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Abstract

In this paper we address the problem of electing a committee among a set of m candidates
and on the basis of the preferences of a set of n voters. We consider the approval voting
method in which each voter can approve as many candidates as she/he likes by expressing
a preference profile (boolean m-vector). In order to elect a committee, a voting rule must
be established to ‘transform’ the n voters’ profiles into a winning committee. The problem
is widely studied in voting theory; for a variety of voting rules the problem was shown to
be computationally difficult and approximation algorithms and heuristic techniques were
proposed in the literature. In this paper we follow an Ordered Weighted Averaging approach
and study the k-sum approval voting (optimization) problem in the general case 1 ≤ k < n.
For this problem we provide different mathematical programming formulations that allow us
to solve it in an exact solution framework. We provide computational results showing that
our approach is efficient for medium-size test problems (n up to 200, m up to 60) since in all
tested cases it was able to find the exact optimal solution in very short computational times.

Keywords: approval voting, Ordered Weighted Averaging (OWA), k-sum optimization
problems.

1 Introduction

A typical problem in collective decision making is to select one (or more) winners among a set
of m candidates on the basis of the vote of a set of n voters. This situation arises in many
different real-life contexts, as in sport competitions to select the set of winners, or in political
elections, and, more in general, whenever a committee must be formed from a larger set of
candidates to represent the voters (for example, in companies or universities). For m > 1
the problem is a multi-winner one and the ballot gives the possibility to each voter to express
her/his preference for each single candidate by approving or not her/his nomination. This means
that voters can approve as many candidates as they like by their preference profile (approval
balloting). Approval voting is a well-known method used for this kind of multi-winner elections.
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The method, introduced by Brams and Fishburn in 1978 [4], was widely studied in the literature
on voting theory (see [5, 6, 14] and the references therein).

Consider a setN of n voters and a setA ofm candidates. For each i, Pi = (pi1, . . . , pij , . . . , pim)
denotes the preference profile of voter i which corresponds to a boolean m-vector whose generic
element pij is equal to 1 if candidate j is approved by i and equal to 0 otherwise. Therefore in
the problem input we have also a set P of preference profiles of the voters, so that a generic in-
stance can be denoted by (N,A, P ). The problem is to find in A the “best” subset of candidates
(winning or elected committee), according to a certain voting rule (criterion).

When we have a single-winner election, the most accepted voting rule is to elect the candidate
that has been the most approved, i.e., the one which received the largest number of votes (with
a tie-breaking mechanism if needed).
For multi-winner elections, several voting rules have been proposed for approval voting [13]. For
a majority of the voting rules computing a winning committee is a difficult problem [2, 10].
Among the many, there is a class of rules known as centralization procedures that was widely
studied in the literature. Two rules in this class were mainly analyzed, namely, one based on
the minisum criterion and one on the minimax criterion. According to the first criterion, the
winning committee corresponds to the subset of candidates in A that minimizes the sum of the
n Hamming distances to the preferences profiles of the n voters. The second criterion selects
the subset of candidates that minimizes the maximum of its Hamming distances to the voters’
profiles. Recently, a new family of rules has been proposed to generalize minisum and minimax
in [1], where the authors introduce a family of voting rules which makes use of Ordered Weighted
Averaging operators (OWA) [21]. In this setting, a vector of n weights W = (w1, . . . , wn) is fixed;
then the n distances between voters’ profiles and the decision vector (committee) are ordered
from largest to smallest and they are weighted with the corresponding weight in W . Clearly,
when W = (1, 0, . . . , 0) we have the minimax criterion, while for W = ( 1

n , . . . ,
1
n) we have the

minisum criterion. Many other criteria can be defined in this way by tuning the weights in W
according to the specific goal of the application. An interesting class of problems arises when
vector W has only 0/1 values and more than one weight equal to 1. Suppose to have k elements
equal to 1; when they are in the first k positions of the vector of weights they refer to the k
largest distances, thus providing what is known in the literature as the k-sum approach already
applied to many other combinatorial problems [18]. We have a similar problem when we have
elements equal to 1 in the last h positions of the weighting vector (h smallest distances). Both
problems have meaningful applications in approval voting.

In this paper we study the problem of selecting a committee by applying approval voting
and basing on a k-sum objective function (k-sum approval voting problems). In [1] it is proved
that for 1 ≤ k < n the problem is NP-hard and, therefore, an approximation algorithm is
provided to get feasible solutions with guaranteed bounds. On the other hand, the same authors
provide polynomial time exact algorithms for some families of weighting vectors that consider
the h smallest distances (h fixed). In the present paper we study these kind of problems under
a mathematical programming viewpoint, providing different exact formulations for the k-sum
approval voting problem, with 1 ≤ k < n. We then exploit these formulations to develop
exact solution procedures that may be used to solve medium-size problems at optimality, or to
efficiently find a sub-optimal solution when the size of the problem is too large. To develop
such formulations we rely on the general approach for solving k-sum optimization problems
provided in [19, 20] and on results in [3]. We experimentally study the solution of our k-sum
approval voting problem by using the above formulations in a Branch & Bound framework. All
formulations were tested on a variety of medium-size randomly generated test problems, in all
cases providing the exact optimum in very short times. In view of this, our formulations also
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provide an efficient tool to certify optimality of a solution.
We apply the mathematical programming approach also when the h smallest distances are

considered in the objective function. We formulate this problem as a polynomial sequence of
linear program, thus providing a formal proof that it can be solved in polynomial time as already
established in [1].

The paper is organized as follows. Section 2 formally defines the problem and sets the
notation. Section 3 presents our mathematical programming formulations for the k-sum approval
voting problem. We have developed two different types of formulations. The first ones based
on an exponential number of constraints that can be separated efficiently (see Section 3.1) and
the second ones based on compact representations of k-sums (see Section 3.2). In Section 4 we
describe how all the above mentioned formulations can be strengthened with variable fixing and
valid inequalities. The computational experiments are reported in Section 5. There we compare
the performance of the formulations on two different set of instances showing its usefulness in
solving the problem for instances of medium to large sizes. Finally, Section 6 contains our
concluding remarks.

2 Problem definition and basic results

Consider an instance of the k-sum approval voting problem (N,A, P ). For a given committee
x (i.e., a boolean vector x of length m) we compute the Hamming distance between x and
each voter profile Pi, i = 1, . . . , n thus obtaining the Hamming distance di(x) for each voter
i. Following the OWA approach, we consider a family of functions, parameterized by a vector
of length n that maps a vector of distances (d1(x), . . . , dn(x)) to an aggregated function D(x)
(OWA score). The k-sum approval voting problem can be stated as follows: select a committee
x minimizing the OWA score of Hamming distances D(x). In this paper we study two families of
k-sum approval voting problems. The first computes the OWA score using the following vector
of weights:

W (k) = (1, . . . , 1, 0, . . . , 0),

where k refers to the number of ones in the first k positions of vector W (electing a committee
that minimizes the sum of the k largest Hamming distances).
The second family uses the following weighting vector:

M(n− h) = (0, . . . , 0, 1, . . . , 1),

where h weights equal to 1 are in the last h positions (electing a committee that minimizes the
sum of the h smallest Hamming distances). Clearly, the cases k = h = n are the same, and, in
this case, we have the same OWA problem, that, in fact, corresponds to the minisum problem.

In [7] (see Proposition 4) the authors account for why the minisum problem is polynomially
solvable, but they do not provide a formal proof. The key idea is that the minisum winning
committee, in particular under a cardinality constraint on the size of the committee fixed to C,
corresponds to a set of C candidates receiving the most votes. In the following, using Linear
Programming (LP), we give a formal proof that the problem is polynomial when k = n. Denote
by γj the number of votes for candidate j, j = 1, . . . ,m, we have

γj =
n∑
i=1

pij .
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Consider the case when the size of the committee is not given. A valid formulation can be
obtained basing on the following observation (see [7]): when k = n, all voters’ Hamming distances
(d1(x), . . . , dn(x)) are considered in the objective function, so that a candidate j is elected if the
number of votes for her/him γj is greater than n− γj . This leads to the following model

min
m∑
j=1

(n− γj)xj +
m∑
j=1

γj(1− xj)

s.t. x ∈ {0, 1}m.

Since the objective function is linear, the optimal solution is attained at some vertex of the m-
dimensional hypercube. Then, we can relax the binary variables of the above problem obtaining
the LP model

min

m∑
j=1

(n− γj)xj +

m∑
j=1

γj(1− xj)

s.t. 0 ≤ x ≤ 1.

As in [7], we can also consider a constraint on the size C of the committee, obtaining the following
model

min
m∑
j=1

(n− γj)xj +
m∑
j=1

γj(1− xj)

s.t.
m∑
j=1

xj = C

x ∈ {0, 1}m.

(1)

Since the constraint matrix is again Totally Unimodular (TU), the problem can be still solved
by Linear Programming techniques, after relaxing the binary constraints on the variables x (see
[17]). This definitely shows that the minisum case is polynomially solvable.

When k < n the k-sum approval voting problem is NP-hard (see [1, 11]). This justifies
the idea of studying efficient solution methods for the general problem resorting to heuristic
approaches, or approximation algorithms [8, 9, 15, 16]. In the following sections we present a
number of exact mathematical programming formulations of the general k-sum approval voting
problem with 1 ≤ k < n that can be efficiently solved in a Branch & Bound framework enriched
by the use of valid inequalities.

A similar problem arises when we consider the weighting vector M(n− h) with 1 ≤ h < n.
The computational complexity of this problem was established in [1] when h is not part of the
input of the problem. Even if it is shown that the problem is polynomially solvable in this case,
to the best of our knowledge, the computational complexity is still open when the problem is
formulated with a general h. We discuss this problem in the final section of the paper.
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3 Mathematical Programming formulations for the Approval
Voting problem

Consider now W (k) with 1 ≤ k < n. Let x be a committee, the Hamming distance, di(x),
between the profile Pi of voter i and x is given by

di(x) =
m∑
j=1

|pij − xj |.

Since both Pi, i = 1, . . . , n, and x are boolean vectors, we can exploit the fact that the Hamming
distance between two boolean vectors corresponds to the vector of the Exclusive-or between the
vector elements [12]. Thus the Hamming distance di(x) can be rewritten as follows

di(x) =
m∑
j=1

zij

zij ≥ xj − pijxj j = 1, . . . ,m
zij ≥ pij − pijxj j = 1, . . . ,m.

(2)

We can also replace the two inequalities above by the equivalent representation: zij ≥
xj(1− pij) + pij(1− xj). This gives rise to:

di(x) =
m∑
j=1

zij (3)

zij ≥ xj(1− pij) + pij(1− xj), j = 1, . . . ,m. (4)

Let σx : {1, . . . , n} → {1, . . . , n} be an ordering function that, for a given x, provides a per-
mutation of the voters’ indices such that dσx(1)(x) ≥ dσx(2)(x) ≥ . . . ≥ dσx(n)(x). For the
given permutation the problem of electing a committee that minimizes the sum of the k largest
distances can be formulated as follows:

min
k∑

h=1

dσx(h)(x)

x ∈ {0, 1}m.

(5)

Following the approach in [3], the above problem can be restated as:

min
x∈{0,1}m

(
max

{
dS(x) | S ⊂ {1, . . . , n}, |S| = k

})
, (6)

where dS(x) =
∑
i∈S

m∑
j=1
|pij − xj |, is the Hamming distance of the set of voters in S to the

committee represented by x.
In general k-sum problems, the expression of the contribution of a subset of voters to the

election of a candidate can be also computed by means of the γj values, namely the number of
voters approving a given candidate j. For this purpose, let us introduce some necessary notation.
More formally, let S be a set of voters such that |S| = k. We define γj(S) =

∑
i∈S pij , as the

number of votes of candidate j by the voters in S. For a given x and S such that |S| = k, we
can compute:
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dS(x) =

m∑
j=1

max{γj(S)(1− xj), (k − γj(S))xj} (7)

=

m∑
j=1

γj(S)(1− xj) +

m∑
j=1

(k − γj(S))xj , (8)

i.e., the Hamming score of the k voters in S computed w.r.t. a given solution x. Notice that by
means of expressions (7) and (8) the score is well calculated even when the solution is not optimal.
Basing on these expressions, in the following sections we obtain alternative valid formulations
of the k-sum approval voting problem that we then test experimentally in Section 5.

3.1 Valid formulations based on subsets of size k

In this section we propose a first valid formulation for our k-sum approval voting problem which
is based on expression (7). We formulate it in the following theorem where, for the sake of
simplicity, we avoid specifying S ⊂ {1, . . . , n} when not necessary.

Theorem 1. An optimal solution of the k-sum approval voting problem can be obtained solving
the following integer programming problem.

min v (9)

s.t. zij ≥ pij(1− xj) ∀i, j (10)

zij ≥ (1− pij)xj ∀i, j (11)
m∑
j=1

∑
i∈S

zij ≤ v ∀S : |S| = k (12)

x ∈ {0, 1}m. (13)

Proof. Applying (7) in formula (6) gives

min
x∈{0,1}m


m∑
j=1

max{(k − γj(S))xj , γj(S)(1− xj)}|S ⊂ {1, . . . , n}, |S| = k

 .

Defining variables zSj for all S ⊂ {1, . . . , n}, |S| = k, and all j, this is equivalent to

min v (14)

s.t. zSj ≥ γj(S)(1− xj) ∀j, ∀S : |S| = k (15)

zSj ≥ (k − γj(S))xj ∀j, ∀S : |S| = k (16)
m∑
j=1

zSj ≤ v ∀S : |S| = k (17)

x ∈ {0, 1}m. (18)

Next, we can define variables zij for all i = 1, . . . , n and for all j = 1, . . . ,m and disaggregate
each variable zSj =

∑
i∈S zij , which results in
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min v (19)

s.t.
∑
i∈S

zij ≥ γj(S)(1− xj) ∀j, ∀S : |S| = k (20)∑
i∈S

zij ≥ (k − γj(S))xj ∀j, ∀S : |S| = k (21)

m∑
j=1

∑
i∈S

zij ≤ v ∀S : |S| = k (22)

x ∈ {0, 1}m. (23)

We observe that constraints (20) and (21) for all j and S such that |S| = k, can be replaced by
the following disaggregated version

min v

s.t. zij ≥ pij(1− xj) ∀i, j
zij ≥ (1− pij)xj ∀i, j
m∑
j=1

∑
i∈S

zij ≤ v ∀S : |S| = k

x ∈ {0, 1}m.

This concludes the proof.

Example 1. We illustrate the above approach reformulating the minimax approval voting prob-
lem (k = 1) within this general framework.

min v

zij ≥ pij(1− xj) ∀i, j
zij ≥ (1− pij)xj ∀i, j

m∑
j=1

zij ≤ v ∀i

x ∈ {0, 1}m.

(24)

In the following, we develop a second valid formulation for the general k-sum approval voting
problem applying (6) but using (8) to represent the Hamming distance instead of (7).

Theorem 2. The following formulation provides a valid representation of the k-sum approval
voting problem.

min v (25)

s.t.
m∑
j=1

(k − γj(S))xj +
m∑
j=1

γj(S)(1− xj) ≤ v ∀S : |S| = k (26)

x ∈ {0, 1}m. (27)

Proof. Applying in formula (6) the representation (8) instead of (7), the proof follows similarly
to that of Theorem 1.
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Since both formulations (9)-(13) and (25)-(27) have an exponential number of constraints, we
propose here two different approaches to solve these two models.

A first approach is based on formulation (9)-(13). Let us assume that we embed that formu-
lation in a Branch and Bound scheme and let (x̂, ẑ, v̂) be the current solution in a node of this
Branch & Bound tree.

Procedure for (9)-(13)

• Compute r̂i :=
∑m

j=1 ẑij for every i and choose the k largest. Determine S according
to the k largest r̂i for i ∈ {1, . . . , n}.
• Check if

∑
i∈S r̂i > v̂. In the affirmative case, we need to add the following constraint

related to such S ∑
i∈S

m∑
j=1

zij ≤ v. (28)

Otherwise, i.e. when the answer to the test is no, the current solution is feasible in
the current node. Therefore, a valid description of the problem was already available
and no more inequalities have to be added.

A similar scheme can be applied to Problem (25)-(27). Let (x̂, v̂) be a given feasible solution
in a node of its Branch & Bound tree.

Procedure for (25)-(27)

• Compute r̂i :=
∑m

j=1 |x̂j − pij |, for all i = 1, . . . , n. Determine S according to the k
largest values of r̂i for i ∈ {1, . . . , n}.
• Check whether

∑
i∈S r̂i > v̂. In the affirmative case we need to add the following

inequality which is a valid cut that separates (x̂, v̂)

m∑
j=1

γj(S)(1− xj) +

m∑
j=1

(k − γj(S))xj ≤ v.

Proposition 1. Formulation (25)-(27) is at least as good as formulation (9)-(13).

Proof. Let P(25)−(27) and P(9)−(13) be the polyhedra defining the feasible domains of the contin-
uous relaxation of formulations (25)-(27) and (9)-(13), respectively.

Consider a feasible solution (possibly fractional) (x, v, z) ∈ P(9)−(13). It follows that its
projection onto (x, v) belongs to P(25)−(27), and the result follows.

The above result, together with the fact that formulation (25)-(26) has a smaller number of
constraints and variables than formulation (9)-(13), justifies that in our computational experi-
ments (see Section 5) we only report results based on formulation (25)-(26) since its performance
is superior to the one of (9)-(13).
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3.2 Valid formulations based on Hamming distance among profiles

In this section, we derive alternative valid formulations for the k-sum approval voting problem
that do not make explicit use of all the possible subsets of {1, . . . , n} of cardinality k. For an
arbitrary subset S of {1, . . . , n}, we consider the sum of the Hamming distances of all Pi, i ∈ S,
to x as follows

dS(x) =
∑
i∈S

m∑
j=1

|xj − pij |.

If there is no confusion, in the following, we simply write di in place of di(x).

For a given k, with 1 ≤ k < n, the problem of electing a committee that minimizes the sum of the
k largest Hamming distances can be formulated as a Mixed Integer Linear Programming (MILP)
problem, provided that for any given x a permutation σx such that dσx(i)(x) ≥ dσx(i+1)(x), i =
1, . . . , n− 1, is fixed.

min
k∑

h=1

dσx(h)(x) (29)

zij ≥ xj(1− pij) + pij(1− xj) i = 1, . . . , n, j = 1, . . . ,m (30)

di ≥
m∑
j=1

zij i = 1, . . . , n (31)

xj ∈ {0, 1} j = 1, . . . ,m. (32)

Problem (29)-(32) has m binary variables, nm continuous variables, and O(nm) linear con-
straints.

This formulation is correct but it is not operational, since it depends on the valid permutation
function σx(·) that sorts the distances in a non-increasing order. However, it is still possible
to derive alternative valid formulations that do not make explicit use of that permutation (see
[19, 20]). Indeed, let us consider a new variable t ≥ 0 and a set of n variables vi, i = 1, . . . , n.

Theorem 3. The following is a valid formulation for the general k-sum approval voting problem.

min kt+

n∑
i=1

vi (33)

s.t. vi ≥ di − t i = 1, . . . , n (34)

di ≥
m∑
j=1

zij i = 1, . . . , n (35)

zij ≥ xj(1− pij) + pij(1− xj) i = 1, . . . , n, j = 1, . . . ,m (36)

xj ∈ {0, 1} j = 1, . . . ,m (37)

t ≥ 0, vi ≥ 0 i = 1, . . . , n. (38)

Proof. Consider the general formulation (6). Following the proof in [20], the inner maximum in
problem (6) is equivalent to the following
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max
n∑
i=1

diqi

n∑
i=1

qi = k

qi ∈ {0, 1} i = 1, . . . , n.

(39)

The above constraint matrix is TU and thus the integrality constraints on the variables qi,
i = 1, . . . , n, in problem (39) can be relaxed to 0 ≤ qi ≤ 1, i = 1, . . . , n, and the resulting
problem has the following exact dual:

min kt+
n∑
i=1

vi

s.t. vi ≥ di − t i = 1, . . . , n
vi ≥ 0 i = 1, . . . , n.

(40)

Notice that, since di are distances, the coefficients in the objective function of (39) are non
negative and, w.l.o.g., we can set the variable t as t ≥ 0. To complete the proof, it suffices to
add to the above dual problem the constraints (35)-(37).

When a constraint on the number C of candidates to be elected must be also considered, we can
add it to the above program by condition

m∑
j=1

xj ≤ C.

An alternative valid formulation for the general k-sum approval voting problem can be provided
by exploiting the one proposed in [3], as stated in the following theorem.

Theorem 4. The following is a valid formulation for the general k-sum approval voting problem.

min
n∑
i=1

ui +
k∑

h=1

vh (41)

s.t. ui + vh ≥ di i = 1, . . . , n, h = 1, . . . , k (42)

di ≥
m∑
j=1

zij i = 1, . . . , n (43)

zij ≥ xj(1− pij) + pij(1− xj) i = 1, . . . , n, j = 1, . . . ,m (44)

xj ∈ {0, 1} j = 1, . . . ,m (45)

ui ≥ 0 i = 1, . . . , n (46)

vh ≥ 0 h = 1, . . . , k. (47)

Proof. Consider the general formulation (6). We introduce the following binary variables yih,
i = 1, . . . , n and h = 1, . . . , k, such that, given x, yih = 1 if the distance di(x) of voter i is in
position h < k in the non-increasing ordering, and yih = 0 otherwise. Following the proof in [3],
for a given vector x, the sum of the k largest distances can be written
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k∑
h=1

dσx(h)(x) = max
n∑
i=1

k∑
h=1

diyih

s.t.
n∑
i=1

yih = 1 h = 1, . . . , k

k∑
h=1

yih = 1 i = 1, . . . , n

yih ∈ {0, 1} i = 1, . . . , n, h = 1, . . . , k.

(48)

In fact, problem (48) is an assignment problem, so that we can relax the binary variables
0 ≤ yih ≤ 1. Taking the dual of (48) we obtain

k∑
h=1

dσx(h)(x) = min
n∑
i=1

ui +
k∑

h=1

vi

s.t. ui + vh ≥ di i = 1, . . . , n, h = 1, . . . , k

ui, vh ≥ 0 i = 1, . . . , n, h = 1, . . . , k.

(49)

To complete the proof, it suffices to add to the above dual problem the constraints (43)-(45).

Proposition 2. The formulations (25)-(27), (33)-(38) and (41)-(47) produce the same LP
bound.

Proof. Let us consider a generic x̂ ∈ [0, 1]m. From our discussion above, it is clear that, fixing x̂,

the objective function value of all problems (25)-(27), (33)-(38) and (41)-(47) equals
k∑

h=1

dσx̂(h)(x̂),

where dσx̂(1)(x̂) ≥ . . . ≥ dσx̂(n)
(x̂). Hence, the three problems return the same objective function

value for each feasible solution of the continuous polytope and therefore this proves the claim.

4 Strengthening the formulations

The above MIP formulations are exact but still one can observe that they have some GAP at
the root node of the Branch & Bound tree (see Section 5) although this gap is always rather
small. The goal of this section is to develop some preprocessing strategies and valid inequalities
that allow to improve the polyhedral description of the different formulations, and get a better
bound for this GAP with a consequent gain in computational times.

First of all, we advance an easy preprocessing that allows fixing some variables either to zero or
to one before the global search starts. The rationale behind that is as follows. For a candidate j
to be member of at least one committee it is required that, at least for a subset S of size k < n,
there is a majority of voters that approves him/her, that is, γj(S) ≥ bk/2c. Therefore, if the
total number of voters preferring candidate j, γj , satisfies γj ≥ n − bk/2c then this candidate
will be always included in any committee and thus we can set xj = 1. This justifies (50). On
the other hand, if candidate j is only preferred by less than bk/2c voters, she/he will never be
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included in a k-sum committee and thus xj = 0. This justifies (51)

xj = 1 if γj ≥ n− bk/2c (50)

xj = 0 if γj ≤ bk/2c. (51)

Note that this preprocessing is more interesting for large values of k’s.

In the following we also develop a procedure for the efficient solution of the k̂-sum approval
voting problem for k̂ fixed that works in an iterative fashion starting from k = n and solving a
k-sum approval voting problem for all k = n, . . . , k̂. This procedure is based on valid inequalities
involving optimal objective function values of k-and-(k + 1)-sum approval voting problems for
any k.
First, we analyze whether inequalities (20)-(22) can be adapted to the formulations described
in Section 3.2, as valid cuts. Clearly, they are valid inequalities but, as we will see, they do not
improve such formulations.

Consider, first, formulation (33)-(38). Note that the cuts in (20), (21) and (22) consist in
aggregated forms of constraints (36), (34) and (35), respectively.

zij ≥ pij(1− xj)∀i, j ⇒
∑
i∈S

zij ≥ γj(S)(1− xj) ∀j

zij ≥ (1− pij)xj∀i, j ⇒
∑
i∈S

zij ≥ (k − γj(S))xj ∀j

Hence, the use of them as valid inequalities is not useful. Furthermore
m∑
j=1

∑
i∈S

zij ≤ kt +
∑
i∈S

vi

can be obtained by means of a natural aggregation of (34) and (35).

In light of the above results, now we develop valid inequalities based on solutions of the k-
sum approval voting problem for different k values to be used in a strategy that solves problems
for different k consecutively.

In order to present the result some additional notation is required. For a given k, let us
denote by z(k) and x(k) the optimal objective function value and an optimal solution of the
k-sum approval voting, respectively.

Proposition 3. For a given instance (N,A, P ) of the k-sum approval voting problem the fol-
lowing inequality holds

z(k) ≥ k

k + 1
z(k + 1).

Proof. By definition, z(k), is the sum of the k largest Hamming distances of the voters’ profiles
with respect to x(k). It means that distance in position k + 1, d(k+1)(x(k)), satisfies

0 ≤ d(k+1)(x(k)) ≤ z(k)

k
.

Thus, we can conclude that x(k) is a feasible solution for the (k+1)-sum problem and moreover,
there exists an upper bound for z(k + 1) given by

z(k + 1) ≤ z(k) +
z(k)

k
. (52)
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The above expression gives a lower bound for z(k), provided that z(k + 1) is known

z(k) ≥ k

k + 1
z(k + 1). (53)

Since, for a given (N,A, P ) we can solve the different k-sum voting problems in any order,
after the above result, it is advisable to do it following the non-increasing sequence k = n, . . . , 1.
Indeed, as shown in Section 2, solving the problem for k = n (i.e., the minisum problem) is
polynomial. Once this solution and objective function value are found, they can be used to
improve the solution for k = n− 1 and so on.

The following is an iterative scheme for efficiently solving the k-sum approval voting problem
following the strategies illustrated above in this section. This approach has been effectively used
in our computational experiments.

1. Solve the problem for k = n, i.e. the minisum problem. Its optimal solution, x(n), is easily
seen to be

xj = 1 if γj ≥ n− bn/2c (54)

xj = 0 if γj < bn/2c (55)

Next, obtain z(n), the optimal objective function value of this problem.

2. From k = n− 1 to k = 1 set the following valid inequalities:

k

k + 1
z(k + 1) ≤ z(k) ≤ z(k + 1)− d(k+1)(x(k)).

From the discussion above, it is clear that after solving the problem with W (k+ 1) we have the
lower bound on z(k) (53) that we can use as a valid inequality when solving the problem with
weighting vector W (k). On the other hand, (52) provides an upper bound on z(k) by z(k + 1).
We will show in our computational experiments section that the improvements obtained by the
application of these strategies are remarkable (see Section 5).

5 Computational results

This section reports on the results of an exhaustive computational test carried out on two sets
of instances and our three formulations with and without improvements. We have tested data
sets generated according to the scheme proposed in [15]. That paper distinguishes between
uniform and biased data. The former refers to equal probability distribution for 0 and 1 in the
profiles, whereas the latter indicates different probabilities for them. Overall, we have solved
22750 instances with the different combinations for n, m, k and uniform and biased data.

In a preliminary analysis, we wanted to test the performance of our three formulations in
instances of moderate size (n = 50 and different values for m = 30, 35, 40, 45, 50, 55, 60), in
order to make the decision of which are the formulations to be tested with larger instance sizes.
Tables 1 and 2 report the average results of all the 1750 instances for n = 50 for the uniform
and biased data (5 randomly generated instances for each m and k = 1, ..., 50). The results are
organized as follows. Each row reports information for a different formulation that is indicated
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by its references. For each formulation we include information about average and maximum
time (Time(s)), average and maximum percent gap at the root node (GAP (%)), average and
maximum number of nodes in the searching tree (Nodes), percentage of instances solved at the
root node (%Solved root) and percentage of binary variables fixed with the preprocessing (%
Fixed).

Time(s) GAP (%) Nodes %Solved %Fixed
Form. Avg Max Avg Max Avg Max root

(25)-(27) 65.63 4396.86 0.22 2.63 7388.30 1092091.00 15.89 13.92
(33)-(38) 0.13 2.24 0.22 2.63 276.67 23170 62.74 13.92
(41)-(47) 0.58 19.99 0.22 2.63 1128.03 158152.00 54.17 13.92

Table 1: Summary for n = 50 for uniform data

Time(s) GAP (%) Nodes %Solved %Fixed
Form. Avg Max Avg Max Avg Max root

(25)-(27) 12.34 258.85 0.35 3.12 973.61 52028 17.83 29.42
(33)-(38) 0.06 0.40 0.35 3.13 15.76 959 68.91 29.42
(41)-(47) 0.17 1.23 0.35 3.13 71.33 10914 54.86 29.42

Table 2: Summary for n = 50 for biased data

For the formulation (25)-(27), we also report information on the average and maximum
number of cuts (# Cuts), and the average and maximum number of cuts in each node (#
Cuts node). This information is relevant to understand the number of constraints, out of the
exponentially many in the formulation, which are needed to have a valid representation of the
problem in each node of the Branch & Bound tree.

We have also tested empirically, see Table 3, that the gap at the root node coincides for the
three formulations. This confirms that the three formulations are equivalent in terms of LP gap
and reports about the rather small integrality gaps of these formulations.

The conclusion of the above tables is that formulation (25)-(27) is as stronger as the other
two in terms of gap, but its performance is inferior in terms of time and number of problems
solved at the root node. For this reason, we have decided to carry out the final test for larger
instances only with formulations (33)-(38) and (41)-(47).

Next, we compare the performance of formulations (33)-(38) and (41)-(47) for the instances
with n = 100. Tables 4 and 5 report our results for the two types of data sets i.e., uniform and
biased. All the information is organized as in previous Tables 1 and 2.

Data Avg # Cuts Max # Cuts Avg # Cuts node Max # Cuts node

Uniform 97963.15 9428791 124.43 463
Biased 7390.41 315094 63.80 444

Table 3: Valid inequalities generated in a Branch & Bound tree for solving formulation (25)-(27)
with n = 50 and for uniform and biased data
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Time(s) GAP (%) Nodes %Solved % Fixed
Form. Avg Max Avg Max Avg Max root

m=30 (41)-(47) 3.35 23.66 0.17 0.84 1565.53 28751 46.0 9.32
(33)-(38) 0.37 4.04 0.17 0.84 1488.07 36793 46.4 9.32

m=35 (41)-(47) 4.39 55.32 0.17 2.50 2695.97 126951 43.8 8.87
(33)-(38) 0.48 10.47 0.17 2.50 2334.13 96381 44.8 8.87

m=40 (41)-(47) 5.40 93.11 0.14 1.14 4149.20 158828 44.4 8.42
(33)-(38) 0.70 12.53 0.14 1.14 3674.94 121300 45.0 8.42

m=45 (41)-(47) 13.40 251.75 0.13 2.00 11463.60 657000 42.6 9.44
(33)-(38) 1.56 65.41 0.13 2.00 9924.58 578547 43.6 9.44

m=50 (41)-(47) 18.30 532.31 0.12 0.93 19495.08 781787 43.6 12.38
(33)-(38) 2.48 78.21 0.12 0.93 17922.55 605694 45.2 12.38

m=55 (41)-(47) 57.27 1652.28 0.10 0.49 53060.66 1875622 41.0 7.55
(33)-(38) 5.12 131.90 0.10 0.49 45278.16 1256747 40.2 7.55

m=60 (41)-(47) 41.62 2306.34 0.11 1.56 68105.88 7640315 40.0 10.30
(33)-(38) 5.78 382.24 0.11 1.56 47840.94 4036987 39.6 10.30

Table 4: Summary for n=100 for uniform data

The conclusions from Tables 4 and 5 are the following. Formulation (33)-(38) is one order
of magnitude faster than (41)-(47). For instance, the average time for the largest instance
sizes (n = 100,m = 60), solved with (33)-(38), is of 5.78 seconds and the maximum cpu time
was 382.24 seconds. The same instances solved with (41)-(47) take an average time of 41.62
and a maximum of 2306.34 seconds. This fact can be explained by the smaller number of
variables and constraints that are needed in formulation (33)-(38) with respect to (41)-(47).
The remaining factors (GAP, Nodes, %Solved and % Fixed) are quite similar in both cases. In
fact, as we have seen theoretically, both formulations are equivalent in terms of LP gap and
they always fix the same number of binary variables. It is also very interesting to test the
practical performance of a näıve approximation algorithm based on using the solutions of the
linear relaxation, as proposed for instance in Amanatidis et al [1]. One can easily bound from
above the empirical performance ratio, LPval

optval , of any of our formulations based on the relative

gap (Rgap :=
optval − LPval

optval
∗ 100%). Indeed, optval

LPval ≤
100

100−Rgap . Actually, since the largest

relative gap is below 3.13% (see Table 4), this results, in the worst case (n = 100, m = 30), with
an empirical performance ratio bounded above by 1.03.

Next, we have tested our best formulations, namely (33)-(38), in order to explore the size
limit that can be solved within 7200 seconds. Tables 6 and 7 report our results. As can be
observed in these tables, there is a difference in the performance with respect to uniform and
biased data. For the uniform data we get to the time limit already for n = 150, whereas for
the biased data we are able to solve to optimality all instances for n = 200. The reason for this
clear difference rests on the fact that the preprocessing, (50) and (51), is much more efficient for
biased data where many variables are fixed either to zero or to one. Indeed this percentage is
on average of 24.79% for biased data with n = 200 as compared to only 7.34% for the uniform
data for n = 150.

Finally, Figures 1a and 1b show, for the 35 instances with n = 100 (5 randomly generated
instances for each value of m ∈ {30, 35, 40, 45, 50, 55, 60}), the computing time for solving the
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Time(s) GAP (%) Nodes %Solved %Fixed
Form. Avg Max Avg Max Avg Max root

m=30 (41)-(47) 0.58 1.96 0.30 3.13 48.83 2215 48.2 28.33
(33)-(38) 0.08 0.42 0.30 3.13 44.13 2013 48.6 28.33

m=35 (41)-(47) 0.63 2.02 0.28 2.63 77.93 4147 43.6 30.07
(33)-(38) 0.10 0.93 0.28 2.63 81.37 6788 45.6 30.07

m=40 (41)-(47) 0.76 2.47 0.25 2.38 193.00 9921 42.0 26.62
(33)-(38) 0.13 0.91 0.25 2.38 177.40 8989 48.4 26.62

m=45 (41)-(47) 0.69 2.23 0.24 2.17 145.96 8026 42.4 27.24
(33)-(38) 0.12 0.81 0.24 2.17 121.17 5985 46.0 27.24

m=50 (41)-(47) 0.69 2.93 0.23 2.00 263.15 15166 44.6 29.21
(33)-(38) 0.13 0.93 0.23 2.00 202.81 6125 50.2 29.21

m=55 (41)-(47) 0.81 6.33 0.21 1.23 497.78 25672 46.6 28.69
(33)-(38) 0.17 3.33 0.21 1.23 443.27 26845 52.2 28.69

m=60 (41)-(47) 1.06 39.10 0.22 1.67 1187.28 221519 35.4 28.51
(33)-(38) 0.26 24.92 0.22 1.67 1136.49 234681 39.0 28.51

Table 5: Summary for n=100 for biased data

Time(s) GAP (%) Nodes %Solved %Fixed
Form. Avg Max Avg Max Avg Max root

m=30 (33)-(38) 0.44 9.12 0.12 1.85 819.95 35683 60.6 29.83

m=35 (33)-(38) 2.80 39.15 0.12 1.59 7962.11 162887 38.5 14.09

m=40 (33)-(38) 6.27 225.75 0.10 1.59 22843.11 1165252 56.1 24.90

m=45 (33)-(38) 21.63 985.73 0.09 1.33 76974.33 4847789 48.6 27.74

m=50 (33)-(38) 42.09 1129.91 0.08 0.93 143305.51 4607534 41.7 24.76

m=55 (33)-(38) 50.93 5070.65 0.09 1.61 186926.77 28259032 40.7 20.79

m=60 (33)-(38) 49.97 5409.05 0.08 0.81 207304.41 29489376 56.8 31.45

Table 6: Summary for n=200 for biased data

problem (Figure 1a) and the number of instances solved at the root node, without branching
(Figure 1b), for the different k = 1, . . . , 100, and uniform data. We have observed that the
behavior is similar for the different values of n. For that reason, we have only included those
corresponding to n = 100.

Analogously, Figures 1c and 1d show for the biased data instances with n = 100 and for the
different k = 1, . . . , 100, the computing time for solving the problem (Figure 1c) and the number
of instances solved at the root node, without branching (Figure 1d).

Analyzing the figures we conclude that the behavior is rather similar for uniform and biased
data. Regarding computing time for solving the problems we observe that it increases when
k decreases from k = n until a certain threshold (which depends of the type of data, namely
k ∈ (15, 30) for uniform and k ∈ (9, 20) for biased) and then the time decreases with k until
k = 1. This general trend can be explained from the combinatorics of the objective function
which relates to

(
n
k

)
. With respect to the number of instances solved at the root node, the

performance is also similar. This number decreases with k from k = n until a certain value
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Time(s) GAP (%) Nodes %Solved %Fixed
Form. Avg Max Avg Max Avg Max root

m=30 (33)-(38) 1.20 11.01 0.15 0.93 4302.39 60713 28.27 7.44

m=35 (33)-(38) 2.74 45.11 0.15 2.38 11338.78 237964 30.80 6.97

m=40 (33)-(38) 7.87 138.90 0.13 0.62 36490.51 768328 28.80 7.43

m=45 (33)-(38) 12.64 302.69 0.12 1.92 56540.63 1886774 27.33 7.61

m=50 (33)-(38) 44.67 777.99 0.11 0.89 211780.07 4787806 28.67 7.43

m=55 (33)-(38) 81.99 4068.90 0.10 1.08 419709.27 27576236 23.87 7.48

m=60 (33)-(38) 209.87 6664.97 0.10 0.76 1023055.10 36286662 24.67 6.99

Table 7: Summary for n=150 for uniform data

(which again depends on the type of data, k ≈ 70 and k ≈ 28, for uniform and biased data,
respectively) and then it increases with k up to k = 1.

6 Concluding Remarks

To conclude the paper, we resort to the problem of minimizing the sum of the h smallest Ham-
ming distances already introduced in Section 2. In [1] this problem has been already considered
in the approval voting application context, and the authors prove that, when the OWA vector is
non-decreasing, that is, the weighting vector is of the form M(n− h) = (0, . . . , 0, 1, . . . , 1), with
h the number of ones, 1 ≤ h < n, the winning committee can be found in polynomial time for
a fixed value of h. They suggest an enumerative approach based on the solution of

(
n

n−h
)

=
(
n
h

)
minisum problems that is obviously not efficient even for a fixed h, and not polynomial if h is
part of the input. As already done in Section 2 for the minisum problem, here we can provide
a proof based on Linear Programming that formally justifies the polynomial time approach in
[1].

For a fixed h, the general problem can be stated as

min
x∈{0,1}m

(
min

{
dS(x) | S ⊂ {1, . . . , n}, |S| = h

})
. (56)

We can switch the two min operators, thus obtaining

min
S⊂{1,...,n},|S|=h

(
min

x∈{0,1}m

{
dS(x)

})
. (57)

For a given subset S ⊂ {1, . . . , n}, the inner minimum in problem (57) corresponds to the
minisum problem

min

m∑
j=1

γj(S)(1− xj) +

m∑
j=1

(h− γj(S))xj

s.t. 0 ≤ x ≤ 1,

which is polynomially solvable. Then, considering all the
(
n

n−h
)

=
(
n
h

)
subsets of cardinality

n− h, for a fixed h, the problem can be solved by a sequence of LPs.
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(a) Time vs. k for uniform data n = 100
(b) Solved instances at root node for uniform data
n = 100

(c) Time vs. k for biased data n = 100
(d) Solved instances at root node for biased data
n = 100

Figure 1: Plots of the efficiency of formulation (33)-(38)

It is worth remarking that the application of this problem to approval voting elections is
meaningful. In fact, the problem can be stated as: elect a committee minimizing the sum of
the h smallest Hamming distances from the voters profiles. As already observed in [1], the
application is significant for small values of n − h, say n − h = 1 or n − h = 2. Actually,
in these cases, the assumption is that the first one or two maximum distances do not play a
significant role in the selection of the committee, and this is true especially when the population
of voters is extremely large. The idea is that there will be always some voters whose preferences
are completely disjoint from those of the majority of the others. This is, in fact, a way of
considering such voters’ profiles as outliers. But, in our opinion, there are additional cases in
which the application is meaningful, namely, for every choice of h such that n−h ≤ n

2 −1. Under
this condition, the approval voting problem consists of taking into account only the preferences
of the absolute majority of the voters (h ≥ n

2 + 1), with the aim of selecting the committee
corresponding to the boolean vector x∗ for which the sum of the Hamming distances w.r.t. the
h considered profiles is minimized.
Note that, the two problems following the OWA approaches for approval voting studied in this
paper can be seen as two different ways of facing the same problem, but giving more importance
to one of the two principles that are at the basis of any democratic election. The problem with
weighting vector W (k) = (1, . . . , 1, 0, . . . , 0) implements the idea that representation must be
maximized.

If, on the other hand, one wants to give more importance to governability, the minimin
approach (with weighting vector M(n−h) = (0, . . . , 0, 1, . . . , 1)) can be pursued with a suitable
choice of h, since it is able to guarantee a strong and cohesive consensus. This strength can be
enforced by increasing the value of h. We leave the choice of which is the best voting rule for a
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country to its lawmakers, who, according to the specific political and social situation in which
the election takes place, will be able to choose the best rule.

Going back to our theoretical considerations, to the best of our knowledge, the computational
complexity of the minmin problem with weighting vector M(n − h) = (0, . . . , 0, 1, . . . , 1) when
h is part of the input is still an open problem. In our opinion this is an interesting issue that
will be the focus of our future work.
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