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Abstract— Employing effective optimisation strategies in 

organisations with large workforces can have a clear impact on 

costs, revenues, and customer satisfaction. This is particularly true 

for organisations that employ large field workforces, such as utility 

companies. Ensuring each member of the workforce is fully utilised 

is a challenging problem as there are many factors that can impact 

the organisation's overall performance. We have developed a 

system that optimises to make sure we have the right engineers, in 

the right place, at the right time, with the right skills. This system 

is currently deployed to help solve real-world optimisation 

problems, which means there are many objectives to consider when 

optimising, and there is much uncertainty in the environment. The 

latest version of the system uses a multi-objective genetic algorithm 

as its core optimisation logic, with modifications such as Fuzzy 

Dominance Rules (FDRs), to help overcome the issues associated 

with many-objective optimisation. The system also utilises 

genetically optimised type-2 fuzzy logic systems to better handle the 

uncertainty in the data and modelling. This paper shows the 

genetically optimised type-2 fuzzy logic systems producing better 

results than the crisp value implementations in our application. We 

also show that we can help address the weaknesses in the standard 

NSGA-II dominance calculations by using FDRs. The impact of this 

work can be measured in a number of ways; productivity benefit of 

£1million a year, the reduction of over 2,500 metric tonnes of CO2 

and a possible prevention of over 100 serious injuries and fatalities 

on the UK’s roads. 

Keywords— Type-2 fuzzy logic, many-objective, multi-

objective, genetic algorithms, workforce optimisation, fuzzy 
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I. INTRODUCTION 

ARGE organisations can suffer many inefficiencies in their 

daily operation if not appropriately addressed. This is 

especially true of organisations with large mobile workforces. 

Failure to tackle these inefficiencies can cause negative side 

effects, such as higher travel costs, lower capacity to service new 

customers, slower response times and higher environmental 

impacts. The more complex the organisation, the more difficult 

it is to identify and resolve these issues on a regular basis [1][2].   
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An example of a large organisation with a large mobile 

workforce is a utility company. These organisations deal with 

the complex infrastructure that has built up over decades, 

meaning there is usually a large degree of maintenance and 

upgrades that need to be carried out by a human workforce. The 

workforce has to travel to each part of the infrastructure network 

to carry out their tasks. The effective allocation of these tasks to 

each engineer requires certain objectives to be considered; to 

minimise travel time and to maximise completed tasks. Effective 

allocation of tasks to a mobile workforce can be thought of like 

the travelling salesman problem [3]. However, unlike the 

travelling salesman problem (TSP), there isn’t just one travelling 

entity, there can be thousands. As a result, any small 

inefficiencies have a noticeable impact on the utilisation of the 

workforce, fuel costs and emissions. 

A traditional way of managing this problem is to divide the 

geography into regions and sub-regions and install a hierarchical 

management structure of regional managers, sub-regional 

managers, team leaders, etc. The managers will be responsible 

for all lower levels of their allocated geography. The task of 

managing the infrastructure, task allocation and engineers is a 

very complex process. There are many more aspects to consider. 

For example, engineers can only be allocated to tasks they are 

qualified to complete. More importantly, the geographical areas 

themselves have to be intelligently designed, so that they are 

balanced for the operation of the field teams. They cannot be 

separated by large geographical obstacles, such as rivers, and 

should contain a good balance of tasks and engineers.  

This produces one of the primary optimisation problems; the 

design of these geographical Working Areas (WAs). These 

working areas form the boundaries in which the engineering 

teams should work and the geographic area for which the 

managers are responsible. Each of the WAs is made up of a 

collection of Service Delivery Points (SDPs) which connect to 

local properties (household and commercial). An SDP contains 

tasks to be completed by the engineers and will include different 

types, and amounts of work, depending on the SDPs location.  

With geographies covering hundreds of thousands of square 

kilometres, and tens of thousands of engineers needed to service 

these areas, the problem space is vast. We have implemented 

meta-heuristic optimisation algorithms to tackle the utility 

company’s organisational inefficiencies.  

One of the primary objectives of the optimisation process is 

to increase the amount of work completed. This leads to tasks 

being completed sooner, increasing customer satisfaction and 

increasing the capacity of the workforce. 
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Secondary benefits include lower fuel costs and lower CO2 

emissions due to minimised travel. Lastly, in times of 

unexpected demand (such as tasks due to extreme weather 

conditions), the organisation is more robust, reducing the stress 

put onto the workforce when repairing lost utilities is seen as 

urgent. 

As well as using meta-heuristics to search for optimal 

solutions, we are using Fuzzy Logic Systems (FLSs) within the 

optimisation process to make better decisions in the WA designs 

and evaluations.  The use of fuzzy systems in real-world 

problems have been shown to improve the outcomes in many 

real-world applications, such as in breast cancer patient 

classification [4]. Also, FLSs are particularly useful for handling 

the uncertainties in estimated distances, travel times and 

estimated task length [5][6]. We are using fuzzy logic to tackle 

the many-objective problem by improving the meta-heuristics 

ability to identify better solutions.  

This paper presents the work completed on iPatch, BT’s many 

objective type-2 fuzzy logic system for field workforce 

optimisation. Over the first two years of deployment, this 

application has increased productivity by 0.5% across the 

mobile workforce and reduced fuel consumption by 2.9%. This 

has led to a productivity benefit of £1million a year and a 

saving of over £200K a year in fuel costs.  

Secondary benefits include an estimated reduction of 2,500 

metric Tonnes of CO2 and reduced serious traffic casualties or 

fatalities by over 100.  

The rest of the paper is organised as follows: Section II 

presents an overview of field workforce optimisation. In section 

III, we provide a brief overview of genetic algorithms for multi-

objective problems and an overview of type-2 fuzzy systems.  

Section IV presents a description of how the system functions. 

Section V describes how we genetically optimise our fuzzy 

systems. Section VI reports on the experiments and the results 

obtained from them. Section VII describes our results for the 

FDRs. Section VIII talks about the real-world impact that iPatch 

has had. Finally, Section IX presents the conclusions and 

potential future work. 

II. OVERVIEW OF FIELD WORKFORCE OPTIMISATION 

PROBLEMS 

Any organisation can suffer inefficiencies if effective 

planning and organisation strategies are not in place. The larger 

the organisation is, and the longer the organisation operates 

without optimising their business, the faster these inefficiencies 

will increase and impact the business. 

The subject of Workforce Management (WFM) is broad [7], 

and optimisation strategies will differ between workforce types. 

A field workforce is one that is mobile and will travel to many 

locations throughout the day. Typical examples of field 

workforces include travelling salespeople, utility companies and 

delivery companies. The travelling salesman problem (TSP) 

directly relates to field workforce optimisation, where one of the 

primary objectives is to minimise the amount of travelling any 

member of the workforce has to do during a day.  

A. Overview of Work Area Optimisation 

One way to minimise travel and increase utilisation of a field 

workforce is to split up the geography into different territories 

for teams to manage. This geographical division can form a 

management hierarchy by grouping the territories together.  

These groupings can then have their own TSP modelled and 

optimised. This reduces the size and complexity of the problem.  

For our organisation’s hierarchy, the lowest level is known as 

a Working Area (WA) The WAs are made up of clusters of 

Service Delivery Points (SDPs). Each SDP services local 

properties and generates demand for the mobile engineering 

workforce. 

Fig. 1a shows how part of the UK might be divided into 

regions and Fig 1b shows a sub-region, which is divided into five 

WAs. SDPs are shown as dots within each of the WAs. 

Clustering the SDPs together into the best configurations is the 

central part of geography optimisation for our system.  

 
   (a)                                                  (b) 
Fig. 1. a) Regional Areas. b) WAs within a Sub-Region. 

B. Overview Of Resource Optimisation 

Optimising the geography is only one mechanism we can 

employ to improve the utilisation of a workforce. Another way 

is to optimise the available resources skills and to optimise the 

teams the resources are assigned to, without changing the 

geographical structures of the working areas.  We call it resource 

optimisation. 

There is a meta-heuristic for selecting the best combination of 

resources to train (or ‘upskill’) and for the optimal team 

allocation for all engineers.  

The first of these optimisations, the upskilling, decides which 

engineers to choose to go on training courses, given any 

constraint. So if a regional manager only has the budget to send 

ten engineers on a training course in a given month in their area, 

then out of the few hundred eligible engineers, which would 

return the most benefit and not violate any business constraints? 

The second optimisation available is to choose n number of 

engineers to move to another team such that the skill is balanced 

for both teams. This is useful for engineers on the borders of 

working areas.  

This paper will not go further into this part of the system, but 

more information can be found in our previous publication on 

this topic [8].  

 



C. Objectives and Constraints 

For our particular workforce optimisation strategy, we have 

five potential objectives. If all of five objectives are used it 

qualifies our optimisation problem as many-objective. A many 

objective problem is one with four or more objectives 

[9],[10].The objectives of our optimisation are as follows: 

Maximise Coverage: This is the basic measure of work that is 

expected to be completed by the engineers. This is measured as 

a percentage of total completed work. Equation (1) represents 

the sum of all engineers expected completed work. Over the 

region’s total work (RTW). The region contains all the WAs being 

optimised. Ci is an individual’s completed work, measured in 

hours, n is the number of engineers. RTW is measured in hours. 

𝐶 = (
1

𝑅𝑇𝑊
) ∑ 𝑪𝒊

𝒏
𝒊=𝟏   (1) 

Minimise Travel: Minimising the amount an engineer travels 

increases the available productive time for each engineer. 

Reducing travel also reduces costs. Minimising travel conflicts 

with maximising coverage as an engineer will usually be 

required to travel to each task. As coverage increases, travel also 

increases. In Equation (2) this is represented as the sum of all 

engineers’ travel distance (ETD) divided by the total number of 

engineers (E) representing travel as an average for the 

workforce. Travel is measured in kilometres.  

∑ 𝐸𝑇𝐷 ∑ 𝐸⁄     (2) 

Maximise Utilisation: Unutilised time is when the engineer is 

idle or travelling, and hence we want to maximise the utilisation 

of the workforce. Equation (3) shows the sum of engineer 

completed work (ECW) divided by the engineer’s available time 

(EAT), this is then divided by the total number of engineers (E). 

(∑ 𝐸𝐶𝑊/𝐸𝐴𝑇) ∑ 𝐸⁄   (3) 

Minimise Area Imbalance: WAs should have an even 

distribution of demand. This will lead to smaller WAs for urban 

areas, and larger WAs for rural areas. Area balancing is the 

difference between the largest (WAL) and smallest (WAS) 

regarding hours of work, shown in Equation (4).  

𝑊𝐴𝐿 − 𝑊𝐴𝑆    (4) 

Minimise Team Imbalance: WAs should have evenly 

balanced teams. Team Balance is the difference between the 

largest (TL) and smallest (TS) teams, shown in Equation (5) and 

measured in the number of people.  

𝑇𝐿 − 𝑇𝑆     (5) 

III. A BRIEF OVERVIEW OF GENETIC ALGORITHMS AND 

TYPE-2 FUZZY LOGIC SYSTEMS  

A. Multi-Objective Genetic Algorithms 

Genetic Algorithms (GAs) are a widely used meta-heuristic for 

real-world optimisation problems [11], [12], [13]. It is 

population-based, where each new generation of the population 

aims to contain stronger solutions to a given problem than the 

previous generation. A more in-depth description on GAs is 

given in Section II of the Supplementary Material. 

Traditionally fitness functions are created to evaluate how 
good a solution is compared to others in the same population set. 
If there are multiple objectives, the objective values will form 
parts of this function depending on the type of objective (i.e. 
minimisation or maximisation).  

To highlight why this is not always a suitable way of 
evaluating a multi-objective solution consider the following 
example. A problem has three objectives; A, B and C the current 
solution to this problem has the values for these objectives as 5, 
5 and 6 respectively. Objectives A and B are maximisation 
objectives, and C is a minimisation objective. Finally, we are told 
B and C are conflicting, and an increase in B increases C with an 
exponential relationship. The resultant fitness function is shown 
in Equation (6) which also shows the example fitness value of 
4.17 for the original solution.  

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  
𝐴×𝐵

𝐶
= 4.17  (6) 

Table 1 shows possible solutions that could be generated by the 

GA. Every solution presented in Table 1 is deemed superior to 

the original solution, based on the fitness value. No solution 

optimises in all three objectives when compared to the original 

solutions objective values.  

TABLE I.  EXAMPLE SOLUTIONS FOR A MULTI-OBJECTIVE PROBLEM 

USING A FITNESS FUNCTION 

Possible 

Solutions 

Objective A 

(Maximise) 

Objective B 

(Maximise) 

Objective C 

(Minimise) 

Fitness 

Score 

Original 5.00 5.00 6.00 4.17 

1 6.00 6.00 6.60 5.45 

2 6.50 7.00 7.70 5.91 

3 4.95 2.90 3.19 4.50 

4 4.70 2.70 2.97 4.27 

The example shows solutions can be generated by the GA and 

fail in one of the desired objectives, yet be considered a strong 

solution. This affects the output of the algorithm and also the 

parent selection stage. 

 
Fig 2. The flow of a MOGA. 

Multi-Objective Genetic Algorithms (MOGAs) share much of 

the same process as single objective GAs. However, the 

comparisons between solutions are different. The MOGA we are 

specifically referring to is NSGA-II [14]. NSGA-II will use 

dominance rules to evaluate and compare solutions, instead of a 

fitness function. Fig 2. Shows the typical process of a MOGA. 

This process starts by generating a random set of n solutions to 



create the initial population. Each solution is evaluated and then 

ranked using dominance. The method of dominance is outlined 

below. 

Selection, Crossover and Mutation are processed to generate 

new solutions for the child population set. The children are 

added to the original population, and then dominance is used 

again to rank the population. The population will then be reduced 

from size 2n to size n by removing the n weakest solutions.   

The process will return to the Selection, Crossover and 

Mutation stages if the stopping criteria are not met, else the 

dominant solutions will be reported to the user.  

It should be noted that where dominance is used Fuzzy 

Dominance Rules can also be used (as marked by the * in Fig. 

3). This is to be discussed in Section VII. 

Dominance has two conditions associated with it when assessing 

if one solution is superior to another. The following description 

of these conditions is to determine if the first solution (A) 

dominates the second (B): 

1. Solution A has no objective value that is worse than the 

respective objective value in B. 

2. Solution A has at least one objective value that is better 

than the respective objective value in B. 

Solution A will be considered the superior solution if both 

conditions are met, thus solution A would ‘dominate’ solution 

B. The domination count for each solution is calculated by 

checking these dominance conditions for each solution against 

every other solution in the population set.  By using domination 

count, a sorting algorithm can then arrange the solutions into 

sets, in order from the best (with a count of 0) to worst (with the 

highest count attained by the domination counting algorithm.  

The best grouping (where the domination count is 0 is known as 

the Pareto front, or Pareto set [15]. The next front is made up of 

solutions with the next best domination count (which may not 

necessarily be 1). This process continues until all solutions are 

grouped into their respective fronts. 

B. Hypervolume Indicator 

Once a MOGA produces a Pareto front we can measure the 

hypervolume of the shape [16], where the shape is produced by 

the Pareto solutions and reference points. The reference points 

represent the maximum value that a minimisation objective 

could be (and vice versa). This is illustrated in Fig. 3. 

 
Fig 3. Hypervolume Indicator in two dimensions for a set A = {a1, ..., a4} ⊂ R 

2 (left) and in three dimensions for a set Y = {y1, . . . , y5} ⊂ R 3 (right).[17] 

  We use the hypervolume of the Pareto fronts generated by our 

system to compare the different methods we are testing. As we 

have some maximisation objectives, we will convert the 

maximisation objective values to negative (i.e. 10 will become -

10) and set the reference point of these objectives to 0. As we 

know in this case, 0 for maximisation objective is the worst 

possible outcome.  In our application, there are up to five 

dimensions.  

C. Type-2 Fuzzy Logic Systems 

Fuzzy Logic Systems (FLSs) have been credited with 

handling uncertainty and imprecision. However, the vast 

majority of the FLSs were based on type-1 fuzzy logic systems 

which cannot fully handle or accommodate for the uncertainties 

associated with changing and dynamic environments, such as 

those found in commercial applications, like the one discussed 

in this paper. Type-1 fuzzy sets handle the uncertainties 

associated with the FLS inputs and outputs by using precise and 

crisp membership functions [18]. Once the type-1 membership 

functions have been chosen, all the uncertainty disappears, 

because type-1 membership functions are totally precise [18], 

[19].  

Type-2 fuzzy sets have the potential to handle the high levels 

of uncertainty associated with real-world environments (for 

example, travel times) and give a good performance as a result.  

A fuzzy membership function characterises a type-2 fuzzy 

set, i.e. the membership value (or membership grade) for each 

element of this set is a fuzzy set in [0,1], unlike a type-1 fuzzy 

set where a membership grade is a crisp number in [0,1] [18]. 

The membership functions of type-2 fuzzy sets are three-

dimensional and include a Footprint of Uncertainty (FOU), it is 

the third-dimension of type-2 fuzzy sets and the footprint of 

uncertainty that provide additional degrees of freedom that make 

it possible to directly model and handle uncertainties [18], [19], 

[20], [21].  

 
(a)         (b) 

Fig 4. a) An interval type-2 fuzzy set- primary membership function. b) An 

interval type-2 fuzzy set secondary MF at a specific point x’. 

As shown in Fig 4a, the Interval Type-2 (IT2) fuzzy set 𝐴̃ can 

be represented in terms of the Upper Membership Function 

(UMF) (denoted by 𝑢𝐴̃(𝑥), ∀𝑥  𝑋) and the Lower 

Membership Function (LMF) (denoted by 𝑢𝐴̃(𝑥), ∀𝑥  𝑋as 

follows: 

 

𝐴̃ =  ∫ [∫ 1/𝑢
𝑢[𝑢𝐴̃

(𝑥),𝑢𝐴̃
(𝑥)]

]
𝑥𝑋

𝑥⁄   (7) 



The UMF and LMF are bounds for the FOU(𝐴̃) of an IT2 

fuzzy set 𝐴̃ As shown in Fig 4b, in an IT2 fuzzy set the secondary 

membership function is equal to 1 for all the points in the 

primary membership for ∀𝑥 𝑋. 

In type-2 FLSs, the crisp inputs are fuzzified to input type-2 

fuzzy sets which are fed to the inference engine which maps the 

input type-2 Fuzzy sets to output type-2 fuzzy sets using the rule 

base. The type-reducer processes the output set in the type 

reduction section which generates a type-1 output set. In this 

paper, we use the Centre of Sets type-reduction, shown in 

Equation (8), as it has a reasonable computational complexity 

that lies between the computationally expensive centroid type-

reduction and the simple height and modified height type-

reductions which have problems when only one rule fires [18]. 
𝑌cos(𝑥) =  [𝑦𝑙 , 𝑦𝑟] =

∫
𝑦1∈[𝑦𝑙,𝑦𝑟]

… ∫
𝑦𝑚∈[𝑦𝑙

𝑚,𝑦𝑟
𝑚]

∫
𝑓1∈[𝑓1,𝑓

1
]
… ∫

𝑓1∈[𝑓𝑀,𝑓
𝑀

] 
1

∑ 𝑓
𝑖
𝑦𝑖𝑀

𝑖=1

∑ 𝑓𝑖𝑀
𝑖=1

⁄   (8) 

IV. THE MANY-OBJECTIVE GENETIC TYPE-2 FUZZY LOGIC 

SYSTEM FOR WORKFORCE OPTIMISATION 

The system that has been built to optimise Working Areas 

(WAs) is illustrated in Fig. 5. The system contains many 

parameters; including the GA’s parameters, the optimisation 

goals and configurations for the integrated fuzzy systems. These 

parameters are currently entered by the user depending on their 

current requirements. The confirmation step allows a final check 

before time and resource are allocated to the task. 

The first setting relates to the fuzzy systems and whether the 

fuzzy systems to be used in the optimisation should be optimised 

for the current geography the system is being applied to.  

 

Fig. 5. The Genetic Type-2 Fuzzy Logic Based System for Mobile Field 

Engineer WA Optimisation. 

If the fuzzy systems are to be optimised, a GA will run to tune 

the membership functions in the fuzzy sets to be used. If the user 

has selected that they wish for Type-2 fuzzy systems to be used, 

another GA will optimise the footprints of uncertainty associated 

with the newly optimised membership functions. A brief 

overview of how the GA optimises the fuzzy systems can be 

found in Section V. 

We have the option of using type-1 and type-2 fuzzy logic in 

our system so that we can run both variations and compare the 

outputs. This forms part of our experiments as we examine 

which is best.   

Once the pre-optimisation stage has been completed the 

system will run the simulation on the current WA designs. The 

simulation estimates the productivity and cost of a typical day, 

based on the geographical design and available engineers.  

The simulation gives us the values for the coverage, travel and 

utilisation objectives. Then the balance of the WAs and teams is 

calculated by finding the largest and smallest WAs and teams 

within the design. These values for the original design are crucial 

to the calculation of the distance described in Section IV C. 

The NSGA-II algorithm will start once the original designs 

objective values have been calculated. NSGA-II will randomly 

generate the first population set. From the first population set, 

the WA builder will generate new WAs from the chromosome 

of each solution. Each gene in the chromosome holds a reference 

to an SDP. These act as central nodes to cluster the remaining 

SDPs to, thus constructing new WAs. More information on the 

WA builder and its fuzzy system can be found in Section IV B. 

The number of genes in a solution’s chromosome is equal to the 

number of WAs in a design. 

Every new design created by NSGA-II will have the 

simulation performed on it, and both of the balancing objective 

values will be calculated to get the five objective values for each 

solution. These objective values will then allow NSGA-II to 

perform its dominance calculation to generate the Pareto front.  

If the stopping criteria are not met, then NSGA-II will 

continue to the evolution stage (Parent Selection, Crossover and 

Mutation). We have increased NSGA-II’s ability to identify 

strong solutions by implementing a distance metric, see Section 

IV C for further details.  

With many-objective problems, the Pareto front may become 

overpopulated, and this can be overwhelming for the user. The 

distance metric is also used to choose the best solution from the 

Pareto front. From the user’s point of view, the system still 

suggests a single solution, but also has the ability to cycle 

through additional solutions that may better suit their needs.  

A. Fuzzy Simulation 

The simulation used in the system uses data that contains 

uncertainty. Using fuzzy systems to handle this uncertainty can 

improve the realism of the simulation and hence the results 

transfer into the real-world to a higher degree. [22] demonstrates 

a fuzzy simulation for the construction industry. Uncertainty in 

our data includes the length of tasks, travel distances and times, 

the quantity of tasks available and availability of engineers.  

As an example, when deciding to pick up a task in the 

simulation, an engineer might decide to compare the distance to 

two different tasks. If one task is 25 minutes away and the other 

is 27 minutes away, the closest shouldn’t necessarily win based 

on these crisp values, particularly because these values do not 

reflect ever-changing traffic conditions.     



TABLE II.  TASK ALLOCATION RULE BASE 

The design of the fuzzy system for the simulation also looked 

at the amount of work in the SDP, as this varies from day to day. 

Some example rules of how these two fuzzified simulation 

components affect the decision making of the simulated 

engineers are given in Table II. The ‘Tasks at SDP’ are tasks 

only applicable to the engineer making the decision. This 

decision making fuzzy system used the Centre of Sets type-

reduction, shown in Equation (8) for the reasons outlined. A 

more in-depth description of this system is given in Section V of 

the Supplementary Material.  

B. Fuzzy WA Builder 

Each geographical solution is created by a neighbourhood 

based clustering algorithm. Each gene in a solution represents an 

SDP to act as a centre point to each cluster. We illustrate the 

clustering process in Fig 6. Fig 6a shows three SDPs selected as 

the centre points. Fig 6b shows the immediate neighbours being 

added; figure 6c shows the next few layers of SDPs being added. 

Lastly, Fig 6d shows the final design created by the three SDPs, 

selected by the GA. If an SDP neighbours more than one cluster 

we use a more intelligent decision-making process to decide 

which area it should be added to. 

We assess how far away by travel time the SDP is from the 

centre point, how much work is in the SDP to be added and how 

much work is already in the current generated WA. For example, 

if one WA is already heavy with work and the SDP to be added 

has many tasks, it may not be a good idea to add that SDP. The 

fuzzification comes in when looking at the neighbouring SDPs 

distance away from the current WA, the size of that SDP in the 

amount of work and the size of the current WA the SDP may be 

added to.  

 
Fig. 6. An example of the SDPs being clustered by their neighbours.  

Table III gives some example rules for this fuzzy system. As 

with the previous system a human expert designed the rules and 

fuzzy sets.  

TABLE III.  WA BUILDER RULE BASE 

WA Size Distance To 

SDP 

SDP Size Consequence 

Average Small Small Add 
Average Large  Small Add 

Average  Average Large Don’t Add 

Large Small Average Don’t Add 

This decision making fuzzy system used the Centre of Sets 

type-reduction, shown in Equation (8) for the reasons outlined. 

A more in-depth description of this system is given in Section 

IV of the Supplementary Material, or our previous work [23]. 

C. The Implemented Distance Metric  

To help identify strong solutions in the population, we have 

implemented a distance metric that increases when maximisation 

objectives are increased and increases when minimisation 

objectives are decreased, when compared to the original WA 

design. The distance metric for our objectives is shown by 

Equation (7). The greater the distance from the original solution 

design the better the new solution is.  

𝐷𝐼𝑆𝑇 = (
𝐶𝑠−𝐶𝑜

𝐶𝑜
−

𝑇𝑠−𝑇𝑜

𝑇𝑜
+

𝑈𝑠−𝑈𝑜

𝑈𝑜
−

𝐴𝐵𝑠−𝐴𝐵𝑜

𝐴𝐵𝑜
−

𝑇𝐵𝑠−𝑇𝐵𝑜

𝑇𝐵𝑜
)         (7) 

𝐷𝐼𝑆𝑇 =  
𝑁𝑒𝑤−𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙
                                    (8) 

Equation (7) shows the coverage for the new solution (𝐶𝑠) and 

the original solution (𝐶𝑂). The travel value given by the new 

solution (𝑇𝑠) and the travel value given by the original solution 

(𝑇𝑂). The utilisation given by the new solution (𝑈𝑠) and the 

utilisation given by the original solution (𝑈𝑂). The area balance 

given by the new solution (𝐴𝐵𝑠) and the area balance given by 

the original solution (𝐴𝐵𝑂). Finally, the team balance given by 

the new solution (𝑇𝐵𝑠) and the team balance given by the 

original solution (𝑇𝐵𝑂).  

Each objective in equation (7) calculates a local objective 

distance using Equation (8). The original value subtracts the new 

value for that objective, divided by the original. 

The distance metric used by the application will depend on the 

objectives being optimised. If only three objectives are being 

optimised, then only those three objectives will contribute to the 

distance metric. In our system, we combine crowding distance 

with the distance metric to choose solutions as the tie-breaker, 

where the distance metric has a dominant weighting.  

D.  Dominance in Many-Objective Problems 

Many objective problems are described as those with four or 

more objectives [9] [10]. The more objectives there are, the more 

likely that the mentioned dominance rules in section III-A will 

not be sufficient to distinguish between good solutions. Thus, the 

Pareto front will become saturated with solutions (sometimes 

containing all solutions) making it very difficult to choose 

parents in the selection stage of the GA.  

The problem stems from the first rule; that no objective can 

be worse. Consider the results in Table IV, where each of the 

five objectives are minimisation objectives.  

TABLE IV.  DOMINANCE IN MANY-OBJECTIVE PROBLEMS: EXAMPLE I 

In Table IV, solution 4 does a very good job of minimising all 

objective, except objective 4. This objective has been sacrificed 

for all others. An expected outcome with conflicting objectives. 

Distance to task Tasks at SDP Chance of Choosing SDP 

Low Low Average 

Low High High 

High Average Low 

Solution 

No 

Objective 1 

(min) 

Objective 2 

(min) 

Objective 3 

(min) 

Objective 4 

(min) 

Objective 5 

(min) 

Solutions 

Dominated 

1 3 6 8 4 7 0 
2 2 5 5 4 8 0 

3 2 6 1 5 1 0 

4 1 1 1 5 2 0 

5 8 1 1 1 1 0 



The same could be said of solution 5. These are clearly good 

solutions, however because of the rule stating no objective can 

be worse, these solutions fail to dominate the clearly weaker 

ones. Selection pressure does not consider strong solutions 

because of this; it has to rely on weaker or secondary selection 

pressures such as crowding distance. The problem is exaggerated 

in Table V. 

Table V shows another situation where we have five solutions 

that do not dominate each other. However, to any human 

solutions, 4 and 5 are clearly better. Solutions 1, 2 and 3 have 

failed in the majority of the objectives, but under dominance, 

they are good candidates for selection as parents.  

To address this problem, we will use our proposed Fuzzy 

Dominance Rules [24]. Briefly, this is the introduction of a fuzzy 

system in place of the standard dominance rule check. Each 

objective value is fuzzified and then compared. The membership 

functions for this FLS are proportional to the values being 

compared. For example, 10% grace value on objective 4 when 

comparing solutions 2 and 4 from Table V would mean solution 

4 could have a value of 4.4 and the condition of ‘no objective 

worse’ would still be met.  

TABLE V.  DOMINANCE IN MANY-OBJECTIVE PROBLEMS: EXAMPLE II 

The Fuzzy Dominance Rules for many-objective dominance 

comparisons operates like a traditional type-1 fuzzy system. The 

crisp output value of this FDR system will decide if one solution 

dominates another by comparing the output values. This replaces 

the dominance comparison used in NSGA-II.  

The input sets to the system are defined by the objectives being 

compared. Fig. 7 illustrates how the input sets are generated. A 

represents the objective value, and T represents the tolerance. 

 
Fig. 7. Input Fuzzy Sets generated from objective value A, with a tolerance 

level of T 

V. THE GENETICALLY OPTIMISED FUZZY SYSTEMS 

Membership functions in fuzzy sets that are generated by a 

human expert are subject to noise and uncertainty. Using an 

optimisation algorithm to tune these membership functions can 

improve the fuzzy system’s performance [25]. When a type-2 

fuzzy system is used, there is also the opportunity to optimise the 

footprints of uncertainty (FOU) associated with these 

membership functions. 

The fuzzy system described in Section IV-A is comprised of 

two inputs and one output. The Distance input is represented by 

three fuzzy sets while the Task input is represented by five fuzzy 

sets and the fuzzy system output is represented by five fuzzy sets. 

The system described in IV-B has three inputs and one output. 

The three inputs are represented by three fuzzy sets and the 

output is presented by two fuzzy sets. The number of fuzzy sets 

for each input/output was decided by an industry expert to allow 

them to understand how the system was built. We always started 

with three fuzzy sets for all input sets, then this number was 

adjusted to improve the performance of the system yet retain 

interpretability. These systems are further described in [23]. 

We employed Genetic Algorithms (GAs) using real value 

representation to optimize the parameters of the fuzzy sets 

Membership Functions (MFs). The genes of each GA 

chromosome will represent the points of each MF along the x-

axis.  

Fig. 8 shows an example of a chromosome for the parameters 

of two type-1 fuzzy sets MFs. Each MF is made up of four points 

along the x-axis. The number of genes is 4n where n is the 

number of the fuzzy sets. Fig 9 is an example chromosome for 

the type-2 FOUs, which will be used if a type-2 system is to be 

optimised.  The number of genes here is 2∗
4𝑛

2
 as only half of the 

points in the MF defined by Fig. 8, are Membership Function 

Base Points (MFBPs).  

However, as each base point requires two uncertainty values, 

for the left and right membership functions, then the number of 

genes to calculate the FOU values will be 4n.  

Each gene in Fig. 9 represents the uncertainty percentage 

associated with the MFBP values of the type-1 membership 

functions. The left and right uncertainty values in the 

membership functions for each base point, are calculated using 

pairs of genes. For example, 20 is the first MFBP from Fig. 8 is 

denoted by *. The Left Membership Function Uncertainty value 

(LMFU) and the Right Membership Function Uncertainty value 

(RMFU) associated with this first base point are also denoted by 

* in Fig. 9. The calculation for the LMF base point is given by 

Equation (9), and RMF base point is given by Equation (10).  

 Equations (11) and (12) illustrate how the values are 

calculated using the values from Fig. 8 and Fig.9. Fig. 10 show 

the resulting type-2 fuzzy set generated by these chromosomes. 

 
Fig. 8. Real-value chromosome for the parameters of two type-1 fuzzy sets 

membership functions 

 
Fig. 9. Real-value chromosome for percentage uncertainty associated with 

the type-2 fuzzy sets 

𝐿𝑀𝐹 𝐵𝑎𝑠𝑒 𝑃𝑜𝑖𝑛𝑡 =  𝑀𝐹𝐵𝑃 − (𝑀𝐹𝐵𝑃 × 𝐿𝑀𝐹𝑈) (9) 

𝑅𝑀𝐹 𝐵𝑎𝑠𝑒 𝑃𝑜𝑖𝑛𝑡 =  𝑀𝐹𝐵𝑃 + (𝑀𝐹𝐵𝑃 × 𝑅𝑀𝐹𝑈) (10) 

𝐿𝑀𝐹 𝐵𝑎𝑠𝑒 𝑃𝑜𝑖𝑛𝑡 =  20 − (20 × 0.1) = 18.0  (11) 

𝑅𝑀𝐹 𝐵𝑎𝑠𝑒 𝑃𝑜𝑖𝑛𝑡 =  20 + (20 × 0.15) = 23 (12) 

 
Fig. 10. Resulting Type-2 Membership Functions from Example 

No. Objective 1 

(min) 

Objective 2 

(min) 

Objective 3 

(min) 

Objective 4 

(min) 

Objective 5 

(min) 

Solutions 

Dominated 

1 3.0 100.0 800.0 4.0 70.0 0 

2 2.0 100.0 50.0 4.0 80.0 0 

3 2.0 410.0 1.0 50.0 1.0 0 

4 1.0 1.0 1.0 4.1 1.1 0 

5 3.1 1.0 1.0 1.0 1.0 0 



VI. EXPERIMENTS AND RESULTS 

We have a number of experiments that aim to show 

improvements to our modified NSGA-II algorithm. The first 

experiment utilises the type-1 fuzzy versions of the fuzzy 

simulator and fuzzy WA builder as outlined in section IV. The 

second experiment replaces the fuzzy systems with type-2 FLSs. 

The type-2 fuzzy system was described in Section III C. The 

third experiments utilises the type-2 FLSs but has a short 

optimisation with a GA before the WA optimisation takes place, 

as described in section V. Finally we will expand our discussion 

in Section VII as the remaining experiments detail our solution 

to the many-objective optimisation issues brought about by the 

standard NSGA-II dominance rules as detailed in section III A, 

III B and IV D.  

TABLE VI.  ORIGINAL RESULTS 

Coverage 

(%) 

Travel 

(km) 

Utilisation 

(%) 

Area Balance 

(Hours) 

Team Balance 

(people) 

76.12 26.50 68.15 354.65 71 

The experiments start by choosing a single geographical area 

to optimise. We evaluate the current design in this area to get our 

benchmark (or ‘Original’) objective values for this area. These 

values can be found in Table VI. 

As our first aim is to show that the introduction of FLSs 

improves our system, but we will only choose three objectives 

to include. Else, the problems associated with many-objective 

optimisation may impact the results and give a false impression 

of the fuzzy systems ability to improve our results.  For the first 

four sets of results only Coverage, Travel and Area Balancing 

will be used as our objectives. 

Each experiment will run the optimisation 30 times, giving 30 

unique seed values each time. Each experiment will use the same 

30 unique seed values to reduce the elements of randomness 

further.  Each run will give a Pareto front where we will use the 

discussed hypervolume metric, from Section III B, to evaluate 

the Pareto fronts. The reference points for the three objectives 

will be 0, 100 and 1000 for Coverage, Travel and Area Balance. 

We will refer to our modified NSGA-II as ‘the MOGA’. All the 

hypervolumes from the experiments are shown in the 

Hypervolume Summary Table, Table VII.  Table VII shows the 

hypervolume set for the MOGA as M, the introduction of type-

1 fuzzy systems gives us the hypervolume set noted by T1. The 

upgrade to type-2 systems gives us the hypervolume set noted 

by T2. Finally, the hypervolume set given by the MOGA with 

genetically optimised type-2 fuzzy logic systems is denoted by 

OT2. For each set, the results are shown on two rows, runs 1-15 

are on the first row and runs 16-30 are on the second. We can 

plot a Pareto front result from each of the hypervolume sets for 

a visual comparison. Figs 11-13 show different perspectives of 

the same four Pareto fronts, in a three-dimensional environment.  

These Pareto fronts were taken from each method’s final 

result from the same seed. These graphs clearly show the 

conflicting relationship between coverage and travel. They also 

highlight a positive correlation showing more balanced WA 

designs lead to higher levels of task coverage.  

If we look at the average (Avg.) of the 30 runs in Table VII 

for each hypervolume set, we can see that best average 

hypervolume was achieved by OT2, followed by T1 & T2, 

followed, finally, by M. This is a similar pattern seen in our 

earlier work [26] where the distance metric was used in place of 

the hypervolume. For each seed value, the winning result has 

been bolded. OT2 wins (or draws) in half of all cases and wins 

almost twice as often as any other method. OT2 also finds the 

best result overall, 0.75. Though OT2 does not win with all 

seeds, we can be confident that the OT2 method will produce 

stronger results more frequently. 

 
Fig. 11. 3D plot of Pareto fronts (1)       Fig. 12. 3D plot of Pareto fronts (2) 

 

 
Fig. 13. 3D plot of Pareto fronts (3) 

TABLE VII.  HYPERVOLUME SUMMARY TABLE 

                Avg. 

M 
0.63 0.73 0.69 0.62 0.65 0.65 0.68 0.71 0.68 0.63 0.68 0.67 0.69 0.67 0.74 

0.67 
0.70 0.71 0.64 0.63 0.64 0.67 0.65 0.64 0.70 0.71 0.69 0.62 0.70 0.71 0.72 

T1 
0.72 0.67 0.67 0.70 0.72 0.59 0.67 0.67 0.69 0.66 0.69 0.70 0.67 0.69 0.68 

0.68 
0.66 0.69 0.67 0.74 0.66 0.65 0.67 0.69 0.71 0.63 0.67 0.68 0.65 0.66 0.69 

T2 
0.62 0.66 0.70 0.71 0.71 0.71 0.69 0.70 0.71 0.71 0.64 0.66 0.66 0.67 0.65 

0.68 
0.75 0.70 0.68 0.68 0.66 0.65 0.65 0.67 0.69 0.70 0.65 0.64 0.69 0.69 0.70 

OT2 
0.65 0.72 0.67 0.68 0.66 0.72 0.73 0.75 0.72 0.68 0.67 0.71 0.74 0.70 0.73 

0.70 
0.74 0.72 0.73 0.74 0.69 0.67 0.66 0.75 0.70 0.69 0.68 0.74 0.70 0.67 0.70 



Table VIII shows a reasonable result from a Pareto front with 

the same average hypervolume, given in Table VII, for each 

respective method. For example, row 1, M, is a result from a 

Pareto front with a hypervolume value of 0.67. Row 5, M(%) 

shows the percentage improvement of each objective over the 

original results shown in Table VI. We can then compare the 

average improvement of all objectives for each method. If we 

compare the average hypervolumes from Table VII to the 

average percentage improvement, we see a similar pattern. The 

standard NSGA-II (M) improves over the original results, 

though we can improve on each objective further with the fuzzy 

methods type-1 (T1) and type-2 (T2). There is no significant 

difference between the unoptimised fuzzy systems, but the 

optimised type-2 fuzzy systems (OT2) outperform all other 

methods.  This method gives a 21.06% improvement in 

Coverage (C) a 3.55% improvement in travel and a 66.00% 

improvement in area balancing (AB).  

TABLE VIII.  EXAMPLE RESULTS FROM THREE-OBJECTIVE PROBLEM 
 

C (%) T(km) AB (hrs) Average 

M 89.07 23.70 249.21 - 

T1 91.48 25.77 146.81 - 

T2 91.94 25.12 150.88 - 

OT2 92.15 25.56 120.58 - 

M (%) 17.01 10.57 29.73 19.10 

T1 (%) 20.18 2.75 58.60 27.18 

T2 (%) 20.78 5.21 57.46 27.82 

OT2 (%) 21.06 3.55 66.00 30.20 

 Also, we have shown that we can improve our modified 

NSGA-II (MOGA) even further by including the type-2 FLSs 

and pre-optimising the membership functions and footprints of 

uncertainty before the primary work area optimisation takes 

place. To conclusively say this is the case, we can perform 

statistical analysis on the two sets of hypervolume values given 

by the MOGA and the MOGA with optimised type-2 FLSs.  

The P value given if we compare these two sets of 

hypervolume values, using Kruskal-Wallis is 0.0016, or 0.16% 

significantly below the alpha value of 0.05 (or 5%) to show a 

statistically significant difference between the sets.   

A. Qualitative Analysis 

We can subjectively compare the results produced by each 

variation of the optimisation.  Fig. 14 shows the original WAs. 

The WA marked as ‘1’ in Fig. 14 is a large city, and because 

the city is all in one WA, this is the cause of the large work 

imbalance that is shown in Table VI. 

Fig. 15 shows a ‘best’ Pareto solution from the T1 variation 

which has identified the imbalance issue but only split the city 

up into 2 WAs. Given the scale of the imbalance, three city 

WAs might address the issue better. Fig. 16 shows us the T2 

result. It generates the needed three city WAs, however area ‘3’ 

covers a large area to the south-east, this would cause travel 

time issues, and hence the travel objective has not been 

effectively captured as well as it could be.  

   
      Fig. 14. Original WA Design Fig.               Fig.15. A T1 Solution 

   
                Fig. 16. A T2 Solution                    Fig. 17. An OT2 Solution 

Fig. 17 shows an OT2 result. The city is split into three equal 

WAs (1-3) with the rural WAs outside and much larger. Giving 

us an operationally optimal solution. 

VII. RESULTS FOR FUZZY DOMINANCE RULES  FOR MANY-

OBJECTIVE PROBLEMS 

Our first set of experiments described in Section VI 

demonstrates that the use of optimised type-2 FLS improves the 

results for our multi-objective problem. However, we detailed 

we have five objectives in total, making this a many-objective 

problem. We discussed the issues surrounding parent selection 

for many-objective problems in IV D. We discussed that we 

believed it to be a problem with the crisp value comparison in 

the dominance rules. Hence, we present our results for our 

experiments using Fuzzy Dominance Rules (FDRs) described 

in Section 4 D. We will use a 10% grace value of the objective 

values when we calculate the dominance. As we are using five 

objectives, we cannot compare the hypervolume values from 

Table VII. We will compare our modified NSGA-II, the 

MOGA, with our modified NSGA-II with Fuzzy Dominance 

Rules (MOGA-FDR). To tie the whole system together, we will 

use our genetically optimised type-2 system with FDR to get 

the best improvement for our many-objective problem. 

Now we are using more objective we have more reference 

points for the hypervolume. Once again, we multiply our 

maximisation objective by -1 when calculating the 

hypervolume. Our reference points are now 0, 100, 0, 850 and 

150 for coverage, travel, utilisation, area balancing and team 

balancing respectively.  

Table XI shows the hypervolume values for the 30 runs of 

each method, runs 1-15 on the first row and runs 16-30 on the 

second row of each method. For the MOGA, given by M. The 

average of these is 0.48. FDR gives the hypervolume values for 

the MOGA with FDRs implemented, with an average of 

hypervolume of 0.51. If we perform Kruskal-Wallis statistical 

analysis on these hypervolume sets, we get a P value of 0.049, 

which is less than the required alpha value of 0.05 to show the 

difference in results is statistically significant. So far, we have 

shown that using genetically optimised type-2 systems and or 

the introduction of FDR statistically improves the Pareto front 

results independently. The final step is to measure the impact 

combining these two methods of improvement together. 

1 

2 

3 

1 
2 

3 

1 



TABLE IX.  FDR HYPERVOLUME SUMMARY TABLE 

                Avg. 

M 
0.41 0.41 0.42 0.43 0.44 0.44 0.45 0.45 0.46 0.46 0.46 0.47 0.47 0.47 0.47 

0.48 
0.47 0.47 0.48 0.49 0.49 0.49 0.49 0.51 0.52 0.53 0.53 0.54 0.56 0.57 0.60 

FDR 
0.42 0.43 0.43 0.44 0.45 0.45 0.47 0.47 0.47 0.47 0.48 0.48 0.49 0.50 0.51 

0.51 
0.51 0.51 0.52 0.52 0.52 0.54 0.54 0.55 0.56 0.57 0.57 0.57 0.57 0.59 0.63 

OT2 

FDR 

0.54 0.54 0.54 0.55 0.56 0.57 0.58 0.60 0.60 0.61 0.61 0.62 0.62 0.63 0.63 
0.63 

0.64 0.64 0.65 0.65 0.66 0.66 0.67 0.67 0.67 0.69 0.69 0.70 0.70 0.73 0.73 

The results for this are shown in Table IX as the OT2FDR 

hypervolume set. From the average hypervolume values, we 

can see OT2FDR has improved the average hypervolume by 

24.29% if we compare it to the FDR results. If we perform the 

Kruskal-Wallis test we get a P value of 4.47-9 when comparing 

FDR to OT2FDR, and for completeness, we also get a P value 

of 1.86-10 if we compare our MOGA to OT2FDR. The winning 

method for each seed value is highlighted in bold, where the 

OT2DFR method wins in all cases.  

Table X shows a reasonable result from a Pareto front with 

the same average hypervolume, given in table IX (similar to 

Table VIII). For example, row 1, M, is a result from a Pareto 

front, using the standard NSGA-II algorithm, with a 

hypervolume value of 0.48. Row 5, M(%) shows the percentage 

improvement of each objective over the original results shown 

in Table IX. From Table X we can see that the standard NSGA-

II algorithm completely failed in the area balancing objective 

(AB) (rows 1 and 4). This outcome is expected given the 

problems we have described with multi-objective algorithms 

trying to handle more than three objectives. As a result, the 

average objective improvement is just 2.23%.  

Once we add the fuzzy dominance rules, all objectives are 

handled much better. Though there is a small degradation in the 

travel objective (T) this can be explained by the 20.24% 

increase in the amount of covered jobs (C). Given that these are 

directly conflicting objectives (to complete more jobs, one must 

travel to the job) this is a good outcome. Finally, when we add 

the optimised type-2 fuzzy systems to the process, alongside the 

fuzzy dominance rules, all objectives are improved over the 

original results, with an average objective improvement of 

30.85%. This is approximately the same level of improvement 

given in the three-objective problem results, shown in Table 

VIII. Thus, the system results in a consistent level of 

improvement, regardless of the number of objectives.  

TABLE X.  EXAMPLE RESULTS FROM FIVE-OBJECTIVE PROBLEM 
 

C 

(%) 

T 

(km) 

U 

(%) 

AB 

(hrs) 

TB 
(people) 

Avg. 

M 89.37 22.5 85.66 536.41 68.00 - 

FDR 91.53 27.43 85.70 276.73 44.00 - 

OT2FDR 92.27 24.53 86.40 189.17 34.00 - 

M (%) 17.41 15.09 25.69 -51.25 4.23 2.23 

FDR (%) 20.24 -3.49 25.76 21.97 38.03 20.50 
OT2FDR 

(%) 
21.22 7.44 26.78 46.66 52.11 30.84 

These results make a strong case for both types of fuzzy 

system to be introduced in our optimisation algorithm.  

VIII. REAL WORLD IMPACT OF IPATCH 

The developed iPatch tool (shown in Fig. 18) was 

implemented with the goal of improving the organisational 

design of a mobile workforce within BT. The work presented 

in this paper looks at the geographical optimisation, which is 

significantly more developed than the resource optimisation 

functionality. Published work on resource optimisation can be 

found in a British Computer Society (BCS) award-winning 

paper [2]. 

 
Fig. 18. BT’s iPatch Tool 

The application was developed in close collaboration with 

the users of the system. This, in turn, allowed detailed feedback 

on problems that came to light throughout development, which 

allowed the results produced by iPatch to translate into the real-

world successfully. 

iPatch has generated an increase in productivity of 0.5% 

saving an estimated £1million a year over the first two years. It 

also cut fuel consumption by 2.9%, an additional saving of over 

£200K a year. In addition to the financial benefits, customer 

commitments are more effectively met, improving the service 

quality, and due to less fuel consumption, the company can 

promote sustainability targets with less CO2 emitted. Over the 

period of deployment, iPatch has reduced CO2 emissions by 

more than 2500 metric tonnes.  

Furthermore, a report by the UK’s Department of Transport 

found that for every billion vehicle miles travelled there were 

15,409 serious injuries or deaths, or 1 per 64,900 miles [27]. 

As we have saved an estimated 7.7 million miles of 

travelling, this equates to potentially saving 118 casualties and 

fatalities. The system won the 2015 Global 

Telecommunications Business award for the best business 

innovation of the year in its first year of use [28] and was highly 

commended at the IET Innovation Awards 2016 [29].  

These outcomes show the real world impact these AI 

technologies, including advanced fuzzy logic systems, are 

having on a large, nationwide, mobile engineering workforce. 



IX. CONCLUSION & FUTURE WORK 

In this paper, we have presented our work on iPatch, a many-

objective fuzzy logic system for the optimisation of a field 

workforce. This system includes a distance metric for analysing 

the solutions that are generated by a multi-objective 

optimisation algorithm and to help with parent selection. We 

implemented a type-1 and type-2 FLSs to improve our 

applications results. We then showed that genetically 

optimising the type-2 FLSs gave us a real improvement when 

comparing the hypervolumes of the MOGA and the genetically 

optimised type-2 FLSs. The P value here was 0.0016 

significantly below the required 0.05 to show statistical 

significance.  

We then extended our work by looking at how we could 

solve the many-objective issues given by standard crisp 

dominance rules. We again showed that by including FDRs in 

our MOGA we improved on the hypervolumes given by the 

Pareto fronts. The P value attained here was 0.048, again lower 

than the required 0.05. Combining the fuzzy systems and FDRs 

resulted in a significant improvement to the many-objective 

algorithm, with a P value of 1.8647-10 when compared to the 

standard MOGA we previously used.  

The fuzzy approaches, particularly the optimised type-2 

components of the system, result in an average level of 

objective improvement of approximately 30%, regardless of the 

number of objectives.  

Over the first two years of deployment by British Telecom, 

this application has increased productivity by 0.5% across the 

mobile workforce and reduced fuel consumption by 2.9%. 

This has led to a productivity benefit of £1million a year and 

a saving of over £200K a year in fuel costs.  

The secondary benefits have also been measured. As the 

engineers are travelling less this has saved an estimated 2,500 

metric Tonnes of CO2 and potentially reduced serious traffic 

casualties or fatalities by over 100.   

For our future work, we intend to explore the impact of type-

2 FDRs and to expand the workforce optimisation capabilities 

of iPatch.  
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