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Abstract 

Freight transport studies require, as a preliminary step, a survey to be conducted on a sample of the universe of agents, 
vehicles and/or companies of the transportation system. The statistical reliability of the data determines the goodness of the 
outcomes and conclusions that can be inferred from the analyses and models generated.  

The methodology contained herein, based on bootstrapping techniques, allows us to generate the confidence intervals of 
origin-destination pairs defined by each cell of the matrix derived from a freight transport survey. To address this study a data 
set from a statistically reliable freight transport study conducted in Spain at the level of multi-province inter-regions has been 
used.  
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Selection and/or peer-review under responsibility of Scientific Committee. 

Keywords: Origin-destination matrix; freight transport survey; matrix estimation; bootstrapping. 
 

 

1. Introduction 

Origin-destination (OD) trip tables are required in most transportation applications to represent the spatial 
distribution of transport demand. The procedures to construct these tables are mainly based on available 
information collected by a transport survey. The level of the comprehensiveness and quality of the survey 
determines the confidence and reliability of the data captured. Incomplete and/or inaccurate data have negative 
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consequences in characterizing transport mobility and will invalidate subsequent stages (i.e. modelling, 
estimations, forecasting).  

As a complement to survey-based data-capturing techniques, other pieces of information, that might be easily 
available, quick or inexpensive, can help to improve the reliability of the eventually inferred OD trip table (i.e. 
link volumes, trips between macro-zones, cordons and screen-line counts, vehicle speeds, path travel times, path 
flows). To assess the quality of OD trip table estimates versus survey-captured tables, a large amount of statistical 
measures can be used to quantify the accuracy of the data observed (that is, of the pieces of information 
available).       

The construction of freight transport matrices of a given region to be analyzed, OD matrices, feeds on the data 
collected in a process of surveying a sample of agents (users) of the transportation system. There are several 
techniques to perform freight data collection, of which the most commonly used can be classified into two 
families, based on the disaggregation level of the agents:  

a) Individual agent level. In this case a sample of companies is chosen from the whole economic frame. This 
sample must be statistically representative of the economic distribution functions, which depend on many 
variables (all cited above) or some of them (i.e. selected samples as a function of the spatial distribution of 
economic density).  

b) Specific economic sector level. A sample is chosen from among the sector universe in the region. The 
sample must also be chosen to be statistically representative of the sector distribution according to variables 
associated with the item (i.e. those mentioned above particularized for every single individual sector member, or 
some aggregated more representative ones such as the number of sector members). Obviously, the level of 
aggregation of the sector variables affects the explanatory power of the collected data in relation to reality. This 
case is broadly used for the specific sector of transportation agents (i.e. freight transport companies and registered 
freight vehicles), though the data captured are limited (mostly origin-destination, product and load).  

Of these techniques, one of the most widely used is based on surveying samples of registered freight vehicles 
distributed according to their registration plates. Once the studied region is discretized into transport areas by 
aggregating census districts, municipalities or counties, the sample size proves to be a function of the total 
number of vehicles distributed among the zones and according to the registered population; this ensures the high 
statistical reliability of information collected on a zonal level.  

By this sampling technique, and for each zone z , denoting by zV  the number of freight vehicles registered 
therein, the vehicle type histogram can be easily obtained. The choice of the vehicle types to be surveyed is made 
through a process of random draws without replacement from the universe in each area, so that it reproduces the 
histogram. Elements of the original sample that fail, as a result of any cause external to the survey for instance, 
are replaced by other elements with similar characteristics (i.e. the same type) in order to preserve the sampling 
distribution. From the practical and professional standpoint, the sample and the universe generally are related 
through sampling rate (weight) coefficients. For the present case, they are defined by /t t t

z z zk V v , where t
zV and 

t
zv  stand for the number of existing vehicle types and respondents of type t in zone  z, respectively. 

The weighting process (expansion) does not guarantee that the expanded data follow the same patterns as 
reality and, while an analysis to compare certain statistical parameters of certain variables (i.e. vehicle type 
distribution, or other socioeconomic variables) may be carried out, it is a fact that the expanded data are severely 
affected by significant errors that are difficult to characterize. Therefore the "representativeness" of the expanded 
data matrix, in relation to the real unknown matrix, is questionable (or at least limited). 

For a more precise characterization of the expanded matrix there are numerous techniques to refine this 
“representativeness”, of which confidence intervals are the most practical.  

This paper describes a model that estimates the level of confidence of data captured for each OD pair and can 
be easily extended to its aggregated magnitudes by origin and destination. This objective is addressed by using 
the statistical technique of bootstrapping to evaluate the uncertainties in each OD pair estimate. Section 2 
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discusses the basic concern on deriving confidence intervals for OD matrices retrieved from transport surveys, 
continuing with a review of seminal previous works. Section 3 describes preliminary results obtained from 
applying the developed methodology to a selected case of freight transport at a national scale in Spain. 

2. Problem definition and formulation 

2.1. Introduction 

For a given study area divided into transport zones where agents can travel from each origin (ranging from 1 
to on ) to all destinations (from 1 to dn ), ij denotes the OD trip matrix, where ij  stands for the number 

of freight vehicle trips from origin zone i to destination zone j, and 
1 1

o dn n

ij
i j

the total number of trips within 

the study region. Obtaining matrix requires the observation of all trips made in the area, by both the freight 
vehicle registered population and passers-by; this is an impossible task to tackle. Instead, a surveying process can 
be accomplished a number of times E, on samples taken from the population of transport system vehicles which 
travel in the area, yielding a series of matrices 1 2 E, ,...,T T T . These matrices represent a stochastic series in which 
the total number of trips eT  is distributed among the o dn n cells ( o dC n n categories) according to a 

multinomial probability distribution of parameters ij : 

11
11 11 11 11 11P ,..., , ,..., !( ) ... ( ) / ! ... !

ee
n no d

o d o d o d o d o d

TTe e e e e e
n n n n n n n n n nT T T T T T T T       (1) 

where ij is the probability of detecting e
ijT trips in pair i-j, and where 0

1 1

dn n
e e

ij
i j

T T , and 
0

1 1
1

dn n

ij
i j

. 

For a sufficiently high number E of samples, eT may be approximated by a normal distribution. This approach 
is of low interest because of the impracticability and budget restrictions on conducting multiple repeated studies 
to obtain more than just one matrix. One can accept the hypothesis that a single array 1T T , with a total travel 

1T T , statistically characterizes the said series. 
The generation of a large number of samples ˆ , 1,...,m m MT , replicated by random samples from matrix 

T , allows us to estimate the parameters of the distribution (1) as: 
1

1
011 2

ˆ , 1,...,
ˆ , 1,..., ; 1,...,ˆ ˆ ˆ...

m
ij ij ij

ïj ij ij dM

E T m M T T
p p i n j n

TTT T T

 
                      (2) 

accepting 1T and 1
ijp  as unbiased estimates of the mean T of the total number of trips and the probabilities of the 

number of cell trips (maximum likelihood estimator), respectively. Under these assumptions, expression (1) is 
particularized as: * * *

11 11 11P , P ,..., , ,...,
o d o d o dn n n n n nT T T T T T p pT T p , which stands for the probability 

distribution function of all possible matrices *T with parameters T and ˆ ijp . 

2.2. Analytical and empirical confidence intervals for OD matrices 

The index most widely used to quantify the reliability of statistical inference from a sample is the confidence 
interval. For a matrix T, the confidence intervals are given by either ( )ij ij ijL T U or ( )l u

ij ij ijp p p , where 

ijp  stands for trip proportion ( / )ij ijp T T . 
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For certain distributions, the expressions of the confidence intervals are well defined at an analytical or 
numerical level. In the case of the multinomial distribution, different methods are proposed in the literature, 
mainly depending on the desired confidence level, the length of the interval, or a combination of both identified 
by the confidence index, the size of the sample and the matrix covariance of the probabilities. All these methods 
are grouped into two large families: a) analytical ones, based on approximate approaches, and b) empirical 
methods, based on successive extractions. For the multinomial distribution, the direct problem of determining the 
confidence interval has been addressed by several authors in the last century (Quesenberry & Hurst, 1964; 
Goodman, 1965; Bailey, 1980; Glaz & Johnson, 1984; Fitzpatrick & Scott, 1987; Sison & Glaz, 1995; Hou, 
Chiang & Tai, 2003; Wang, 2008). The objective of this set of methods is the determination of simultaneous 
confidence intervals, which handle multiple parameters for the entire sample. These intervals are simultaneously 
defined for each of the variables involved and present the same level of confidence. Some methods developed so 
far (Sison & Glaz, 1995) assume the same interval length for all proportions, ijp , though when there are cells in 

which a number of elements dominate over others, the intervals predicted prove to be unreliable (May & 
Johnson, 1997). In other methods, when the sample size is large, the Central Limit Theorem hypothesis has been 
assumed (Roussas, 1973; Snedecor & Cochran, 1980; Meyer, 1986; Canavos, 1988; Walpole, 1992; Agresti & 
Caffo, 2000; Casella & Berger, 2002). Simulation studies carried out more than a decade ago (May & Johnson, 
1997) provided results on methods developed in the late 60s and 80s (Goodman, 1965; Quesenberry & Hurst, 
1964; Fitzpatrick & Scott, 1987) which confirm significant limitations for these analytical confidence intervals, 
such as the large length of the intervals or the limiting value of the number of elements in each cell and matrix 
size. To circumvent the previous drawbacks, empirical approaches have been gaining acceptance as practical 
techniques. 

Bootstrapping is a technique of replicating samples by extraction, presented in the late 70s (Efron, 1979; Efron 
& Tibshirani, 1993), and used to estimate a distribution from which to extract several statistics of interest (i.e. 
mean, variance). In a broad range, the bootstrap methodology consists of estimating a statistical characteristic of 
the unknown population by simulating the characteristic when the true population is replaced by an estimated 
one. This technique involves random draws, with replacement, of subsets from the input data. The extractions are 
performed in such a way that each data item is represented identically in the random extraction scheme. The main 
advantage of bootstrapping is the easy way to perform the replicating. Several variations have been proposed to 
calculate confidence intervals in bootstrapping, such as the method of percentiles and others that correct possible 
bias when the number of draws is limited, but no definitive conclusions can, generically, be drawn (Efron, 1979; 
Weinberg, Carroll & Cohen, 1984). In the last fifteen years several studies have been conducted to investigate the 
performance of bootstrap methods versus analytical methods in terms of constructing confidence intervals for a 
single multinomial population with r categories. The review by Jhun and Jeong (2000) contains valuable 
conclusions on the applicability of diverse confidence interval analytical close expressions. They proved the 
superiority of the bootstrap method versus those analytical ones, although the analysis was limited to a small 
number of categories ( 3,4,5r ) and sample size (population 200N ). A more recent work (Morales, Pardo 
& Santamaria, 2004) has reached similar conclusions under a similar assumption of categories and sample sizes.  

There are two main families of approaches to obtain bootstrap confidence intervals: based on the standard 
normal table, and based on bootstrap empirical percentiles (the pivot method). In the first one the intervals are 
calculated by using the estimated standard error and multiplying it with the corresponding percentile points of a 
normalized normal distribution. In the second one the distribution used is the empirical distribution constructed 
by sorting the bootstrap estimators in ascending order; for each of the M extractions (pairwise cell of the 
replicated matrix sample set), the percentile method, for an intended coverage of  1 2  is obtained directly 
from the distribution percentiles  and 1 ; therefore, to obtain the 95% confidence interval lower and upper 
limits, the 0.025 M  and 0.925 M  values are computed from the bootstrap ordered indexes, as M extractions 
are available. In order to correct the bias in these empirically calculated intervals, several bootstrap confidence 
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interval methods have been constructed; the bias-corrected (BC) percentile and accelerated bias-corrected (BCa) 
percentile methods are among those worth citing (Diciccio & Romano, 1988). Most methods are described in 
Efron & Tibshirani (1993). In this research, taking into account the error drawn during the surveying process, 
such a level of correctness/accuracy is not needed for this type of OD matrix application, and for the sake of 
conciseness attention is concentrated on the bootstrap percentile method. 

Using multiple extractions, following Efron’s bootstrap technique, a generic empirical statistics parameter 
estimator ˆ  of a statistics parameter , and confidence interval for   can be constructed as summarized in the 
following pseudo-algorithms. 
 

 Estimate of statistics parameter ˆ . 
 For the initial data set 11( ,..., )

o dn nT T , estimate the multinomial proportions, from (2), and assume the 

hypothesis that these ratios correspond to the “true” population proportions. 

 Generate M samples * *
0, 1,..., ; 1,...,m m

ij dT i n j nT of size 
1 1

o dn n

ij
i j

N T T  from the 

multinomial distribution of parameters π̂ .  
 Estimate the parameter set ˆ  from the M drawn samples related to each ij-th matrix cell:   

* *ˆ ˆ ˆ, 1, 2,..., ; 1, 2,..., , 1, 2,..., , 1, 2,..., ; 1, 2,...,m
ij o d ij o di n j n m M i n j n . 

 Estimate of cell standard error and mean 
1/2

1 1

ˆ ˆˆ / ( 1) , / .
M M

m m m
ij ij ij ij ij

m m
M M  

 Construction of a confidence interval for parameter ij based on bootstrap percentiles. 

 For each ij-th matrix cell, in all M bootstrap samples, histograms are constructed from ˆm
ij . 

 Compute percentiles /2 1ˆ ˆ ( / 2)ij ijF and  1 /2 1ˆ ˆ (1 / 2)ij ijF , where ˆˆ ( )ij ijF  is the empirical 
distribution. 

 Compute confidence intervals directly from the percentiles of the empirical distribution 
1 1ˆˆ ˆ ˆ( ) : ( / 2), (1 / 2)ij ij ij ijF F F , where 1ˆ ( )ijF stands for the percentile of the bootstrap 

empirical distribution constructed by sorting the bootstrap estimators in ascending order. 
 

2.3. OD matrix estimation approaches 

The problem of OD inference, estimation and prediction has been dealt with during the last two and a half 
decades (Cascetta, 1984; Ben-Akiva, 1987; Cascetta, Inaudi & Marquis, 1993). In most of the published 
literature, OD estimation is based on historical demand information provided by a prior matrix and additional 
information such as link count data and other more recent traffic surveillance technologies. The objective of this 
problem is simulating an OD matrix close to a prior or possibly outdated matrix and which, when assigned to the 
network model, reproduces the observed magnitudes with a controlled error.  

Beside the hypothesis assumed and the approaches followed, there are factors that make it hard to be certain of 
the quality and reliability of the OD matrix estimated. To obtain a complete OD matrix by direct measurements 
describing the transport demand within a given region is an unfeasible task because of budget, manpower and 
time limitations. Therefore, OD matrices have customarily been estimated using different methodologies. The 
alternative most used over the past twenty-five years and with the largest amount of documented work in the 
literature is a mixed analytical-empirical method which uses traffic counts as measurements of link flows in a 
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network model in order to adjust an existing matrix derived from a survey. The prior matrix can be regarded as an 
observation (a good approximation) of the “true” OD matrix to be estimated. In methods based on this approach, 
the prior OD matrix is iteratively “adjusted” or “changed” to reproduce the observed traffic counts when assigned 
to the transportation network.  

The most widespread adjustment methodology is based on obtaining trip matrices, expressed in equivalent 
vehicles, that replicate as closely as possible the volume observed when matrices are assigned to a reliable 
transport network model by an assignment code. In general one can affirm that the different methods of 
estimating OD trip matrices based on traffic counts, developed in the literature, have the following generic form 
(Yang, Sasaki & Asakura, 1992): 

1 2
, 

Minimize

. .  = (
1

0 ( ,  )

F F

s t Assign
v T

T, T v, v

v T)                                                                   (3) 

where functions F1 and F2 are two metrics that measure the distance between the estimated OD matrix T , and 

the prior matrix, T , and between the estimated and the observed volumes in network links, v and v respectively. 
The proposed formulation follows the basics of scheme (3); however, to control the distortion of the prior 

matrix a set of bounded variable constraints (for each matrix cell) are prescribed. This manner of proceeding is 
intended to keep the variation of the information contained in the adjusted matrix compared with the prior matrix 
within a range considered to be feasible.  

Regarding the adjustment problem, the necessary volume data are inferred from data collected on traffic 
counts on certain links. The formulation proposed to adjust the prior OD matrix includes the Euclidean distance 
between estimated and observed volume data and the distance between the prior and estimated matrices; in 
addition, a set of variable bounds and functional constraints which define admissible ranges for individual OD 
pairs, zone productions and attractions, and total number of trips are included. These bounds are defined by the 
confidence intervals inferred by the bootstrap technique. 

Then a modified mathematical formulation from (3) results in the programming approach proposed in this 
investigation by incorporating the following constraints, as follows: 

;    ;    O O D D
ij ij ij i ij i j ij j

j D i O
L T U L T U L T U  

where the necessary mathematical conventions to formulate the new OD matrix adjustment approach are 
summarised: i  O: origin zones (no);  j  D : destination zones (nd); ,ij ijU L : upper and lower bounds for (i, j) 

OD pair;  ,O O
i iU L : upper and lower bounds for trips generated by zone i; ,D D

j jU L : upper and lower bounds for 

trips attracted by zone j; v : observed travel demand through links; , : weights factor associated with the 
volume on links and OD matrix cells, respectively; v : volume on links; Tij: interprovincial travel demand (trips) 
from origin i to destination j. In addition to the above dimensions established to control the distortion of the 
information contained in the matrices, and in order to preserve the basic structure of such information, one can set 
a series of maximum increments and decrements for those pairs of the prior matrix where no information is 
available (Doblas &  Benitez, 2005; Caceres, Romero & Benitez, 2011).  



1161 F.G. Benitez et al.  /  Procedia - Social and Behavioral Sciences   111  ( 2014 )  1155 – 1164 

3. Empirical analysis 

The purpose of this analysis was to quantify the uncertainties in the data collected by a transport survey, and 
incorporate this piece of information into an origin–destination matrix updating a bi-level scheme on link flows 
to infer a more reliable demand matrix.  

A real case study has been performed to demonstrate the application of the methodology and the importance 
of incorporating confidence interval information in mobility OD matrices. 

3.1. Procedure 

As a first stage, starting from the origin-destination matrix (prior non-elevated matrix) retrieved from the non-
elevated data provided by a transport survey, a bootstrap generating program estimates confidence intervals for 
each origin-destination matrix cell.  This outcome defines the intervals where cell trips are allowed to fluctuate 
under a similar confidence level.  

The second stage adjusts the prior matrix under a bi-level optimization scheme. The macroscopic assignment 
arrangement uses a commercial network-analyzing tool (i.e. Emme INRO 2012, TransCAD Caliper 2010) to 
derive traffic flow on links of the modelled transport network. The upper level is an optimization scheme, which 
minimizes the deviation between modelled and measured traffic flows on selected links. The information 
provided by the confidence intervals is incorporated as constraints in the optimization scheme. 

3.2. The real case 

The case analyzed is the Spain Road Freight National Survey EPTMC (Fomento, 2008), on a sample captured 
of a continuous basis during 52/53 weeks every year. The study population consists of heavy goods vehicles 
registered in Spain, authorized to transport goods by road, with operations in the territory and abroad. The 
observation unit is vehicle-week (i.e. transport operations performed by selected vehicles during one week). This 
includes all operations that start in the reference week, although they may finish afterwards. Data captured 
provide information on the characteristics of the vehicle, goods transported, origin, destination and distance of 
the operation. Transport operations relate to the movement of goods, which do not necessarily coincide with the 
movement of vehicles. Goods transported are grouped into ten classes; 0: agricultural products and live animals, 
1: food and fodder, 2: solid mineral fuels, 3: petroleum products, 4: minerals and waste to recast, 5:  iron 
products, 6: mineral raw or manufactured and construction materials, 7: fertilizers, 8: chemicals, 9: machinery, 
vehicles, manufactured objects and special transactions. Goods transported are quantified in gross tons (goods, 
packaging and container). The raw data of the survey presented information at the origins and destinations at the 
provincial level, and are statistically representative at the regional level, but not significant at provincial level.  
The raw provincial disaggregated level is used for the application of the techniques presented hereinafter. 
 

3.3. The sample  
 
The sample design is based on a stratified random sampling with vehicle-week as the sampling unit. Samples 

were selected independently for each week of the year, at the rate of 1,000 vehicles per week, stratified by type of 
service (public / private) and type of vehicle. The selection of sampling units in each stratum is performed using a 
systematic sampling with random start upon the vehicle registration regional record. To expand the captured data, 
a stratified expansion estimator is used to correct incidences during the survey. The estimates are calculated in 
each stratum, yielding the total population as the sum of the estimates of each of them. The response rate for 
2008 was 71.7%. The valid sample size surveyed amounts to 37,305 vehicles. The number of valid sample 
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transport operations is 529,229, disaggregated into a) intra-municipal: 168,291, b) intraregional: 302,825, c) 
interregional: 50,104, and d) international: 8,009.  
 
3.4. Estimate of OD matrix confidence interval by bootstrap  

 
The simulations carried out comply with the empirical procedure introduced in section 2.2. The computer 

program was coded in Matlab. The simulated multinomial sample replication was generated by the subroutine 
MNRND. All simulation studies were performed on a 12 core Intel Xeon E5645 personal computer using parallel 
computing. To provide a reliable confidence interval, a large sample size is desirable. In this case a size of 10,000 
bootstrap samples was used. These simulations consist of the following steps: 

i. For the initial data set estimate the multinomial proportions ijp  and assume the hypothesis that these 
ratios correspond to the “true” population proportions. 

ii. Extract 10,000 multinomial samples from the survey matrix. 
iii. Obtain confidence intervals for each cell sample on the 95% level, based on the drawn subset 

corresponding to each cell.  
iv. Assess the average length of full, left and right halves of intervals as the mean of the difference between 

the upper and lower limits of each interval ( )ij ijU L , the difference between the mean value and the 
lower limit ( )ij ijT L , and the difference of the upper value and the mean value ( )ij ijU T , respectively. 

v. Weight (expand) each cell confidence interval according to the cell sampling rate. 
 

 
 
 
 
 
 
 
 
 
 

Fig. 1. Left and right half confidence interval versus cell trips 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 2. Confidence interval length versus cell trips 
 
 

0 2e+05 4e+05 6e+05 8e+05
0

100

200

300

400

500

ij ijT L

ijT
0 2e+05 4e+05 6e+05 8e+05

0

100

200

300

400

500

ijT

ij ijU T

0 2e+05 4e+05 6e+05 8e+05
0

200

400

600

800

1000

ij ijU T

ijT



1163 F.G. Benitez et al.  /  Procedia - Social and Behavioral Sciences   111  ( 2014 )  1155 – 1164 

The inferred left and right half confidence intervals versus trip nominal values for all OD matrix cells are 
depicted in Figure 1. Full confidence interval lengths versus cell trip mean values are shown in Figure 2. The 
solid curves are the regression models, obtained by a least-squares fit, with expression a b

ij ijLength e T of which 
the parameters and statistical values are reported in Table 1. 
 

               Table 1. Parameters of the fitting regression models to the confidence intervals. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Histogram of confidence interval length ij ijU L  

 
The determination coefficients of these adjustments, 2. Adj R , are sufficiently high to ensure the goodness of 

fit. Figure 3 reflects the histogram of confidence interval lengths for OD cell trips. It is easy to see the large 
number of null trip cells, a recursive behavior in most transport survey studies.  

4. Conclusions 

A general methodology for estimating confidence intervals for OD matrix cells, extracted from a travel 
survey, is presented. The approach has been applied to the real case of the extensive annual interprovincial freight 
transport in Spain. This allows us to estimate a measure of the magnitudes to be imposed in the process of 
adjusting OD matrices. The consequences of this finding are significant for the generation of OD matrices that 
contend with real uncertainty in data collected by a survey, diminishing the level of uncertainty involved in this 
extremely underspecified problem. 

The procedure to calculate confidence intervals with a large level of certainty is simple. The OD matrix 
updated bootstrap methodology, where the sample-related uncertainties are incorporated as restrictions in the 
optimization problem, is useful for inferring a more reliable trip distribution matrix. The product of this 
methodology should help to increase the confidence in the updated matrices for developing more reliable demand 
forecasting models that are founded on a more robust data structure. 

Fitting curve Parameter mean variance statistics t 
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