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Biomorphic Ceramics from Wood Derived Precursors 
 

Materials development is driven by microstructural complexity, in many cases inspired 

by biological systems like bones, shells, and wood. In one approach, one selects the main 

microstructural features responsible for improved properties a designs processes to 

obtain materials with such microstructures (continuous-fiber-reinforced ceramics, 

porous ceramics, fibrous ceramic monoliths, etc.). In a different approach, it is possible to 

use natural materials directly as microstructural templates. Biomorphic ceramics are 

produced from natural and renewable resources (wood or wood-derived products). A 

wide variety of SiC based ceramics can be fabricated by infiltration of silicon or silicon 

alloys into cellulose-derived carbonaceous templates, providing a low-cost route to 

advanced ceramic materials with near-net shape potential and amenable to rapid 

prototyping. These materials have tailorable microstructure and properties, and behave 

like ceramic materials manufactured by advanced ceramic processing approaches. This 

review aims to be a comprehensive description of the development of bioSiC ceramics: 

from wood templates and their microstructure to potential applications of bioSiC 

materials.  

 

Keywords: biomorphic; ceramics; wood; silicon carbide; mechanical properties; high 

temperature; porous materials 

1 Introduction 

Silicon carbide-based ceramics are interesting materials for key engineering applications, 

especially those requiring good thermomechanical performance and specific properties.  

However, in many cases SiC materials do not find extensive usage due to their high cost, as 

they are obtained at very high sintering temperatures and require expensive 

manufacturing (extrusion, molding, and machining, etc) techniques to produce complex-

shaped components. For this reason, SiC ceramics are often limited to niche applications. 

Macroporous ceramics [1] and specifically macroporous silicon carbide materials [2] are 

also interesting candidates for a wide range of applications, especially in high temperature 

environments involving corrosive gases and high mechanical loading.  Envisioned 

applications could be catalyst supports, thermal insulation and management, or filtration 

of molten metals, liquids or gases (such as in diesel particulate filters or in gasification 

processes). Thus, there is technological potential in any process that allows one to obtain 

SiC monoliths with reduced processing and machining costs, but also that enables the 

production of porous SiC ceramics, ideally with the same low cost attributes as outlined 

above. 

 



A way to overcome these problems is to synthesize SiC ceramics by melt infiltration of a 

porous carbonaceous preform, typically obtained from the pyrolysis of a cast polymer, to 

produce Reaction Formed SiC (RFSC) [3-10], a process developed in the early 90s that is 

near-net shape and allows to obtain monolithic SiC materials with small amounts of 

unreacted carbon and silicon. The microstructure of these materials depend on the 

characteristics of the carbon template and are, in a way, inherited from it, so by tailoring 

the template and increasing its microstructural complexity, a wide variety of SiC materials 

could be obtained.  

 

Biomorphic silicon carbide (bioSiC) are bio-templated SiC materials that start with a 

porous carbon scaffold derived from natural precursors such as wood, which is later 

converted into a SiC ceramic by a variety of methods, most commonly by melt infiltration. 

In this case, bioSiC is simply a type of reaction formed silicon carbide in which the carbon 

template is obtained by pyrolysis of wood, with the advantage of a complex, hierarchical 

microstructure that is the result of millions of years of evolution and is optimized for 

properties such as fluid transport or high strength to density ratios [11].  

 

Several routes have been developed to obtain SiC ceramics starting from wood-derived 

carbon preforms, in a way that retains most of the microstructural features of the 

template. Figure 1 summarizes the three most common ones: melt-infiltration of liquid Si, 

vapor infiltration of Si either directly or through decomposition of SiO, or infiltration of 

SiO2 sols or gel precursors that react with carbon via carbothermal reduction to form SiC. 

All three processes start with a carbon template obtained from a wood precursor that is 

chosen according to the desired properties of the final material, although in some works 

wood is impregnated with a SiO2 precursor so carbonization and carbothermal reduction 

is carried out in a single step. All three routes also have in common that they are near-net-

shape processes because after conversion the size and shape of the final material is equal 

to that of the preform, and any volume change associated with the reaction is buffered by 

the precursor’s porosity. This makes the conversion of carbonaceous precursors into SiC a 

highly cost effective method to produce SiC ceramics, porous or otherwise, as any desired 

machining can be done to the carbon preform and only finishing will need to be performed 

in the final component, greatly decreasing processing costs when compared to typical 

sintering and hot-pressing processes that might require extensive machining with 

expensive diamond tools. As an example of the complexity of shapes that can be produced, 

Figure 2 shows some components manufactured by melt infiltration of MDF derived 

bioSiC/Si, where all machining was performed in the carbon stage. 



 

From a historical point of view, the first mentions in the literature of using wood as a 

template for advanced materials processing is from Ota et al. [12] who synthesized “SiC 

wood” by tetraethyl-orthosilicate infiltration and later carbothermal reduction of wood 

chars. Byrne and Nagle made important contributions to the field by laying the 

groundworks of wood pyrolysis with materials applications in view, such as optimization 

of heating rates, densities and shrinkage ratios, as well as their effect on mechanical 

properties [13-15]. Later reports on biomorphic SiC are from Greil and coworkers [16-19], 

as well as Singh, who coined the term “Ecoceramics” to refer to this new class of wood-

derived materials [20, 21]. Several general papers exist that deal with the basics of 

biomorphic SiC materials [19, 20, 22-24]. 

 

2 Carbon Templates from Natural Wood Precursors 

2.1 Wood Structure and Composition 

Wood can be considered a natural material with a complex microstructure optimized by 

evolution for a good strength-to-density ratio and fluid transport [25]. It is a porous 

material with densities in the range 0.3-0.8 g cm-3 depending on species. The wide variety 

of commercially available wood from different species, and the possibility of using 

industrial wood products (paper, cardboard, cellulose paste, particle and fiberboards) 

allows the processing of bioSiC materials with a wide range of properties depending on 

the targeted application. 

 

The structure of wood has been studied in detail [26-29] and is composed of a stacking of 

elongated, tubular cells aligned in the tree’s growth direction. Wood can be broadly 

classified into two groups attending on its microstructure: in softwood from gymnosperm 

trees such as conifers, wood is composed of only one type of cell, called tracheids, while in 

angiosperm wood these are surrounded by smaller sclerenchymatic cells with a 

distribution that is characteristic of each species. Among them, small sized, thick walled 

cells are responsible for the mechanical strength of wood and receive the name of 

libriform “fibers”. In angiosperms, tracheids can have diameters over one hundred 

microns and are responsible for fluid transport (sap channels). Due to this structure, pore 

distribution in angiosperm wood is bimodal, while in wood from gymnosperm species the 

pore size distribution is monomodal with channels in the range of 30-50 μm. Figure 3 

shows a schematic of wood from both angiosperm and gymnosperm precursors.  



The structure and composition of cell walls determines the properties of wood and wood-

derived products [30] and is similar for soft and hardwoods. This can be described as a 

lamellar or layered microstructure where each layer is composed of cellulose, 

hemicellulose and lignin (lignocellulose). Celluloses are long polymeric chains (up to 1 µm 

in length) aggregated into microfilaments normally aligned with the cell’s longest 

dimension. Hemicelluloses are shorter chains interconnecting cellulosic microfilaments 

while lignin occupies the spaces left by the cellulose and hemicellulose networks. 

 

By its very nature, wood has a highly anisotropic structure and its properties are 

described along three planes and their respective perpendicular directions: axial, radial 

and tangential (Figure 3). In addition to the presence of pores and cells, wood shows two 

types of macrostructures: rays and growth rings. Rays are horizontally aligned cells used 

for nutrient storage and radiate from the axis of the three, while growth rings are 

concentric rings that result from changing pore sizes due to seasonal variations in tree 

growth. Due to the absence of sap channels, softwoods from gymnosperms are usually 

referred to as non-porous, while hardwoods from angiosperms are classified according to 

their growth ring morphology into ring porous or diffuse porous: in ring porous 

hardwoods sap channels are segregated into bands while in diffuse-porous wood there is 

no such segregation (Figure 4) [28, 29]. 

2.2 Pyrolysis of Wood 

Pyrolysis of wood for the production of carbon templates to be further converted into SiC 

ceramics is performed in inert atmospheres (typically Ar or N2) by slowly heating the 

wood precursors up to temperatures in excess of 800°C. During pyrolysis the different 

polymeric components of wood decompose in a step-wise manner with hemicellulose 

breaking-down first at 200-260 °C, followed by cellulose at 240-350ºC and lignin at 280-

500°C and up. Figure 5 shows typical thermogravimetric and loss rate per unit 

temperature curves for thermal decomposition of Quercus rubra (red oak) wood, 

exhibiting the step-wise process described earlier [14]. Labeled regions correspond to (1) 

loss of adsorbed water, (2) polymer decomposition of hemicellulose and (3) cellulose as 

well as lignin, (4) total decomposition of cellulose and decomposition of remaining lignin 

above 400 ºC (5).  These stages more or less correspond to those described by Tang and 

Bacon and others [31], involving (a) the desorption of adsorbed water up to 150 ºC; (b) 

the splitting off of cellulose structure water between 150 and 240 °C; (c) depolymerization 

and breaking of C-O and C-C bonds within ring units evolving water, CO and CO2; (d) 

aromatization forming graphitic layers above 400 °C. In lignocellulosic materials such as 



wood the carbon-to-volatiles mass ratio increases with pyrolysis temperature, yielding 

~90% carbon at 600 °C, while the rest is mostly nitrogen and oxygen, with small amount 

of other elements. Ash content varies with species and is between 0.5 to 3 wt. % of the 

carbon monoliths. Ashes from wood derived carbon contain mostly sodium, magnesium, 

phosphor, potassium, calcium, manganese and iron. 

 

Since crack-free monoliths are required for use as templates in SiC ceramic synthesis, 

pyrolysis must be carefully controlled and performed at very low heating rates, in the 

range of 1ºC/min up to 400-500 °C, where most of the thermal decomposition of polymers 

takes place. Such a slow rate allows for gaseous reaction products to evacuate the material 

through the pores without building up pressure that could lead to cracking. After that slow 

initial stage, pyrolysis can be accelerated to rates of the order of 10-20 °C/min without 

affecting the integrity of the final template. This slow process has the advantage of 

producing high carbon yields, in the 25-30 wt. % range when compared to the initial wood 

mass. 

 

It has been shown that the density of the carbon scaffold obtained by pyrolysis is 

proportional to that of the wood precursor, as was first observed by Byrne and Nagle as 

well as others [14]. Some examples of this are shown in Figure 6, where a linear fit of the 

form 𝜌𝑐 = 𝛼𝜌𝑤𝑜𝑜𝑑 is included. Values of the parameter 𝛼 vary with pyrolysis conditions, 

being mostly affected by the heating rate, but is roughly ~0.8 for slow pyrolysis conditions 

such as those typically used to obtain preforms for Si infiltration. 

 

Pyrolysis is accompanied by a shrinkage of the wood-carbon monolith, the extent of which 

is determined by the wood employed. It has been shown that shrinkage in the radial and 

tangential directions vary greatly from species to species, in the range of 25-40 % length 

reduction, while axial shrinkage is similar for all types of wood and results in ca. 20 % 

reduction, although these values themselves depend on the pyrolysis temperature, 

remaining constant over 1000 ºC (Table 1).  

3 Biomorphic ceramics by melt infiltration of carbon preforms 

Processing of bioSiC by melt infiltration is well documented in the literature, and 

protected by patents [18, 22, 24, 32-40]. Basically, it involves the infiltration of liquid 

silicon into the carbon preform, by heating silicon powder in contact with it at 

temperatures in excess of the melting point of silicon (typically > 1450°C) in vacuum. 

Silicon quantities well above the stoichiometric ratio to carbon are typically used to 



ensure almost-complete conversion of the carbon template to SiC. During reaction, the 

carbon walls in the template are converted into β-SiC and the smaller pores in the 

template, up to a pore diameter of approximately 50 µm, are filled with residual silicon. 

The Si, SiC and residual carbon content of the final bioSiC/Si composite, as well as the 

remaining pores’ size and distribution, if any, depend on the processing conditions, 

amount of excess Si, and the anatomy of the wooden preform. 

 

Infiltration of SiC is a near-net shape process, as the volume expansion associated with the 

conversion of C into SiC is absorbed by the porous structure leaving the outer dimensions 

unchanged. Varela-Feria [41] performed a series of infiltrations using carbon templates 

shaped as parallelepipeds with sides of different lengths and measured the dimensions of 

the resulting bioSiC/Si materials (Figure 8), with the result that external sample 

dimensions did not change upon melt infiltration regardless of initial dimensions and 

aspect ratio.  

 

In melt infiltration, conversion of carbon into SiC takes place by two mechanisms which 

are active depending on the carbon wall thickness and topology. As will be elaborated 

further below, the main mechanism is dissolution of carbon into the melt followed by 

reprecipitation of micron-sized (ca. 10 µm) β-SiC grains at the carbon-silicon interface: 

silicon penetrates through the carbon preform by capillary effects and reacts with the 

solid C spontaneously and exothermically, with an enthalpy of ΔH0=-117.77 kJ/mol [42]. In 

denser areas of the carbon template the carbon density can exceed the critical limit of 

about 0.97 g cm-3 which can result in clogging of the pores preventing further SiC 

formation by precipitation [5-7]. In these cases solid state diffusion and reaction control 

the formation of SiC now at the SiC-carbon interface, resulting in the formation of a nano-

grained SiC phase (< 100 nm) [24, 39, 40, 43, 44].  

 

This mechanism is corroborated first by microstructural observations. Figure 9 shows the 

main microstructural features in bioSiC. Three different phases can be distinguished: 

polycrystalline SiC shows intermediate contrast under backscattered electrons in the SEM 

(A, B and C), while Si appears light grey and residual carbon appears black. Micron-sized 

SiC grains can be found inside channels where Si is majority (large channels with diameter 

over 5 µm). In small channels where Si is usually depleted in the reaction, a layer of nano-

sized SiC grains can be observed at the interface between unreacted carbon and micron-

sized SiC grains, which are typically majority (panel D). Nanosized SiC is found at SiC-

carbon interfaces, but not at SiC-Si interfaces. Where thin carbon walls surrounding the 



large channels existed, large grained SiC appears forming layers. Occasionally these layers 

are discontinuous and even some isolated SiC grains are observed (figure 9B, marked with 

arrows). At the SiC-carbon interfaces nanosized grains can be found forming rosettes 

which is typical of diffusion-controlled growth [45], while micron-sized SiC grains are 

faceted, typical of a precipitation mechanism. Figure 10 shows transmission electron 

microscopy images of the interfaces in the region of narrow and large channels, along with 

selected area diffraction patterns, corroborating the previous observations. 

 

Microstructural parameters of the resulting materials are inherited from the wood 

template and therefore show great variability, which means that they can be tailored by 

adequate selection of the precursor. Table 1 shows several parameters such as density, 

silicon volume fraction or porosity for melt infiltrated bioSiC from different precursors 

and in comparison with the carbon template. 

 

The β-SiC formation has been shown to follow first order kinetics, so the concentration of 

each phase can be modelled using: 

 

[𝐶𝑖] = [𝐶𝑖
𝑓

] + ([𝐶𝑖
0] − [𝐶𝑖

𝑓
]) exp 𝑘𝑡 

     

Where k is the reaction constant and Ci is the concentration of phase i. [𝐶𝑖
𝑓

] final 

concentration for each phase, which is not necessarily zero since there is excess Si as well 

as unreacted carbon in the final material. [𝐶𝑖
0] is the initial concentration of phase i. Figure 

11 shows the evolution of each phase’s concentration with time, along with fits using the 

previous equation, from a work by Varela-Feria et al. [39]. In their work, the reaction 

constant was determined as k=1.8 · 10-2 s-1, similar to that measured by Pampuch et al., 

who studied the SiC formation process by reaction of bundles of C fibres 4-6 µm in 

diameter with liquid Si at 1422 °C and 1439 °C [46, 47], and determined the reaction 

constant k using DTA analysis. The possibility of a diffusion-controlled reaction rate is not 

compatible with the measured k values, as using data from Hon et al. [45, 48] and 

assuming the reaction was controlled by diffusion through the SiC layer, a value in the 

range of 𝑘 = 1.0 − 3.0 · 10−10𝑠−1 would be expected. 



4 Macroporous SiC Ceramics 

4.1 Residual Si Removal 

In the processing of wood-derived SiC ceramics obtained by melt infiltration Si is usually 

added in excess with respect to amount needed for stoichiometric reaction, which results 

in the presence of residual Si filling some or all of original channels of the wood precursor. 

Removal of this residual Si results in a macroporous SiC ceramic with elongated, 

anisotropic and hierarchical porosity that is interesting for a wide range of applications, 

some of which are discussed in section 6. Several techniques are available for removal of 

this secondary phase, the one most often used being chemical etching using a mixture of 

HNO3 and HF in a molar ratio of 1.67 according to the following reactions: 

 

3Si + 4HNO3 → 3SiO2 + 4NO + 4H2O  

SiO2 + 4HF → SiF4 + 2H2O 

 

The reaction has been shown to be diffusion limited and the etching rate 𝑅 follows that of 

a boundary layer problem: 

𝑅~(𝐷𝑡)−1/2 

 

The evolution of the reaction front as a function of etching time is shown for transverse 

sections in Figure 12 while Figure 13 [49, 50] shows the reaction front advance as well as 

the reaction rate in a log scale. The differences in etching rates for the different directions 

with respect to the growth axis of the wood precursor were attributed to an effective 

diffusion coefficient 𝐷𝑒𝑓𝑓 which depends on the apparent porosity in each direction due to 

the anisotropic permeability of the porous bioSiC. 

  

The porosity of bioSiC after removal of remaining silicon resembles that of the original 

wood precursor, however due to the volume expansion associated with the 𝐶 + 𝑆𝑖(𝑙) →

𝑆𝑖𝐶 reaction, pores with sizes smaller than ~1 𝜇𝑚 close during the reactive infiltration 

step and are therefore not present in the porous bioSiC scaffold. Pappacena et al. used 

mercury intrusion porosimetry to study the pore diameter distribution in both carbon 

scaffolds obtained from different wood precursors and resulting porous SiC materials and 

found a total porosity reduction of ~10%, depending on species, mostly derived from the 

closure of pores < 1 𝜇𝑚 during the infiltration step [51]. The large macroporosity, with 

diameters 10 𝜇𝑚 and larger, remained basically unchanged (Figure 14). Connectivity 



between axial pores is also preserved after the infiltration and etching steps, as 

demonstrated by x-ray micro-computed tomography (Figure 15) [52].  

4.2 Gas-Phase Infiltration 

In an attempt to obtain porous SiC materials without residual silicon in a one step process, 

several authors have infiltrated carbon preforms with silicon-containing vapours at high 

temperatures: typical reactants such as silicon vapour [18, 53, 54], SiO [54-56] or 

methyltrichlorosilane (MTS, CH3SiCl3) [57-59], among others. Some of the possible 

reactions involved are: 

𝐶(𝑠) + 𝑆𝑖(𝑔) → 𝑆𝑖𝐶 

2𝐶 + 𝑆𝑖𝑂 → 𝑆𝑖𝐶 + 𝐶𝑂 

3𝐶 + 2𝑆𝑖𝑂 → 2𝑆𝑖𝐶 + 𝐶𝑂2 

𝐶 + (1 + 𝑥)𝐶𝐻3𝑆𝑖𝐶𝑙3 + 2𝐻2 → 𝑆𝑖𝐶 + 𝑥𝑆𝑖𝐶 + 3(1 + 𝑥)𝐻𝐶𝑙 + 𝐶𝐻4 

 

In the previous reactions it is worth noting that the molar ratio of formed SiC to reacted 

carbon is different for each vapour reactant that can be used. In the case of Si-vapour 

infiltration the SiC:C molar ratio is 1:1, where for SiO vapour infiltration the ratio is 

between 1:2 and 2:3. For reaction with MTS the ratio is (1+x):1, meaning that reaction 

with MTS will both covert the carbon into SiC but also deposit an additional molar fraction 

x of SiC. Therefore, the microstructure of the resulting bioSiC material and in particular 

parameters such as cell wall thickness or total density can be tailored by adequate 

selection of the gas phase reactant, as was shown by Greil et al. [60], their results 

summarized in table 2. Figure 16 shows the microstructure of cellular SiC obtained from 

Si-vapour infiltration of pine biochar. It is worth noting that a similar route can be used to 

obtain other biomorphic carbides, such as titanium carbide through a mixture of 

TiCl4/methane/hydrogen [61-63]. 

4.3 Carbothermal Reduction of SiO2 and Related Precursors 

A third route to biomorphic SiC cellular materials is the infiltration of SiO2 or silica-

forming gel-precursors such as TEOS into the carbon template, followed by carbothermal 

reduction at high temperature in an inert atmosphere, a procedure first described by Ota 

[12] and later expanded by other authors [64-71], with the following global reaction: 

 

𝑆𝑖𝑂2 + 2𝐶 → 𝑆𝑖𝐶 + 𝐶𝑂2 

 



 The resulting material then retains the microstructure of the precursor, but with 

additional surface modifications inside the porous structure such as formation of SiC 

whiskers and surface roughening. Carbothermal reduction of TiO2 and ZrO2 sols have also 

been used for the fabrication of TiC and ZrC biomorphic materials, respectively [71, 72]. 

4.4 Porous Oxide Ceramics 

The same procedure described in the previous section can be used to process porous 

oxide ceramics that mimic the microstructure of the carbon template, by simply 

substituting the carbothermal reaction step with a simple calcination in air or an oxidizing 

atmosphere. For instance, Ota et al. [73] and Mizutani el al. [74] infiltrated carbon 

templates with metal alkoxides such as titanium isopropoxide, aluminum isobutoxide and 

zirconium n-propoxide to obtain porous, biomorphic ceramics of TiO2, Al2O3 or ZrO2, 

respectively, in a similar process as that described by Singh and Yee [75] and in a series of 

papers by Cao, Rambo and others [76-79]. A perhaps striking development is the work 

performed by Tampieri et al. who produced biomorphic, porous hydroxyapatite from 

rattan templates for bone substitution applications [80-82].  The reader is referred to 

those references for a comprehensive description of the experimental procedures and 

resulting properties. 

4.5 Porous SiC as the Ceramic Preform for Metal-Matrix Composites 

Although out of the scope of this review, it is interesting to note that many researchers 

have used the porous SiC scaffolds described previously to obtain metal-matrix 

composites (MMCs) in which the ceramic phase is essentially continuous, by means of 

different approaches. To give the reader a brief survey, Zollfrank et al. [83] as well as 

Herzog et al. [84] were some of the first to produce bioSiC/Al composites by means of 

squeeze casting, while Wilkes et al. produced CMCs using an Al-Si-Mg alloy using a gas 

pressured liquid metal infiltration furnace [85]. Further, they measured their mechanical 

properties [86] as well as load partitioning among the phases using in-situ diffraction 

experiments [87] and performed detailed investigations on their microstructure by means 

of x-ray computed micro tomography [52]. Copper-SiC composites have also been 

fabricated by electroplating targeting thermal applications by Pappacena et al. [88, 89]. 

5 Mechanical Properties 

5.1 Room Temperature 

Room temperature properties of bioSiCp/Si and bioSiCp have been thoroughly studied by 

several authors, and Table 2 summarizes some of their findings. Peter Greil’s group was 



one of the first to report on mechanical properties, first of melt-infiltrated bioSiC/Si and in 

comparison to the properties of the carbon preform [16, 60] and then of porous bioSiCp 

obtained by gas infiltration [18, 53, 54]. They were first to realize that, especially in 

bending, fracture strength not only depended on macroscopic parameters (density, 

volume fractions, pore size, etc.) but was highly influenced by the presence of 

macrostructural features such as rays and growth rings in the wood precursor.  Gutierrez-

Mora et al. used indentation to measure hardness of Eucalyptus, Beech and Pine derived 

bioSiCp/Si [90]. Presas, Llorca, Pastor and others studied the bending strength and 

fracture toughness of several bioSiCp/Si materials derived from hardwood that possessed 

aligned porosity due to unfilled sap channels [91-93], while Park et al. surveyed the 

bending and compressive strength as a function of precursor density for bioSiCp/Si 

synthesized by a variety of precursors [94, 95]. Hou et al. measured bending strength as a 

function of infiltration time in an attempt to verify a possible effect on the material’s final 

properties [96]. Kaul, Faber et al. measured the mechanical properties (Elastic modulus, 

compressive strength and fracture toughness) of porous bioSiCp from different precursors 

[97] and used nanoindentation to measure hardness and elastic moduli of individual 

phases (C, SiC) in the material [98]. 

5.2 High Temperature 

High temperature mechanical behavior has been extensively studied in bioSiC/Si 

composites as one of the proposed applications is as high temperature structural 

materials. The high temperature behavior in compression has been summarized by 

Martinez-Fernandez et al.  [99], who compared high temperature creep and compressive 

strength of bioSiC/Si from eucalyptus wood with several commercial siliconized SiC 

materials: reaction formed silicon carbide (RFSC) is a Si/SiC composite similar to bioSiC, 

obtained by reactive infiltration of polymer derived carbon preforms, which is isotropic 

and contains a very high fraction of SiC; reaction bonded SiC (RB-SiC) is a SiC/Si composite 

obtained from reactive infiltration of a mixture of C and SiC powders. BioSiC/Si was 

deemed superior in terms of strength to both commercial compositions when load was 

applied parallel to the axial direction, determined by the growth direction of the original 

wood precursor. Figure 18 shows stress vs. strain curves in compression for a variety of 

siliconized SiC materials at temperatures where the load carrying ability of the residual Si 

was deemed negligible. It is remarkable that bioSiC shows the highest compressive 

strength despite having the lowest SiC content as a fraction of volume, an observation that 

was attributed to the special microstructure derived from the original wood precursor, 

where the SiC forms a continuous phase as opposed to for example RBSC.  



 

Figure 19 shows the high temperature compressive strength of bioSiC obtained from 

different precursors in the temperature range of 1000-1450 °C, as a function of the volume 

fraction of SiC. In a first approximation, compressive strength can be fitted to a 

relationship of the type; 

 

𝜎𝑏𝑖𝑜𝑆𝑖𝐶

𝜎𝑆𝑖𝐶
= (

𝜌𝑏𝑖𝑜𝑆𝑖𝐶

𝜌𝑆𝑖𝐶
)

𝑚

  

 

Where 𝜎𝑏𝑖𝑜𝑆𝑖𝐶  is the compressive strength and 𝜌𝑏𝑖𝑜𝑆𝑖𝐶  is the density of the bioSiC material. 

In the same way, 𝜎𝑆𝑖𝐶  is the compressive strength and 𝜌𝑆𝑖𝐶  the density of fully dense 

sintered SiC. The compressive strength increases with SiC content and is higher when the 

load is applied along the axial direction, although this anisotropy is less pronounced for 

bioSiC materials containing a large fraction of SiC. As a comparison the strength of 

commonly employed siliconized SiC materials is included [5, 100, 101].  

 

The effect of the microstructure on strength was rationalized in terms of a Minimum Solid 

Area (MSA) model [102, 103] which was deemed more suitable than cellular models often 

applied to describe the mechanical behavior of wood [104]. Figure 20 shows the 

prediction of the MSA model for pore distributions of different shapes and stacking 

patterns, along with experimental results for different types of BioSiC and siliconized SiC 

materials. It was clear that, when compared to the strength of fully dense SiC, a cubic 

stacking of cylindrical pores compressed parallel or perpendicular to the cylinders’ axis 

described the behavior of bioSiCp compressed in the axial and radial directions, 

respectively. RFSC behaved closer to a stacking of spherical pores while RBSC had a 

behavior in the range predicted for a stacking of spherical particles, in accordance to their 

microstructural features.  

 

Limited studies of creep in bioSiC have been performed [36, 99], which found that 

temperatures in excess of 1600ºC were required to observe any type of steady-state creep 

(Figure 21), contrary to the case of siliconized SiC materials such as RBSC or RFSC which 

crept at strain rates in the range of 10-7-10-8 s-1 for compressive stresses of 100-300 MPa 

at 1300°C. BioSiC made from eucalyptus crept at rates below their estimated detection 

limit of 10-9 s-1. 



5.3 Erosion and Wear 

Only limited investigations in the erosion and wear properties have been reported. De 

Arellano-López et al. [105]  studied erosion and strength degradation of biomorphic SiC 

from eucalyptus and pine by solid erosion tests using 63-390 µm SiC particles at 100 m/s 

as erodent, impacting at an angle of 90ºC into a surface perpendicular to the axial 

direction in bioSiCp, observing erosion rates in the range of 10 mg per gram of impacting 

erodent, an order of magnitude higher than siliconized SiC materials with a much larger 

SiC volume fraction, suggesting that cleavage in the Si phase and intergranular cracking in 

the SiC phase of bioSiC made it more susceptible to erosion than RBSiC or hot-pressed SiC 

which showed a larger proportion of intragranular erosion. Nevertheless, strength 

degradation after erosion was measured in bending and while for reaction bonded or hot-

pressed SiC the reduction in strength was in the range 30-50%, it was limited to 25% in 

Eucalyptus-derived SiC. 

 

Vera et al. measured wear rates using ball-on-disk experiments with Si3N4 as a counterface 

and found an almost two orders of magnitude difference in wear rates, depending on SiC 

content, when compared to hot-pressed SiC. Wear rates for softwood derived SiC were as 

high as 103 mm3/MJ, whereas a value of 10 mm3/MJ was measured for hot-pressed SiC. 

Hardwood derived bioSiC with a 50-60% SiC fraction showed wear rates ca. 102 mm3/MJ. 

6 Applications 

The unique microstructure of biomorphic SiC, derived from the wood precursor used as a 

starting template is interesting in areas were a hierarchical or directional porosity is 

desired, and therefore several applications for biomorphic SiC as a structured porous 

ceramic have been proposed and/or are under development [24]. For instance, it has been 

found that the high surface area and elongated nature of the porosity makes bioSiCp an 

interesting catalyst carrier, especially for high temperature reactions such as partial 

oxidation of methane to syngas [106], cellulose conversion to hydrogen [107] using Ni 

particles, or catalytic combustion of hydrogen [108] but also combined with zeolites to 

form structured monoliths for sorption and catalysis [109, 110]. 

 

Porous bioSiCp has also been proposed as a high temperature gas filtration material, 

targeting applications such as coal gasification for syngas production, as it exhibits 

relatively high permeability range (10-6-10-4 m3 N-1 s-1) [111] depending on porosity, while 

maintaining good bending strength at targeted filtration temperatures of 800°C [112]. 

Pilot studies using candles made of MDF-derived bioSiC performed by Alonso-Farinas et al. 



[113] determined that flow velocities for gas filtration can be increased two-to three fold 

when compared to commercial SiC filtering elements. 

 

The vascular nature of wood derived bioSiC porous materials make them interesting 

candidates for medical  implants, specifically in cortical and load-bearing bone 

replacement where more conventional bioactive glasses and isotropic porous materials 

cannot be used due to their lack of mechanical strength. Bare porous bioSiC has been 

shown to be as non-cytotoxic and biocompatible as Ti6Al4V or Thermanox (c), as well as 

to promote bone ingrowth in in-vivo compatibility tests when implanted in rabbits’ femur 

condyle [114]. Nevertheless, a range of surface treatments have been tested to enhance 

bioSiC bioactivity, such as pulsed-laser deposited hydroxyapatite and CaP bioglass 

coatings [115-118], chemical functionalization and bioactivation [119] or 

electrodeposition of nanostructured hydroxyapatite/collagen layers [120]. 

 

In a recent study, a two-part device which incorporated porous bioSiC as the load-bearing 

material was studied as potential implants for long-bone prostheses and tested in-vivo in 

sheep [80]. The device consisted of a hollow cylindrical layer of sipo-derived bioSiC 

intended to support most of the implant mechanical load by mimicking the outer, cortical 

structure of bone. Surface bioactivation was carried out by means of collagen and nano-

hydroxyapatite (HA) deposition, which resulted in a uniform coating. The inside of the 

cylinder was filled with a bio-hybrid HA/collagen composite intended to support 

trabecular bone growth. This study showed the safety, feasibility, and potential of this 

scaffold in vivo in a sheep model. In particular, the use of BioSiC+HA/collagen combined 

with bone marrow stem cells showed the highest value of bone-to-implant contact and 

new bone growth inside the scaffold. 

 

Recently, a growing interest in new carbon materials for energy storage applications, 

especially as battery or supercapacitor electrodes has sparked the development of 

carbide-derived carbons [121-124], in which a carbide is converted into carbon in through 

high temperature reaction with gaseous chlorine. Among this field, biomorphic materials 

have found interest as precursor for hierarchically porous carbide-derived carbons, either 

from SiC [125-127] or TiC [63, 128].  

7 Concluding Remarks 

As we have shown, biomorphic ceramics are an exciting family of SiC materials that enable 

many applications due to their combination of low processing costs, formability, tailorable 



properties and excellent thermomechanical performance in high temperature 

environments. By using wood as the initial template, highly complex microstructures can 

be obtained, and porous SiC ceramics with hierarchical porosity can be obtained. Since the 

process is near net-shape, biomorphic SiC can be processed into relatively complex shapes 

cheaply. All these advantages make them interesting candidates for a wide range of 

technological applications including catalyst supports, filtration elements in combustion 

environments, o biomedical devices, to name a few. 
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Figure Captions 

Figure 1. Different routes to biomorphic SiC materials and composites by infiltration of a 

porous carbon precursor. 

Figure 2. Some components made of melt-infiltrated bioSiCp, in this case using MDF as a 

precursor. Courtesy of biomorphic EBT.  

Figure 3. (top) Schematic of wood structure and definition of the three main planes used to 

describe for both gymnosperm and angiosperm specimens. (bottom) Actual 

microstructure determined from optical microscopy in sections along the three planes. 

From [28].  

Figure 4. Axial sections of wood from three different species, a non-porous softwood 

(white pine), a ring porous hardwood (red oak) and a diffuse porous hardwood (tulip 

tree), highlighting the three different types of growth rings. Rays are signaled by red 

arrows, while growth rings are marked by white arrows. Adapted from [28]. 

Figure 5. Weight loss (TGA) analysis of the pyrolysis of Quercus rubra (red oak) wood 

along with the rate of loss with temperature. Labeled regions correspond to (1) loss of 

adsorbed water, (2) polymer decomposition of hemicellulose and (3) cellulose as well as 

lignin, (4) total decomposition of cellulose and decomposition of remaining lignin above 

400 ºC (5).   

Figure 6. Final carbon density as a function of wood density before pyrolysis. A linear fit to 

the data is included. Solid points correspond to data by Byrne and Nagle while hollow 

points correspond to our own unpublished data.  

Figure 7. SEM micrographs of axial sections of carbon obtained through pyrolysis of 

different wood precursors, highlighting the resemblance of the carbon scaffold 

microstructure to that of the original wood precursor.  

Figure 8. Final dimensions of melt-infiltrated beech-derived carbon as a function of initial 

dimension, for parallelepipeds of different sizes and aspect ratios. The straight line has a 

slope of one, indicating that the dimensions of the original templates were conserved. 

Figure 9. SEM micrographs of bioSiC obtained from beech wood: A) Low magnification B) 

High magnification micrograph of SiC-Si interfaces. C) High magnification micrograph of 



SiC-carbon interfaces. D) TEM micrograph of a SiC-carbon interface showing a rosette of 

nano-sized grains [39].  

Figure 10. Transmission electron microscopy images and associated diffraction patterns of 

melt infiltrated bioSiC in the vicinity of narrow channels (left) and large channels (right), 

highlighting the differences stated in the text. In narrow channels a SiC/carbon interface is 

formed with a layer of nanosized grains, whereas in large channels SiC/silicon interfaces 

are formed between large (micron-sized) grains.  

Figure 11. Time dependent phase fractions of carbon, silicon and SiC for silicon melt 

infiltration of wood-derived carbon preforms [39]. 

Figure 12. SEM micrographs of transverse sections of porous bioSiC for different etching 

times, from [49]. From left to right and top to bottom, etching times are 0.5, 1, 2, 6, 18 and 

64 h. 

Figure 13. Etching rate obtained from SEM micrographs of sections of porous bioSiC for 

different etching times, for sipo wood [49] and MDF derived bioSiCp [50]. The etching rate 

follows a t -1/2
 law that confirms the diffusion limited nature of the reaction.  

Figure 14. Pore size distributions and porosities of (a) carbon samples pyrolyzed to 1000 

◦C and (b) silicon carbide samples derived from carbon pyrolyzed to 1000 ◦C from five 

wood precursors as determined by mercury porosimetry. Curves are offset by (a) 20 

volume% and (b) 30 volume% for ease of viewing. From [51]. 

Figure 15. Transverse cross section from a 3D reconstruction obtained by x-ray micro-

computed tomography of porous bioSiC. Each colored region represents an interconnected 

structure, from [52].  

Figure 16. Microstructure of porous bioSiC obtained from Si vapor infiltrated-pine char. 

From [53]. 

Figure 17. Young’s Modulus and bending strength of carbon preforms and bioSiC/Si 

composites obtained from Balsa, Pine, Maple, Oak, Beech and Ebony precursors, as a 

function of density, when the load was applied in the axial or radial orientations. From 

[16] 

Figure 18. High temperature stress vs. strain plots for Refel RBSiC (89% SiC), Cerastar RB 

(80% SiC), Cerastar RX (74% SiC), LS-RFSiC (91% SiC) and bioSiC (63% SiC, fabricated 

from eucalyptus wood) in the axial direction. A) 1000 °C and B) 1330 °C. From [22]. 



Figure 19. Compressive strength of different siliconized SiC materials compared to the 

strength of sintered SiC as a function of SiC fraction in the material. BioSiC obtained from 

wood with a range of densities from 0.48-0.97 g/cm3 was studied in both the axial and 

radial directions in the range of 1000-1450 ºC. From [104, 129]. 

Figure 20. Relative strength of several siliconized SiC ceramics including bioSiC, as a 

function of SiC volume fraction, at temperatures 1000 – 1300 ºC. The predictions from the 

minimum solid area models for several ideal microstructures are plotted as solid lines 

[102, 103]. The experimental values for several siliconized SiC materials including bioSiC 

are from [99]. 

Figure 21. Creep strain rates of bioSiC at 1175 ºC and 1600 ºC, at 250 MPa of applied 

stress. From [99]. 

Figure 22. Porous BioSiC candle prototypes used for hot-gas filtering experiments at 

800ºC, from [113]. 

  



Tables 

 

Table 1. Properties of carbon preforms and Si-infiltrated SiC materials from different types 

of wood [16, 18, 95] 

  Balsa Pine Oak Maple Beech Ebony Paulownia MDF 

Pyrolysis 
weight loss 
(wt.%) 

 
73.5 73.8 70.4 74.9 74.2 64.6 70.17 71.6 

Pyrolysis 
shrinkage (%) 

axial 21 23 17 20 22 14 20.06 24.75 

radial 22 28 28 30 32 25 20.81 23.95 

tangential 22 31 33 40 38 30 36.55 45.77 

Density 

(g/cm3) 

Pyrolyzed 
0.06 0.31 0.50 0.51 0.55 0.87 0.17 0.72 

 Si-

infiltrated 
2.02 2.22 2.16 2.58 2.57 - 2.26 2.94 

Porosity (%) 
(open/closed) 

Pyrolyzed 22/70 21/57 30/40 43/22 42/21 23/20 75.81 42.65 

Si-

infiltrated 
11/14 11/14 8/5 3/5 3/2 3/- 14 3 

Mean pore 
diameter (µm)* 

 
40 20 170 35 30 -   

Si-content 
(wt%) 

 
67 50 27 23 37 - 57 

10 

 

* Open pore channels free of Si. 

 

Table 2. Microstructural features of pine-derived biomorphic SiC obtained by vapor 

infiltration of different precursors, from [60] 

 Wood Carbon 
template 

Silicon carbide 

  SiO Si CH3SiCl3 

Density (g cm-3)      

               Geometrical 0.47 0.35 0.6 1.0 1.2 

               Struts 1.4 1.4 2.5 3.1 3.1 

Porosity (%) 67 76 80 70 60 

Surface area (m2 g-1) - 46 16.1 3.3 0.5 

Strut thickness (µm) 2 1.5 1 2 4 

Biaxial strength (MPa)   4 13 21 

 

  



 

 

Table 3. Room temperature mechanical properties of biomorphic SiC.  𝜎𝑐  and 𝜎𝑓 represent 

compressive and flexural strength respectively. 
Wood 𝝆 (g·cm-3) P (%) Direction 𝝈𝒇 (MPa) 𝝈𝒄 (MPa) E (MPa) KIC (MPa·m1/2) Ref. 

Bamboo 2.38-2.51 51 Axial 120-180   1.75 [130] 

Beech 2.50-2.61  Axial 180-200  250-290  [16] 

 2.50-2.61  Radial 90-130  220-280  [16] 

 2.10  Axial 228 438  2 [92] 

 2.50  Axial 216 1080  3 [92] 

 Porous 53-55 Axial  330-480 115-130 1.1-1.4 [97] 

 Porous  52-55 Radial  24-24 10-27 0.5-0.7 [97] 

Birch 2.71-2.77 9 Axial 210-320   2.4-4.3 [130] 

Bubinga   Axial 186-240   2.4-2.8 [22] 

Eucalyptus 2.60  Axial 226 1410  4.2 [92] 

 2.63  Axial 290 1400 160-180 2.6-2.8 [91] 

Mahogany Porous 45-53 Axial  160-190 35-110 0.7-1.22 [97] 

 Porous 46-50 Radial  57-75 15-21 0.46-0.6 [97] 

 Porous 48-50 Tangential  31-35 12-20 - [97] 

   Axial 144  150-195 2 [21] 

Maple 2.36  Axial 286-402  240-208 2.4-2.8 [21, 22] 

MDF 2.68-2.72 <1 - 125-245   2.4-3.2 [130] 

Pine 2.57-2.67 2 Axial 175-225   1.8-4.1 [130] 

 2.25-2.30  Axial 125  180  [16] 

 2.25-2.30  Radial 50-65  150-200  [16] 

Poplar Porous 59-64 Axial  135-250 30-76 0.8-1.1 [97] 

 Porous 64-65 Radial  12 1 0-3 [97] 

 Porous 58-60 Tangential  16-24 6-8 - [97] 

Red Oak Porous 47-50 Axial  220-270 28-60 0.9-1.8 [97] 

 Porous 44-46 Radial  8-18 5  [97] 

 Porous 44-47 Tangential  5-28 8  [97] 

 2.05-2.10  Axial 100-120  160-210  [16] 

 2.05-2.10  Radial 30-60  150-200  [16] 

Sapelly Porous 54-59 Axial  50-127 15-22  [97] 

 Porous 55-59 Radial  12-15 6-14  [97] 

 Porous 54-57 Tangential  13-18 7-10  [97] 
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