τε + (µa)2τu
+ f(i(p))− p

)
,

(3)

which is of the form XI(sj, p) = asj − gI(p) as assumed, with

gI(p) = −
[
τθθ̄ + (µa)2τuP

−1(p) + (f(i(p))− p)(τθ + τε + (µa)2τu)
]
/ρI , (4)

and, matching the coefficient, a = τε/ρI . The demand functions of the uninformed traders

are similarly

XU(p) =
E[θ|p] + f(i(p))− p

ρUVar(θ|p) =
[
τθθ̄ + (µa)2τuP

−1(p) + (f(i(p))− p)(τθ + (µa)2τu)
]
/ρU ,

(5)

with

gU(p) = −
[
τθθ̄ + (µa)2τuP

−1(p) + (f(i(p))− p)(τθ + (µa)2τu)
]
/ρU . (6)

Substituting gI(p), gU(p) into the market clearing condition (2) and setting p = P (z),

− 1

µa

(
µ
[
τθθ̄ + (µa)2τuP

−1(P (z)) + (f(i(P (z)))− P (z))(τθ + τε + (µa)2τu)
]
/ρI

+(1− µ)
[
τθθ̄ + (µa)2τuP

−1(P (z)) + (f(i(P (z)))− P (z))(τθ + (µa)2τu)
]
/ρU

)
= z.

(7)

As established before, market clearing requires the equilibrium price function P (z) to be

invertible. Thus, we can rewrite P−1(P (z)) = z and, abusing notation, i(P (z)) = i(z) with

i(z) = arg maxi E[U(θ, i)|P (z)] = arg maxi E[U(θ, i)|z]. These are the price terms in (7) that

only depend on the information contained in prices and not on the actual price to be paid

for the asset. The remaining price terms are the price to be paid, and so we can rearrange

7Recall that the equilibrium price function reveals the normally distributed signal z, thus the posterior
distribution over θ is normal as well.
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the market clearing condition (7) to obtain the equilibrium price function,

P (z) =

{
z(1 + µ2aτu/ρI + (1− µ)µaτu/ρU) + µ[τθθ̄ + f(i(z))(τθ + τε + (µa)2τu)]/(ρIµa)

+(1− µ)[τθθ̄ + f(i(z))(τθ + (µa)2τu)]/(ρUµa)

}
/{

µ(τθ + τε + (µa)2τu)/(ρIµa) + (1− µ)(τθ + (µa)2τu)/(ρUµa)

}
.

(8)

This is an explicit expression for the price function given optimal demands and policy if the

price function reveals z, and if traders anticipate the policy reaction i(z). Notice that the

price function is unique if i(z) is unique. For equilibrium, we still have to confirm that the

price function is in fact invertible in z, as required for market clearing. After simplifying,

P (z) is invertible if and only if

z[1 + µ2aτu/ρI + (1− µ)µaτu/ρU ] + f(i(z))[µ(τθ + τε + (µa)2τu)/(ρIµa)

+(1− µ)(τθ + (µa)2τu)/(ρUµa)]
(9)

is invertible in z. These terms capture how aggregate net demand for the asset changes if z

changes. But (9) might not be invertible if f(i(z)) is at least locally decreasing, i.e., if the

policy reaction reduces the asset value sufficiently for a larger realization of z. Thus, the

only possible cause of non-invertibility and consequently equilibrium non-existence is the

policy reaction function i(z) to information z: In the standard CARA-normal case without

policy maker, which is the special case f(i(z)) = 0 for all z, the equilibrium price function

is linearly increasing and an equilibrium always exists. But in the more general case with

policy maker an equilibrium does not have to exist, nor does the equilibrium price function

have to be increasing if an equilibrium does exist; it depends on the policy maker preferences

and hence reaction function i(z) affecting the asset value.

Notice the similarity of this condition to the invertibility condition in the model without

noise (Siemroth, 2017), which requires that the asset value given optimal policy and com-

bined trader information is invertible. If we let the noise variance go to zero here (τu →∞),

then (8) reduces to invertibility of z + f(i(z)) (i.e., the expected asset value given z), and

since z = θ+u/(µa) = θ a.s. for τu →∞, θ+ f(i(θ)) is the asset value given optimal policy

and combined trader information—the same condition as in the model without noise.

As in the model without noise (Siemroth, 2017), the equilibrium non-existence result can

be interpreted as a self-defeating prophecy. The price function is like a market prediction

of the future asset value—the higher the trader prediction of the future asset value, the

higher the prices at which they are willing to trade. And this prediction (the price function)

reveals some of the trader information about the state θ to the policy maker (more precisely,

it reveals the noisy statistic z). But because the policy maker reacts to this information, and
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her policy reaction in turn affects asset values, it may be that any price function (prediction)

that reveals z triggers a policy response that falsifies the prediction, i.e., the pricing problem

is a self-defeating prophecy. Note that the problem is not the learning from prices by the

policy maker per se, but rather what she does with the information and what its impact on

asset values is, as shown by the i(z) term in (9).

The following proposition gives the formal result.

Proposition 1. An equilibrium in the class of quasi-linear equilibria exists if and only if,

for a = τε/ρI , the term (9) is invertible in z.

If the equilibrium exists, then it is unique in the class of quasi-linear equilibria and

market prices fully reveal the noisy signal z = θ+ u/(µa). The trader equilibrium strategies

are XI(sj, p) = asj − gI(p) and XU(p) = −gU(p) with gI(p) given in (4) and gU(p) given in

(6). The equilibrium price function P (θ, u) = P (z) is given in (8).

Proof. See Appendix 3.

Interestingly, market prices are informative if an equilibrium exists, but the trading

aggressiveness a of the informed traders and therefore price informativeness is constant and

unaffected by policy maker preferences. To illustrate Proposition 1, consider the following

example.

Example 1. Consider a bank/insurance bailout scenario motivated by the AIG situation in

the financial crisis of 2008, where the US government injected hundreds of billions of dollars

into the business to keep it alive, since several major investment banks had acquired default

insurance for their assets from AIG (see, e.g., Reuters, 2008), arguably making a bankruptcy

a systemic risk. The state of the insurer/bank θ is uncertain from the perspective of the

regulator, but traders have information about it and potentially reveal it by trading.

More specifically, suppose the asset value depends on the bank’s cash flow, which is

simply A(θ, i) = θ + i, where θ is the state of the firm/economy and i is a possible cash

injection by the regulator. Suppose further the regulator wants to inject cash i > 0 if

necessary to reduce the bankruptcy probability given the available information to α, say

1%,8 and otherwise not inject cash (i = 0). This is captured formally by the following

regulator utility function (1{x} is the indicator function)

U1(θ, i) = (1{θ + i < T} − α)2 with i ≥ 0,

where T ∈ R is a cash threshold below which the bank cannot meet its obligations and

goes bankrupt. Also assume that τθ = 0, i.e., the prior variance is infinite (improper prior),

so that the prior is completely uninformative. Thus, only the information from the market

determines the regulator’s estimate of state θ. In this case condition (9) simplifies to z+f(i).

8Recall that in a world with normally distributed state and imperfect information, the regulator cannot
rule out bankruptcy, only make it very unlikely.

13



Can the regulator learn from the financial market if a cash injection is necessary and

how large it would need to be? Suppose there is an equilibrium where the financial market

price function of the asset reveals information about θ to the regulator; as established in

Proposition 1, this information is the normally distributed signal z = θ + u/(µa). The

reaction function of the regulator to this information,

i1(z) = arg max
i≥0

(Pr(θ + i < T |z)− α)2,

is plotted in Figure 2a. For large realizations of z, the condition of the bank is good and the

probability of default absent intervention is below α, so the regulator does not intervene.

However, for small enough z, the probability of bankruptcy would exceed α without cash

injection, so the regulator sets i > 0 such that H(T − i|z) = α, where H is the cdf of the

posterior distribution of θ given z, which is normal. Because the market information z is the

only information about the state, i1(z) has a slope of −1 in this range, so that the regulator

reaction “undoes” any adverse movement of the state (lower z) by a corresponding increase

in cash (i > 0), thus keeping the bankruptcy probability given her information constant.

Now it is rather easy to check whether information revelation by the market is an equi-

librium: After computing the reaction function i1(z), we have to confirm that condition (9)

is invertible. This term is plotted in Figure 2b. Clearly, the term is constant in the range

where the regulator perfectly cancels out any movement in z. Thus, no partially revealing

equilibrium exists. This is a self-defeating prophecy: Traders, by revealing z, trigger a reg-

ulator reaction that affects asset values in such a way that traders do not want to reveal z.

Hence, traders do not clear any price function that would reveal z.

Overall, there are policy maker utility functions for which an equilibrium exists for all

parameter values, for some parameter values, or for none. Regulator preferences U1 do

not generally preclude information revelation. Indeed, this happens if and only if τθ = 0,

otherwise the informative prior would make the regulator more cautious in reacting to z.

But with the condition derived in this section it is easy to check if and when an equilibrium

exists for a specific utility function.

As the example illustrates, the problem of determining whether information is revealed

in equilibrium is simplified considerably by making use of Proposition 1. The problem boils

down to the following cook-book approach: First, computing the policy reaction function

i(z), followed by checking whether (9) based on i(z) is invertible.

To summarize, Proposition 1 shows that noise cannot generally solve the problem of

self-defeating prophecies, which has previously only been documented in models without

noise (e.g., Bernanke and Woodford, 1997; Siemroth, 2017). But the online appendix also

demonstrates that noise can solve the non-existence problem in certain cases. One such case

is asset a(θ, i) = θ+i and policy preferences with a reaction function i(p) = α−E[θ|p]. In the

noiseless limit, conjecturing that a revealing equilibrium exists, this reaction function would
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Figure 2: Policy maker reaction function and test of equilibrium condition for policy objectives
U1.

lead to a constant asset value a(θ, i(p)) = α, hence the conjecture is wrong and no such

equilibrium exists. However, for any τu < ∞, a revealing equilibrium does exist, because

the noise prevents that the policy maker perfectly reacts to the state, so the informed can

still make profits by trading on their information, which makes the equilibrium partially

revealing.

2.2.2 Comparative statics: Price informativeness and welfare

In this section, I derive the comparative statics regarding price informativeness if asset

values are affected by the policy reaction. I argue below that price informativeness is also a
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measure of welfare for all (unmodelled) agents affected by the policy maker decision, since

the policy maker decision is better the more information she has about the state. Hence,

this section answers the question how financial market variables affect welfare among the

agents affected by the policy decision (e.g., in the non-financial sectors).

To define a measure of price informativeness, consider the mean squared error of the

policy maker “estimator” of state θ given the price signal p,

MSE(E[θ|p]) ..= E
[
(θ − E[θ|p])2|p

]
,

which is a well known measure of the deviation or forecast error of an estimator from the

variable to be estimated. To measure price informativeness, take the difference of the mean

squared error of the policy maker estimate without the information contained in the market

price and the mean squared error of the estimate with the information contained in the

market price. Thus, the measure directly captures the differences in “forecast errors” of

θ due to access to the financial market price and the information contained therein: The

larger the measure, the more the price information helps to estimate θ. For an uninformed

policy maker, the price informativeness measure is

PIuninformed
..=MSE(E[θ])−MSE(E[θ|p]) = E

[
(θ − E[θ])2

]
− E

[
(θ − E[θ|p])2|p

]
=Var(θ)− Var(θ|p) =

1

τθ
− 1

τθ + (µa)2τu
=

1

τ 2
θ /((µa)2τu) + τθ

.
(10)

PIuninformed is not just price informativeness for the (uninformed) policy maker, but all

uninformed traders or outsiders. The following proposition is straightforward and establishes

the comparative statics for price informativeness.

Proposition 2 (Comparative statics price informativeness). In the quasi-linear noisy

REE with uninformed policy maker,

• larger trader signal precision τε, share of informed traders µ, or noise precision τu,

and

• smaller prior distribution precision τθ, or risk aversion ρI ,

increase price informativeness (10), all else equal.

Proof. See Appendix 3.

These comparative statics are the same as in a CARA-normal model without policy

maker, because as established in Proposition 1, the policy reaction does not affect how ag-

gressively the informed trade on their information (captured by demand function coefficient

a = τε/ρI), which is the only equilibrium object in the price informativeness measure.

A central question of this paper is to what degree information from financial markets can

help policy makers to improve real decisions. A welfare measure of interest is how much the
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financial market information improves the utility of the policy maker by improving decisions.

We can think of the policy maker utility as a welfare measure for all the (unmodeled) non-

trader individuals that are affected by the policy maker decision.9 For example, if the

financial market can reveal information about future inflation shocks to the central bank,

then the central bank will be better able to hit the target inflation rate or maintain price

stability, thus improving welfare.

In this context, the only obstacle for the policy maker to achieve the maximum utility

is that she does not perfectly know the state and hence chooses a policy that is not optimal

given the state. Hence, more price informativeness improves policy decisions and thus ex

ante policy maker utility. The price informativeness measure is therefore a good measure of

the welfare/policy maker utility gains from the financial market information in this context.

2.3 Results with an informed policy maker

2.3.1 Preliminaries

The case of independent private information about state θ for the policy maker is not just

a technical extension. This section shows that it makes policy-relevant economic difference.

In particular, this section shows that independent information for the policy maker leads to

policy objectives affecting the informational content of prices. In other words, depending

on what the policy maker intends to do with the information from financial market prices,

she may get more or less information from markets. This is not the case if the policy maker

has no independent private information (see previous section). Hence, when setting policy

goals, one has to keep in mind that equilibrium effects can lead the financial market to

provide less information. I apply the model later in section 2.3.4 to analyze one particular

policy question that recently has received a lot of attention in the context of central banking:

When should a policy maker reveal his private information about θ to the market and when

should it be kept confidential?

Before moving to the results, I need to cover a few technical preliminaries. If the policy

maker is (imperfectly) informed, i.e., receives an imperfect signal sp = θ+εp, εp ∼ N (0, 1/τε)

from the same distribution as the informed trader signals,10 then the demand functions of

the informed traders are not generally of the quasi-linear form as in definition 2, unless

the policy reaction function is linear. This is because the independent signal sp allows the

policy maker to react to the state θ independently of the price, so any non-linear policy

reaction is a non-linear reaction to the price as well as the state. For this reason, one

cannot explicitly solve for an equilibrium with the above tools if the utility function implies

non-linear reactions.

9Clearly, using policy maker utility as welfare measure assumes a benevolent policy maker.
10It is easy to allow for more or less precise signals for the policy maker compared to traders, but this

does not add much more insight so I avoid this complication except in the comparative statics.
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Consequently, throughout this section, I assume the policy maker has the quadratic

utility function

U(θ, i) = ψ1 + ψ2i− ψ3i
2/2 + ψ4i · θ + ψ5θ, (11)

which implies a linear reaction function of the form

i(p, sp) = β1 + β2p+ β3sp, (12)

where the β-coefficients are functions of the primitives. This policy maker utility function

is one flexible parameterization that yields a linear reaction function, although it is not

the only one. I choose it here to be able to analyze the effect of policy maker preferences

on price informativeness explicitly. The coefficient on the interaction term ψ4 6= 0 ensures

that optimal policy changes with the state. The ratio of two parameters, ψ4/ψ3, will be

of particular interest in this section, which determines how strongly and in which direction

the optimal policy reacts to the realization of θ. To see this, suppose the realization θ were

known to the policy maker, then her policy reaction function would be i(θ) = (ψ2 +ψ4θ)/ψ3,

so a positive ψ4/ψ3 leads to larger i the larger θ, and a negative ψ4/ψ3 leads to smaller i

with larger θ. Hence, ψ4/ψ3 is the part of the utility function that affects policy and thereby

asset values.

Traders’ demand functions still take the quasi-linear form from definition 2, but due the

the linear policy reaction function, the trader demand functions will in fact turn out to be

linear in equilibrium. For later reference, trader equilibrium strategies are of the form

XI(p, sj) = asj − cIp+ bI and XU(p) = −cUp+ bU (13)

for informed and uninformed traders, respectively.

Finally, I need to restrict the asset value function (1) to f(i) = i in order to keep the

expected asset value linear in the state θ, so that the asset value given state θ and policy i

in this section is

A(θ, i) = θ + i.

2.3.2 Equilibrium

Although the stronger functional form assumptions on policy maker utility and asset value

(compared to the previous section) guarantee that the equilibrium price function is linear and

the price signal is normally distributed, which allows us to use the usual solution techniques,

the equilibrium cannot be explicitly solved. This is because one equilibrium condition is

a fifth degree polynomial, which does not generally admit an analytical solution. This

equilibrium condition determining the equilibrium object a (coefficient in demand function
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(13)) is11

a =
τε

ρI

[
1 + ψ4

ψ3

τε
τε+τθ+(µa)2τu

+

(
ψ4
ψ3

)2
τε

τε+τθ+(µa)2τu

1+
ψ4
ψ3

τε
τε+τθ+(µa)2τu

] .
(14)

This equilibrium condition requires that the trading aggressiveness a, i.e., how much in-

formed traders change their positions depending on their signals sj, equals the change of

the expected risk-weighted asset value in sj (this is the entire right hand side). The standard

model without policy maker is the special case ψ4/ψ3 = 0, where a = τε/ρI is the explicit so-

lution that is well known from the standard CARA-normal models. For the more general case

ψ4/ψ3 6= 0 with policy maker, however, condition (14) shows that trading aggressiveness—

and hence price informativeness—is affected by policy objectives represented by the ratio of

utility function parameters ψ4/ψ3. This is because asset values are endogenous: The policy

objective affects the actual policy and thereby asset values, so traders take policy objectives

into account in their trading strategy.

Without solving the condition explicitly, I first establish existence of equilibrium for

almost all parameter profiles, but there need not be a unique equilibrium. Then I give

conditions for equilibrium uniqueness and derive comparative statics in these unique equi-

libria. Finally, I explain how “policy risk” affects equilibrium trading behavior and price

informativeness, and how policy risk can create a form of strategic complementarity and

induce multiple equilibria.

Proposition 3 (Equilibrium existence). If the policy maker is informed, then a noisy

REE with linear demand and policy strategies (13) and (12), and linear price function,

exists for almost all parameter values.

Proof. See Appendix 3.

In addition to the price function, a symmetric equilibrium has to determine the coef-

ficients {a, cI , bI} in the demand functions of the informed traders (13), the coefficients

{cU , bU} in the demand functions of the uninformed traders (13), and the coefficients

{β1, β2, β3} in the reaction function of the policy maker (12).

The proof of Proposition 3 shows that there may be different equilibrium values of a, but

all other strategy coefficients cI , cU , bI , bU , β1, β2, β3 are unique given a. Thus, coefficient

a—how aggressively the informed trade on information—is the only source of equilibrium

multiplicity. An equilibrium may fail to exist for a negligible set of parameter values because

of a self-defeating prophecy, where—if prices were informative—the policy reaction to prices

i(p, sp) would exactly cancel out any favorable information about θ, so traders would have

no reason to change their positions for different prices, which means that the informative

11For details on the derivation, see the proofs in appendix 3.
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prices could not clear the market. This case is essentially the noisy version of the equilibrium

non-existence problem in the model without noise in Bernanke and Woodford (1997).

The intuition for the equilibrium non-existence is very much as in the case of an unin-

formed policy maker (see especially section 2.2.1) or as in the noiseless case (Siemroth, 2017).

Due to the restriction to linear reaction functions in this section, self-defeating prophecies

are only a knife-edge case in ψ4/ψ3 ∈ R space, hence an equilibrium exists for almost all

parameter values. This is different in the case of an uniformed policy maker where the

setting allows for non-linear reaction functions, for which equilibrium non-existence is not

a knife-edge case (see Proposition 1).

Without solving for the equilibrium trading aggressiveness a explicitly, it is obvious from

the equilibrium condition (14) that a = 0, i.e., a completely uninformative equilibrium, can

never be a solution. Thus, noisy REE in the presence of a policy maker are always partially

revealing. Moreover, if ψ4/ψ3 is not too negative, i.e., if the policy maker does not want to

reduce the asset value too much with larger θ, then in equilibrium informed traders will buy

more of the asset the larger their signal sj (i.e., a > 0), so the equilibrium price function

is increasing in the state. This changes if ψ4/ψ3 is sufficiently negative, see the discussion

of Proposition 5 below. Overall, policy maker preferences determine how much information

is revealed by market prices in equilibrium, and it may be more or less than in a standard

REE model without policy maker depending on ψ4/ψ3.12

Corollary 4.

i. In any equilibrium, a 6= 0, i.e., market prices are informative.

ii. If ψ4

ψ3
> − τε+τθ

τε
, then a > 0 in any equilibrium.

Proof. See Appendix 3.

Although existence of an equilibrium is generic (Proposition 3) due to the linearity of the

policy maker reaction function, uniqueness (within the class of quasi-linear equilibria) is not

guaranteed. The next result therefore derives simple sufficient conditions for uniqueness.

Not only are the predictions of the model sharper with a unique equilibrium, it also makes

comparative statics unambiguous while they are typically not if multiple equilibria exist (see

next section).

The proposition shows that sufficiently strong policy maker preferences for intervention in

either direction (ψ4/ψ3 >> 0 or ψ4/ψ3 << 0) or strong risk aversion among informed traders

(ρI >> 0) yield a unique equilibrium. Technically, these conditions guarantee that the right

hand side of equilibrium condition (14) plotted in Figure 3 is very flat, so that it intersects the

12Section 2.3.4 on policy maker transparency below provides sufficient conditions on when the policy
maker model exhibits a lower price informativeness than the standard model without, because making the
policy maker information public (transparency) leads to the same price trading aggressiveness a by traders
as in the standard REE model without policy maker.
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45◦ line (left hand side of the equilibrium condition) only once and the equilibrium is unique.

Intuitively, these conditions guarantee that a different policy maker reaction changes trader

returns to information only slightly, thus the complementarity between trader aggressiveness

a and the policy maker reaction is weak. The proposition also proves uniqueness in the

neighborhood of ψ4/ψ3 = 0, hence preferences for weak policy interventions do not induce

equilibrium multiplicity.

The most important change compared to the previous section or models without policy

maker is that the private information of the policy maker introduces additional risk for

traders besides the usual risk about the asset fundamental θ. Since this private information

in part determines the policy maker’s estimate of state θ, and thus affects policy, there is

additional policy risk in case of an informed policy maker.

Strong enough strategic complementarity can now induce multiple equilibria as follows.

If informed traders increase |a|, i.e., trade more aggressively on information, then equilibrium

prices become more informative. Consequently, the policy maker relies more on the price

(rather than her private information) when inferring the state θ and making policy. This

can be directly seen in the weight the policy maker places on her private information when

making policy in (22) in the appendix. From the perspective of the traders, a smaller

weight of private information on policy (and thus asset values) typically reduces the asset

variance conditional on the price (see (17) in the appendix), because the risk introduced by

the private information of the policy maker is reduced. Thus, larger |a| induces a policy

maker reaction that reduces the asset variance, which makes it more attractive to trade on

information, i.e., increases |a|. Consequently, multiple equilibria with small or large |a| may

exist. This complementarity aspect does not exist in the standard CARA-normal models

nor in the uninformed policy maker case, because there is no policy risk due to a privately

informed policy maker. In Ozdenoren and Yuan (2008), feedback effects from prices to asset

values also cause equilibrium multiplicity, but the mechanism is different, as multiplicity

arises from a coordination motive between traders in their model.

Proposition 5 (Equilibrium uniqueness).

i. There exists r∗ > 0 such that, for all ψ4/ψ3 > r∗, the linear equilibrium is unique with

a > 0.

ii. There exists s∗ < 0 such that, for all ψ4/ψ3 < s∗, the linear equilibrium is unique with

a < 0.

iii. There exists ρ∗ > 0 such that, for all ρI > ρ∗, the linear equilibrium is unique.

iv. In the neighborhood of ψ4/ψ3 = 0, the linear equilibrium is unique.

Proof. See Appendix 3.
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Figure 3: Equilibrium multiplicity. The graph plots the left hand side (y = a) and right hand
side (y = RHS(a)) of equilibrium condition (14); the three intersections determine
three different equilibrium values of a.

The proposition also tells us something about whether the equilibrium price function in-

creases or decreases in the state. If the policy maker has preferences such that she increases

asset values with larger fundamental θ (ψ4/ψ3 > 0), then informed traders will buy more

(or sell less) assets with more positive information about the fundamental (a > 0). This

also holds if ψ4/ψ3 < 0 is not too negative. Intuitively, ψ4/ψ3 < 0 close to zero means the

policy maker reduces the asset value for a given θ compared to the standard model with-

out policy maker, but the asset value is still increasing in θ after accounting for the policy

component, since the policy maker does not intervene too strongly. For sufficiently negative

ψ4/ψ3, however, the expected asset value is decreasing in θ, since the policy component of

the asset value decreases in θ and trumps the increasing fundamental component. Thus,

the equilibrium trading aggressiveness a in this case is negative, since a larger trader signal

realization sj indicates a larger θ-realization which indicates a lower asset value. The nega-

tive trading aggressiveness is in contrast to the case of an uninformed policy maker or the

model without policy maker, where a is always positive in equilibrium. This demonstrates

how policy can affect trading strategies of traders, and is consistent with observations of the

finance industry eagerly listening and reacting to announcements by central banks regarding

policy changes, or with fast market reactions to ECB officials leaking information at private

events the day before the announcement (e.g., Financial Times, 2015).

2.3.3 Comparative statics

Now we can turn to the question how the policy maker preferences affect price informa-

tiveness in equilibrium. The next proposition derives the comparative statics for the price

informativeness for the cases where ψ4/ψ3 is either sufficiently positive or sufficiently nega-

tive, i.e., where the policy maker has strong preferences for intervention, which guarantees
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a unique equilibrium (Proposition 5).13 These are the most interesting cases, since ψ4/ψ3

close to zero implies that the optimal policy barely depends on state θ. The proposition

also derives the effect on price informativeness for positive and slightly negative values of

ψ4/ψ3 if the equilibrium is unique.

For the purpose of comparative statics, I allow the quality of information for informed

traders and policy maker to vary separately. τε is the precision of the normally distributed

trader signals as before, and τPε is the precision of the policy maker signal.

Similar to the case of an uninformed policy maker from above, define the price infor-

mativeness as difference of the mean squared errors of the policy maker estimates with and

without the information from prices,

PIinformed
..=MSE(E[θ|sp])−MSE(E[θ|p, sp]) = Var(θ|sp)− Var(θ|p, sp)

=
1

(τθ + τPε )2/((µa)2τu) + τθ + τPε
,

(15)

which is increasing in trading aggressiveness |a|, share of informed traders µ, noise precision

τu and decreasing in prior precision τθ and policy maker signal precision τPε . Note that

the price informativeness measure (15) refers to how informative prices are for the policy

maker, not how informative prices are for uninformed outsiders, since the measure reflects

the information gain from prices relative to the existing information {sp}. This distinction

allows me to analyze for example how a change in the policy maker signal precision affects

the overall information that is available to the policy maker in equilibrium.

Proposition 6 (Comparative statics).

i. For policy preference parameter ψ4/ψ3 > 0 sufficiently large,

• decreasing ψ4/ψ3 increases price informativeness (15) for the policy maker in the

unique linear equilibrium. Moreover,

• decreasing policy maker information precision τPε , prior distribution precision τθ,

or informed trader risk aversion ρI , and

• increasing the share of informed traders µ, noise precision τu, or trader signal

precision τε

also increase price informativeness.

13It is possible to derive comparative statics under other conditions that guarantee uniqueness, but then
the comparative statics may differ for ψ4/ψ3 < 0 close to zero and ψ4/ψ3 << 0. It is also possible to derive
comparative statics if there are multiple equilibria, but then comparative statics are equilibrium-specific
and there typically exists at least one other equilibrium where the statics are reversed. If there are multiple
equilibria as plotted in Figure 3 and if ψ4/ψ3 > 0, then the comparative statics results of (i.) carry over
to all equilibria where the slope of the RHS is smaller than 1, i.e., the RHS crosses from above (a1 and a3
in Figure 3), and are reversed for those where the RHS crosses from below (a2 in Figure 3). Due to this
possible ambiguity of the comparative statics, the proposition focuses on cases where a unique equilibrium
and unambiguous comparative statics are guaranteed.
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ii. For policy preference parameter ψ4/ψ3 < 0 sufficiently negative,

• increasing ψ4/ψ3 increases price informativeness in the unique linear equilibrium.

Moreover,

• decreasing policy maker information precision τPε , prior distribution precision τθ,

or informed trader risk aversion ρI , and

• increasing the share of informed traders µ, noise precision τu, or trader signal

precision τε

also increase price informativeness.

iii. In any unique equilibrium,

• increasing ψ4/ψ3 decreases price informativeness if ψ4/ψ3 ≥ 0 or if ψ4/ψ3 < 0

sufficiently close to zero, and

• increasing ψ4/ψ3 increases price informativeness if ψ4/ψ3 < 0 sufficiently negative.

Proof. See Appendix 3.

In short, more extreme policy maker preferences (ψ4/ψ3) in either direction tend to de-

crease price informativeness, except in the mildly negative range of ψ4/ψ3, where preferences

for slightly more negative intervention can increase price informativeness.

The intuition for these results is as follows. If ψ4/ψ3 > 0, then the policy maker has

a preference for implementing policies that increase the asset value more for larger θ, so

that the asset value increases more steeply in θ, since the asset value is θ + i(p, sp). Thus,

the policy maker intervention i(p, sp) amplifies the conditional asset value variance Var(θ+

i(p, sp)|p, sj) from the perspective of the traders. This variance increase has two components

(see (17) in the proofs for the explicit expressions). First, a simple amplification as if the

fundamental effect θ on the asset value is multiplied. Second, since the policy intervention is

based in part on the private information of the policy maker, it adds additional risk from the

perspective of the traders, since they do not observe the policy maker information. While

both the trader signals as well as the policy maker signal are correlated with θ, the noise

term εp in the policy maker signal sp = θ+ εp is unforecastable for traders which adds risk.

Together, this additional “policy risk” leads the informed—who are risk averse—to trade

less aggressively on their private information, i.e., a > 0 decreases and price informativeness

suffers. This is why more extreme policy maker preferences reduce price informativeness.14

Similarly, if ψ4/ψ3 << 0, then the policy maker has a preference for implementing

policies that decrease the asset value more for larger θ, so reducing ψ4/ψ3 further amplifies

14There is a weaker, countervailing effect, because when the policy maker implements more extreme asset
values, then the private information of traders is more valuable in forecasting the asset value, i.e., there
is a larger linear return on information. Bond and Goldstein (2015) call this the “information importance
effect”, but it is outweighed by the quadratic “variance effect” for large |ψ4/ψ3|.
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the return variance and traders react by increasing a < 0, i.e., also trade less aggressively

and make prices less informative. In such an equilibrium, a lower price indicates a larger

realization of θ due to the negative policy intervention, and traders use their information

more to forecast the policy reaction than the fundamental part of the asset value, as the

former dominates. Note that this ψ4/ψ3 << 0 case amplifies the variance only for ψ4/ψ3

negative enough, as the policy reaction has to offset the fundamental effect of a larger θ on

the asset value.

For mildly negative values of ψ4/ψ3, however, more extreme (i.e., more negative) values

of ψ4/ψ3 can lower the return variance for traders, as the policy reaction acts like a random

variable that is negatively correlated with the fundamental part θ, which can offset some of

the fundamental risk in the realization of θ. Hence, in the negative range of ψ4/ψ3, slightly

more extreme policy maker preferences can increase price informativeness. This case has

interesting implications for policy maker transparency (see the next section).

While preferences of policy makers can usually not be chosen freely, it is important

to recognize that policies with a large impact on asset values tend to make prices less

informative. Hence, the comparative statics suggest that market information might be more

useful for smaller policy interventions, i.e., actions that affect asset values not too strongly.

In the context of banking regulation, for example, market information may help for minor

policy purposes such as steering supervisors and monitoring activity in the right direction,15

but may not be as helpful for more extreme policy decisions such as bailouts. This may

be a rather pessimistic result for proponents of market-based policy, as more information

is typically most valuable in exactly these cases of extreme interventions where the market

reveals less; this is certainly true in this model.

The comparative statics of the remaining exogenous parameters are unsurprising al-

though the interpretation can be slightly different from the standard models due to equilib-

rium effects involving the policy maker. If the share of informed traders µ increases, then

the informed trade more aggressively on information. This is because the price becomes

more informative with more informed traders, and the policy maker reacts by placing a

larger weight on the price rather than her private information when inferring the state θ

and making her policy decision. This reduces the return variance from the perspective of

the traders, because observing p they can better infer the policy maker reaction. Similarly,

less noise affecting the price (larger τu) and better information for traders (larger τε) leads

to the informed trading more aggressively, again because the policy maker uses her private

information less in making policy, which reduces the variance from the perspective of the

traders, i.e., reduces “policy risk.” Finally, a smaller risk aversion ρI leads to more ag-

gressive trading and more informative prices, so the policy maker puts more weight on the

15As is suggested often in the empirical banking literature, which finds that market prices of subordinated
bank debt or bank equity prices can predict bank health or default, and may contain information that
supervisors do not have (e.g., Berger et al., 2000; Gropp et al., 2006).
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Figure 4: Plot of the variance of the policy maker estimate of the state θ, depending on policy
maker information precision τPε and taking into account equilibrium effects on price
informativeness. The parameter values of the example are µ = 1, ρI = 1, τθ = 1,
τε = 1, τu = 5, ψ4/ψ3 = 2.

price when inferring the realization of θ (and less on her private information), which reduces

policy risk for traders.

The effect of an increased precision of the policy maker information τPε on price infor-

mativeness is potentially ambiguous. On the one hand, more precise information means the

policy maker signal sp = θ+ εp tends to be closer to the realization of θ, which reduces risk

from the perspective of the traders, as the error term εp is unforecastable. On the other

hand, more precise information means the policy maker relies more on her private informa-

tion than the observable market prices, which increases risk for traders and could decrease

|a|. The proof shows that a larger precision τPε increases |a| for large enough |ψ4/ψ3|. How-

ever, the price informativeness measure (15) captures decreases in mean squared error due

to market information relative to existing information sp. And by increasing τPε , the existing

information becomes better, so there is a negative effect. The equilibrium effect of a larger

|a| does not offset this negative effect.

Interestingly, considering a different measure from price informativeness (15), the vari-

ance of the policy maker estimate Var(θ|p, sp), more policy maker information is not uni-

formly better. Taking equilibrium effects into account, i.e., how informed traders change

|a| and hence the informational content of market prices, better information for the policy

maker (as measured by a lower policy maker signal variance 1/τPε ) can increase the variance

of the policy maker estimate. Figure 4 plots one example, where the conditional variance is

increasing in τPε for small values of τPε , because the informed trade less aggressively on in-

formation (|a| decreases). However, the figure also shows that τPε decreases the conditional

variance for large enough τPε . Still, this has important implications for cases where the
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information quality of the policy maker τPε is costly and endogenous: Policy makers might

choose not to acquire information, knowing that this would induce a larger information

asymmetry between policy maker and traders, therefore increase policy risk and decrease

information from the market.

2.3.4 Policy maker transparency

The comparative statics results showed that price informativeness can be strongly affected

by the risk due to the policy maker action which affects asset values and variances. To

reduce the policy risk—which exists solely because traders do not know the independent

information of the policy maker (sp)—and to make market prices more informative, the

policy maker could make her information sp public (“transparency”) prior to trading.

In this case, the variance of the asset value from the perspective of the traders changes

from Var(θ + i(p, sp)|p, sj) to Var(θ + i(p, sp)|p, sj, sp) = Var(θ|p, sj, sp). Thus, policy risk

is completely removed, since traders know all the factors that determine policy, namely the

prices p and the policy maker’s information sp. This does not mean that the asset variance

unambiguously decreases with transparency, but it does so for sufficiently extreme policy

maker preferences (|ψ4/ψ3|).16

If sp is publicly disclosed, then the equilibrium trading aggressiveness of the traders is

a = τε/ρI , as in the standard model without policy maker or with an uninformed policy

maker, since all policy risk is removed. This is why this section also serves as a comparison of

price informativeness between the standard model and the policy maker model. If the policy

maker does not disclose her information as assumed so far, then trading aggressiveness a is

implicitly defined by (14) as:

a =
τε

ρI

[
1 + ψ4

ψ3

τε
τε+τθ+(µa)2τu

+

(
ψ4
ψ3

)2
τε

τε+τθ+(µa)2τu

1+
ψ4
ψ3

τε
τε+τθ+(µa)2τu

] .

Clearly, for extreme policy maker preferences that increase or decrease the asset value a lot

for any change in θ (i.e., large |ψ4/ψ3|), the equilibrium |a| becomes very small (see also the

proof of Proposition 5), because policy risk diminishes the incentives to trade on information

for the risk averse traders. Indeed, a → 0 as |ψ4/ψ3| → ∞. Hence, a policy maker with

preferences for strong interventions will be better off by disclosing her information, since

it removes policy risk for traders and thereby makes prices more informative, as trading

aggressiveness a is the main determinant of price informativeness (15).

However, for policy makers with mild negative preferences (ψ4/ψ4 < 0 close to zero),

not revealing the information is better, as the policy action moves against the fundamental

16Too see this, substitute β3 in (22) into Var(θ + i(p, sp)|p, sj) in (17). As |ψ4/ψ3| → ∞, equilibrium
effects cause a→ 0 (see (14)) and hence Var(θ + i(p, sp)|p, sj)→∞. The variance in case of transparency,
on the other hand, is finite and given by 1/(2τε + τθ + (µτε/ρI)

2τu).
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component θ of the asset value. Hence, a larger realization of θ—which normally increases

the asset value—tends to be offset to some degree by a counterveiling policy action reducing

the asset value, thus reducing the asset value variance. In other words, policy “dampens”

the fundamental θ-shocks on the asset value, but this only works if the policy action (de-

termined by sp) is not already known at the time of trading. Because if sp is known, then

traders already factor the policy reaction in at the time of trading and therefore policy can-

not have have this dampening effect. Consequently, there are cases where transparency is

detrimental to the policy maker interests (obtaining information from the financial market).

The following proposition states and proves these results.

Proposition 7 (Policy maker transparency).

i. For |ψ4/ψ3| sufficiently large, publishing the policy maker signal sp increases trading

aggressiveness |a| and price informativeness.

ii. For ψ4/ψ3 < 0 close to zero, there exists an equilibrium where publishing the policy

maker signal decreases trading aggressiveness |a| and price informativeness.

Proof. See Appendix 3.

Bond and Goldstein (2015) also discuss policy risk in their model (they call it “endoge-

nous risk”), but find that the policy maker should never disclose her information sp about

θ, for then prices become completely uninformative. This is because the asset value in their

model depends on θ only indirectly via policy, so once the policy is known, traders have no

reason to use their information about θ to trade the asset. This is different here where the

asset value both directly and indirectly (via policy) depends on the state θ.

The question of transparency is probably most important in the context of central bank-

ing. Until the 1990s, intransparency and opacity was seen as a virtue by most central

bankers (e.g., Blinder et al., 2008), at which point the question of transparency gained mo-

mentum both among policy makers and researchers as it might allow the central bank to

affect market expectations and make policy more effective. Moreover, since the late 2000s,

some central banks started using communications about future actions as policy instrument

(forward guidance). This model only analyzes the policy maker and financial market inter-

action (and not the entire real economy) to understand whether the central bank can obtain

information from the market. But even in this context, it has implications for central bank

transparency.

First, if the central bank tries to obtain information from financial market prices, and

if the central bank reaction to the state variable strongly affects asset values, then trans-

parency is beneficial for the central bank (Proposition 7, i.). Geraats (2002) distinguishes

several forms of central bank transparency such as political transparency (openness about

policy objectives), economic transparency (openness about its information on economic con-

ditions), or policy transparency (announcement of policy actions and indications of future
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policy). In the present model, transparency refers to making the policy maker signal about

the state θ public, which in the most plausible interpretation is its information about the

state of the economy. Yet the benefit of making this information public comes about not

directly because it gives more information about the economy to traders. Instead, it is ben-

eficial mainly because it removes policy risk, since this information determines policy. Thus,

transparency in this model refers to both policy transparency and economic transparency,

but with the former making the qualitative difference.

Second, given many good reasons for central bank transparency, one might ask “[I]s there

any strong argument for the central bank not to reveal everything it knows?” (Reis, 2013).

Proposition 7 (ii.) gives an argument. Since the policy can affect asset values, it could be

used counter-cyclically to reduce the variance in asset returns in the model. But this only

works if the central bank has information that traders do not have, so that policy can act

as a random variable that is negatively correlated with the state realization, thus reducing

asset value variance from the perspective of the traders. Interestingly, the mechanism at

play here is often used as rationale in favor of transparency, because transparency reduces

policy risk, but if policy is used counter-cyclically in the above sense, then intransparency

may be more successful in reducing risk in some cases. And as a side effect, market prices

are more informative for the policy maker.

3 Concluding remarks

This paper analyzed a setting where traders know something about a policy relevant variable

θ that a policy maker does not know. Traders first trade an asset whose value depends on

this variable θ. Afterwards, the policy maker can observe the financial market prices and

make inferences about θ depending on how informative prices are, and then determines her

policy action which in turn affects asset values. This paper is the first to analyze under which

conditions the financial market reveals policy-relevant information to the policy maker in a

setting with noise and possible self-defeating prophecies.

In the case of an uninformed policy maker, who has no independent information to make

policy except from what she infers from market prices, I derive a necessary and sufficient

condition for the existence of a partially revealing equilibrium. Using the necessary and

sufficient condition, one can easily determine for any policy maker utility function whether

or not the policy maker can use market information in equilibrium. The intuition for

why no revealing equilibrium may exist is the same as in the models without noise: The

policy maker reaction to market prices changes asset values and thereby punishes traders

for revealing their information, so that traders trying to predict the asset value face a

self-defeating prophecy problem. While the uninformed policy maker objectives determine

whether a revealing equilibrium exists, they do not affect how much information is revealed

if an equilibrium exists.
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Interestingly, the Bernanke and Woodford (1997) non-revelation problem in their model

without noise vanishes as soon as any amount of noise is introduced. Hence, paradoxically,

noise can in some cases support information revelation by markets. This is because the noise

prevents full revelation of all trader information, so that these retain incentives to trade on

their information even if policy reacts to (some of) their information.

If the policy maker receives an imperfect signal about θ as independent information, then

not only do the policy maker preferences affect whether a revealing equilibrium exists, but

also how much information is revealed if an equilibrium exists. Policy maker objectives for

strong interventions change asset values a lot and thus tend to decrease price informative-

ness, because the policy reaction amplifies the asset variance. Consequently, policy makers

who prefer policies with large impact on asset values tend to get less information from the

market for policy making.

The paper also addresses the question of policy maker transparency, i.e., whether a policy

maker should reveal her information. Here the policy maker cares about information from

the market so that she can make better policy decisions. Hence, transparency is optimal in

case of extreme policy preferences, because transparency removes policy risk for risk averse

traders and thereby boosts the incentives to trade on information. However, there are also

cases where intransparency is optimal, for example if policy moves against fundamental

shocks, so that policy dampens fundamental shocks from the perspective of the traders.

Several interesting questions follow from this analysis for future research. One question

is how the results of this paper change if the policy maker not only sets policy but also trades

in the financial market. Central banks conducting open market operations or governments

owning public companies might be such policy makers, and the possibility to trade might

add incentives to set policy in a way that increases trading profits. Since this might crowd

out regular traders, this begs the question how prices are affected or to what degree policy

makers change policy for profit in equilibrium. Moreover, the present setup did not allow the

policy maker to have a preference over financial market prices, which might be interesting

for policy advice on dealing with potential asset bubbles.
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Appendix: Proofs

Proof of Proposition 1. Conjecturing demand functions of the quasi-linear form in def-

inition 2, the market clearing condition is (2). The market clearing condition has to hold

for any realization of (θ, u), which appears directly only on the right hand side of (2). Since

(θ, u) appears on the left hand side only indirectly via the equilibrium price function P (θ, u),

this price function must at least reveal the statistic z = θ + u/(µa), so that I now write

P (z). That is, all (θ, u) realizations with p = P (θ, u) must be on the line z = θ + u/(µa).

Hence, any equilibrium price function reveals at least the realization of z to the uninformed,

which includes the policy maker. Below, I shall also confirm that the price function reveals

at most z.

Using the information set for the uninformed {z} and the information set for the informed

{sj, z}, both consisting exclusively of normally distributed signals, the asset values are

normally distributed conditional on this information. Consequently, the optimal demand of

the informed is uniquely determined and given by (3), which is of the conjectured quasi-

linear form. Matching coefficient a, a = τε/ρI . Matching gI yields (4). Similarly, the

optimal demand for the uninformed is uniquely given by (5), and matching gU yields (6).

Substituting gI(p) and gU(p) into the market clearing condition (2) yields (7). Given

that P (z) is invertible, rewrite P−1(P (z)) = z and, abusing notation, i(P (z)) = i(z), so that

the market clearing condition can be rearranged for an explicit expression of P (z) given in

(8). Clearly, this price function is unique (given the assumption that i(z) is unique), hence

the equilibrium is unique in the class of quasi-linear equilibria if it exists.

Dropping constant factors and terms from the right hand side of (8), it is immediate

that P (z) is invertible as required if and only if (9) is invertible in z, so that an equilibrium

exists. If (9) is non-invertible, it contradicts market clearing and no equilibrium exists.

It remains to be shown that the continuous equilibrium price function P (θ, u) does not

reveal more than the realization of z, i.e., P (θ, u) depends on (θ, u) only via θ + u/(µa).

Lemma 2 in Pálvölgyi and Venter (2015) shows this for the Grossman and Stiglitz (1980)-

model, and the proof can be applied directly to the problem here. For completeness, I will

translate their proof into my notation.

I already established that all (θ, u) realizations for which p = P (θ, u) are on the line

θ + u/(µa). Now, by contradiction, suppose P (θ, u) depends on (θ, u) not only via z =

θ+u/(µa). This implies there exist two pairs (θ1, u1) 6= (θ2, u2) such that z = θ1 +u1/(µa) =

θ2 + u2/(µa) with P (θ1, u1) = p1 6= P (θ2, u2) = p2. Given continuity of P (θ, u) (which is

a defining property of the equilibrium class) and using the intermediate value theorem, we

can find a pair (θ∗, u∗) with θ∗ + u∗/(µa) = z and P (θ∗, u∗) = (p1 + p2)/2 (e.g., increase θ

and decrease u). Similarly, we can find a pair (θ′, u′) with θ′ + u′/(µa) 6= z and P (θ′, u′) =

(p1 + p2)/2 (e.g., starting at min{p1, p2}, by increasing θ and keeping u constant). That is,

we have two points with P (θ∗, u∗) = P (θ′, u′) = (p1 +p2)/2 and θ∗+u∗/(µa) 6= θ′+u′/(µa).
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Yet this contradicts the previously established fact that all (θ, u) realizations for which

p = P (θ, u) are on the same line θ + u/(µa). Consequently, a continuous price function

P (θ, u) reveals exactly z = θ + u/(µa) in equilibrium.

Proof of Proposition 2. From (10), price informativeness does not depend on demand

strategies except for coefficient a. From Proposition 1, the equilibrium strategy coefficient

is a = τε/ρI . Thus, price informativeness is increasing in |a|, µ and τu, and |a| in turn is

increasing in τε and decreasing in ρI . Moreover, price informativeness (10) decreases in

τθ.

Proof of Proposition 3. The solution approach for the noisy REE is the typical “guess

and verify” approach: First, a conjecture about the shape of demand functions is made. In

this case, we conjecture the demand functions to be linear in signal sj and price p, which—

after imposing market clearing—gives a linear price function P (θ, u) with undetermined

coefficients. Second, according to this price conjecture, the price function P (θ, u) gives the

relationship between state θ and price, which is used to update traders’ beliefs about θ via

Bayes’ rule. Third, demand functions given the information sets are computed. Fourth, the

undetermined coefficients are identified, which gives the actual relationship between θ and

prices.

I am going to derive a symmetric linear noisy rational expectations equilibrium, where

the conjecture is that traders use strategies

XI(p, sj) = asj − cIp+ bI and XU(p) = −cUp+ bU ,

which yields the market clearing condition∫ µ

0

(asj − cIp+ bI)dj +

∫ 1

µ

(−cUp+ bU)dj + u = 0

⇐⇒ p =
µaθ + µbI + (1− µ)bU + u

µcI + (1− µ)cU
,

(16)

because an appropriate law of large numbers for i.i.d. random variables (Sun, 2006) yields∫ µ
0
sjdj = µθ. Define λ ..= (µcI + (1−µ)cU)−1 and b̃ ..= µbI + (1−µ)bU to simplify notation,

and rearrange to obtain
p− λb̃
λµa

= θ + u/(µa).

The left hand side is informationally equivalent to the market price p, since it just subtracts

a constant and divides by another constant, and the equality implies that the equilibrium

price function reveals the linear statistic “state θ plus a normally distributed noise term

u/(µa)”.

The variance of the net asset value for informed traders conditional on their information
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is

Var(θ + i(p, sp)− p|p, sj) = Var(θ + i(p, sp)|p, sj) = Var(θ + β1 + β2p+ β3sp|p, sj)

= Var(θ(1 + β3) + β3ε|p, sj) =
(1 + β3)2

τε + τθ + (µa)2τu
+
β2

3

τε
,

(17)

since Var(θ|p, sj) = 1/(τε + τθ + (µa)2τu), as in the standard model without policy maker,

and θ and ε are independent. Similarly, for the uninformed, the variance of the asset value

given the price is

Var(θ + i(p, sp)− p|p) =
(1 + β3)2

τθ + (µa)2τu
+
β2

3

τε
.

The Bayesian updating rule for the mean of normal distributions is a precision weighted

sum of prior mean and signals, where the precision of the price signal is the inverse of its

conditional variance, hence the conditional expectation of the asset value is

E[θ + i(p, sp)− p)|p, sj] = E[θ(1 + β3) + β3ε)|p, sj] + β1 + β2p− p

= (1 + β3)
τθθ̄ + τεsj + (µa)2τu

(
p−λb̃
λµa

)
τθ + τε + (µa)2τu

+ β1 + β2p− p.

Similarly, the expectation of the asset value for uninformed traders is

E[θ + i(p, sp)− p)|p] = (1 + β3)
τθθ̄ + (µa)2τu

(
p−λb̃
λµa

)
τθ + (µa)2τu

+ β1 + β2p− p.

The well-known CARA demand functions derived from the first order conditions are given

by

XI(p, sj) =
E[θ + i(p, sp)− p)|p, sj]

ρIVar(θ + i(p, sp)− p|p, sj)
,

XU(p) =
E[θ + i(p, sp)− p)|p]

ρUVar(θ + i(p, sp)− p|p)
.

Note that the trader objective is concave even if i(p) is highly convex, because a single trader

does not affect p, hence i(p) is a constant in the trader maximization problem. Plugging in

for conditional expectations and variances,

XU(p) =
(1 + β3)

τθ θ̄+(µa)2τu
(
p−λb̃
λµa

)
τθ+(µa)2τu

+ β1 + β2p− p

ρU

[
(1+β3)2

τθ+(µa)2τu
+

β2
3

τε

] ,

which is linear in p as conjectured, hence identifying coefficients of the linear demand func-
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tion XU(p) = −cUp+ bU , we obtain

cU =
1− β2 − (1+β3)µaτu/λ

τθ+(µa)2τu

ρU

[
(1+β3)2

τθ+(µa)2τu
+

β2
3

τε

] , bU =
β1 + (1+β3)(τθ θ̄−µaτub̃)

τθ+(µa)2τu

ρU

[
(1+β3)2

τθ+(µa)2τu
+

β2
3

τε

] . (18)

For informed traders, plugging in for conditional expectations and variances,

XI(p, sj) =
(1 + β3)

τθ θ̄+τεsj+(µa)2τu
(
p−λb̃
λµa

)
τθ+τε+(µa)2τu

+ β1 + β2p− p

ρI

[
(1+β3)2

τε+τθ+(µa)2τu
+

β2
3

τε

] ,

which is linear in signal sj and price p as conjectured. Matching coefficients of XI(p, sj) =

asj − cIp+ bI ,

a =
(1 + β3)τε

ρI(τθ + τε + (µa)2τu)
[

(1+β3)2

τε+τθ+(µa)2τu
+

β2
3

τε

] ,
cI =

1− β2 − (1+β3)µaτu/λ
τθ+τε+(µa)2τu

ρI

[
(1+β3)2

τε+τθ+(µa)2τu
+

β2
3

τε

] , bU =
β1 + (1+β3)(τθ θ̄−µaτub̃)

τθ+τε+(µa)2τu

ρI

[
(1+β3)2

τε+τθ+(µa)2τu
+

β2
3

τε

] . (19)

Now both cI and cU depend on λ and vice versa. Substitute cI and cU into λ = 1/(µcI +

(1− µ)cU) and solve for λ to get

λ =

1 + (1+β3)µ2aτu

ρI(τθ+τε+(µa)2τu)

[
(1+β3)2

τε+τθ+(µa)2τu
+
β2
3
τε

] + (1+β3)µ(1−µ)τu

ρU (τθ+(µa)2τu)

[
(1+β3)2

τθ+(µa)2τu
+
β2
3
τε

]
µ(1−β2)

ρI

[
(1+β3)2

τε+τθ+(µa)2τu
+
β2
3
τε

] + (1−µ)(1−β2)

ρU

[
(1+β3)2

τθ+(µa)2τu
+
β2
3
τε

] . (20)

Furthermore, both bI and bU depend on b̃ and vice versa. Substitute both into b̃ = µbI +

(1− µ)bU and solve for b̃ to get

b̃ =

µ

[
(1+β3)τθθ̄

τθ+τε+(µa)2τu
+β1

ρI

[
(1+β3)2

τε+τθ+(µa)2τu
+
β2
3
τε

]
]

+ (1− µ)

[
(1+β3)τθθ̄

τθ+(µa)2τu
+β1

ρU

[
(1+β3)2

τθ+(µa)2τu
+
β2
3
τε

]
]

1 + µ2aτu(1+β3)

ρI(τθ+τε+(µa)2τu)

[
(1+β3)2

τε+τθ+(µa)2τu
+
β2
3
τε

] + (1−µ)µaτu(1+β3)

ρU (τθ+(µa)2τu)

[
(1+β3)2

τθ+(µa)2τu
+
β2
3
τε

] . (21)

These terms still depend on the endogenous objects a, β1, β2, β3. Turning to the policy

maker, her utility function (11) is strictly concave by construction, so the first order condition

determines the unique reaction function

i(p, sp) =
ψ2 + ψ4E[θ|p, sp]

ψ3

=
ψ2 + ψ4

τθ θ̄+τεsp+(µa)2τu
(
p−λb̃
µaλ

)
τθ+τε+(µa)2τu

ψ3

.
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Matching coefficients for i(p, sp) = β1 + β2p+ β3sp, we obtain

β1 =
ψ2 + ψ4

τθ θ̄−µaτub̃
τθ+τε+(µa)2τu

ψ3

, β2 =
ψ4

µaτu/λ
τθ+τε+(µa)2τu

ψ3

, β3 =
ψ4

τε
τθ+τε+(µa)2τu

ψ3

. (22)

Substitute the term for β3 in (22) into coefficient a (19), so that the equilibrium condition

for a is (14), which depends only on one endogenous strategy variable (a). The condition

can be rearranged as a fifth degree polynomial in a. Fifth degree polynomials are guaranteed

to have at least one solution and at most five. Given a solution for a, β3 in (22) is uniquely

determined. Given β3 and a, substituting β2 into λ in (20) yields a linear condition with a

unique solution for λ, which in turn determines β2 in (22) and cU , cI in (18), (19) uniquely.

Substituting β1 into b̃ in (21) yields a linear condition with a unique solution for b̃, which

in turn determines β1 uniquely. Finally, for equilibrium, market clearing requires µcI + (1−
µ)cU 6= 0 with the coefficients cI , cU just obtained. Thus, an equilibrium exists for almost all

parameter profiles except where µcI + (1−µ)cU = 0, and a is the only source of equilibrium

multiplicity (i.e., all other endogenous variables are uniquely determined given a).

Proof of Corollary 4.

i. Setting a = 0 in equilibrium condition (14) yields a contradiction for any τε > 0.

ii. The right hand side of (14) is positive for any a ∈ R if ψ4

ψ3
> − τε+τθ

τε
, hence any solution

to (14) must be a > 0.

Proof of Proposition 5.

i. Using the shorthand r ..= ψ4/ψ3, recall equilibrium condition (14):

a =
τε

ρI

[
1 + r τε

τε+τθ+(µa)2τu
+

r2 τε
τε+τθ+(µa)2τu

1+r τε
τε+τθ+(µa)2τu

] . (14)

Every a that fulfills condition (14) forms an equilibrium; uniqueness requires a single

intersection of a and the right hand side (RHS) of the condition. Note that the RHS

of (14) is symmetric about a = 0, since a enters the condition only quadratically. Note

also that the RHS of (14) is positive for all a ≥ 0 at all r > 0. Using the shorthand

τ ..= τε + τθ + (µa)2τu, the slope of the RHS of (14) in a is

∂RHS(a)

∂a
= τερ

−1
I [2rτετuµ

2aτ−2 + 2r2τετuµ
2a(τ + rτε)

−2]/

[
1 + r

τε
τ

+
r2τε

τ + rτε

]2

. (23)

This slope is positive for r > 0 and approaches zero as r → ∞ at all a > 0, since the

denominator grows at a quadratic rate in r, while the numerator only grows at a linear

rate. Now, at a = 0, RHS(a) > a = 0. Since a large r makes the slope of RHS(a)

arbitrarily small, there exists some r∗ > 0 such that the slope of RHS(a) is less than 1
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for all r ≥ r∗, which guarantees that RHS(a) crosses a exactly once in a ≥ 0, i.e., (14)

has only one non-negative solution. It remains to be shown that there is no further

solution a = RHS(a) in a < 0. This immediately follows from the fact that RHS(a) > 0

for all a ∈ R if r > 0.

ii. We want to show that there exists s∗ < 0 such that r < s∗ guarantees a unique solution

to (14), and that this solution is a < 0. The slope of the RHS (23) approaches zero as

r → −∞ at all a ∈ R, since the denominator grows at a quadratic rate whereas the

numerator changes only at a linear rate in r. Thus, there exists some s∗ < 0 such that

the slope of RHS(a) is smaller than 1 for all r ≤ s∗, which guarantees that the RHS

intersects a exactly once.

The RHS of the equilibrium condition (14) is negative at a = 0 if and only if r < − τε+τθ
τε

.

Moreover, RHS(a) converges to a positive constant as a → −∞. Hence, the unique

intersection fulfilling (14) must be at a < 0.

iii. The slope of the RHS in a given in (23) approaches zero as ρI → ∞. The same

arguments as in (i.) and (ii.) imply that we can find a threshold ρ∗ > 0 such that, for

all ρI > ρ∗, the slope of the RHS is less than 1 everywhere, which guarantees a unique

equilibrium.

iv. Clearly, for ψ4/ψ3 = 0, (14) simplifies to a = τε/ρI and the slope of the RHS in a is

zero. Since the RHS of (14) is continuously differentiable in ψ4/ψ3 and a, the slope of

the RHS (23) is close to zero for any ψ4/ψ3 close to zero. Hence, in that neighborhood

there can be only one intersection of the RHS with a, i.e., only one solution to (14).

Proof of Proposition 6. We can rewrite the equilibrium condition (14), which implicitly

defines a, as RHS(a, t)− a = 0, where RHS(a, t) is the right hand side of (14) as a function

of a and parameter t. By the implicit function theorem, we can determine how a changes

in equilibrium in response to a small change in parameter t:

∂a

∂t
= − RHSt

RHSa − 1
, (24)

where RHSt is the partial derivative with respect to t. The uniqueness proofs of Proposition

5 show that RHSa is less than 1 for |ψ4/ψ3| large enough, hence it follows that a increases

if and only if RHSt > 0 and decreases if and only if RHSt < 0.

i. Using the shorthands r ..= ψ4/ψ3 and τ ..= τε + τθ + (µa)2τu, and applying the quotient

rule twice to the right hand side of (14),

RHSr = −τερ−1
I︸ ︷︷ ︸

<0

[
1 + rτε/τ +

r2τε/τ

1 + rτε/τ

]−2

︸ ︷︷ ︸
>0

[
τε/τ +

2rτε/τ + r2(τε/τ)2

(1 + rτε/τ)2

]
, (25)
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which is negative if and only if the term in the last bracket is positive. That last term

is positive since r > 0 by assumption and all other parameters are positive. Thus,

RHSr < 0 and a decreases with larger r.

Next, RHSµ > 0 for r > 0:

RHSµ = −τερ−1
I︸ ︷︷ ︸

<0

[
1 + rτε/τ +

r2τε/τ

1 + rτε/τ

]−2

︸ ︷︷ ︸
>0

[
−2rτεa

2µτu/τ
2 − 2r2τεa

2µτu/(τ + rτε)
2
]︸ ︷︷ ︸

<0 if r>0

.

(26)

Moreover, RHSτθ > 0:

RHSτθ = −τερ−1
I︸ ︷︷ ︸

<0

[
1 + rτε/τ +

r2τε/τ

1 + rτε/τ

]−2

︸ ︷︷ ︸
>0

[
−rτε/τ 2 − r2τε/(τ + rτε)

2
]︸ ︷︷ ︸

<0 if r>0

. (27)

It can similarly be verified that RHSρI < 0 and RHSτu > 0.

To investigate the effects of τε and τPε separately, we have to derive the equilibrium

condition for a again, which is more complicated in the more general case:

a =

(
1 + r τPε

τθ+τPε +(µa)2τu

)
τε

ρI

[(
1 + r τPε

τθ+τPε +(µa)2τu

)2

+ (τθ + τε + (µa)2τu)
(
r τPε
τθ+τPε +(µa)2τu

)2

/τPε

] . (28)

This is also a fifth degree polynomial in a, guaranteeing a solution. A tedious but

straightforward computation using the quotient rule shows that the slope of the RHS in

a gets arbitrarily close to zero for |r| → ∞, since the denominator of RHSa grows at a

quartic rate while numerator grows only quadratically, thus we also have uniqueness for

|r| large enough in this more general case. It remains to determine the sign of the slope

of the RHS in τε and τPε for the comparative statics. Abbreviating β3 = r τPε
τθ+τPε +(µa)2τu

,

∂RHS(28)

∂τε
=

(1 + β3)ρI [(1 + β3)2 + τβ2
3/τ

P
ε )]− (1 + β3)τερIβ

2
3/τ

P
ε

[ρI((1 + β3)2 + τβ2
3/τ

P
ε )]2

=
(1 + β3)ρI [(1 + β3)2 + (τθ + (µa)2τu)β

2
3/τ

P
ε )]

[ρI((1 + β3)2 + τβ2
3/τ

P
ε )]2

> 0,

(29)

since r > 0 implies β3 > 0, thus a > 0 in equilibrium increases with an increase of τε.
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Finally, denoting β′3 = ∂β3/∂τ
P
ε = r τθ+(µa)2τu

(τPε +τθ+(µa)2τu)2 > 0,

∂RHS(28)

∂τPε
> 0 ⇐⇒ β′3τερI [(1 + β3)2 + τβ2

3/τ
P
ε ]

−(1 + β3)τερI [2(1 + β3)β′3 + τ(2β3β
′
3τ

P
ε − β2

3)/τPε
2
]

= −(τερI(1 + β3)2β′3 + τερIτ2β3β
′
3/τ

P
ε + τερIτβ

2
3β
′
3/τ

P
ε ) + τρIτε(1 + β3)β2

3/τ
P
ε

2
> 0

⇐⇒ −(1 + β3)2β′3 − τ2β3β
′
3/τ

P
ε − τβ2

3β
′
3/τ

P
ε + τ(1 + β3)β2

3/τ
P
ε

2
> 0

⇐⇒ r(−(1 + r)(τθ + (µa)2τu)(τ
P
ε + τθ + (µa)2τu)

2 + rτε(τ
P
ε

2
(1 + r)− (t+ (µa)2τu)

2))

(τPε + τθ + (µa)2τu)4
> 0,

which holds for r →∞, since the positive term grows at a cubic rate while the negative

terms grow at most at a quadratic rate. Thus, for r > 0 large enough, RHSτPε > 0,

hence ∂a/∂τPε > 0.

Price informativeness (15) increases in |a|, µ, τu, decreases in τθ, τ
P
ε , and does not change

with ψ4/ψ3, τε, ρI . The total effect of parameter t on price informativeness is

dPI

dt
=
∂PI

∂t
+
∂PI

∂|a| ·
∂|a|
∂t

.

Thus, all of the above comparative statics regarding a also apply to price informativeness

except for τθ and τPε , which decrease price informativeness directly (∂PI/∂τθ < 0) but

increase |a| (∂PI/∂|a| · ∂|a|/∂τθ > 0), making the effect potentially ambiguous. The

effects of ψ4/ψ3, τε, ρI are indirect via a (∂PI/∂t = 0).

The indirect effect is very small for |r| → ∞, which leads to RHSτθ → 0 and RHSa → 0,

hence ∂|a|/∂τθ = RHSτθ/(RHSa − 1) → 0. The same applies to τPε . Consequently, for

τθ and τPε , the direct effect on price informativeness dominates for large |r|, and price

informativeness decreases with larger τθ and τPε .

ii. RHSr < 0 for r < 0 sufficiently negative. This follows from the fact that the last term in

RHSr (see (25)) is positive for r << 0 sufficiently negative due to the quadratic terms.

Thus, a < 0 decreases (and |a| increases) in response to a less negative ψ4/ψ3 < 0.

RHSµ < 0, since the last term in (26) is positive for r → −∞. RHSρI > 0, since

RHS(a) < 0 in equilibrium (Proposition 5). RHSτθ < 0, since the last term in (27) is

positive for r → −∞. RHSτε < 0, since 1 + β3 < 0 for r << 0, which makes the slope

in (29) negative. It can similarly be verified that RHSτu < 0 and RHSτPε < 0 if r << 0.

Since r << 0 implies a < 0 in equilibrium (Proposition 5), a decrease in a increases |a|.
Consequently, the same arguments as in (i.) show that the same comparative statics

results apply to price informativeness.

iii. Note that equilibrium uniqueness (i.e., a unique solution to (14)) implies RHSa < 1,

since RHS(a) converges to a positive constant as a→∞, hence the continuous RHS(a)
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must cross the 45-degree line from above in the unique intersection. Thus, for r ..=

ψ4/ψ3, as in parts (i.) and (ii.), the implicit function theorem implies that a increases

if and only if RHSr > 0 and decreases if and only if RHSr < 0.

RHSr is given in (25). Clearly, for any r ≥ 0 it is negative, hence a decreases with

larger r. Since the unique solution is a > 0 for r ≥ 0 (Corollary 4), larger r for r ≥ 0

decreases |a| and reduces price informativeness (15).

Moreover, RHSr is negative for r < 0 close enough to zero, since the last term evaluated

at r = 0 is positive and continuous in r. Hence a decreases with larger r in this case as

well. Since RHS(a = 0) > 0 for r < 0 close to zero, the unique solution of (14) is a > 0,

thus larger r decreases |a| and price informativeness.

Finally, if r << 0 sufficiently negative, then RHSr in (25) is negative, hence a decreases

in response to a larger r. Since a < 0 if r << 0 (Proposition 5), a larger r increases |a|
and price informativeness.

Proof of Proposition 7.

i. The equilibrium object a is implicitly defined in (14). Clearly, as |ψ4/ψ3| → ∞, the

right hand side tends to zero for any value of a, hence the solution |a| → 0. With

transparency, the equilibrium trading aggressiveness is a = τε/ρI > 0, since informed

demand is

XI(sj, p, sp) =
E[θ + i(sp, p)− p|sj, p, sp]

ρIVar(θ + i(sp, p)− p|sj, p, sp)
=

E[θ|sj, p, sp] + i(sp, p)− p
ρIVar(θ|sj, p, sp)

=

τθ θ̄+τεsj+τεsp+(µa)2τu
(
p−γb̃
λµa

)
τθ+2τε+(µa)2τu

+ i(sp, p)− p
ρI

1
τθ+2τε+(µa)2τu

,

and matching the coefficient on sj gives the result a = τε/ρI > 0, which is larger for

sufficiently large |ψ4/ψ3|. Since price informativeness (15) increases in |a|, the result

also applies to informativeness.

ii. First, note that the solution to (14) for r ..= ψ4/ψ3 = 0 is a = τε/ρI . Second, the

derivative of the right hand side (RHS) of (14) in r, (25), equals −τ 2
ε /(ρIτ) < 0 at r = 0.

Hence, if RHSa is less than 1 (i.e., the right hand side of (14) crosses from above), then

the implicit function theorem implies that a > 0 decreases as ψ4/ψ3 marginally increases

(see (24)), or put differently, a > 0 increases as ψ4/ψ3 decreases from ψ4/ψ3 = 0, i.e.,

is negative and sufficiently small. Thus, due to continuity, transparency increases the

trading aggressiveness for ψ4/ψ3 < 0 sufficiently close to zero.

It remains to show that if there exists an equilibrium, then there is a solution to (14)

with RHSa less than 1. The right hand side of (14) is positive in the neighborhood of

a = 0 and ψ4/ψ3 = 0, and the RHS converges to τε as a → ∞ for any finite ψ4/ψ3.
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Hence, the RHS has to cross the LHS y = a of (14) at least once from above, so that

RHSa < 1 at this solution.
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