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Abstract: This paper proposes a detailed analysis on the operation of a high-performance balun for a dual-polarized dipole 
antenna. The main feature of this balun is to transform a coaxial feed into a differential feed which can enable very high 
performance for dual-polarized configurations. First, we identify the key factors that allow the new balun to achieve better 
differential properties respect to the feeding approach typically found in the literature. Second, we investigate the balun 
properties and the achievable antenna performance with extensive simulations. Next, we prototype and measure the 
antenna proving that very high port-to-port isolation and low cross-polarization level (XPL) can be achieved over a broadband 
operation by means of this balun. Finally, we further investigate the operation of the balun through its physical 
decomposition revealing the minimum requirement to achieve high port-to-port isolation in dual-polarized dipole antennas. 
 

1. Introduction 

The increasing demand for wireless communication 

services has recently led to the extension of the available 

spectrum and the need to deploy a growing number of base 

stations with reduced size. These requirements have driven 
the wireless research community to focus on co-located dual-

polarized antennas with low cross-polarization level (XPL) 

and high port-to-port isolation (i.e. −|S12|  in dB) over a 

prescribed broadband operation. In fact, the XPL and S12 are 

key parameters for evaluating dual-polarized antennas as they 
represent the unwanted power leakage among the two 

polarization states respectively in the far field and at the 

circuit ports. Typically, dual-polarized antennas for base 

station applications consist of two reflector-backed crossed 
dipoles fed by means of a pair of coaxial cables attached at 

right angle [1]-[9]. Although the unbalanced nature of the 

coaxial feed can limit the antenna performance, this feeding 

approach has obtained great popularity due to its ease of 
implementation. In order to improve the differential 

properties of coaxial-based feeds the use of balun structures 

has been proposed in [10]-[12]. Despite this strategy, the 

reported improvements in terms of XPL and S12 are marginal 

or none if compared to similar antennas without balun, e.g. 

[1]-[9]. Indeed, in the authors’ opinion, the main aspect that 

limits the XPL and S12  of current dual-polarized dipole 

antennas has not been fully identified and addressed in the 
literature. In this regard, the authors have recently proposed a 

dual-polarized antenna based on a new balun which can 

enable very high antenna performance over a broadband 

operation [13]. This paper extends the work in [13] with a 
detailed analysis on the operation of the proposed balun and 

its effect on antenna performance. Section 2 proposes the 

main idea behind the new balun. Section 3 reports the antenna 

structure and the operation of the balun. Section 4 evaluates 
the differential properties of the balun and the achievable 

antenna performance. Section 5 reports the manufacturing 

process and measurements of the prototyped antenna. Finally, 

Section 6 further investigates the operation of the balun 
through its physical decomposition. 

2. Feeding Arrangement 

Directional dual-polarized dipole antennas are 

typically fed with coaxial cables which are passed through the 
ground plane or reflector and attached at right angle to the 

dipoles [1]-[12]. This approach normally requires a crossover 

connector between each feed cable and its dipole resulting in 

a feeding section with at least one right-angle transition (or 
discontinuity) as shown in Fig. 1 (a). A typical associated 

current distribution at the feeding section is schematized in 

Fig. 1 (a). This shows that such a discontinuity can radiate 

and couple unwanted energy to the orthogonal dipole 
potentially degrading the required differential property of the 

feed and in turn the XPL and S12  of the antenna. In the 

following we refer to this feeding arrangement as the classical 
approach. To minimise this effect, in [13] we proposed a dual-

polarized dipole antenna whose feeding section to one dipole 

is schematized in Fig. 1 (b). This new arrangement provides 

beneficial aspects to the feeding section respect to the 
classical approach. First, the need for a crossover connector 

is removed since the inner conductor of the feed cable is used 

for this purpose. Second and most relevant, the absence of a 
right-angle transition limits the effect of the discontinuity 

between the feed cable and its dipole therefore establishing 

favourable conditions to achieve a balanced feed. In general, 

the remaining part of the feed cable (between the dipole and 
its reflector) can affect the symmetry of the current 

distribution on the antenna thus its performance. Therefore, 

symmetric dummy structures should be employed to restore 

the physical symmetry of the antenna. 

 
Fig. 1.  Cross-sectional view of the schematic feeding section 
with current distribution upon coaxial feed excitation. 

(a) Classical and (b) proposed approach. 
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3. Antenna Structure and Balun Operation 

The broadband dual-polarized dipole antenna 
presented in [13] is shown in Fig. 2 (a). The antenna consists 

of two reflector-backed crossed dipoles which are driven by 

a pair of coaxial ports. The novelty of the antenna relies on 

the feeding arrangement introduced in Fig. 1 (b) rather than 
on the radiating elements whose basic shape, inspired from 

[4], was selected to achieve broadband input impedance 

matching. The cross-section of the antenna highlights the 

feeding structure of one dipole as shown in Fig. 2 (b). This 
consists of a coaxial cable and a symmetric dummy cable 

attached to the dipole along its longitudinal axis which are 

symmetrically bent toward the reflector and short-circuited to 

the latter. The two conductors being a mirror copy of each 
other establish a highly balanced transmission line short-

circuited at one end and connected in parallel to the dipole at 

the other end. The overall structure acts as a balun between 

the feed port and the feeding section of the dipole.  
The orthogonal dipole of the antenna is fed by an 

identical balun whose only difference is a relative shift of 1.3 

mm along z-axis to avoid cable overlap. The distance between 

the dipoles and the reflector is a quarter wavelength at the 
centre operating frequency, i.e. 2.35 GHz, thus at this 

frequency each balun provides approximately an open circuit 

in parallel to its dipole. For other operating frequencies within 

bandwidth, i.e. 1.7-3 GHz, each balun provides a reactance 
instead of an open circuit as per the transmission line theory. 

Regardless of the provided impedance, the high symmetry of 

the balun allows to achieve high differential properties in a 

broadband operation. 

4. Differential Properties 

This section quantitatively evaluates the differential 

properties of the balun and the achievable XPL and S12 of the 

antenna. The following simulations are obtained with the use 

of a commercial electromagnetic software [14]. A probe is 
placed between the end of each cable and the reflector in 

order to sample the current onto the outer conductors of the 

four cables. The antenna is fed at port 1 while port 2 is 

terminated with 50 Ω. The peak value of the magnitude 
normalized to the excitation port and the relative phase on 

each probe are reported in Fig. 3. The currents on feed and 

dummy cable 1 are equal in magnitude and 180° out of phase 

over the entire bandwidth, which confirm the high differential 
properties of the balun. Moreover, the magnitude of these 

currents shows a minimum at 2.35 GHz confirming the 

quarter-wave transformer functioning of the balun at its 

centre operating frequency. The currents on feed and dummy 
cable 2 are equal in magnitude with a peak value lower than 

40 dB respect to the first pair of cables and result mainly in 

phase. This result shows that the two balun structures are 

highly isolated between each other. In the following the XPL 
at boresight and the maximum XPL evaluated within the 

angular region [−60, 60]° are considered and referred to as 

XPL and XPL̅̅ ̅̅ ̅̅ , respectively. The simulated XPL, maximum 

XPL̅̅ ̅̅ ̅̅  along E and H-plane, and S12 of the antenna with and 
without dummy cables are reported in Fig. 4.  

 

 
Fig. 3.  Probe current normalised to the excitation port. 

(a) Peak value of the magnitude and (b) relative phase. 

 

 
Fig. 4.  Simulated S12, XPL at boresight, and maximum XPL 

within the angular region [−60, 60]° along E and H-plane. 
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Fig. 2.  Proposed antenna with reported dimensions in mm. 

(a) Isometric and (b) cross-sectional view along dipole 1. 
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As a result of the highly symmetrical current distribution the 

complete antenna shows XPL and S12 as low as −60 dB over 

the entire bandwidth while the XPL̅̅ ̅̅ ̅̅  evaluated along E and H-
plane is always maintained below −41 dB. Instead, the 

antenna without dummy cables exhibits significant 

performance degradation concerning all the studied 

parameters especially at the lower end of the band due to high 
asymmetries in the current distribution.  

5. Antenna Prototype 

5.1. Manufacturing Process 
The studied antenna has been prototyped as shown 

in Fig. 5. The radiating elements were made of brass while 

the reflector was realized using a double-sided copper FR-4 
board. The dielectric support was 3D printed in polylactic 

acid with 80% filling factor. Each balun was realized by 

employing a single chunk of a 50-Ω semi-rigid coaxial cable 

with 1.2 mm of outer diameter. First, each cable was soldered 
to two radiating elements after part of its outer conductor and 

dielectric material were removed to obtain the feeding section 

(see bottom left inset in Fig. 5). Second, the inner and outer 

conductor of each cable were short circuited at an arbitrary 
side of the feeding section to obtain a dummy cable. Next, the 

resulting cables were passed through four holes in the 

reflector and soldered front and back to establish electrical 

connection and facilitate mechanical stability (see bottom 
right inset in Fig. 5). Epoxy glue was used during the 

assembly to fix the radiating elements to the dielectric support 

and the latter to the reflector. Finally, two SMA connectors 

were applied to the feed cables to obtain accessible antenna 
ports. 

 

5.2. Measurements 
The S-parameters of the antenna has been measured 

with a Rohde & Schwarz ZVA40 Vector Network Analyser. 

The measured results show good agreement with simulations 

as reported in Fig. 6. For a return loss (RL) ≥ 12.8 dB the 
operating band of the antenna is 1.68-3.04 GHz, which results 

in 58% of bandwidth. The measured S12  is higher than in 

simulation, however its level is maintained below −49 dB 

over the entire bandwidth. The antenna has been 

characterized within a reverberation chamber to obtain the 

total radiation efficiency and correlation coefficient as 

reported in Fig. 7 (a)-(b), respectively. The measurement 
setup features a standard deviation uncertainty better than 0.5 

dB (12% in linear scale), e.g. see [15].  The measured total 

radiation efficiency at both antenna ports show good 

agreement with simulations featuring values better than 85% 
(−0.7 dB) within the operating bandwidth. The measured 

correlation coefficient between the two antenna ports is better 

than 0.34 while the simulated one is of the order of 10-4 and 

therefore is not reported for scaling reason. This discrepancy 
is mainly attributed to the directional features of the measured 

antenna which reduces the accuracy of obtaining a rich 

isotropic multipath environment within the reverberation 

chamber setup, e.g. see [15]. The radiation patterns of the 
antenna have been characterized in far-field antenna range 

within an anechoic chamber. The E and H-plane of dipole 1 

at 1.8, 2.2, and 2.7 GHz are reported in Fig. 8-10 (a)-(b), 

respectively. The radiation patterns of dipole 2 show high 
similarity and are not reported for brevity. The measured and 

simulated co-polar components show very good agreement 

while the measured cross-polar components show a general 

higher level respect to the simulated ones. Such a 
disagreement can be due to slight misalignments in the 

measurements campaign, finite XPL of the reference antenna, 

 
Fig. 5.  Photograph of the prototyped antenna. Bottom left 
inset shows details of the feeding section. Bottom right inset 

shows back of the antenna. Labels highlight the arrangement 

of the cables. 
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Fig. 6.  S-parameters of the antenna. 

 

 
Fig. 7.  (a) Measured and simulated total radiation efficiency 

(b) measured correlation coefficient. 
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and to non-ideal prototyping. Nevertheless, the XPL and XPL̅̅ ̅̅ ̅̅  
along E and H-plane are maintained respectively below −34 

and −16 dB for the reported frequencies. For the purpose of 

comparison, the maximum XPL, XPL̅̅ ̅̅ ̅̅  along E and H-plane, 

and S12 achieved in this work and in [1]-[12] are reported in 

Table I. The antenna in this work shows an improvement in 

the XPL, XPL̅̅ ̅̅ ̅̅ , and S12 respectively of 2, 6, and 14 dB with 
respect to the overall best performance achieved in the 

reported references. As far as other antenna parameters are 

concerned the gain at boresight is 8.9 dB ± 0.3 dB while the 

front-to-back ratio (F/B) is 16.6 dB ± 1.4 dB whose relatively 
large value is due to the electrically small size and flat shape 

of the reflector. The half power beamwidth (HPBW) along E 

and H-plane is respectively 59° ± 1° and 85.5° ± 10.5° whose 

large difference is due to the intrinsic radiation characteristics 
of a dipole antenna placed above a planar reflector. It is worth 

noting that to improve the F/B and equalize the HPBW along 

E and H-plane [16], further optimization of the shape of the 

reflector would be required.  

6. Balun Decomposition 

This section further investigates the operation of the 
balun through its physical decomposition. The dummy cables 

were systematically removed from the antenna and S-

parameters with radiation patterns were measured for each 

situation. The S11  and S12  are reported in Fig. 11. The 

removal of dummy cable 1 changes the input matching of 

dipole 1 although with a limited impact as expected by the 

operation of the balun as a short-circuited quarter-wave 
impedance transformer. The input matching of dipole 2 

remains unchanged. Even though the differential feed of one 

dipole is compromised the S12  of the antenna is mainly 

unaffected. Such a result can be explained by considering a 
 

Fig. 9.  Radiation patterns of dipole 1 at 2.2 GHz. 

(a) E-plane and (b) H-plane with dummy cable 1. 

(c) E-plane and (d) H-plane without dummy cable 1. 
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Fig. 8.  Radiation patterns of dipole 1 at 1.8 GHz. 

(a) E-plane and (b) H-plane with dummy cable 1. 

(c) E-plane and (d) H-plane without dummy cable 1. 
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Fig. 11.  Measured S11 and S12 of the prototype antenna. 
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Fig. 10.  Radiation patterns of dipole 1 at 2.7 GHz. 

(a) E-plane and (b) H-plane with dummy cable 1. 

(c) E-plane and (d) H-plane without dummy cable 1. 
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general dual-polarized dipole antenna whose first and second 

element are respectively driven by a non-ideal and ideal 

differential feed. Without loss of generality let us feed the 
first dipole and terminate the second one on its reference 

impedance. It turns out that the asymmetric current excited 

onto the first dipole induces symmetric currents onto both 

arms of the second dipole regardless of the degree of the 
asymmetry. This, in turn, results in a net current at the port of 

the second dipole equal to zero, providing |S12| = 0 as in the 

case of ideal differential feeds at both dipoles. This result 

shows that the necessary and sufficient condition to achieve 

|S12 | = 0 in a co-located dual-polarized dipole antenna is the 

employment of only one differential feed within the antenna. 

Moreover, the above fact suggests that |S12|  has a lower 

bound established by the best differential performance among 

the two feeds. The measured radiation patterns of dipole 1 

without its dummy cable are reported in Fig. 8-10 (c)-(d). The 

co-polar components result squinted along E-plane and the 
level of cross-polar components is compromised respect to 

the complete antenna. These effects are more pronounced at 

lower operating frequencies as the degree of asymmetry in 

the current distribution is higher. The radiation patterns of 
dipole 2 remain mainly unchanged. The radiation parameters 

of dipole 1 with and without its dummy cable are summarized 

in Table II. The absence of the dummy cable has very little 
impact on antenna gain and F/B while the maximum XPL and 

XPL̅̅ ̅̅ ̅̅  increase to −27 dB and −14 dB, respectively. The 

HPBW along E and H-plane become respectively 60.5° ± 3.5° 

and 80.5° ± 5.5°. Finally, the removal of dummy cable 2 from 

the antenna affects the input matching and the radiation 

patterns of dipole 2 in the same way as for dipole 1 and also 

degrades S12  at low operating frequencies due to the 

impairment of the differential properties of both antenna 
feeds. It is interesting to note that there exists a specific 

frequency fs  above which the obtained S12  slightly 

outperforms the S12 of the complete antenna. This is due to 

the superposition of two effects that occur on each dipole 

when both dummy cables are removed. The first one is the 
current flowing onto the outer conductor of the feed cable 

which is not balanced by an equal and opposite current. The 

second effect is the current imbalance between the two halves 

of each dipole. Full-wave simulations have shown that for 
specific bending radius of the feed cables and operating 

frequencies, these two effects can combine in such a way to 

provide two orthogonal current distributions associated to the 

antenna ports (even though the physical symmetry is broken), 

leading to an S12 comparable or even lower with respect to 

the complete antenna. In the measurements fs  = 2.35 GHz 

while in simulations fs = 3.15 GHz. This discrepancy is due 

to the higher measured S12 of the complete antenna which 

causes fs to be shifted towards lower frequencies. Since the 

beneficial combination of the above effects only occurs in 

specific circumstances, this result should be considered as a 
second-order effect respect to the overall benefits provided by 

the full feeding structure. 

Table 1 Maximum value of XPL, XPL̅̅ ̅̅ ̅̅  along E and H-plane, and S12 within bandwidth (BW). NG: Not Given. 

Reference Balun BW (%), RL (dB) XPL (dB) XPL̅̅ ̅̅ ̅̅  (dB) S12 (dB) 

[1] No 45 (RL ≥ 9.5 ) −28 NG −31 

[2] No 45 (RL ≥ 14) NG NG −25 

[3] No 45 (RL ≥ 14) −20 NG −30 

[4] No 57 (RL ≥ 14) −24 NG −31 

[5] No 51 (RL ≥ 15.5) NG NG −27 

[6] No 30 (RL ≥ 14) −16 −10 −25 

[7] No 40 (RL ≥ 15) NG NG −32 

[8] No 22 (RL ≥ 10) −18 NG −28 

[9] No 8.2 (RL ≥ 15.5) −29 NG −35 

[10] Yes 56 (RL ≥ 14) −21 NG −25 

[11] Yes 45 (RL ≥ 14) −21 −10 −25 

[12] Yes 45 (RL ≥ 15.5) −32 NG −32 

This work Yes 58 (RL ≥ 12.8) −34 −16 −49 

 
Table 2 Measured radiation parameters of dipole 1. 

Parameter With dummy cable 1 Without dummy cable 1 

Frequency (GHz) 1.8 2.2 2.7 1.8 2.2 2.7 

Gain (dB) 8.6 9.2 8.9 8.5 9.2 8.9 

F/B (dB) 15.3 16.2 18 15.9 16.2 17.7 

XPL E-plane (dB) −43 −53 −34 −33 −38 −35 

XPL H-plane (dB) −50 −34 −36 −27 −31 −40 

XPL̅̅ ̅̅ ̅̅  E-plane (dB) −21 −17 −16 −15 −14 −14 

XPL̅̅ ̅̅ ̅̅  H-plane (dB) −27 −31 −26 −15 −20 −18 

HPBW E-plane (°) 58 60 60 64 62 57 

HPBW H-plane (°) 96 75 77 86 76 75 
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7. Conclusion 

In this paper we have investigated the properties of a 
high-performance balun for a dual-polarized dipole antenna. 

The proposed arrangement of the feed cable and the 

deployment of a symmetric dummy cable have shown to 

operate as a highly differential feed that leads to very high 
antenna performance. Measurements of the prototyped 

antenna have proven that |S12 | ≤ −49 dB, XPL ≤ −34 dB, and 

XPL̅̅ ̅̅ ̅̅  ≤ −16 dB along E and H-plane can be achieved over a 
broadband operation. These results show that the proposed 

balun is able to provide superior antenna performance respect 

to the coaxial-based right-angle feeding approach typically 

found in the literature. Moreover, the physical decomposition 
of the dummy cables from the antenna has revealed that the 

necessary and sufficient condition to achieve |S12 | = 0 in a 

co-located dual-polarized dipole antenna is to employ only 

one high-performance differential feed instead of two that are 

generally thought to be required. This general feature relaxes 

the requirements for achieving high port-to-port isolation in 
dual-polarized dipole antennas. 
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