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Background
The eye’s goal is to project reflected light from an object onto ocular fovea. Eye movements 
can be grouped into slow and quick [1]. The former make it possible to maintain either a 
projected image of non-static objects or a projected image when the head is turned (veloc-
ity <30°/s), while quick movements prevent an image from being lost as it is projected on 
the same place in the retina (microsaccadic—steps <0.25°/s), and if there is a quick change 
of point of view (saccadic—variations <700°/s). The eyelids are the other important ele-
ment of the human visual system. They moisten, clean and protect eyes from external 
physical agents. Their movements are called blinks.

Eye and blink movements are used in studies on somnolence, workload, or concentra-
tion. Different studies have related eye movements to central nervous system activity [2] 
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and somnolence [3, 4]. In turn, blink rate has been reported as an indicator of sleep-
lessness and attention/concentration, whereby sleep deprivation raises its frequency 
and duration, while an increase in attention levels produces a decrease in blinking [5, 6]. 
Some control interfaces have been based on them: for example, activity recognition or 
handling a computer through events. Classifying activities are based on pattern detec-
tion, as in reading which involves small eye movements from the beginning of a text line 
and a big shift at the end [7]. Event activities are mainly based on go-and-back move-
ment (GBM) from eyeball center to an extreme: for example, a virtual keyboard [8], a 
mouse pointer [9], or a wheelchair [10].

Ocular activity can be recorded using several techniques, such as infrared light [11], 
video camera [12], or electrooculography (EOG), which is our focus. EOG is a well-
known eye-tracker technique which measures the electric potential difference between 
cornea and retina (±1 mV [13]—depending on several factors such as light level [14]) 
and is recorded when ocular movements occur. It measures electrical activity with Ag/
AgCl electrodes placed around the eyes. The most common electrode layout is shown in 
Figure 1. Two electrodes for each horizontal or vertical direction are employed, provid-
ing bipolar data. A monocular configuration is utilized in vertical eye movements, and 
a binocular setting is used in horizontal shiftings [1]. EOG amplitudes range from 5 to 
20 μV/°, so that ±30° ocular movements [15] are quasi linear, and essential frequency 
components range from 0 to 30  Hz [16]. The duration of a saccade depends on the 
angle of eye movement, with the most common being under 20°, and lasting from 10 to 
100 ms [12]. The time between two consecutive saccades is termed fixation and the aver-
age value lies between 100 and 200 ms [17].

The eye-tracker system using an EOG faces a series of problems: noise, drift, blinks 
and overshoots [18]. This paper focuses on the last two. The blinking signal is a bell-
shaped noise which overlaps on the electrical activity of eyes, while overshoots are 
similar to blinking impulses located in the saccadic area and they occur due to target 
localization error corrected by a secondary saccadic eye movement [19, 20] (Figure 2). 
Blinks are caused by eyelid movements, while overshoots happen mainly with fast, high 
amplitude, eye movements. The blink rate of a relaxed individual is between 12 and 19 
blinks per minute [21], with an average duration of 100 up to 400 ms [22].

The median filter (MF) is one of the most commonly used techniques for deleting 
these noises because the saccadic-edge slopes are preserved and noise is attenuated 

Figure 1  EOG electrode layout. Electrodes H and V record horizontal and vertical eye movements.
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when the duration is at its most buffered [23]. This can be used in online and/or offline 
processings because it is based on split windows. Two other algorithms based on MF are 
FIR median hybrid filters (FMH) and weighted FMH filters (WFMH) [24]. The former 
applies the MF to the output of an FIR filter, whereas in the latter, the MF is obtained 
for each output of an FIR filter multiplied by a constant. Two versions of WFMH are 
interesting: center weighted FMH filter (CWFMH) and subfilter weighted FMH fil-
ter (SWFMH) [24]. CWFMH leaves all FIR outputs intact, apart from the middle ele-
ment which is multiplied by a constant. The edges and sinusoidal signals are preserved. 
SWFMH multiplies the extremes and the central elements remain intact. High frequency 
noise is removed and the edges are maintained. All these filters were analyzed in Mar-
tinez et al. [25]. FMH and WFMH results are not better than MF, while SWFMH pro-
duces non-meaningful differences in detection rate in relation to MF. In addition, a serial 
sequence of MF may improve the results of a single MF [26, 27]. However, a sequence or 
a single MF encounters several problems for deleting noise [28]. A blink in the saccade 
vicinity causes the edge slope to be smoothed, whereas a sequence of consecutive blinks 
produces a squared pulse similar to eye movement (Figure 2). In contrast, small steps are 
caused by smooth pursuit movements and a big MF mask size delays the saccadic edges.

In this paper, we propose an algorithm for removing overshoots and blinks. The meth-
odology is detailed in the next section, with a description of the proposed filter, and 
procedures to evaluate processing effectiveness. We then go on to analyze and discuss 
processing outputs.

Methods
This section goes into the details of the online and offline versions of the proposed algo-
rithm for processing EOG data (first subsection), and the tests performed to determine 
effectiveness (second subsection). We performed the tests with our own seven acquired 
EOG signals to evaluate in real data and simulated EOG signals to measure and verify 
different processing features. We developed this model because we were unable to find 
EOG databases with specialist annotations of saccade movements, blinks and overshoots 
(“Appendices 1, 2”). By using the model we were able to evaluate processing precision ver-
sus inserted noise level from blinks, overshoots, and general interferences, and to compare 
filtered outputs with ideal data. Version 8.0.0.783 of Matlab was utilized to develop and 
simulate the processings and to analyze their results.

Figure 2  EOG signal. Saccades, blinks, overshoots and pursuit movements.
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EOG filter

This section describes the process for deleting blinks and overshoots in the EOG signal. 
The algorithm is based on obtaining envelopes to signals as occurs in empirical mode 
decomposition technique [29]; a similar process was used to detect QRS waveforms 
in electrocardiogram signals [30], to filter peak and spike noise in EEG signals [31], to 
study foot muscle coordination from EMG data [32], and to obtain power dependen-
cies in neuroimaging data [33]. The next two subsections explain the process for obtain-
ing lower envelope and how it is used to filter; the last two add detail to the proposed 
technique.

Lower envelope

Essentially, the algorithm finds a set of envelopes of the EOG signal (Figure 3a) by follow-
ing two steps.

Step 1: Find all local minimums from data.
Step 2: Generate a new signal based on the cubic Hermite interpolant that crosses each 

extreme and passes by the first and final value of the input data.
This interpolation provides a piecewise cubic function based on values at neighboring 

grid points using third-degree polynomials with Hermite form, so that a smooth approx-
imation of the EOG signal is obtained.

Envelope filter

Let D be the input data of size n. Let F be a zero vector, also of size n, where the filtered 
data are stored.

Step 1: Let E1 be the first lower envelope obtained from D by applying the procedure 
described in previous subsection.

Step 2: Let E2 be the second lower envelope from applying the procedure to E1 
(step 1).

Step 3: Add the average of E1 and E2 to F (1).

Figure 3  Envelope filter. a Steps 1–3 of envelope filter, b the result of envelope filter loop.
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Step 4: Assign to D the difference between data and the previously filtered data 
(D = D − F). The next iteration is performed on this new D.

Step 5: Repeat steps 1–4 twice in total.
The algorithm obtains two lower envelopes (steps 1 and 2). The first of them 

extracted directly from data and the second based on the first extracted envelope. The 
first envelope cannot filter blinks or overshoots with a sawtooth-shaped top. For this 
reason, a second envelope is obtained from the first (Figure 3a). The latter decreases 
saccade edge slopes excessively. To reduce this negative effect of the second envelope, 
the average between both envelopes is calculated. Although the blinks and overshoots 
with sway-shaped tops are not totally filtered, their amplitudes are reduced (Fig-
ure  3b). Furthermore, a second iteration causes the output fixations to be closer to 
input-data fixations.

EOG filter: envelope filter sequence (EFS)

The procedure to filter blinks and overshoots from EOG, which is shown in Figure 4, is as 
follows.

Step 1: Generate white noise and add to EOG input. This white-noise signal is known 
as EFS-WN. It is obtained using (2) where wn and Ewn are an initial white-noise signal 
and its energy, Es is the energy of input data without DC component and SNR is the sig-
nal–noise rate measured in decibels of EFS-WN in relation to input data.

Step 2: Apply a mean filter.
Step 3: Employ the envelope filter from the output of step 2.

(1)F = F +
E1+ E2

2

(2)EFS-WN = wn ·

√

Es

Ewn · 10
SNR
10

Figure 4  Offline EFS diagram. Steps 1–6.
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Step 4: Add the EFS-WN obtained in step 1 to the inverted output of the envelope 
filter.

Step 5: Apply a mean filter.
Step 6: Employ the envelope filter from the output of step 5. The output must be 

inverted to keep the original eye-movement directions.
The resulting algorithm is referred to as EFS, and applies two envelope filters (steps 3 

and 6). The first deletes concave variations (blinks and top overshoots), whereas the sec-
ond removes convex curves (down overshoots). EFS-WN is added to cause oscillations 
in the data (steps 1 and 4). The envelopes are more similar to original data when small 
variations happen, therefore EFS-WN amplitude has to be small. The output of step 3 is 
inverted to delete down overshoots correctly (step 4). The mean filters are used to delete 
small sway-shapes on the top of blinks and overshoots (steps 2 and 5). Thus, sawtooth 
shapes are generated through the EFS-WN and mean filters. The output of the algorithm 
must be inverted to maintain initial ocular-movement direction.

Envelope filter sequence supposes that blinks have concave shapes (Figure 2). For this 
reason, lower envelope is its core. Nevertheless, there are schemes where blink form is 
convex. In such cases, the input data must be inverted before applying this processing.

EFS: online version

Some systems, for example control interfaces, require real-time processing to achieve their 
goals. An online version is described in this subsection and Figure 5.

Step 1: Three persistent FIFO (First In, First Out) buffers must be established: input-
data buffer (IB), white-noise buffer (WNB), and another containing the final fragment of 
EFS output (OB). The aim of the EFS is to filter blinks and overshoots, so IB length must 
be wide enough to contain at least one blink. This buffer acts as a sliding window with 
overlapping. The aim of the overlap is to prevent that part of output becoming deformed 
because blink waveform is not stored completely in IB. WNB contains the white noise of 
overlapped data from the previous window. This stops local minimums from this frag-
ment changing in the next execution, and output showing gaps. Finally, output derivabil-
ity is a desired feature, thus OB is used as a link between iterations and envelopes must 
cross for their data.

Step 2: When IB is full, calculate EFS-WN from EOG input, join with WNB, and add 
to IB.

Step 3: Apply a mean filter.
Step 4: Employ the envelope filter, so that each envelope beginning must cross for OB. 

Two considerations have to be taken into account. First, step 2 of the “Lower envelope” 

Figure 5  Online EFS diagram. [1:N]: Input buffer length; [1:M]: input/output data length (M < N); [M + 1:N]: 
overlapping width; [L:M]: fragment size of filtered data (L ≤ M).
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changes slightly. It says that the interpolation must cross the first sample of the input sig-
nal, but now, this is replaced by OB. Second, the envelope filter makes two interactions, 
and OB is used in the first. In the second, OB is replaced by a new zero vector.

Step 5: Add EFS-WN to the inverted output of step 4.
Step 6: Apply a mean filter.
Step 7: Repeat step 4. Invert its output.
Step 8: Store the overlapping segment of EFS-WN in WNB and the final fragment of 

output in OB.
Step 9: Returned filtered data are not overlapped. Bell-shaped partial waveforms 

stored in IB may reduce the effectiveness of filtering. To prevent this effect, processing 
output discards the overlapped buffer segment.

Procedure

Nine tests were conducted. The first three determined the EFS parameters for offline and 
online versions. The other tests compared filtering results of EFS and MF. According to 
[25], MF length was set to 300 ms. The first eight tests used 100 signals from the model 
described in “Appendix 1”. Henceforth, the model name is EOG system generator (EOG-
SG). The main features of these signals are explained in this subsection. However, more 
details are given in “Appendix 2”. The ninth test compared MF and both versions of EFS 
from real EOG signals. All tests applied a 30-Hz-lowpass filter [16].

Envelope filter sequence parameters were established in Tests 1 and 2: they were 
EFS-WN amplitude and mean-filter length. EFS parameters were calculated ver-
sus sampling rate. In both tests, one of the EFS parameters was set and the other 
changed. Test 1 obtained EFS-WN amplitude by increasing SNR by 1 dB from 1 to 
60 dB in (2) for the same input data. Energy of the input signal was used as Es, and 
mean-filter length was set at 31.25 ms. With the best EFS-WN amplitudes set in Test 
1, mean-filter length was modified from 2 to 100 samples. The best values of EFS 
parameters were obtained through correlation coefficients (CC) based on Agrawal 
and Gupta [34] whose expression was (3), where L was the number of samples, EM 
was the ideal signal without overshoots and blinks obtained from (17) in “Appen-
dix 1”, and NI was the non-ideal signal, so that it could have been filter output or 
input data. In this case, NI was the output data. This feature measured the similarity 
between signals and its value ranged between 0 and 1. The selected EFS parameters 
had a CC value over 0.97.

Test 3 determined the lengths of three buffers and the overlapping area of the 
online version of EFS. The values of parameters obtained in Tests 1 and 2 were set. 
Buffer lengths were modified in each iteration, such that IB increased by 0.1 s in each 
iteration from 0.6 up to 1  s; overlapping area and WNB width changed from 0.1 to 
0.4 s, increasing 0.1 s (WNB depends on overlapping); and OB was modified between 
0.05, 0.10 and 0.15 s. The CC and root mean square error (RMSE) (4) were obtained 
in each case.

(3)
CC =

(

∑L
i=1 EMi · NIi

)

(

∑L
i=1 (EMi)

2
)

·

(

∑L
i=1 (NIi)

2
)
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Tests 1–3 used EOG-SG signals with 100 GBMs, blinks and overshoots. Different fea-
tures of the model were set randomly. The range of eye movement oscillated between 
−40° and +40°, with horizontal fixations whose time was established between 0.6 and 
1.5 s. Blink width varied between 0.3 and 0.55 s with a frequency of 19 blinks per minute. 
They happened in periods between GBMs which this time was set between 3 and 5 s. In 
addition, sampling rates in Tests 1 and 2 were {128, 256, 360, 512, 1,200, 2,400} Hz, while 
Test 3 used 128 Hz, because it was considered that the results of the first two tests were 
similar for all sampling rates.

With EFS parameters set, Tests 4–8 analyzed the ability of MF and EFS filters to delete 
blinks and overshoots and waveform preservation for a 128 Hz sampling rate. This value 
was selected to reduce model and analysis computing time.

Test 4 measured the level of bell-shaped removal through blink signals without saccadic 
movements. Blink durations were increased 0.1 s in each iteration from an initial interval of 
[0.1, 0.2] s up to [0.4, 0.5] s. Blink frequency varied randomly between 12 and 22 blinks per 
minute. Besides CC and RMSE from filter output, we calculated the percentage decrease of 
blink amplitudes and percentage of processed blinks whose output amplitudes remained 
higher than the 25% raw blink amplitude. Tests 5–7 studied waveform preservation of both 
filters versus fixation time without blinks and overshoots. The duration varied randomly 
from an initial interval between 0.3 and 0.4  s up to fixations between 1.4 and 1.5  s. The 
interval width was increased by 0.1 s in each new signal. Test 5 focused on signals with 1,000 
GBMs; Test 6 used 125 stair-shaped waveforms in each signal to simulate reading activity; 
and Test 7 analyzed signals with 1,000 consecutive random saccadic movements to imitate 
natural eye movements. In Test 6, the ocular shiftings in a stair waveform moved from the 
start point of −15° up to the final position of +15° where the number of saccades oscil-
lated randomly between 6 and 10. Tests 5 and 7 used saccades whose values were between 
−40° and +40°. In these tests, the CC and RMSE were calculated from filtered data. Test 8 
analyzed the effect of fixation slopes in 1,000 GBMs signals with overshoots and blinks, as 
defined for Tests 1–3, but with a sampling rate of only 128 Hz. The difference with respect 
to these tests was the fixation slope, that is, the variation of amplitude between two con-
secutive saccades (“Appendix 1”—second subsection). This dropped during fixation time, 
with the decrease ranging from 5% in each iteration from an initial interval [0, 5]% up to 
[35, 40]%. Note that variation in the fixation slopes made it difficult to restore their horizon-
tal-shaped waveforms. Hence, this test established the signal with variations in the fixation 
slope as the ideal signal, as defined in (17). This test calculated the following features: CC, 
RMSE, SNR, saccadic slope variations (SSV) and the number of non-filtered overshoots 
from the filtered signal. They were obtained for input and output signals. SNR was obtained 
by (5) where NI could be the input signal or the output data; thus, it measured how they 
were affected by noise. SSV was calculated by (6) where P was the number of saccades, S(i) 
was the set of samples of the saccade slope, and FO was filter output.

(4)RMSE =

√

∑L
i=1 (EMi − NIi)2

L

(5)SNR = 10 log10

(

∑L
i=1 (EMi)

2

∑L
i=1 (EMi − NIi)2

)
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The ethics committee of the University of Seville accepted Test 9 with real data from 
individuals. This one was performed with 55 min of real EOG data from seven signals 
from three subjects: eye movements were recorded while the individual watched a film 
(natural eye movement), read a book (stair-waveform), did GBM, and watched dark 
screen for null activity (blinkings). Only the vertical channel was obtained for natural 
movements, whereas horizontal and vertical shiftings were recorded for other signals. 
They were recorded using the bioamplifier model gtec gUSBamp, and version 2.0 of the 
BCI2000 software [35]. Their features are summarized in Table  1. Sampling rate was 
1,200 Hz for natural movement, and 256 Hz for the others. Notch to remove power line 
interference and 30 Hz lowpass filters were applied to all of them [16]. The reason for 
these sampling rates was that the data we used were recorded before the EFS technique 
and this paper’s tests were developed. Data were filtered through MF and offline and 
online versions of EFS. Data were then split to select only intervals of blinks, saccades 
and overshoots. Segments of raw data and processing outputs were normalized between 
0 and 1. Normalization values of raw data were applied to filtered signals. The extracted 
features were: mean of SSV for saccade slopes; mean of overshoot amplitude reduction; 
and summation of blink area reduction.

Outlier values of all measured features were avoided using the interquartile-range 
method (7), where f were values of the feature used, and Q1 and Q3 were quartiles 1 and 
3 respectively.

Results
The analysis of results of Tests 1 and 2 provides EFS parameters for its offline version. They 
are summarized in Table 2 and Figure 6. The selected intervals have a CC over 0.97. The 
SNR of EFS-WN and mean-filter length increased with sampling rate. These SNR values 
translated into smaller EFS-WN amplitudes, because more noise data were recorded. Fur-
thermore, when mean-filter length time was calculated, it appeared as more stable.

Test-3 results provided buffer lengths for the EFS online version (Figure 7). There was 
practically no change in error in relation to OB. The smallest length was selected (0.05 s). 
In addition, an overlapping area of 0.2 s produced the best results for all cases. Finally, 
output data were more similar to the ideal signal when IB width enlarged, as more signal 

(6)SSV =
100

P
·

P
∑

i=1

(

1−

∑S(i)
j=1

(

FOj − FOj−1

)

∑S(i)
j=1

(

EMj − EMj−1

)

)

(7)f ∈ [Q1− 1.5(Q3− Q1), Q3+ 1.5(Q3− Q1)]

Table 1  Real EOG signal features

Real EOG features. Mean and standard error are shown for blink, saccade, and overshoot times for each real signal.

Signal Time 
(min)

Sampling 
rate (Hz)

Blinks Saccades Overshoots

Number Width 
(ms)

Number Fixation 
width (ms)

Slope 
width 
(ms)

Number Width (ms)

Blinks 8 256 132 479 ± 8 0 0 0 0 0

GBM 4 256 19 496 ± 22 73 1,637 ± 42 155 ± 8 25 154 ± 10

Natural 21 1,200 103 268 ± 13 278 2,365 ± 165 156 ± 6 49 113 ± 6

Reading 22 256 28 287 ± 12 1,612 301 ± 4 44 ± 0.48 16 116 ± 11
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Table 2  Best values of EFS parameters

Best values of EFS parameters versus sampling rate. CC values are 0.97 higher in each interval of the table.

Sampling rate (Hz) Test 1 Test 2

SNR (dB) Best value (dB) Mean-filter length (ms) Best value (ms)

128 [22, 52] 32 [15.63, 187.5] 31.25

256 [27, 58] 36 [7.81, 250.00] 35.16

360 [30, 60] 40 [8.33, 250.00] 36.11

512 [33, 60] 41 [9.77, 193.36] 37.11

1,200 [40, 60] 50 [8.330, 82.50] 26.67

2,400 [46, 60] 56 [8.330, 41.25] 25.00

Figure 6  Results of Tests 1 and 2. a Best amplitudes of FS-WN; b best lengths of mean filter.

Figure 7  Results of Test 3. Matching IB length of {0.6, 0.7, 0.8, 0.9, 1.0} s with OB length of {0.05, 0.10, 0.15} s 
with overlapping of {0.1, 0.2, 0.3, 0.4} s. a Root mean square error; b cross correlation.
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information was stored. However, a greater length produced an increased delay in real 
time systems. Thus, an IB of 0.7 s was selected, because this length obtained a CC over 
0.97. The online EFS parameters, that is, EFS-WN amplitude and mean-filter length, 
were equal to the offline version, because we supposed that each segment of signal had 
an SNR value similar to the total signal. In contrast, Test 3 CC results were similar to 
Tests 1 and 2, thus the results of Tests 4–8 can be extrapolated to the online version.

Test-4 results are shown in Figure 8. The median filter’s ability to remove bell-shaped 
interference decreased with blink duration, while it remained constant with the EFS fil-
ter (the error was between 6 and 15 times smaller). In this way, blink amplitude was 
reduced from 99 to 97.5% with the EFS algorithm in all cases, whereas MF effectiveness 
fell abruptly from 91 to 40% as bell-shaped width increased. In addition, the number of 
blinks whose amplitude exceeded 25% of the original value increased as the duration 
increased, such that it was only 4.6% for EFS processing in the worst case, and always far 
below the MF.

Waveform preservation test results (Tests 5–7) are summarized in Figures 9, 10 and 
11. RSME shows that MF fitted better than EFS in all cases. These differences decreased 
as fixation duration increased. Both processings had a much larger error with random 
ocular movements versus other cases, while the reading activity produced the best error 

Figure 8  Blink removal. a Root mean square error; b percentage decrease of blink amplitudes; c cross 
correlation; d percentage of blinks whose amplitudes after filtered processing exceeded 25% of original 
amplitudes.

Figure 9  Preservation of GBM waveform. Pulse width changes from interval [0.3, 0.4] s up to [1.4, 1.5] s. 
 a Root mean square error; b cross correlation.
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values. EFS showed CC values over 0.97 when fixation widths were higher than 0.5 and 
0.7 s for GBM and random ocular movements, whereas its smallest value was 0.98 for 
reading the EOG signal. Meanwhile, the MF had no fixation problems, with the output 
signal being almost equal to the input signal (CC > 0.99), when input was free of blinks 
and overshoots.

Results of Test 8 are summarized in Table 3 and Figure 12. SNR shows that the capac-
ity to obtain the ideal signal with MF and EFS decreased with the fixation slope. EFS 
processing was more effective at restoring the ideal signal as shown in all table features. 
However, the fixation-slope effect produced smaller variations of SNR, CC and RSME in 
MF.

The best values of SNR, CC and RMSE were reached when fixation slopes were 
between 0 and 5%. EFS processing obtained a good SNR value for all cases (>10 dB), CC 
increased about 22% and RMSE dropped to 76% in relation to input data, whereas the 
MF SNR value was below 10 dB, CC increased around 17% and RMSE dropped to 72%.

While saccade slopes in all cases remained virtually unaltered in MF, in EFS, they 
dropped to 50%. Both techniques filter all overshoots completely (100% deleted).

Finally, Figure 13 shows the features measured in Test 9 for real EOG signals, with 
a visual analysis in Figure  14. EFS parameters were set from Table  2 for sampling 
rates of 256 and 1,200  Hz. However, online EFS-WN SNR was set to 27 and 30  dB 
for better results. A 300  ms MF was much less capable of deleting blinks, with the 
decreased area being 53.96 and 55.61% lower than the offline and online EFS ver-
sions (Figure  13a). Blink interference in horizontal movements was also 39.58 and 
42.45% lower. However, non totally-filtered blinks retained a greater amplitude 
with EFS (Figure  14, markers *). When there was a short time between two blinks, 

Figure 10  Preservation of stair waveform (reading activity). Step width changes from interval [0.3, 0.4] s up 
to [1.4, 1.5] s. a Root mean square error; b cross correlation.

Figure 11  Preservation of random waveform. Step widths change from interval [0.3, 0.4] s up to [1.4, 1.5] s.  
a Root mean square error; b cross correlation.
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Figure 13  Result of real EOG processing. Results of MF, offline and online EFS. a Summation of blink area 
reduction; b overshoot amplitude variation; c saccade slope preservation for reading, natural and go-back 
eye movements.

Figure 14  Test of real EOG. Visual analysis of results of MF, offline and online EFS.

Figure 12  Fixation slope effects. Variation of SNR of input data, MF and EFS outputs. Slope changes from 
interval [0, 5]% up to [35, 40]%.
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MF generated an artificial pulse between them (Figure 14, marker !), and this never 
occurred with EFS. Overshoot amplitudes only dropped around 30% for MF (Fig-
ure  13b), while EFS versions obtained better results (46 and 55%). However, sac-
cadic slopes were better in MF (Figures 13c, 14, markers #). For reading activity, MF 
preserved 49% of slopes, whereas EFS retained 34 and 20% for offline and online 
versions. All processings retained better for other signals: 74, 68 and 54% of natural-
movement slopes were conserved, and 91, 72 and 64% of GBM slopes were preserved. 
Finally, spike perturbations were filtered in both cases (Figure 14, marker &), but EFS 
reduced them to a greater extent.

Discussion
Bell-shaped waveforms, such as blinks and overshoots, are unwanted elements in some 
control interfaces or activity classifiers [7–10, 18], because they reduce their effectiveness. 
The offline and online versions of the technique proposed in this paper achieved high and 
stable levels of elimination with low response delays (EFS-WN, mean filter, finding local 
minimums and interpolation are linear operations), with their amplitudes decreasing by 
more than 97%, which was far better than the 300 ms-length MF. This fact was confirmed 
with real EOG data. Thus, control systems, like the complex state machine developed in 
Merino et al. [18], could clearly be simplified by using EFS preprocessing. In turn, the abil-
ity of EFS to detect bell-shaped waveforms could be used to send commands when a vol-
untary blink happens.

Some systems are based on GBM eye movements as commands, whereas others use 
a saccade-movement sequence to determine which activity has occurred. In these sys-
tems, EFS processing may not be useful with short fixations, and a fixation-time thresh-
old is required to achieve a satisfactory level of waveform preservation, for example 
GBM must exceed 0.5 s. The reason for this is that there are few or no local minimums 
with small fixations. The envelope filter uses these minimums to delete bell-shaped 
interferences and to be closer to input data through an average from two envelopes. Too 
few minimums may mean that the average is not similar to input fixation, because the 
first lower envelope may be free of local minimums, and the second is obtained from 
those values. Hence, the distance between the envelopes may be considerable. This may 
be made worse if an input fixation interval does not have local minimums. In this case, 
there is no similarity between the two envelopes.

Envelope filter sequence requires small oscillations of input data to reach a high level 
of similarity with ideal EOG signals. The objective of EFS-WN is to increase the num-
ber of local minimums. However, blinks and overshoots are not removed when the top 
or its peaks are sawtooth shaped. For this reason, to reduce sway form, a mean filter is 
applied after adding EFS-WN. High EFS-WN amplitudes may introduce large swayings 
on bell-shaped peaks, rendering the mean filter ineffective, and a long mean filter may 
excessively reduce the number of local minimums. Thus, EFS-WN for the offline EFS 
version is set at a low value (32 dB) for 128 Hz, and this decreases with a larger sam-
pling rate, because more oscillations (noise) are recorded and EFS-WN may be smaller, 
or even unnecessary. For the online version, EFS-WN amplitudes are greater (27 versus 
36 dB for 256 Hz for offline) due to lower window energy. Meanwhile, the mean filter 



Page 16 of 23Merino et al. BioMed Eng OnLine  (2015) 14:48 

smoothes out data and deletes the sawtooth top of blinks and overshoots. Therefore its 
length, between 25 and 32 ms, is more constant and independent of the sampling rate.

Applying a highpass filter to the EOG signal causes the fixation slopes to drop 
(Table  3). This may mask a subset of small variations inserted by EFS-WN. Few local 
minimums are found and envelopes may not be close enough to fixation periods, 
thereby reducing similarity, as shown in Test 5. Increasing these slopes causes SNR input 
to drop. Nevertheless, this fact is inverted with the filtered processings, with a good SNR 
level and high similarity being reached. Thus, EFS should be applied before the highpass 
filter to avoid this fixation-slope effect.

An important difference with the techniques based on MF is that a shifting window is 
not required, so EFS may be applied to all input data. The effectiveness of MF depends 
directly on window length. A low value may not totally remove blinks or overshoots, 
while a large width may modify saccadic positions. However, MF is relatively robust to 
sawtooth-shaped tops, waveform preservation is high (higher than EFS), and it obtains 
a good SNR value for decreasing fixation slopes (lower than EFS). However, it has dif-
ficulty deleting blink places in the saccade neighborhood and consecutive blinks. EFS 
versions remove the problems of neighborhood and sequence, fixation period error is 
reduced, and saccade positions are maintained. Furthermore, real data confirm that MF 
retains a better saccade slope. This fact may be very important for an activity classifier, 
but it may have less impact in control systems.

Conclusion
The EFS algorithm for filtering EOG data has demonstrated that it is highly capable of 
removing bell-shaped waveform noise without changing saccade positions: blink ampli-
tudes decreased by 97%, and only 5% of them maintained a value over 25% of the ini-
tial value, and overshoots were considerably reduced. However, saccadic slopes were 
smoothed and we found a limit of fixation duration. In contrast, MF was less capable of 
reducing amplitudes of this kind of interference, but was better at maintaining slopes, with 
a smaller dependence on fixation width being obtained.

The paper described an online implementation of EFS with a similar level of effective-
ness to the offline version. Hence, the EFS algorithm can be used by a control interface 
based on EOG signals to manage devices such as PCs, activity classifiers, and/or affec-
tive computing systems.

Appendix 1: EOG system generator
A model of the EOG signal is described in this appendix. This one can measure and verify 
different EOG features. This model was developed because we were unable to find data-
bases with specialist annotations of saccade movements, blinks and overshoots. The model 
allows us to evaluate processing precision versus inserted noise level from blinks, over-
shoots, and general interferences, and compare filtered outputs with ideal data.

An EOG signal may be split into (8)

where EM(t) is the ideal signal consisting of eye movements, O(t) contains overshoots, 
B(t) are blinks, and n(t) is additive noise (Figure 15). These functions are described in 

(8)EOG(t) = EM(t)+ O(t)+ B(t)+ n(t)
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the following subsections. The model of saccades and fixations is explained in first three 
subsections, it is generalized in the fourth subsection, where EM(t) is obtained. Over-
shoot and blink models are described in last two subsections.

Saccades model

Saccade movements cause a rapid signal variation, whereas fixations maintain the electric 
level from saccades [1, 17]. They can both be modeled with a sigmoid function (9). This 
is defined for all real numbers, its rank is (0, 1), with two horizontal asymptotes in 0 and 
1 (Figure 16). Parameter a shifts it along the abscissa axis, while parameter b contracts/
dilates it, so that the slope changes with this value.

The main variations of the sigmoid function are found in the interval 
[a− bln(1/0.1−1), a− bln(1/0.9−1)], where it ranges from 0.1 up to 0.9, which is 80% 
of its slope. Parameter b controls the interval amplitude, so it can be used as a model 
of saccadic shiftings. Thus, supposing the linear relation between eye-movement angles 

(9)S(x) =
1

1+ e−x

x= t−a
b

−→ S

(

t − a

b

)

=
1

1+ e−
t−a
b

Figure 15  Model EOG signal from EOG-SG. a Individual elements; b joining of all components.

Figure 16  Saccade model. Sigmoid function with a = 0 and b = 1.
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and saccade time widths, with the average time of EOG-saccades slope known as 100 ms 
for a 20° movement [12], then b is defined as (10)

where 0 ≤ A < π is movement angle in radians, 0 < ρ < +∞ is a random factor of vari-
ability of saccades (RFVS) to involve variations in the slopes.

Fixations model

Ocular position is maintained after each saccadic movement [17]. This is termed fixation. 
Under ideal conditions, the electrical level reached is upheld and only changes when a new 
saccade occurs. In contrast, applying a high pass filter to the EOG signal is a normal action 
because this shows a DC level. This filter causes the fixation slope to decrease, because the 
signal is constant in them. So, Eq. (11) models this behavior, where δ and γ are start time 
and duration of decrease, and m is decreased level, whose value is between 0 and 1. Note, 
98% of the slope is in interval [0, 1] when δ = 0 and γ = 1.

A high pass filter could be used instead of (11), but fixation slope control is lost. So, 
(11) through parameter m handles this EOG feature better.

Saccade‑fixation model

A fixation always happens after a saccade [1, 17]. So, this relation is drawn in Figure 17 and 
is defined in Eq. (12)

where

is the start time of the decreased fixation slope and is located after the saccade and 
coincides with the time instant when (9) is 0.99. Furthermore, the fixation slope time 

(10)b(A, ρ) = Aρ

(

0.9

2π ln(9)

)

(11)D(m, t, δ, γ ) = 1−mS

(

ln(99) ·

(

2(t − δ)

γ
− 1

))

(12)SF(t, a, b,m, δ, γ ) = S

(

t − a

b

)

· D(m, t, δ, γ )

(13)δ = a− b ln

(

1

0.99
− 1

)

> a− b ln

(

1

0.9
− 1

)

Figure 17  Different fixation slopes. Model EOG signal with four different fixation slopes.
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depends on when the next saccade occurs. If a2 and b2 are the next saccade localization 
and its slope, then fixation width is defined as

such that the end of fixation coincides with the time instant when (9) is 0.01 for the next 
saccade (Figure 17).

Saccade sequences

Eyes are constantly in movement, so it is possible to establish a movement sequence as a 
set of saccades and fixations whose initial and final positions are the center of the eyeball. 
A sequence of saccades is established as a family of curves in (15), returning to the center 
position as (16)

where L > 0 is the number of saccades of a sequence, A, a, ρ, m, δ, and γ are vectors 
whose components mean: Aj is movement angle in radians where π/2 > Aj > −π/2 and  
A0 = 0, b(|Aj − Aj−1|, ρj) determine saccadic slope, ρj is RFVS, aj is the start time 
instant of a saccadic movement where aj+1 > aj > 0, mj is decreased fixation slope, δj is 
the start time of decreased slope, γj is the duration; α and θ are real scalars which set the 
position of the returned saccade to the center localization of the eyeball and its slope. In 
(15) a tangent function was used because ±30° ocular movements are quasi linear [15].

Finally, EM(t) is obtained from a saccade sequence (15) and one single returned move-
ment (16). Its expression is in (17)

where K > 0 is the number of ocular movement sequences, L(i) > 0 is the number of sac-
cades of sequence i, Ai, ai, ρi, mi, δi, and γi are vectors of sequence i that were described 
in (15) and (16), Ai,L(i) is the last component of vector Ai, αi > ai,L(i) is the localization of 
the returned saccade to the eyeball center and is larger than the last saccade component 
of vector ai, and τi is RFVS of this back eye movement.

Sequence of overshoots

Overshoots can be defined as a Gauss function (18). This is an even-symmetry function, 
whose maximum value is 1; μ and σ shift and contract/dilate it. Of its area, 99.99% is in the 
interval [µ− 4σ ,µ+ 4σ ], where its width is controlled through parameter σ. Thus, over-
shoot widths can be defined in this interval.

(14)γ = a2 − b2 ln

(

1

0.01
− 1

)

− δ

(15)
SS(t,A, a, ρ,m, δ, γ ) =

L
∑

j=1

(tan(Aj)− tan(Aj−1))·

SF(t, aj , b(
∣

∣Aj − Aj−1

∣

∣, ρj),mj , δj , γj)

(16)RCP(t,α, θ) = 1− S

(

t − α

θ

)

(17)EM(t) =

K
∑

i=1

RCP(t,αi, b(
∣

∣Ai,L(i)

∣

∣, τi) · SS(t,Ai, ai, ρi,mi, δi, γi)
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A target localization error causes overshoots in the EOG signal, so they overlap with 
saccades [19, 20]. An overshoot sequence is defined in (19)

where Ci,j is the amplitude of overshoot, σi,j is overshoot width (20), and, μi,j is the time 
localization of the overshoot that must be equal to (21); b(|Ai,j − Ai,j−1|, ρi,j) was defined 
in (10) and θi,j can be ai,j if it is on saccade sequence or αi if it is on returned saccade to 
center localization of the eyeball (17), and sign() is the sign function. In this way, over-
shoots range from 0.5 up to 0.999 in (9).

Sequence of blinks

A blink has a higher slope before its peak than afterwards. So, this can be formed as (22).
β(t) is a piecewise function based on two Gauss functions, where one is double dilated 

in relation to the other. It is known that about 99% of the area of (18) is in the interval 
[p − 3h, p + 3h]. Thus, the interval [p − 3h, p + 6h] contains 99% of β(t) area.

Equation (23) defines the blink signal where R is the number of blinks, Vj is the ampli-
tude of one blink, hj determines blink width, and pj is the localization of the blink peak 
where pj+1 ≥ pj + 6hj.

Additive noise

Bioamplifiers are not perfect systems, and their outputs show interference from pink noise 
due to surface electrodes [36]. Therefore, we added this kind of noise, n(t), of 27 dB in rela-
tion to (17). This gave outputs which were more like real EOG signals from bioamplifiers.

Appendix 2: Test settings
The model of “Appendix 1” was used in this paper’s tests, and its main parameters are sum-
marized in Table 4.

Three implicit concepts of EOG-SG must be described before explaining the sig-
nal generated in each test. The first is the time between sequences (TbS) in (17). This 

(18)G(t,µ, σ) = e
−0.5·

(

t−µ
σ

)2

(19)O(t) =

K
∑

i=1

L(i)
∑

j=1

Ci,j · G
(

t,µi,j , σi,j
)

(20)σi,j = ln(999) ·
b
(∣

∣Ai,j − Ai,j−1

∣

∣, ρi,j
)

8

(21)µi,j = θi,j − 0.5 · sign

(

∂EM(θi,j)

∂t

)

· b
(∣

∣Ai,j − Ai,j−1

∣

∣, ρi,j
)

· ln

(

1

0.999
− 1

)

(22)β(t, p, h) =

{

G(t, p, h) t ≤ 0
G(t, p, 2h) t > 0

(23)B(t) =

R
∑

j=1

Vj · β
(

t, pj , hj
)
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is defined as the period from the final saccadic movement (αi) of sequence i in (16) up 
to the first saccade ai+1,1 of the next sequence i + 1 in (15). Another concept is the rate 
of blinks in a minute (BM), which establishes a limit for the number of blinks. There-
fore, this affects blink localizations (pj) in (23). However, if their positions are between 
sequences of saccade-fixation movements (17), as defined in (24), then blinks and ocular 
movements do not overlap. The last concept is when an overshoot happens. With these 
concepts defined, their values were set: TbS changed between 3 and 5 s for all tests (25); 
blinks happened between the sequence of ocular movements (24) and a frequency of 19 
BM for Tests 1–3 and 5, between 12 and 22 BM for Test 4 and 0 BM in the others [21]; 
overshoots were generated when an eye shift exceeded +25° in absolute value from pre-
vious eye position in Tests 1–3 and 5. The others tests were without overshoots.

The same setting was established for Tests 1–3, where parameters of proposal tech-
nique were obtained. They defined 100 sequences (K) of GBMs whose amplitudes (A) 
changed randomly between ±40°. This kind of movement occurs when the length of vec-
tor A is 1 in (17), that is, L is 1 in (15). The time between two successive saccades (TSS), 
that is, GBM width, was set between 0.6 and 1.5 s (26) with horizontal slope (m = 0) in 
(11). In contrast, blink width (9h) in (23) oscillated between 0.3 and 0.55 s [22].

Test 4 analyzed the ability to delete blinks. For this reason, the signals obtained were 
without saccade sequences (K = 0 and L = 0). Their widths were increased 0.1 s from an 
initial interval [0.1, 0.2] up to [0.4, 0.5] s.

Waveform preservation was analyzed in Tests 5–7. For this reason, the signals were 
free of blinks and overshoots. The distance between saccades changed 0.1 s in each itera-
tion, [17], from an initial random value of [0.3, 0.4] up to [1.4, 1.5] s. The width limit of 
GBMs was studied in Test 5. 1,000 of them were generated with amplitudes between 

(24)ai+1,1 > pj > αi

(25)ai+1,1 − αi ∈ [3, 5]

(26)ai,n+1 − ai,n ∈ [0.6, 1.5]

Table 4  Test settings: main EOG-SG parameters

Settings of tests. Square brackets mean random variations. Meaning of acronyms in the order of appearance.

K number of saccade sequences, L number of saccadic movements per sequence, A eye movement angle, ρ random factor 
of variability of saccade, m fixation slope, TSS time between two successive saccades, 9h blink width, º degree, s second.

Pars. Tests 1–3 Test 4 Test 5 Test 6 Test 7 Test 8

K 100 0 1,000 125 1 1,000

L 1 0 1 [6, 10] 1,000 1

A (º) ±40 0 ±40 ±15 ±40 ±40

ρ [0.9, 1.1] 0 [0.9, 1.1] [0.9, 1.1] [0.9, 1.1] [0.9, 1.1]

m 0 0 0 0 0 [0, 0.05] 
–[0.35, 0.40]

TSS (s) [0.6, 1.5] 0 [0.3, 0.4] 
–[1.4, 1.5]

[0.3, 0.4] 
–[1.4, 1.5]

[0.3, 0.4] 
–[1.4, 1.5]

[0.6, 1.5]

9h (s) [0.3, 0.55] [0.1, 0.2] 
–[0.4, 0.5]

0 0 0 [0.3, 0.55]
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±40°. Test 6 used signals with 125 sequences [7]. The total rank of eye movement was set 
in the interval [−15°, +15°]. The first saccade moved from the center position (0°) up to 
−15°, and the last shifted from +15° to center position (0°). Thus, the amplitude of stair-
shaped waveforms was 30°. The number of saccades between them oscillated between 6 
and 10. Test 7 was based on 1,000 random ocular movements (L = 1,000) with an ampli-
tude between ±40° in a single sequence (K = 1), so that one saccade compared to the 
previous one could reach 80° of the distance.

The configuration of Test 8 was practically identical to Tests 1–3, but with 1,000 GBMs 
and non-horizontal fixation slopes, so they decreased 5% in each iteration, from [0, 5]% 
up to [35, 40]% of the slope.

Finally, the parameter of RFVS (ρ) in (10) was set between [0.9, 1.1] for all tests, so that 
the variability of the saccade slope was 20%.
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