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Hydrogen sulfide (H2S) has been largely referred as a toxic gas and environmental
hazard, but recent years, it has emerged as an important gas-signaling molecule with
effects on multiple physiological processes in both animal and plant systems. The
regulatory functions of H2S in plants are involved in important processes such as the
modulation of defense responses, plant growth and development, and the regulation
of senescence and maturation. The main signaling pathway involving sulfide has
been proven to be through protein persulfidation (alternatively called S-sulfhydration),
in which the thiol group of cysteine (-SH) in proteins is modified into a persulfide
group (-SSH). This modification may cause functional changes in protein activities,
structures, and subcellular localizations of the target proteins. New shotgun proteomic
approaches and bioinformatic analyses have revealed that persulfidated cysteines
regulate important biological processes, highlighting their importance in cell signaling,
since about one in 20 proteins in Arabidopsis is persulfidated. During oxidative stress,
an increased persulfidation has been reported and speculated that persulfidation is the
protective mechanism for protein oxidative damage. Nevertheless, cysteine residues
are also oxidized to different post-translational modifications such S-nitrosylation or
S-sulfenylation, which seems to be interconvertible. Thus, it must imply a tight cysteine
redox regulation essential for cell survival. This review is aimed to focus on the current
knowledge of protein persulfidation and addresses the regulation mechanisms that are
disclosed based on the knowledge from other cysteine modifications.

Keywords: Arabidopsis, cell signaling, cysteine, hydrogen sulfide, persulfidation, post-translational modification,
proteomic

INTRODUCTION

Hydrogen sulfide (H2S) is an inorganic, flammable, water-soluble gas with a noticeable odor of
rotten eggs. H2S has been historically considered as a pollutant and a toxic gas for life. Nevertheless,
in the past decade, it has emerged as a new gaseous signaling molecule (gasotransmitter) in animal
and plant cells and is as important as nitric oxide (NO), carbon monoxide (CO), and hydrogen
peroxide (H2O2) (Garcia-Mata and Lamattina, 2010; Vandiver and Snyder, 2012; Kimura, 2014).
Since 1996, when H2S was first described as an endogenous neuromodulator in animals (Abe and
Kimura, 1996), an increasing number of articles have described its physiological effects on plants
and animals. H2S is involved in many physiological and pathological processes in animals, such
as apoptosis, inflammatory processes, the protective effects against hypoxia, neuromodulation,
cell proliferation and cardioprotection, among others, as described in several recent reports and
reviews (Wang, 2014; Olas, 2015; Paul and Snyder, 2015a).
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In plants, the first descriptions of H2S effects are dated to
the 1960s, when H2S was reported to influence the growth of
vegetative plants and to affect disease resistance (Rodriguez-
Kabana et al., 1965; Thompson and Kats, 1978). Mainly based
on pharmacological approaches, H2S has been documented for
its protective effects against different stresses, such as oxidative
and metal stresses (Zhang et al., 2008; Wang et al., 2010;
Zhang et al., 2010b; Li L. et al., 2012; Shen et al., 2013; Sun
et al., 2013; Fang et al., 2016), drought and heat tolerance (Li
Z.G. et al., 2012; Shen et al., 2013), and osmotic and saline
stresses (Shi et al., 2013). H2S was also found to regulate
important physiological processes in plants, such as stomatal
closure/aperture (Garcia-Mata and Lamattina, 2010; Lisjak et al.,
2010; Jin et al., 2013; Scuffi et al., 2014; Papanatsiou et al.,
2015), the modulation of photosynthesis (Chen et al., 2011) and
autophagy regulation (Álvarez et al., 2012a; Gotor et al., 2013;
Romero et al., 2014; Laureano-Marin et al., 2016). However, an
endogenous production of H2S was also observed in plants, and a
possible cross-talk with NO was proposed due to the similarity
of their physiological effects (Kolluru et al., 2015). All these
observations have prompted interest in the scientific community
to address the outstanding questions related to H2S signaling
and its interaction with other gasotransmitters and hormones in
plants.

This review is aimed to focus on the current knowledge of H2S
as a signaling molecule, its mechanism of action and its role in
plant physiology.

SULFIDE AS AN EMERGING SIGNAL
MOLECULE IN PLANTS

In plant systems, H2S production occurs mainly via the
photosynthetic sulfate-assimilation pathway in chloroplasts in
the reaction catalyzed by the sulfite reductase (SiR) (Takahashi
et al., 2011; Garcia et al., 2015). During the synthesis of
β-cyanoalanine, the enzyme cyanoalanine synthase c1 (CAS-C1)
also generates sulfide in the mitochondria (Yamaguchi et al., 2000;
Álvarez et al., 2012b). The enzyme L-cysteine desulfhydrase 1
(DES1) is the responsible of the major production of endogenous
cytosolic H2S (Álvarez et al., 2010, 2012a; Gotor et al., 2010),
nevertheless other enzymes have also been reported to produce
sulfide, such as D-cysteine desulfhydrase (Riemenschneider et al.,
2005) and Nifs-like proteins (ABA3) (Heidenreich et al., 2005).
The sulfide concentration in chloroplasts is higher than that
in the cytosol (125 and 55 µM, respectively) (Krueger et al.,
2009), however, this sulfide is dissociated into its ionized forms
due the basic pH inside organelles and therefore is unable to
pass through the membranes to the cytosol (Kabil and Banerjee,
2010).

Hydrogen sulfide (H2S) is a particularly reactive molecule,
and there is plenty of evidences that H2S interacts with other
signaling molecules to modifying their signal. There is increasing
interest in the interaction of sulfide with plant hormones
such as abscisic acid (ABA) (Jin et al., 2013; Scuffi et al.,
2014), giberellic acid (GA) (Xie et al., 2014), and ethylene (Liu
et al., 2011; Liu et al., 2012). Further recent evidence suggests

that H2S also plays a role in the hydrogen peroxide (H2O2)
(Zhang et al., 2010a) and nitric oxide (NO) signaling pathways
(Lisjak et al., 2011). Although numerous reports highlight
the importance of H2S as a signaling molecule, its primary
mechanism of action has been recently deciphered (Mustafa
et al., 2009; Aroca et al., 2015). It has been explained through a
new post-translational modification (PTM) of proteins, named
persulfidation, where reactive cysteine residues on target proteins
are modified via conversion of the thiol group (-SH) into a
persulfide group (-SSH). This modification was inaccurately
referred to as “S-sulfhydration”; however, since it does not imply
any “hydration,” it was renamed as persulfidation (Filipovic,
2015). Persulfide adducts show an increased nucleophilicity
compared to the thiol group and therefore, modified cysteines
demonstrate a challenging greater reactivity (Paul and Snyder,
2012). That could be the reason persulfidation is widespread in
nature and affects a higher percentage of proteins than reactive
oxygen and nitrogen species (Mustafa et al., 2009; Ida et al.,
2014).

The way H2S modifies specific targets is still unclear, since
direct reaction of H2S and a thiol is thermodynamically
unfavorable (Filipovic, 2015). Sulfane sulfur is a sulfur atom
that has the unique ability to bind reversibly to other sulfur
atoms to form hydropersulfides (R-S-SH) and polysulfides
(-S-Sn-S-). These polysulfides seems to be much more effective
in persulfidation since they are more nucleophilic than H2S
(Toohey, 1989, 2011). New low molecular weight (LMW)
persulfides have recently emerged as potential mediators in
sulfide signaling. In this regard, cysteine-persulfide (Cys-
SSH), glutathione persulfide (GSSH) and its persulfurated
species Cys-SSnH and GSSnH have been recognized as
redox regulators (Kasamatsu et al., 2016; Kimura et al.,
2017). Recently, the endogenous Cys-SSH production
synthetized by prokaryotic and mammalian cysteinyl-tRNA
synthetases (CARSs) using L-cysteine as substrate has been
described. The cysteine polysulfides bound to tRNA are
incorporated into polypeptides that are synthesized de novo
in the ribosomes, suggesting that these enzymes are the
principal cysteine persulfide synthases in vivo (Akaike et al.,
2017).

Two extensive reviews have been recently published further
explaining the chemical properties of persulfides and polysulfides
(Cuevasanta et al., 2017; Filipovic et al., 2017). Due to the
instability and high reactivity of persulfides, and its similarity to
thiols, the efforts on developing detection methods have been a
challenge.

The modified biotin switch assay (mBSM) was the first
method used for a proteomic approach based on the analysis
of persulfidated proteins in mammals (Mustafa et al., 2009).
This method uses S-methyl-methanothiosulfonate (MMTS)
to block free thiols. While the persulfide residues remain
unreacted and are therefore available for subsequent reaction
with the thiol-specific biotinylating agent biotin-HPDP.
Lately, was used to detect for the first time the persulfidated
proteins in plant systems (Aroca et al., 2015). A total of 106
persulfidated proteins were identified by liquid chromatography-
mass spectrometry (LC-MS/MS) in Arabidopsis plants,
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which were mainly involved in photosynthesis, protein
synthesis, and cell organization according to MapMan
classification. Some of these identified proteins in plants were
previously described to undergo persulfidation in mammals.
Furthermore, the low concentration of sulfide produced an
inactivation/activation effect on enzyme activities, which was
reversible by reductants, demonstrating that sulfide had a
biological role in plants through persulfidation, similar to
mammalian systems.

Nevertheless, MMTS was questioned as a good blocking
reagent since it could also react with persulfides and thus protein
identification was understimated.

Several reactives have been recently reported and used in
animal systems for the detection of persulfides. These are (i)
the fluorescent Cy5-maleimide (Sen et al., 2012), (ii) maleimide-
PEG2-biotin (Dóka et al., 2016), and (iii) iodoacetyl-PEG2-
biotin (Gao et al., 2015); among others. However, most of the
methods hitherto described have shown a weakness by lacking
in specificity.

In plants, a new approach to detect persulfidated proteins
was recently reported (Aroca et al., 2017a) based on the method
previously described and named the tag-switch method (Zhang
et al., 2014), which showed higher specificity than other methods
described. This method employs methylsulfonylbenzothiazole
(MSBT) to block both thiols and persulfide groups; then, a
nucleophilic attack by the cyanoacetate-based reagent CN-biotin
is performed labeling only the persulfide groups, which are
purified with streptavidin conjugates and analyzed by Western
blot, or directly by LC-MS/MS. This study revealed that 2,015
proteins (5% of the Arabidopsis proteome) were modified
by persulfidation and that approximately 3,200 proteins were
potentially targets for this modification in mature plants. This
new method increased the number of persulfidated targets
in plants from 106 to more than 2,000 (Aroca et al., 2015,
2017a). These proteins were involved in the regulation of
important biochemical pathways for cell survival. However,
these data were obtained from plants grown under physiological
conditions. Therefore, the number of persulfidated proteins may
be higher under stress conditions where sulfide plays a signaling
role.

BIOLOGICAL IMPORTANCE OF
PERSULFIDATION IN PLANTS

Although a high number of persulfidated proteins have
been identified in both plant and animal systems, the
functional impact of this modification in cells is starting
to be clarified. Proteins modified by persulfidation show
functional changes in enzymatic activities, structures and
in subcellular localizations (Mustafa et al., 2009; Aroca
et al., 2015, 2017b; Kimura, 2015; Paul and Snyder, 2015b).
The biological importance of this protein modification in
plant systems was initially demonstrated by the enzymatic
activity of chloroplastic glutamine synthetase (GS2), cytosolic
ascorbate peroxidase (APX1), and cytosolic glyceraldehyde
3-phosphate dehydrogenase (GapC1) (Aroca et al., 2015).

The effect of persulfidation of these enzymes showed activity
activation for APX1 and GapC1, while decreased activity
was found for GS2; this effect was reversible by reducing
agents.

The GO categorization of persulfidated proteins identified
in Arabidopsis by a shot-gun proteomic assay revealed that
persulfidation is involved in the regulation of important
biological processes, such as carbon metabolism, plant responses
to abiotic stresses, plant growth and development, and RNA
translation (Aroca et al., 2017a). Moreover, the cytosolic or
nuclear localization of GapC1 is regulated by persulfidation,
and the persulfidated cysteine residue has been identified in
nuclear fraction (Aroca et al., 2017b). In addition to the
metabolic functions, GapC plays roles in mRNA regulation,
transcriptional activation and apoptosis depending on its
nuclear translocation outcome (Ortiz-Ortiz et al., 2010). Thus,
persulfidation plays a key role not only in regulating the
activity of modified proteins; it also may regulate cellular
localization of proteins with significant consequences in plant
systems.

The role of sulfide in another important biological process
such as autophagy has also been described (Álvarez et al.,
2012a; Laureano-Marin et al., 2016). Sulfide is able to inhibit
the autophagy induced in Arabidopsis roots under nutrient
deprivation; this repression is a mechanism independent of
redox conditions. As described, H2S inhibits autophagy by
preventing the ATG8 (autophagy-related ubiquitin-like protein)
accumulation (Álvarez et al., 2012a). The mechanism of this
inhibition by sulfide is still unclear, but Gotor and colleagues have
speculated that this regulation might be through persulfidation
of the enzymes involved in the autophagosome formation
(Gotor et al., 2013). Furthermore, the ubiquitin-like systems
ATG7-ATG10 and ATG7-ATG3, and the cysteine protease
ATG4, which are essential proteins involved in autophagy,
sense cellular redox alterations by their reactive Cys residues
(Filomeni et al., 2010). Recently, a high throughput proteomic
approach in Arabidopsis leaves revealed the susceptibility to
be persulfidated of some autophagy (ATG)-related proteins,
ATG18a, ATG3, ATG5, and ATG7 (Aroca et al., 2017a). In
yeast and algae, ATG4 is regulated by thioredoxin, suggesting
the involvement of a redox PTM in the regulation of ATG4
activity (Perez-Perez et al., 2014). In mammals, several PTMs
play important roles in the regulation of autophagy. ATG4b
and ATG1 are regulated by phosphorylation and S-nitrosylation
(Li et al., 2017; Pengo et al., 2017; Sanchez-Wandelmer
et al., 2017), and Caspase-3, which is also essential for
autophagic activity, is persulfidated at Cys163 associating this
modification to the cytoprotective effect of sulfide (Marutani
et al., 2015).

The results in Arabidopsis suggest that persulfidation may
be the molecular mechanism through which sulfide regulates
autophagy in plant cells. However, the identification of other
targets involved in autophagy requires further specific studies,
and the functional role of persulfidation in autophagy has not
been sufficiently studied.

Many other biological functions must be precisely regulated
through sulfide and the crosstalk with other signaling molecules,
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FIGURE 1 | Comparison of persulfidated, S-nitrosylated, and S-glutathionylated proteins identified in Arabidopsis plants. (A) Venn diagram of total persulfidated
(Aroca et al., 2017a), S-nitrosylated (Hu et al., 2015), and S-glutathionylated (Lee et al., 2004; Dixon et al., 2005; Lindermayr et al., 2010; Palmieri et al., 2010;
Bedhomme et al., 2012) identified proteins in Arabidopsis plants. (B) Functional classification of gene ontology (GO) terms categorized by biological processes.
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including H2O2 and NO, and other antioxidant molecules such
as glutathione, which has been integrated in redox signaling.
In this sense, protein thiols are crucial players since they
can be modified by different PTMs, showing an opposite
regulation in some cases. H2O2 directly attacks the catalytic
cysteine of GAPC, causing a strong inhibition of the enzyme
activity (Hancock et al., 2005). S-nitrosylation of GAPC also
abolishes its catalytic activity, whereas persulfidation increases
its activity (Lindermayr et al., 2005; Aroca et al., 2015).
Besides, this enzyme may also undergo S-glutathionylation,
which also inhibits its activity (Zaffagnini et al., 2007; Bedhomme
et al., 2012). Likewise, oxidation of glutamine synthetase by
H2O2 inhibits its activity (Ortega et al., 1999) in a similar
manner as S-nitrosylation and persulfidation (Melo et al., 2011;
Aroca et al., 2015). Moreover, S-glutathionylation of glutamine
synthetase can also regulate its activity (Dixon et al., 2005).
Aroca et al. (2017a) showed that 639 proteins were targets
for both S-nitrosylation and persulfidation. Although just a
few proteins (91) have been identified in Arabidopsis as S-
glutathionylated proteins in the literature (Lee et al., 2004;
Dixon et al., 2005; Leferink et al., 2009; Lindermayr et al.,
2010; Palmieri et al., 2010; Bedhomme et al., 2012), 85%
of them may also undergo S-nitrosylation or persulfidation
(Figure 1A). A large amount of the proteins modified by
these three PTMs are common (a total of 690), meaning
they can be modified by at least two of these PTMs.
Functional classification of the GO terms categorized by
biological processes shows that these common proteins are
mainly involved in protein metabolism (20%). However, they
are even more represented in amino acid metabolism (8.5%),
glycolysis (3.1%), tricarboxylic acid cycle (3.6%), redox regulation
(3.4%), and secondary metabolism (5.2%) in comparison
with those proteins that are modified by just one of these
PTMs (Figure 1B). Thus, these pathways must be finely
regulated by different PTMs in a cysteine residue, suggesting a
crosstalk among these signaling molecules under different stress
conditions.

Arabidopsis plants exogenously treated with H2S also showed
changes in the transcriptome (Huang et al., 2002; Álvarez et al.,
2012a). Based on proteomic approaches, several transcription
factors (TFs) and chromatin modifiers (CMs) such as histones,
acetyltransferases, and methyltransferases, have been identified
as targets for persulfidation (Sen et al., 2012; Aroca et al.,
2017a). This modification affects their specificity to DNA
and their binding affinity resulting in distinct transcriptional
responses. In addition, this PTM of nuclear proteins can
modulate transcription by affecting their subcellular localization
or by regulating the association with their binding partners
(Filipovic, 2015; Aroca et al., 2017b). Thus, sulfide is also
involved in epigenetic regulation of chromatin by histone
modification and chromatin structure alteration (Kamat et al.,
2015; Yang, 2015), highlighting an interesting signaling role of
sulfide through persulfidation that could also be functioning in
plants.

Plants are exposed to several stresses, which cause oxidative
stress due to the accumulation of reactive oxygen species
(ROS) and nitrogen species (RNS) (Huang et al., 2012; Schieber

and Chandel, 2014). Under these stress conditions, cysteine
thiols may undergo different PTMs such as S-nitrosylation
(SNO), S-glutathionylation (SSG), and S-sulfenylation (SOH).
However, these oxidized compounds can be reduced in
the cells by reducing agents, such as glutathione (GSH),
thioredoxin (Trx), and glutaredoxin (Grx) (Sevilla et al.,
2015). Nevertheless, when the stress remains, irreversible
modifications of thiols occurs, such as sulfinic (RSO2H),
and sulfonic acids (RSO3H). In that sense, persulfidation
(SSH) is believed to account for the protective effect against
ROS/RNS, since persulfidated proteins will react with ROS/RNS
and form an adduct (RSSO3H) that may be restored by
thioredoxin to free thiol (Wedmann et al., 2016; Filipovic
and Jovanović, 2017). Most antioxidant enzymes are finely
regulated by different PTMs under specific environmental stress
conditions. In that sense, APX1 is inactivated by the oxidation
of Cys32, while glutathionylation protects the enzyme from
irreversible oxidation (Kitajima et al., 2008). The same site
Cys32 can also be S-nitrosylated by NO and persulfidated
by hydrogen sulfide, which increases the activity of the
enzyme (Begara-Morales et al., 2014; Aroca et al., 2015). The
fact that APX1 is modified by different PTMs means that
this enzyme must be finely regulated under specific stress
conditions.

Nitric Oxide increases the activities of antioxidant enzymes
such as catalase (CAT), superoxide dismutase (SOD),
ascorbate peroxidase (APX), glutathione reductase (GPX),
and peroxidase (POD); therefore, NO may stimulate the
antioxidant system to decrease oxidative stress (Lamattina
et al., 2003; Laspina et al., 2005). NO levels increase in
plants under drought stress, which helps plants to mitigate
the negative effects of water deficit (Shi et al., 2014),
and NO is an important player in ABA-induced stomatal
closure, minimizing plant transpiration (Seabra and Oliveira,
2016). Exogenous H2S is found to induce stomatal closure
through the regulation of ATP-binding cassette (ABC)
transporters, while scavenging H2S can partially block
ABA-dependent stomatal closure, indicating the protective
role of H2S in plants against drought stress (Garcia-Mata
and Lamattina, 2010). Sulfide-induced stomatal closure
can be reverted by cPTIO (a NO-specific scavenger), also
confirming that the function of sulfide in stomatal closure
is mediated by NO. Furthermore, several proteins that
play essential roles in the ABA-dependent regulation of
stomatal movement, are modified by persulfidation and
S-nitrosylation (Wang et al., 2015; Aroca et al., 2017a).
These findings suggest a crosstalk between NO and H2S in
drought stress mediated by S-nitrosylation and persulfidation,
respectively.

CONCLUDING REMARKS

An increasing number of articles regarding persulfidation have
been published in the last years on different organisms, and
many proteins have been found to be modified by sulfide
through persulfidation. Nevertheless, the functional role of this
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modification in specific targets must be studied to validate these
data. Furthermore, the specificity on cysteine residues is still
unclear since, in some targets, the modified cysteine is the
active site, but not in others. Additionally, the extent of the
interaction between several signaling molecules into the same
cysteine residue deserves more investigation. Understanding
the interplay among them will enlarge our knowledge on the
biochemical cascade triggered in plant cells against different
stresses.

A large number of laboratory experiments have revealed
the protective effect of sulfide in plants to overcome different
environmental stresses. A better understanding of persulfidation
in these stress events would help to address biotechnological
applications in order to improve the productivity of crops and
protection against abiotic stress processes.
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