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Abstract—The picosecond relaxation of an electronically excited
insulator is described by means of an extension of the two-
temperature model. In this phenomenological description, charge
neutrality is enforced, but the electron and hole chemical poten-
tials are not forced to be equal. Different experimental regimes
can be characterized by comparing the electron-lattice and
electron-hole relaxation rates. The dependency of the long-time
relaxation on both the electronic gap and the sample density is
discussed. The extend two-temperature model correctly describes
the unexpectedly long transient opacity displayed by a borosilicate
glass irradiated by ultrafast proton pulses.
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I. INTRODUCTION

By means of the target normal sheath acceleration mech-
anism, ultrafast (3± 0.8 ps) proton pulses with a very sharp
energy (15± 1.5) MeV can be generated at local-scale laser
facilities, like the TARANIS multi-terawatt laser at Queen’s
University Belfast [1]. This novel experimental capabilities are
ideally suited to investigate the relaxation of the electron-hole
plasma generated upon proton irradiation of solids and liquids.
For instance, the transient opacity of transparent insulators
[2][3] and water [4] over a few hundreds of ps after the proton
passage can be monitored using optical streaking. These early
experiments have revealed an unexpectedly long (>100 ps)
transient opacity in the near infrared (1054 nm probe). This
unexpected behavior has been linked to the persistence of a
‘cold’ electron-hole plasma which causes the extinction of the
probe.

In this paper, we introduce a simple extension of the Two-
Temperature Model (TTM) [5] which describes the experi-
mental results using two phenomenological time-scales. The
first time-scale is related to the well-known electron-lattice (or
electron-phonon) relaxation [6], while the second time-scale
is related to the relaxation of the electrons and holes to a
common ‘chemical’ equilibrium. In particular, we find that
the transient opacity of an irradiated borosilicate (BK7) glass
is well described by a short electron-phonon time-scale (<10
ps) — in agreement with previous estimates — and a longer
‘chemical’ relaxation time-scale of 110 ps. A microscopic

justification of the longer ‘chemical’ relaxation of the electron-
hole plasma using an excitonic relaxation model [7][8] is
currently attempted.

This paper is organized as follows: Section II describes
the phenomenological kinetic equations used to model the
experiments; Section III contains the main results of the
paper; Finally, Section IV provides a brief discussion of the
underlying microscopic mechanisms and a proposal for the
validation of the model.

II. KINETIC MODEL

In order to model the electron-hole plasma generated upon
proton irradiation, we made the following assumptions: i) The
plasma is classical and Boltzmann statistics applies; ii) The
plasma is well described by a gas of non-interacting particles
(ideal gas); iii) The plasma is homogeneous, i.e., the electron
and hole concentrations do not depend on the position, r; iv)
The electrons and holes have equilibrated separately, although
a global equilibrium has not reached yet.

The first assumption is not crucial and will be relaxed (see
Section III). The Boltzmann statistics is used here to keep the
presentation simple and uncluttered. The second assumption is
strictly justified at low concentration, but no attempt to include
the may-body interaction is described in this paper. The third
and fourth assumptions are valid after 10–100 fs, i.e., the time
it takes to the electrons and holes to diffuse about the proton
track and equilibrate through fast collisional processes. These
final assumptions can be independently validated by solving a
set of coupled charge and energy transport equations [7] based
on a convenient hydrodynamic approximation [9].

To model the long (>100 ps) relaxation dynamics probed
by the experiments of Dromey et al. [2][3][4], the full so-
lution of the coupled charge and energy transport equations,
e.g., using finite element models, still requires a considerable
numerical effort. Those are equations for the electrostatic
potential, φ (r, t), the electron and hole concentrations, n (r, t)
and p (r, t), the electron and hole temperatures, Tn (r, t) and
Tp (r, t), and the lattice temperature, Tl (r, t). In view of
our assumption iii), we can immediately set φ = 0 and
neglect the dependence on r. Assumptions iv) implies that we



can use the equilibrium expression for the electron and hole
concentrations,
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where kB is the Boltzmann constant, Λe and Λp are the thermal
wavelengths of the electrons and holes [10], µe and µp are
the chemical potentials of the electrons and holes, and Eg is
the band gap. Energies are measured from the bottom of the
conduction band.

Global charge neutrality requires that n (t) = p (t). By
further assuming that Te = Tp, it can be shown that µe =
µ̄ + ξ/2 and µh = −µ̄ + ξ/2, where µ̄ = −(Eg/2) +
(3kBT/4) ln(mh/me) is the average chemical potential, and
we will refer to ξ = µe+µp as the chemical bias. At ‘chemical’
equilibrium between particle at holes, we have that µp = −µe

or ξ = 0. We conclude the paragraph by rephrasing assumption
iv) as: The electron and holes are in thermal equilibrium with
Te = Tp, but not yet in ‘chemical equilibrium (ξ > 0).

As the electron-hole plasma evolves towards its ‘chemi-
cal’ equilibrium, the chemical bias, ξ, will decrease to zero.
Concurrently, the plasma will evolves towards its thermal
equilibrium with the lattice, reached when Te = Tl. In view of
this simple kinetic picture, we can write down the following
coupled phenomenological equations:
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where g, and τb are model parameters, u is the energy density
of the electron-hole plasma, and (∂x/∂y)n stands for the
derivative of x with respect to y taken at fixed electron
concentration.

First of all, the equilibrium solution Te = Tl and ξ = 0 is
a stationary solution of Eq. (3). Secondly, in the limit of τb →
∞, the equations reduce to (∂u/∂Te)n Ṫe = −gn (Te − Tl),
i.e., a simple convective heat transfer equation between the
electron-hole plasma and the lattice [5].

To clarify the τb → ∞ limit, we substitute Eq. (3) into the
time-derivative of the electron concentration and obtain that
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Hence, the electron concentration gets fixed when τb → ∞. As
a consequence, the second line of Eq. (3) becomes redundant
in the limit of τb → ∞. Also note that the last line of
Eq. (4) represents a pseudo-first order ‘chemical’ kinetic with
‘reaction’ rate 1/τb. This ‘chemical reaction’ involves the non-
radiative recombination of the electrons and holes.

The parameter, g, is related to the electron-phonon re-
laxation. It is worth noting that at the end of the proton
irradiation experiment described in Refs. [2][3][4], the sam-
ple’s macroscopic optical properties are completely recovered.
As a consequence, a relatively small amount of energy is

initially absorbed by the electron-hole plasma and eventually
transferred to the lattice.

The time-derivative of the energy density of the electron-
hole plasma is given by
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where in the first step we have used Eq. (4). By equating the
energy lost by the electron-hole plasma to the energy gained
by the lattice, we find the following equation for Tl,

3ρlNAkBṪl = gn (Te − Tl)
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where ρl is the molar density of the lattice and NA is the
Avogadro number.

In the limit of τb → ∞, the combined Eq. (3) and Eq. (6)
give the well-known homogeneous TTM defined by
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where g′ = gn. Note that Eq. (7) has been used for mod-
eling energy relaxation in metals [5], in which the electron
concentration, n, is indeed fixed. We can then conclude that
Eq. (3) along with Eq. (6) provide a simple phenomenological
extension of the homogeneous TTM to the case in which the
electron concentration is not fixed.

We end the section by mentioning that Eq. (3) satisfies the
Onsager’s reciprocal relations [10] and that all the equilibrium
properties of our electron-hole plasma model can be obtained
from grand potential density
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or its straightforward extension to the degenerate case. For
instance, we have that (see Eq. (1))

n = p = − (∂Ω/∂ξ)Te

(9)

III. RESULTS

In the experiments of Dromey et al. [2][3][4], the transient
opacity of a transparent insulator is probed upon ultrafast
proton irradiation. A 1053 nm infrared source is used as a
probe. To interpret this kind of experiments, we assumed that
the extinction is due to free carrier (electrons and holes) and
we use a Drude model,

ǫ (ω) = ǫ∞ −
ω2

p

ω (ω + iγ)
, (10)

of the dielectric permittivity of the electron-hole plasma. In
Eq. (10), ǫ∞ is the dielectric permittivity of the transparent
insulator (host material), ωp =

√

e2n/ǫ0m̄ is the plasmon
frequency, with 1/m̄ = (1/me) + (1/mp) being the reduced
electron-hole mass, and γ is a phenomenological relaxation
rate. The density, n, appearing in the plasmon frequency
is obtained from Eq. (1) upon integration of the coupled
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Figure 1. Map of the transmittance as function of the band gap and time, at
fixed molar density. The the band gap of BK7 glass is approximately 3.5
eV, see text for the fixed model parameters. In the the region below the

white line the electron-hole plasma is degenerate.

phenomenological equations, Eqs. (3) and (6). The results pre-
sented in this section are obtained using Fermi-Dirac statistics,
although Boltzmann statistics gives a good approximation for
most of the parameter values.

Following the experiments [2], we assume an average track
density, of 50 tracks per µm2. Defining an effective track
radius, R, the track polarizability is found as

α (ω) = 2ǫ0

(

ǫ (ω)− ǫ∞
ǫ (ω) + ǫ∞

)

πR2 (11)

Finally, the extinction cross-section (dimensionally, it is a
length, not an area) of the a track is

σext (ω) =
k

ǫ0
Im {α (ω)}+ k4 |α (ω)|2

6πǫ2
0

, (12)

where the first term accounts for the absorption and the second
one for the scattering [11]. The wave number is k = ω

√
ǫ∞/c,

where c is the speed of light.

To fit the observed transient opacity of BK7 glass, we
set the band gap, Eg = 3.5 eV, the sample molar density
ρl = 0.04 mol/cm3, and the refraction index,

√
ǫ
∞

= 1.5.
As an initial guess, we also set mp = me = 0.5 mass of the
electron. The stopping power of 15 MeV protons close to the
Bragg peak is approximately Se = 12 eV/Å [12]. The initial
electron concentration is then set to n0 =

(

Se/πR
2
)

/3Eg

and the initial temperature to T0 = 2Eg/3kB [7]. The initial
condition fro the chemical bias, ξ0, is found by solving
n0 = n (T0, ξ0) (see Eq. (1)). Finally, we set the effective track
radius as R = 5 nm. Given these physical parameters, a good
fit of the experimental data is compatible with the following
values of the free parameters: γ = 17 meV, g = 2.5 · 10−12

W/K, and τb = 110 ps.

To get some insight into the qualitative behavior our
model, we perform a ‘sensitivity analysis’ varying two physical
parameters, Eg and ρl, while keeping fixed all the remaining
parameters, including γ, g, and τb.

Figure 1 shows a map of the time-dependent transmittance
as a function of the band gap. As a general trend, the transient
opacity gets more pronounced and longer lived as the band gap
decreases. For instance, amorphous silica, having a band gap
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Figure 2. Map of the electron-hole pair density as function of the band gap
and time, at fixed molar density. The the band gap of BK7 glass is

approximately 3.5 eV, see text for the fixed model parameters. In the the
region below the white line the electron-hole plasma is degenerate.
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Figure 3. Map of the electronic temperature as function of the band gap and
time, at fixed molar density. The the band gap of BK7 glass is

approximately 3.5 eV, see text for the fixed model parameters. In the the
region below the white line the electron-hole plasma is degenerate.

of about 9 eV and a molar density similar to that of the BK7
glass, is predicted to display a negligible transient opacity in
an analogous proton irradiation experiment.

The trend with transmittance is well matched by the trend
with electron-holes pair density, as shown in Figure 2. The
match directly follows from our hypothesis that the transient
opacity is due a sizable free carrier (electrons and holes)
extinction upon proton irradiation.

The longer lived transient opacity is anti-correlated with
the peak electronic temperature, as shown in Figure 3. This
anti-correlation is a consequence of the competition between
two relaxation mechanisms: 1) Thermal relaxation between the
electron-hole plasma and the lattice; 2) ‘Chemical’ relaxation
between electrons and holes. According to our model, the
thermal relaxation mechanism is slower than the ‘chemical’
one for wide gap insulators, while the opposite is true for
smaller gap insulators. In particular, the long lived transient
opacity can be ascribed to persistent ‘cold’ (i.e., in thermal
equilibrium with the lattice) electron-hole plasma.

Finally, Figure 4 shows a map of the time-dependent
transmittance as a function of the molar density. In this case,
the transient opacity gets more pronounced and longer lived
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Figure 4. Map of the transmittance as function of the molar density and
time, at fixed band gap. The molar density of BK7 glass is approximately

0.04 mol/cm3, see text for the fixed model parameters.

as the molar density decreases. Given the linear dependency
of the heat capacity of the lattice on the molar density (see
Eq. (6)), the thermal equilibrium between the electron-plasma
and the lattice is quickly reached at a larger electronic temper-
ature, Te. As a consequence, the electron concentration is also
larger and the electron-hole plasma extinction enhanced. Heat
diffusion across the lattice will eventually cause the hot proton
track to equilibrate to the temperature of the surrounding host
material, namely room temperature. The competition between
the thermal relaxation mechanism and the thermal diffusion is
not considered in this paper.

IV. DISCUSSION AND CONCLUSIONS

The phenomenological equations Eq. (3) and Eq. (6) pro-
vide a simple extension of the TTM to the case in which
the electron concentration is not fixed. They can be readily
generalized to include inhomogeneous electron and lattice
temperatures, as in the inelastic thermal spike model [6]. Our
proposal is complementary to the work of Daraszewicz and
Duffy [13], who have extended the TTM by including an
equation of motion for the electron concentration, n. In our
proposal, n is a function of the electronic temperature, Te,
and the chemical bias, ξ. In particular, n is thermodynamically
conjugated to ξ (see Eq. (9)). Using ξ is convenient because the
‘chemical’ equilibrium condition between electrons and holes,
ξ = 0, is easily stated and enforced into the phenomenological
equations.

From the fit of the experimental results, we obtain reason-
able values of the free parameters γ and g. For a metal like
iron, n ≈ 1.7 · 1023 cm−3, which gives g′ = gn ≈ 4.3 · 1011
W/cm3 ·K, which compares favorably with the values found
in literature [14]. On the other hand, the free parameter τb
is inherent to our model and needs some microscopic justi-
fication. Starting from the early suggestion that an electron-
hole plasma primarily decay into excitons [7], we assume that
a ‘chemical’ equilibrium between the electron-hole plasma
and the free excitons is rapidly reached. Hence, the rate-
determining mechanism can be the slower (i.e., activated)
decay of the free excitons into self-trapped excitons [8]. The
validation of this mechanism, along with other microscopic
assumptions of the model, is currently attempted based on
the full solution of the coupled charge and energy transport

equations.
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