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Spiking neural P systems (SN P systems) have been well established as a novel class of dis-
tributed parallel computing models. Some features that SN P systems possess are attractive
to fault diagnosis. However, handling fuzzy diagnosis knowledge and reasoning is required
for many fault diagnosis applications. The lack of ability is a major problem of existing SN P
systems when applying them to the fault diagnosis domain. Thus, we extend SN P systems by
introducing some new ingredients (such as three types of neurons, fuzzy logic and new firing
mechanism) and propose the fuzzy reasoning spiking neural P systems (FRSN P systems).
The FRSN P systems are particularly suitable to model fuzzy production rules in a fuzzy diag-
nosis knowledge base and their reasoning process. Moreover, a parallel fuzzy reasoning
algorithm based on FRSN P systems is developed according to neuron’s dynamic firing mech-
anism. Besides, a practical example of transformer fault diagnosis is used to demonstrate the
feasibility and effectiveness of the proposed FRSN P systems in fault diagnosis problem.
1. Introduction

The fault diagnosis of electrical machines have moved in recent years from traditional techniques to artificial intelligence 
techniques [2,12,24]. In order to guarantee the secure and stable operation of electrical equipment, it is very important to 
diagnose its faults rapidly and accurately. More recently, a large number of methods or models using artificial intelligence 
and knowledge engineering have been addressed, such as expert system, Bayesian networks, artificial neural networks, and 
genetic algorithm [1,5,10,11,21,29]. Unfortunately, however, most of the existing methods are capable of dealing with simple 
diagnosis reasoning. Consequently, their reasoning processes are often difficult when complex diagnosis are shown.

Membrane computing is a class of distributed parallel computing models inspired by the structure and functioning of liv-
ing cells, as well as from the way the cells are organized in tissues or higher order structures, which was introduced by Gh. 
Păun in 2000 [15]. In the membrane computing domain, this kind computing systems (devices) are commonly called P sys-
tems. The main ingredients of a P system are (i) the membrane structure (a rooted tree), delimiting compartments where (ii) 
multisets of objects evolve according to (iii) (reaction) rules of a bio-chemical inspiration [17]. According to their structures, 
these models can be divided into three categories: cell-like P systems, tissue-like P systems and neural-like P systems. Spik-
ing neural P systems (SN P systems) firstly introduced by Ionescu et al. [8], as main forms of neural-like P systems recently 
investigated, are incorporated into membrane computing from the way that biological neurons communicate through elec-
trical impulses of identical form (spikes). An SN P system can be viewed as a set of neurons placed in the nodes of a directed 
graph whose arcs represent the synaptic connections among the neurons. The flow of information is inherently realized by 
the exciting of pulse potentials, which are encoded by the so-called spikes. The spikes are objects of a unique type and are
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placed inside the neurons and can be sent from presynaptic to postsynaptic neurons according to specific firing/spiking rules
and by means of forgetting rules which are associated with neuron. By applying a firing/spiking rule some spikes are con-
sumed and new spikes are produced. The spikes produced are sent to all neurons linked by a synapse to the neuron where
the rule is used. By applying a forgetting rule, spikes are removed from neurons. Currently, SN P systems and a number of
variants have been proposed [3,7,8,14,16,20,25,26,28]. However, only a few results applied to practical problems have been
addressed [9,17,27].

This paper focuses on the application of SN P systems paradigm to the fault diagnosis problem. In addition to distributed
and parallel computing advantage, the following features can be summarized from inherent mechanism of SN P systems: (i)
high understandability (due to their directed graph structure), (ii) dynamically (neuron’s firing and spiking mechanisms
make them suitable to model dynamic behaviors of a system), (iii) synchronization (that makes them suitable to describe
concurrent events or activities), (iv) non-linearly (that makes them suitable to process non-linear situation), (v) non-
deterministically. As we know, fault diagnosis problem can refer to the handling of the uncertainty and incompleteness,
the representation of diagnosis knowledge and reasoning [10,24]. These features and advantage of SN P systems seem to
be suitable to model diagnosis knowledge and reasoning to fault diagnosis. However, major drawback of existing SN P
systems and their variants is not capable of handling incomplete and uncertain information.

In this paper we propose a class of extended SN P systems, called fuzzy reasoning spiking neural P systems (FRSN P sys-
tems). Some new ingredients are introduced to extend original SN P systems, including three types of neurons (proposition
neurons, ‘‘AND’’-type and ‘‘OR’’-type rule neurons), fuzzy truth value, fuzzy logic and new firing mechanism. The FRSN P
systems can well model and visualize fuzzy production rules in a diagnosis knowledge base due to their graphical nature.
Combination of neuron’s new firing mechanism and fuzzy logic ensures to automatically accomplish dynamic fuzzy
reasoning. Furthermore, a fuzzy reasoning algorithm based on matrix operations is developed, which can give full play to
maximally parallel computing advantage of the FRSN P systems.

The present paper is organized as follows. Section 2 reviews some concepts of SN P systems, and then describes the
proposed FRSN P systems. Section 3 describes a modeling method of fuzzy production rules based on the FRSN P systems.
A fuzzy reasoning algorithm based on the proposed FRSN P systems is presented in Section 4. A fault diagnosis example
is provided in Section 5, and conclusions are discussed in Section 6.

2. FRSN P systems

2.1. SN P systems

Here, we briefly review the basic concepts of SN P systems in the computing form (i.e., able to take some inputs and pro-
vide some outputs) (see [8,17]).

Definition 1. A SN P system of degree m P 1, is a construct of the form
P ¼ ðA;r1; . . . ;rm; syn; I;OÞ
where

(1) A = {a} is the singleton alphabet (the object a is called spike);
(2) r1, . . . , rm are neurons, of the form ri = (ni,ri) with i 2 {1, . . . , m}, where
(i) ni P 0 is the initial number of spikes contained by neuron ri;
(ii) ri is a finite set of rules of the form

E=ac ! ap; d

where E is a regular expression over a, c P 1 and p, d P 0, with c P p; if p = 0, then E is the empty string, d = 0, and as

belongs to the language generated by expression E for no rule E/ac ? ap; d(c P p P 1) from ri.

(3) syn # {1,2, . . . ,m} � {1,2, . . . ,m} with i – j for all (i, j) 2 syn, 1 6 i, j 6m (synapses between neurons).
(4) I and O are input neuron set and output neuron set, respectively.

In the above definition, the rule E/ac ? ap;d with p P 1 is called firing/spiking rule; the rule E/ac ? ap;d with p = d = 0 is
written in the form ac ? k and is called forgetting rule. The firing mechanism of neurons can be explained as follows: if a neu-
ron ri contains k spikes, ak belongs to the language generated by expression E (see [23] for further details about language
theory), and k P c, the firing/spiking rule E/ac ? ap; d 2 ri (with p P 1) in neuron ri is enabled and can be applied. This means
that c spikes are consumed, k � c spikes remain in the neuron, the neuron is fired, and then it produces p spikes after d time
units. If d = 0 the spikes are emitted immediately. In the case d P 1, if the rule is used at step t, the neuron is ‘‘closed’’ or
‘‘blocked’’ at steps t, t + 1, . . . , t + d � 1, and it cannot receive new spikes from other neurons. At step t + d, the neuron emitts
spikes and becomes again open, hence it can receive spikes. The p spikes emitted by the neuron ri are replicated and they go
to all neurons rj such that (i, j) 2 syn (each such neuron rj of them receives p spikes). A forgetting rule ac ? k is applicable to a
neuron wheteher the neuron contains exactly c spikes and then all c spikes are removed.



SN P systems are synchronized because a global clock is assumed, marking the time for the whole system. Besides, SN P
systems are non-deterministic because two rules E1=ac1 ! ap1 ; d1 and E2=ac2 ! ap2 ; d2 can have L(E1) \ L(E2) – ;. Therefore, it
is possible that two or more rules of the system can be enabled in a neuron. In this case, one of them is non-deterministically
chosen to be used. Moreover, in each time unit, if a neuron can use a rule, the rule must be used. Each neuron deals with its
spikes in the sequential manner, only using one rule in each time unit, but the rules are used in parallel for all neurons of the
system.

An instantaneous description or a configuration at any instant of a SN P system is described by both the number of spikes in
each neuron and the state of the neuron, more precisely, by the number of steps to count down until it becomes open (this
number is zero if the neuron is already open). The initial configuration is described by the number of spikes initially placed in
each neuron, n1, n2, . . . , nm, with all neurons being open. A configuration is a halting configuration if all neurons are open and
no rule of the system is applicable to it. Using the rules described above, one can define transitions among configurations. We
say that configuration C1 yields configuration C2 in one transition step, denoted by C1) PC2, if we can pass from C1 to C2 by
applying the rules from the system following the previous remarks.

A computation of P is a (finite or infinite) sequence of configurations such that:

1. the first term of the sequence is the initial configuration of the system;
2. each non-initial configuration of the sequence is obtained from the previous configuration by a transtion step; and
3. if the sequence is finite (called halting computation) then the last term of the sequence is a halting configuration.

A computation in a system as above starts in the initial configuration. In order to compute a function f:Nk ? N we intro-
duce k natural numbers q1, . . . , qk in the system by ‘‘reading’’ from the environment a binary sequence
z ¼ 10q1�110q2�11 . . . 10qk�11 This means that the input neuron of P receives a spike in each step corresponding to a digit
1 from the string z and no spike otherwise. Note that we input exactly k + 1 spikes, i.e., after the last spike we assume that
no further spike is coming to the input neuron.

With any computation (halting or not) we can associate a spike train, sequence of symbols 0 and 1 describing the behavior
of the output neuron: if the output neuron spikes, then we write 1; otherwise we write 0. Besides, we also associate other
forms of computation results according to different computing purposes, such as, the distance between two consecutive
steps when there are spikes which exit the system.

2.2. FRSN P systems

The goal of this paper is to develop a new modeling method for fault diagnosis inspired by SN P systems. As stated above,
fault diagnosis can involve such a problem, that is, representation of fuzzy diagnosis knowledge and fuzzy reasoning. How-
ever, current forms of existing SN P systems and their variants cannot deal with the problem. In order to make them able to
handle fuzzy diagnosis knowledge and fuzzy reasoning, we will extend the definition of SN P systems and propose a new
class of extended SN P systems, called fuzzy reasoning spiking neural P systems (FRSN P systems, in short).

Definition 2. A FRSN P system of degree m P 1, is a construct of the form
P ¼ ðA;r1; . . . ;rm; syn; I;OÞ
where

(1) A = {a} is the singleton alphabet (the object a is called spike);
(2) r1, . . . , rm are neurons, of the form ri = (ai, si, ri) with i 2 {1, . . . , m} where

(i) ai 2 [0,1] and it is called the (potential) value of spike contained in neuron ri (also called pulse value);
(ii) si 2 [0,1] is the truth value associated with neuron ri;

(iii) ri is a firing/spiking rule contained in neuron ri, of the form E/aa ? ab, where a, b 2 [0,1].
(3) syn # {1,2, . . . ,m} � {1,2, . . . ,m} with i – j for all (i, j) 2 syn, 1 6 i, j 6m (synapses between neurons);
(4) I and O are input neuron set and output neuron set, respectively.

Now, we explain how the FRSN P systems are extended from SN P systems. First of all, content of neuron is denoted by a
fuzzy truth value in [0,1] instead of the number of spikes in SN P systems, which can be interpreted as the (potential) value of
spike from the view point of biological neuron. For a neuron ri, if ai > 0, we say the neuron contains a spike with (potential)
value ai; otherwise, the neuron contains no spike. Secondly, each neuron in FRSN P systems will associate with either a fuzzy
proposition or a fuzzy production rule, and si 2 [0,1] will be used to express the truth value of the fuzzy proposition or con-
fidence factor (CF) of the fuzzy production rule. Thirdly, each neuron contains only one spiking (firing) rule, of the form E/
aa ? ab, where E = an is called the firing condition and n is the number of input synapses from other neurons to the neuron.
The firing condition E = an indicates that if the neuron receives n spikes the spiking rule can be applied; otherwise the rule
cannot be enabled until n spikes are received. When the number of spikes received by a neuron is less than n, value of the
spikes received will be updated according to logical ‘‘AND’’ or ‘‘OR’’ operations. Fourthly, the firing mechanism of neurons in
FRSN P systems can be described as follows. For the neuron ri, if its firing rule E/aa ? ab can be applied, this means that its



pulse value a > 0 is consumed (removed), the neuron fires, and then it produces a spike with value b. Once the spike with
value b is excited from neuron ri, all neurons rj with (i, j) 2 syn will immediately receive the spike. Further, three types of
neurons are defined (see Definitions 3–5 below). The three types of neurons use different ways to handle both a and b,
and b is relative with both a and si. Finally, time delay is ignored in FRSN P system, thus all neurons are always open.

As stated above, neurons in FRSN P system are classified into three classes: proposition neuron, ‘‘AND’’-type rule neuron
and ‘‘OR’’-type rule neuron. These types of neurons are defined as follows.

Definition 3. The proposition neurons are a class of neurons, which are associated with propositions in a fuzzy knowledge
base.

A proposition neuron can be denoted by r = (a,s,r), where a is its pulse value, s is the truth value of the proposition asso-
ciated with it, and r is its spiking rule of the form E/aa ? aa. If a proposition neuron r is an input neuron in P, then we have
a = s; otherwise, a equals to logical ‘‘OR’’ operation of all pulse values received from other neurons. After the neuron updates
its content, the truth value of the corresponding proposition will be equal to its pulse value, i.e., s = a. When the neuron fires
and applies its firing rule, it will produce a spike with pulse value a. Fig. 1 shows a proposition neuron.

Definition 4. The ‘‘AND’’-type rule neurons are a class of neurons, which are associated with fuzzy production rules with
‘‘AND’’-type antecedent part, where confidence factor (CF) of each the rule is denoted by s.

Fig. 2 shows a ‘‘AND’’-type rule neuron, which is labeled by the symbol ‘‘AND’’. When a ‘‘AND’’-type rule neuron receives n
pulse values from other neurons, a1, a2, . . . , an, it uses logic operator ‘‘AND’’ to combine its all inputs, i.e., a = min
(a1, a2, . . . , an), where ai 2 [0, 1], 1 6 i 6 n. If its firing condition E is satisfied, it fires and applies its spiking rule E/aa ? ab

to produce a spike with value b = a � s, hence b = min(a1, a2, . . . , an) � s; otherwise, it only updates its content by using pulse
values of the received pikes.

Definition 5. The ‘‘OR’’-type rule neurons are a class of neurons, which are associated with fuzzy production rules with
‘‘OR’’-type antecedent part, where confidence factor (CF) of each the rule is denoted by s.

Fig. 3 shows a ‘‘OR’’-type rule neuron, which is labeled by the symbol ‘‘OR’’. When a ‘‘OR’’-type rule neuron receives n
pulse values from other neurons, a1, a2, . . . , an, it uses the logic operator ‘‘OR’’ to combine its all inputs, i.e., a = max
(a1, a2, . . . , an), where ai 2 [0, 1], 1 6 i 6 n. Similarly, when E is satisfied, it fires and applies its spiking rule E/aa ? ab to pro-
duce a spike with value b = a � s, hence b = max(a1, a2, . . . , an)�s; otherwise, it only updates its content by using pulse values
of the received pikes.

3. Modeling fuzzy production rules using FRSN P systems

3.1. Fuzzy production rules

In fault diagnosis application, diagnosis knowledge extracted from real-world data are usually expressed by fuzzy pro-
duction rules. To date, fuzzy production rule is a widely used tool for fuzzy knowledge representation (see
[4,6,13,19,18,22,30]). Usually, a simple fuzzy production rule is of the form
Ri : IF pj THEN pkðCF ¼ siÞ ð1Þ
where Ri indicates ith fuzzy production rule of a fuzzy diagnosis knowledge base and si 2 [0,1] is its confidence factor. pj and
pk are two propositions and their truth values are real numbers in [0,1].

In addition to above simple fuzzy production rule, composite fuzzy production rules are widely used in fuzzy diagnosis
knowledge base, where their antecedent part or consequence part usually contain ‘‘and’’ or ‘‘or’’ connectors. Generally, com-
posite fuzzy production rules can be classified as the following three types.
Type 1 Ri : IF p1 and p2 and . . . and pk�1 THEN pk ðCF ¼ siÞ ð2Þ
The type rule is a composite conjunctive fuzzy production rule, where p1, p2, . . . , pk�1 are propositions in the antecedent
part of the rule, and si 2 [0, 1] is a real number and it expresses the confidence factor of the rule. Suppose truth values of
propositions p1, p2, . . . , pk�1 are a1, a2, . . . , ak�1 respectively. Then, truth value of proposition pk can be evaluated as
ak = min(a1, a2, . . . , ak�1) � si.
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Fig. 1. (a) A proposition neuron P and (b) its simple form.
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Fig. 2. (a) A ‘‘AND’’-type rule neuron and (b) its simple form.
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Fig. 3. (a) A ‘‘OR’’-type rule neuron and (b) its simple form.
Type 2 Ri : IF p1 THEN p2 and p3 and � � � and pk ðCF ¼ siÞ ð3Þ
where si 2 [0,1] is the confidence factor of the rule and p1 is alone proposition in the antecedent part of the rule. Suppose the
truth value of proposition p1 is a1. Then, truth values of propositions p2, p3, . . . , pk can be evaluated as a2 = a1 � si,
a3 = a1 � si, . . . , ak = a1 � si, respectively.
Type 3 Ri : IF p1 or p2 or � � � or pk�1 THEN pk ðCF ¼ siÞ ð4Þ
The type rule is a composite disjunctive fuzzy production rule, where p1, p2, . . . , pk�1 are propositions in antecedent part
of the rule, and si 2 [0,1] is the confidence factor of the rule. Suppose truth values of propositions p1, p2, . . . , pk�1 are a1,
a2, . . . , ak�1, respectively. Then, truth value of proposition pk can be evaluated as ak = max(a1, a2, . . . , ak�1) � si.
3.2. FRSN P system model for fuzzy production rules

In order to model fuzzy production rules of a fuzzy diagnosis knowledge base, we need map them into a FRSN P system
model. The basic principle can be described as follows. Each proposition in the fuzzy diagnosis knowledge base is repre-
sented by a proposition neuron, while each fuzzy production rule is expressed by a rule neuron (‘‘AND’’-type neuron or
‘‘OR’’-type neuron). At the initial stage, each input proposition neuron contains a spike and its pulse value is assigned to
the truth value of the proposition associated with it. Moreover, value si of each rule neuron is assigned to the confidence
factor of the fuzzy production rule associated with it. Consequently, fuzzy production rules of a fuzzy diagnosis knowledge
base can be modeled by FRSN P systems, and their dynamic reasoning process can be realized by the firing mechanism of
neurons.

According to the above principle, simple fuzzy production rule (1) can be modeled by the following FRSN P system P0.
Fig. 4a shows the model P0 and its reasoning result.

P0 = (A,ri,rj,rk,syn, I,O), where

(1) A = {a}
(2) ri is a rule neuron associated with rule Ri with confidence factor si. Its spiking rule is of the form E/aa ? ab, where

b = a � si.
(3) rj and rk are two proposition neurons associated with propositions pj and pk with truth values aj and ak respectively.

Their spiking rules are of the form E/aa ? aa.
(4) syn = {(j, i), (i,k)}, I = {rj}, O = {rk}.

A type-1 composite fuzzy production rule (2) can be modeled by the following FRSN P system P1. Fig. 4b shows the model
P1 and its reasoning result.

P1 = (A,r1,r2, . . . , rk, rk+1, syn, I, O), where
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Fig. 4. Fuzzy production rules modeled by ERSN P systems and their rule reasoning: (a) simple rule; (b) type-1 composite rule; (c) type-2 composite rule;
(d) type-3 composite rule.
(1) A = {a}
(2) rj(j = 1, 2, . . . , k) are proposition neurons associated with propositions pj(j = 1, 2, . . . , k) with truth values

aj(j = 1, 2, . . . , k) respectively. Their spiking rules are of the form E/aa ? aa.
(3) rk+1 is a ‘‘AND’’-type rule neuron associated with rule Ri with confidence factor si. Its spiking rule is of the form E/

aa ? ab, where b = a�si.
(4) syn = {(1, k + 1), (2, k + 1), . . . , (k � 1, k + 1), (k + 1, k)}.
(5) I = {r1, r2, . . . , rk�1}, O = {rk}.

A type-2 composite fuzzy production rule (3) can be modeled by the following FRSN P system P2. Fig. 4c shows the model
P0 and its reasoning result.

P2 = (A, r1, r2, . . . , rk, rk+1, syn, I, O), where

(1) A = {a}
(2) rj (j = 1, 2, . . . , k) are proposition neurons associated with propositions pj (j = 1, 2, . . . , k) with truth values aj

(j = 1, 2, . . . , k) respectively. Their spiking rules are of the form E/aa ? aa.
(3) rk+1 is a rule neuron associated with rule Ri with confidence factor si. Its spiking rule is of the form E/aa ? ab, where

b = a�si.
(4) syn = {(1, k + 1), (k + 1,2), (k + 1,3), . . . , (k + 1, k)}.
(5) I = {r1}, O = {r2, r3, . . . , rk}.

A type-3 composite fuzzy production rule (4) can be modeled by the following FRSN P system P3. Fig. 4d shows the model
P0 and its reasoning result.

P3 = (A, r1, r2, . . . , rk, rk+1, syn, I, O), where

(1) A = {a}
(2) rj (j = 1, 2, . . . , k) are proposition neurons associated with propositions pj (j = 1, 2, . . . , k) with truth values aj

(j = 1, 2, . . . , k) respectively. Their spiking rules are of the form E/aa ? aa.
(3) rk+1 is an ‘‘OR’’-type rule neuron associated with rule Ri with confidence factor si. Its spiking rule is of the form E/

aa ? ab, where b = a � si.
(4) syn = {(1, k + 1), (2, k + 1), . . . , (k � 1, k + 1), (k + 1, k)}.
(5) I = {r1, r2, . . . , rk�1}, O = {rk}.



4. Reasoning algorithm based on FRSN P systems

In this section, we will present a fuzzy reasoning algorithm based on FRSN P systems. Suppose all fuzzy production
rules in a fuzzy diagnosis knowledge base have been modeled by a FRSN P system model P. The model P consists of
m neurons, where r = {r1, r2, . . . , rn} are its n proposition neurons, �r ¼ f�r1; �r2; . . . ; �rkg are its k rule neurons (‘‘AND’’
type neurons or ‘OR’’ type neurons), m = n + k. Usually, we should provide the fuzzy truth values for a part of the fuzzy
propositions before reasoning, and proposition neurons associated with the part of fuzzy propositions are indeed input
neurons of P. The goal of the reasoning algorithm is to reason out the fuzzy truth values of other unknown fuzzy prop-
ositions (proposition neurons) from known fuzzy propositions (input neurons). These unknown fuzzy propositions are of-
ten associated with output neurons of P. The reasoning algorithm developed here is based on neuron’s firing mechanism
and uses matrix operation. As a result, The reasoning algorithm can give full play to the advantages of parallel computing
of FRSN P systems.

In the following, in order to succinctly illustrate the fuzzy reasoning algorithm, we introduce some matrix and vector
notations as follows.

(1) U = (uij)n�k is a binary matrix, where uij 2 {0,1}. uij = 1 if there is a directed arc (synapse) from proposition neuron ri to
rule neuron �rj. uij = 0 if there is no directed arc (synapse) from proposition neuron ri to rule neuron �rj.

(2) V = (vij)n�k is a binary matrix, where vij 2 {0,1}. vij = 1 if there is a directed arc (synapse) from rule neuron �rj to prop-
osition neuron ri. vij = 0 if there is no directed arc (synapse) from rule neuron �rj to proposition neuron ri.

(3) K = diag(s1, s2, . . . , sk) is a diagonal matrix, where si represents confidence factor of ith production rule associated
with rule neuron �ri;1 6 i 6 k.

(4) H1 = diad(h1, h2, . . . , hk) is a diagonal matrix. If the ith rule neuron is an ‘‘AND’’-type neuron, hi = 1; otherwise
hi = 0.

(5) H2 = diad(h1, h2, . . . , hk) is a diagonal matrix. If the ith rule neuron is an ‘‘OR’’-type neuron, hi = 1; otherwise hi = 0.
(6) ap = (ap1, ap2, . . . , apn)T is a truth value vector, api 2 [0,1]. api represents the truth value of ith proposition neuron.

ar = (ar1, ar2, . . . , ark)T is also a truth value vector, arj 2 [0,1]. arj represents the truth value of jth rule neuron.
(7) ap = (ap1, ap2, . . . , apn)T is an integer vector, where api represents the number of spikes received by ith proposition neu-

ron. ar = (ar1, ar2, . . . , ark)T is also an integer vector, where arj represents the number of spikes received by jth rule
neuron.

(8) kp = (kp1, kp2, . . . , kpn)T is an integer vector, where kpi represents the number of spikes required by firing ith proposition
neuron. kr = (kr1, kr2, . . . , krk)T is also an integer vector, where krj represents the number of spikes required by firing jth
rule neuron.

(9) bp = (bp1, bp2, . . . , bpn)T is a truth value vector, bpi 2 [0,1]. bpi represents truth value exported by ith proposition neuron
after firing. br = (br1, br2, . . . , brk)T is also a truth value vector, brj 2 [0,1]. brj represents the truth value exported by jth
rule neuron after firing.

(10) bp = (bp1, bp2, . . . , bpn)T is an integer vector, where bpi 2 {0,1} represents the number of spikes exported by ith proposi-
tion neuron after firing. br = (br1, br2, . . . , brk)T is also an integer vector, where brj 2 {0,1} represents the number of
spikes exported by jth rule neuron after firing.

In addition to above notations, we also introduce the following several operators and functions.

(1) �: C = A � B, where A, B and C are all r � s matrices, such that cij = max{aij, bij}.
(2) �: C = A � B, where A, B and C are r � s, s � t and r � t matrices respectively, such that cij ¼max

16r6s
fair � brjg.

(3) �: C = A � B, where A, B and C are r � s, s � t and r � t matrices respectively, such that cij = min16r6s{air � brj}.
(4) b = fire(a, a, k), where b = (b1, . . . , br)T, a = (a1, . . . , ar)T, a = (a1, . . . , ar)T, k = (k1, . . . , kr)T. The function is defined as

follows:
bi ¼
ai; if ai ¼ ki

0 if ai < ki

(
;

where i = 1, 2, . . . , r.

(5) b = update(a, a, k), where b, a, a and k are vectors described above. The function is defined as follows:
bi ¼
0 if ai ¼ 0

bi þ ai; if 0 < ai < ki

0 if ai ¼ ki

8><
>: ;

where i = 1, 2, . . . , r.

(6) D=diag(b), where D = (dij) is a r � r diagonal matrix and b = (b1, . . . , br). For 1 6 i 6 r, dii = bi, while dij = 0 for i – j.



Then, the developed fuzzy reasoning algorithm based on FRSN P system is described as follows.

Fuzzy reasoning algorithm based on FRSN P system.
INPUT: parameter matrixes U, V, K, H1, H2, kp, kr, and initial inputs a0

p; a0
p.

OUTPUT: The fuzzy truth values of propositions associated with the neurons in O.

Step 1) Let a0
r ¼ ð0;0; . . . ;0ÞT ; a0

r ¼ ð0;0; . . . ;0ÞT .
Step 2) Let t = 0.
Step 3)

(1) Process the firing of proposition neurons.
bt
p ¼ fire at

p; a
t
p; kp

� �
; bt

p ¼ fire 1; at
p; kp

� �
;at

p ¼ update at
p; a

t
p; kp

� �
;

at
p ¼ update at

p; a
t
p; kp

� �
;Bt

p ¼ diag bt
p

� �
:

(2) Compute the truth values of rule neurons and the number of received spikes.
atþ1
r ¼ at

r � H1 � ðBt
p � UÞ

T � bt
p

� �� �
þ ðH2 � Bt

p � U
� �T

� bt
p

� �� �
;

atþ1
r ¼ at

r þ Bt
p � U

� �T
� bt

p

� �
:

(3) Process the firing of rule neurons.
btþ1
r ¼ fire K � atþ1

r ; atþ1
r ; kr

� 	
; btþ1

r ¼ fire 1; atþ1
r ; kr

� 	
;

atþ1
r ¼ update atþ1

r ; at
p; kp

� �
; atþ1

r ¼ update atþ1
r ; at

p; kp

� �
; Btþ1

r ¼ diag btþ1
r

� �
:

(4) Compute the truth values of proposition neurons and the number of received spikes.
atþ1
p ¼ at

p � V � Btþ1
r

� �
� btþ1

r

h i
; atþ1

p ¼ at
p þ V � Btþ1

r

� �
� btþ1

r

h i
:

Step 4) If atþ1
p ¼ ð0; 0; . . . ;0ÞT and atþ1

r ¼ ð0; 0; . . . ;0ÞT (computation halts), the reasoning results are obtained; otherwise,
t = t + 1, go to Step 3).

5. Application to fault diagnosis

As discussed above, fuzzy production rules can be modeled by the proposed FRSN P system and the developed reasoning
algorithm is a parallel fuzzy reasoning algorithm. In this section, a practical example is used to illustrate application of the
proposed method to a transformer fault diagnosis system. The following fuzzy production rules are from knowledge base of a
transformer fault diagnosis system.

Rule 1 (Confidence = 0.8)
Symptom:
(1) Total hydrocarbon is little high (p1).
(2) C2H2 is low (p2).
Anticipated Fault: General overheating fault occurs (p11).
Rule 2 (Confidence = 0.8)
(1) Total hydrocarbon is rather high (p3).
(2) C2H2 is too high (p4).
(3) H2 is high (p5).
(4) C2H2 in total hydrocarbon occupies a too low proportion p6
Anticipated Fault: Serious overheating fault occurs (p11).
Rule 3 (Confidence = 0.8)
(1) Total hydrocarbon is little low (p7).
(2) H2 is high (p5).
(3) CH4 in total hydrocarbon occupies a large proportion p8

(4) CH4 in total hydrocarbon occupies a higher proportion than C2H2 p9
Anticipated Fault: The partial discharge occurs (p13).
Rule 4 (Confidence = 0.8)
(1) Total hydrocarbon is rather low (p10).
(2) C2H2 is too high (p4).



(3) H2 is high (p5).

Anticipated Fault: The spark discharge occurs (p14).

These fuzzy production rules can be modeled by the following FRSN P system P4, shown in Fig. 5.
P4 = (A, r1, . . . , r14, r15, . . . , r18, syn, I, O), where

(1) A = {a}.
(2) r1, . . . , r14 are proposition neurons associated with propositions p1, . . . , p14 respectively.
(3) r15, . . . , r18 are ‘‘AND’’-type rule neurons associated with production rules R1, . . . , R4 respectively.
(4) syn = {(1,15), (2,15), (3,16), (4,16), (4,18), (5,16), (5,17), (5,18), (6,18), (7,17), (8,17), (9,17), (10,18), (15,11), (16,12),

(17,13), (18,14)}.
(5) I = {r1, r2, r3 ,r4, r5, r6, r7, r8, r9, r10}, O = {r11, r12, r13, r14}.

According to the definition of matrices and vectors given above, U, V, K, H1 and H2 are follows:
U ¼

1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0 0 1 0 0 0 0

2
6664

3
7775

T

H1 ¼

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2
6664

3
7775

V ¼

0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1

2
6664

3
7775

T

H2 ¼

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

2
6664

3
7775

K ¼

0:8 0 0 0
0 0:8 0 0
0 0 0:8 0
0 0 0 0:8

2
6664

3
7775

kp ¼ ð1;1;1;1;1;1;1;1;1;1;1;1;1;1ÞT kr ¼ ð2;4;4;3ÞT
In on-scene information detection of transformer, total hydrocarbon content is high (confidence = 0.8), C2H2 content is
high (confidence = 0.8), H2 content is high (confidence = 0.9), C2H2 content in total hydrocarbon content is little (confi-
dence = 0.8), CH4 content in total hydrocarbon content is little (confidence = 0.1). Thus, initial truth value vector
a0

p ¼ ð0:8;0:2;0:8;0:8;0:9;0:8;0:2;0:9;0:1;0:2;0;0;0;0Þ
T and initial spike vector a0

p ¼ ð1;1;1;1;1;1;1;1;1;1; 0;0;0;0Þ
T . Let

a0
r ¼ ð0;0;0;0Þ

T and a0
r ¼ ð0;0;0;0Þ

T .
According to reasoning algorithm described above, we have

(1) a1
p ¼ ð0;0;0;0;0;0;0;0;0;0;0;0; 0;0Þ

T
; a1

r ¼ ð0:16;0:64;0:08;0:16ÞT ,
a1

p ¼ ð0;0; 0;0;0;0;0;0;0;0;0;0;0;0Þ
T
; a1

r ¼ ð2;4;4;3Þ
T .
a1

p1(0.8)

a2

p6(0.8)

11

R1(0.8)

p2( )

p11

15

a

p3(0.8)

a6

12

R2(0.8)16

a4

p4(0.8)

a5

p5(0.9)

p12

a

p7(0.2)

13

R3(0.8)17

a8

p8(0.9)

a9

p9(0.1)

p13

14

R4(0.8)

p14

18

p10(0.2)

a10

Fig. 5. An example of a transformer fault diagnosis modeled by the FRSN P system model P4.



(2) a2
p ¼ ð0;0;0;0;0;0;0;0;0;0;0:16;0:64;0:08;0:16ÞT ; a2

r ¼ ð0;0;0;0Þ
T ,

a2
p ¼ ð0;0;0;0;0; 0;0;0;0;0;1;1;1;1Þ

T
; a2

r ¼ ð0;0;0;0Þ
T .

(3) a3
p ¼ ð0;0;0;0;0; 0;0;0;0;0; 0;0;0;0Þ

T ; a3
r ¼ ð0;0;0;0Þ

T .

Thus, since the system reaches halting computation (a3
p ¼ ð0;0;0;0;0;0;0;0;0;0;0;0;0;0Þ

T and a3
r ¼ ð0;0;0;0Þ

T ), system
exports its reasoning results, i.e., the truth values of propositions p11, p12, p13 and p14 are 0.16, 0.64, 0.08 and 0.16 respec-
tively. These reasoning results indicate the following possible faults: general overheating fault (confidence = 0.16), serious
overheating fault (confidence = 0.64), partial discharge (confidence = 0.08) and spark discharge (confidence = 0.16). In the
fault diagnosis system, the threshold value of fault occurrence is set to be 0.6. Thus, we can conclude that the transformer
shows a serious overheating fault, which is consistent with the actual situation.

6. Conclusions

In this paper, we present a novel model for fault diagnosis, called fuzzy reasoning spiking neural P systems (FRSN P sys-
tems). The FRSN P system model can visually represent fuzzy production rules of a fuzzy diagnosis knowledge base and
effectively model the corresponding dynamic reasoning behavior because of its nature of directed graph and firing mecha-
nism of neurons. Based on parallel computing feature of FRSN P systems and dynamic firing mechanism of neurons, a parallel
fuzzy reasoning algorithm is developed. Moreover, a practical example of transformer fault diagnosis is used to demonstrate
the feasibility and effectiveness of FRSN P systems in the fault diagnosis area. From another point of view, FRSN P systems are
new extended forms of SN P systems, which can handle fuzzy information and express fuzzy knowledge. This will open a
door for more practical applications that need to deal with fuzzy information.
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