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Abstract

Integrated Information Theory (IIT) has become nowadays the most sensible general theory

of consciousness. In addition to very important statements, it opens the door for an abstract

(mathematical) formulation of the theory. Given a mechanism in a particular state, IIT identi-

fies a conscious experience with a conceptual structure, an informational object which

exists, is composed of identified parts, is informative, integrated and maximally irreducible.

This paper introduces a space-time continuous version of the concept of integrated informa-

tion. To this aim, a graph and a dynamical systems treatment is used to define, for a given

mechanism in a state for which a dynamics is settled, an Informational Structure, which is

associated to the global attractor at each time of the system. By definition, the informational

structure determines all the past and future behavior of the system, possesses an informa-

tional nature and, moreover, enriches all the points of the phase space with cause-effect

power by means of its associated Informational Field. A detailed description of its inner

structure by invariants and connections between them allows to associate a transition prob-

ability matrix to each informational structure and to develop a measure for the level of inte-

grated information of the system.

Author summary

In this paper we introduce a space-time continuous version for the level of integrated

information of a network on which a dynamics is defined. The concept of integrated

information comes from the IIT of consciousness. By a strict mathematical formulation,

we complement the existing IIT theoretical framework from a dynamical systems perspec-

tive. In other words, we develop the bases for a continuous mathematical approach to IIT

introducing a dynamical system as the driving rule of a given mechanism. We also intro-

duce and define the concepts of Informational Structure and Informational Field as the

complex network with the power to ascertain the dynamics (past and future scenarios) of

the studied phenomena. The detailed description of an informational structure is showing
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the cause-effect power of a mechanism in a state and thus, a characterization of the quan-

tity and quality of information, and the way this is integrated. We firstly introduce how

network patterns arise from dynamic phenomena on networks, leading to the concept of

informational structure. Then, we formally introduce the mathematical objects supporting

the theory, from graphs to informational structures, throughout the integration of dynam-

ics on graphs with a global model of differential equations. After this, we formally present

some of the IIT’s postulates associated to a given mechanism. Finally, we provide the

quantitative and qualitative characterization of the integrated information, and how it

depends on the geometry of the mechanism.

Introduction

Dynamical Systems and Graph Theory are naturally coupled since any real phenomenon is

usually described as a complex graph in which the evolution of time produces changes in spe-

cific measures on nodes or links among them [1, 2]. In this work, the starting point is any

structural network, including a parcelling of the brain, possessing an intrinsic dynamics. For

brain dynamics, the collective behavior of a group of neurons can be represented as a node

with a particular dynamics along time [3–6]. In general, the mathematical way to describe and

characterize dynamics is by (ordinary or partial) differential equations (continuous time) [7]

or difference equations (discrete time) [8]. Global models on brain dynamics are grounded on

anatomical structural networks built under parcelling of the brain surface [9–11]. Indeed, they

are based on systems of differential equations described on complex networks, which may

include noise, delays, and time-dependent coefficients. Thus, the designed dynamical system

models the activity of nodes connected to each other by a given adjacency matrix. A global

dynamics emerges through simulated dynamics at each node, which is coupled to others as

detailed in the anatomical structural network (see, for instance, [12] for the structural net-

works on primate connectivity). Then, an empirical functional network and a simulated func-

tional network emerge by correlation or synchronization of data on the structural network [4,

13, 14], showing a similar behavior and topology after a proper fitting of the parameters in the

differential equations associated to the dynamics.

We take advantage of this approach to apply some of the main results on the modern theory

of dynamical systems showing that, given a dynamics on a network, there exists an object, the

global attractor [15–18], determining all the asymptotic behaviour of each state of the network.

The attractor exists and its nature is essentially informational, as it possesses the power to pro-

duce a curvature of the phase space enriching every point with the information on its possible

past and future dynamics. The structure of the global attractors (or attracting complex net-

works [19, 20]), described as composed structures by invariants and connections, naturally

shows that its information is structured, composed by different parts, and can be unreachable

from the study of the information of its parts, so allowing for a definition of integrated

information.

Integrated Information Theory (IIT, [21]), created by G. Tononi [22–24] starts with a

phenomenological approach to the theory of consciousness. It assumes that consciousness

exists and tries to describe it by defining the axioms that it satisfies. Having the axioms on

hand, they serve to introduce the postulates that every physical mechanism has to obey in

order to produce a conscious experience. This fact opens the door to the possibility of the

mathematization of the theory by defining and describing postulates on concrete networks

where a dynamics can be settled. It is then possible to define the appropriate structured
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dynamics which is supposed to explain a conscious experience by preserving its axioms. The

IIT approach allows to represent a conscious experience and even to measure it quantitatively

and qualitatively by the so called integrated information Fmax, which, at the same time indi-

cates that, at the base of consciousness, there are essentially phenomena of causal processes of

integrated information nature [25]. This fact links IIT to Information Theory and the Theory

of Causality [26]. On the mathematical level, IIT approach is based on graphs consisting of

logic gates and transition probabilities describing causality of consecutive discrete states on

those graphs [21].

In this paper we present a continuous-time version (see Section Results for a formal

description) related to IIT based on the theory of dynamical systems. IIT bases any particular

experience on a mechanism, defined in a particular state, which possesses a well defined cause-

effect power. Our starting point is given by a graph describing a mechanism and, thus, a graph

is first defined. However, we focus our study on the network patterns arising from dynamical

phenomena. So, a dynamical system and the associated mathematical objects (global attractor,

equilibrium points, unstable invariant sets) have to be also defined. As a novelty in dynamical

systems theory, the global attractor (which, for the gradient case consists of the equilibria and

the heteroclinic connections between them [15, 17, 27]) is redefined as an object of informa-

tional nature, an Informational Structure (IS). An IS is a flow-invariant object of the phase

space described by a set of selected invariant global solutions of the associated dynamical sys-

tem, such as stationary points (equilibria) and connecting orbits among them (Fig 1). This set

of invariants inside the IS creates a new structure, a new complex network with the power to

ascertain the dynamics (past and future scenarios) of natural phenomena. Every IS posseses an

associated Informational Field (IF), globally described from the attraction and repulsion rates

on the nodes of the IS. We are able to translate the energy landscape caused by the IS and the

IF into a transition probability matrix (TPM) to pass from one state to another within the sys-

tem (see Section Results). Thus, the level of information of a mechanism in a state is going to

be given by the global amount of deformation of the phase space caused by the intrinsic power

of the IS and IF. The geometrical characterization of ISs can provide both the quality of the

related information and, in particular, the shape in which it is integrated in the whole system,

allowing to measure the level of integrated information it contains. Thus, the quality of the

information comes from the detailed study of informational structure, which now possesses an

intrinsic dynamics and enjoys a continuous change. This structure depends on the parameters

of the underlying equations and has the ability to possibly rapidly change in the response to

the change of those parameters (see Section Materials and methods). From this continuous

approach, we are able to introduce first definitions for postulates of existence, composition,

information and integration for a mechanism in a state. There is still a gap to the more elabo-

rated formal definitions from IIT 3.0 [21] (see Section Discussion), including the composition

and exclusion postulates. However, our framework naturally leads to a study on the continu-

ous dependence between the topology of the network and the level of integrated information

for a given mechanism (see Section Results).

Materials and methods

Dynamics on graphs

Many real phenomena can be described by a set of key nodes and their associated connections,

building a (generically) complex network. In this way, we can always construct an application

between a real situation and an abstract graph describing its essential skeleton. An undirected

graph is an ordered pair G ¼ ðV;EÞ comprising a non-empty set V of vertices (or nodes)

together with a set E of edges joining 2-element subsets of V. The order of a graph is given by

Informational structures: A dynamical system approach for integrated information
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the number of nodes, and its size by the number of edges. A directed graph or digraph is a

graph in which edges (named arcs) have orientations.

We want to study the behaviour on networks of systems of evolutionary differential equa-

tions as

du
dt
¼ Fðt; uÞ; ð1Þ

where F is a nonlinear map from ðt; uÞ 2 R� RN to RN . For modeling purposes, we could also

add, for instance, delays, stochastic terms, or to make solution u(t) also depend on a subset O

of the three dimensional space, i.e. u(t, x), for x 2 O � R3: Given an initial condition, suppose

existence and uniqueness of solutions. If not, a multivalued approach could also be adapted.

The phase space X (in our case X ¼ RN) represents the framework in which the dynamics

described by a group of transformations S(t): X! X is developed. Given a phase space X we

define a dynamical system on X as a family of non-linear operators fSðtÞgt2Rþ ,

SðtÞ : X ! X

u 2 X; SðtÞu 2 X

which describes the dynamics of each element u 2 X. In particular, S(t)u0 = u(t;u0) is the solu-

tion of the differential Eq (1) at time t with initial condition u0.

Fig 1. A. A mechanism (graph) of two nodes where a system of two differential equations given by (7) is defined, one for each

node, using the given values for the α and γ parameters. B. The Informational Structure (IS) is a new complex network made by

four stationary points (equilibria) and directed links defined by global solutions. Each stationary point of the IS is a state associated

to a subgraph of the original mechanism (non-null existing nodes are shown in black). The actual state of the mechanism

corresponds to a state of the IS, highlighted in pink at the figure (the state where both u1 and u2 have a value greater than 0). C.

(background) The associated directional field describing the tangent directions of trajectories inside the IS. The two straight lines

(in orange and yellow) are the nullclines associated to the system and they intersect in three stationary points (except (0, 0)): one is a

semitrivial stationary point in the X axis; the second is a semitrivial stationary point in the Y axis. The last one is the stationary point

with two strictly positive values. All of the stationary points constitute the nodes of the IS. Each stationary point is hyperbolic and

locally creates a field of directions towards (stability) or from them (unstabilities). The informational field can be globally described

by the sum of the stability and unstability influences of each continuous stationary solution passing when going to one node to

other in the IS. D. The measurement of the amount of information to link any pair of nodes allows to define a Transition

Probability Matrix (TPM) with the probability for each state of going to any other. States of the IS are denoted by the list of nodes

having a value greater than 0. State (0) represents the node of the IS with both u1 and u2 equal to 0.

https://doi.org/10.1371/journal.pcbi.1006154.g001
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The global attractor is the central concept in dynamical system theory, since it describes all

the future scenarios of a dynamical system. It is defined as follows [15–18, 28, 29]:

A set A � X is a global attractor for {S(t): t� 0} if it is

(i) compact,

(ii) invariant under {S(t): t� 0}, i.e. SðtÞA ¼ A for all t� 0, and

(iii) attracts bounded subsets of X under {S(t): t� 0} for the Hausdorff semidistance; that is,

for all B� X bounded

lim
t!þ1

distHðSðtÞB;AÞ :¼ lim
t!þ1

sup
b2B

inf
a2A
ðSðtÞb; aÞ ¼ 0:

Observe that (ii) is showing a crucial property of an attractor, as supposes a set with a proper

intrinsic dynamics. Moreover, (iii) points that this set is determining all the future dynamics

on the phase space X. We say that u� 2 X is an equilibrium point (or stationary solution) for

the semigroup S(t) if S(t)u� = u�, for all t� 0. A stationary point is a trivial case for a global

solution associated to S(t), i.e., x : R! X such that ξ(t + s) = S(t)ξ(s) for all s 2 R, t 2 Rþ. Sta-

tionary points are the minimal invariant objects inside a global attractor. Every invariant set is

a subset of the global attractor [15]. Generically, connections among invariant sets in the

attractor describe its structure [27, 30]. To this aim we need the following definitions, which

also allow us to define the behaviour towards the past in a global attractor.

The unstable set of an invariant set X is defined by

WuðXÞ ¼ fz 2 X : there is a global solution x : R! X for SðtÞ

satisfying xð0Þ ¼ z and such that limt!� 1distðxðtÞ;XÞ ¼ 0g
:

The stable set of an invariant set X is defined by

WsðXÞ ¼ fz 2 X : such that limt!þ1distðSðtÞz;XÞ ¼ 0g:

We have to think in a global attractor as a set which does not depend on initial conditions,

with an intrinsic proper dynamics, composed by a set of special solutions (global solutions),

which are connecting particular invariants, so generating a complex directed graph. Moreover,

the global attractor has the following properties [17, 18]:

1. It is the maximal invariant set in the phase space.

2. It is the smallest closed attracting set.

3. It is made of bounded complete solutions, i.e., solutions that exists for all time t 2 R; and

so giving information for the asymptotic past of the system.

4. Generically, its structure is described by invariant subsets and connecting global solutions

among them [31, 32].

The Fundamental Theorem of Dynamical Systems
The Fundamental Theorem of Dynamical Systems [33] states that every dynamical system on a

compact metric space X (the one defined on a global attractor, for instance) has a geometrical

structure described by a (finite or countable) number (indexed by I) of sets {Ei}i2I with an

intrinsic recurrent dynamics and a gradient-like dynamics outside them. In other words, when

we define a dynamical system on a graph, the attractor can be always described by a (finite or

countable) number of invariants and connections between them.

Informational structures: A dynamical system approach for integrated information
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Gradient attractors. We say [15, 17, 31] that a semigroup {S(t): t� 0} with a global

attractor A and a disjoint family of isolated invariant sets E = {E1, � � �, En} is a gradient semi-
group with respect to E if there exists a continuous function V : X ! R such that

(i) ½0;1Þ ∍ t 7!VðSðtÞuÞ 2 R is non-increasing for each u 2 X

(ii) V is constant in Ei, for each 1� i� n; and

(iii) V(S(t)u) = V(u) for all t� 0 if and only if u 2
[n

j¼1

Ei:

In this case we call V a Lyapunov functional related to E. For gradient semigroups, the

structure of the global attractor can be described as follows [15, 27]: Let {S(t): t� 0} be a gradi-

ent semigroup with respect to the finite set E ≔ {E1, E2, � � �, En}. If {S(t): t� 0} has a global

attractor A, then A can be written as the union of the unstable manifolds related to each set in

E, i.e,

A ¼
[n

j¼1

WuðEjÞ: ð2Þ

When Ej are equilibria u�j , the attractor is described as the union of the unstable manifolds

associated to them

A ¼
[n

j¼1

Wuðu�j Þ:

This description of a gradient system shows a geometrical picture of the global attractor, in

which all the stationary points or isolated invariant sets (also defined as Morse sets, [31, 32])

are ordered by connections related to its level of attraction [34] or stability. They conform a

Morse decomposition of the global attractor [32, 33, 35–37].

When we refer to the global attractor for the dynamics on a graph, observe that each node

given by a partially feasible equilibrium point in the attractor represents an attracting complex

subgraph of the original one. Thus, the attractor can be understood as a new complex dynam-
ical network describing all the possible feasible future networks [19, 20]. In particular, it contains

all the information related to future scenarios of the model.

Energy levels. Any Morse decomposition E = {E1, � � �, En} of a compact invariant set A
leads to a partial order among the isolated invariant sets Ei; that is, we can define an order

between two isolated invariant sets Ei and Ej if there is a chain of global solutions

fx‘; 1 � ‘ � rg ð3Þ

with

lim
t!� 1

distðx‘ðtÞ;E‘Þ ¼ 0

and

lim
t!1

distðx‘ðtÞ;E‘þ1Þ ¼ 0

1� ℓ� r − 1, with E1 = Ei and Er = Ej.

This implies that, given any dynamically gradient semigroup with respect to the disjoint

family of isolated invariant sets E = {E1, � � �, En}, there exists a partial order in E. In [34] (see

also [38]) it is shown that there exists a Morse decomposition given by the so-called energy

Informational structures: A dynamical system approach for integrated information
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levels N ¼ fN 1;N 2; � � � ;N pg, p� n. Each of the levels N i, 1� i� p is made of a finite union

of the isolated invariant sets in E and N is totally ordered by the dynamics defined by (3).

Indeed, the associated Lyapunov function has strictly decreasing values in any two different

level-sets of N and any two elements of E which are contained in the same element of N (same

energy level) are not connected.

Attracting invariant networks. The existence of a global attractor implies that when we

look at the evolution in time of each ui(t) we can see the “picture” in asymptotic time drawn by

all ðu1ðtÞ; u2ðtÞ; . . . ; uNðtÞÞ 2 R
N . Thus, this evolution is engaged with an invariant attracting

network in which

i) Each node represents a stationary solution (or, generically, a minimal invariant subset of

the global attractor), which can be described as a binary vector representing the activa-

tion or inactivation of nodes, i.e., its points constitute a subgraph of the former graph

representing the modelled system.

ii) There exist oriented connections between the above subgraphs, so leading to a directed

graph.

iii) Each subgraph has totally determined stability properties; i.e., it is known not only

which other nodes are connected to it or to which it is connected, but also, for instance,

the velocity or the tendency for the attraction.

iv) The whole invariant structure is determining the long time behaviour of all solutions of

the system.

In summary, behind a graph with dynamics (a mechanism in our conception) there exists a

new complex network of connected subgraphs, governing all possible scenarios of the system.

Informational structures: A formal definition

The starting point in our approach is a system of connected elements where a dynamics is

defined. This system is called a mechanism. Composition and exclusion postulates in IIT 3.0

allow to consider mechanisms given by any subset of the system. Here, we are only focusing in

the mechanism given by the whole system. A global attracting network can be characterized by

the amount of information it provides to the mechanism, since the nature of a global attractor

is essentially informational. Indeed, the informational nature of the attractor is based on the

following assertions:

1. They live in the phase space X, an abstract formulation for the description of the flow.

2. Their existence is not experimentally established, i.e., they are not necessarily related to

physical experiments. They exist, associated and grounded to a particular mechanism, as a

(small) compendium of “selected solutions”, which forms a complex structure and, more-

over, determines the behaviour of all other solutions.

The state of a mechanism is given by the state of its nodes. If those nodes take real values,

the state is given by a vector of real numbers. When a dynamical system is defined for a mecha-

nism in a state, it has cause-effect power, meaning that it conditions the possible past and

future states of the mechanism. We can find the cause-effect power of a mechanism in a state

by looking at its (local) attracting invariant sets. Typically, these are stationary points or peri-

odic orbits [32, 39–41], but it could also contain invariant sets with chaotic dynamics [42–44].

Following IIT, we will measure the amount of information on the structure made by these

invariants, in the sense of its power to restrict the past and the future states. In IIT language,

Informational structures: A dynamical system approach for integrated information
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this is intrinsic information: differences (state of a mechanism) that make a difference

(restricted set of possible past and future states) within a system (see the IIT glossary in [21]).

Now we can define an Informational Structure (IS). Suppose we have a complex graph G
given by N nodes and links among them. We denote by Gi every subset of G: An informational

structure is a complex graph I ¼ fG1; � � � ;GMg which nodes are subgraphs Gi of G and links

among them, with the following properties

1. Links between nodes are directed by their dynamics.

2. Each link has a defined weight.

3. Each link has a dynamical behaviour given by a model of differential equations.

4. Dynamics are defined by stability of nodes.

An IS (see Fig 2) becomes a natural emerging object (of informational nature) from a given

mechanism in a state with intrinsic cause-effect power to the past and the future. Moreover,

some properties of ISs can be given:

1. ISs exist and are composed by a set of simple elements. They have cause-effect power, pro-

ducing intrinsic information within the mechanism.

2. At any instant, an IS determines all the subset of past and futures states.

3. The quantity of information can be measured, for any given time, by the size of the IS at

time t. Quality of the information is related to the shape of the IS.

4. Integration can be measured by partitions of the global graph.

A global model. Lotka-Volterra models have been used to generate reproducible transient

sequences in neural circuits [45–49]. In our case, for a general model for N nodes, we define a

system of N differential equations given by:

dui

dt
¼ ui ai þ

XN

j¼1

gijuj

 !

; i ¼ 1; :::;N; ð4Þ

where the matrix Γ = (γij) 2 RN×N is referred to the interaction-matrix. In matrix formulation,

(4) reads as

du
dt
¼ u aþ Guð Þ; ð5Þ

with A 2 RN2

and a 2 RN . Given an initial data for (5), sufficient conditions for the existence

and uniqueness of global solutions are well-known (see, for instance, [50, 51]) The phase space

for (5) is the positive orthant

RN
þ
¼ fu ¼ ðu1; � � � ; uNÞ 2 R

N ; ui � 0; i ¼ 1; � � � ;Ng:

This set of equations will define a dynamics on a structural graph with N nodes, taking one

equation for the description of the dynamics on each of the nodes. We model the dynamics on

a given mechanism from Lotka-Volterra systems since they lead to a non-linear and nontrivial

class of examples where the characterization of ISs and its dependence on parameters is, to

some extent, very well understood [50, 52]. Indeed, we can find, under some conditions on

parameters, that there exits a finite number of equilibria (then, with trivial recurrent behav-

iour) and directed connections between them, generating an hierarchical organization by level

Informational structures: A dynamical system approach for integrated information
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sets of equilibria ordered by connections in a gradient-like fashion [19, 20]. With respect to

IIT, each IS is associated to a mechanism in a state and gives it intrinsic information.

As noted, we also want each Informational Structure to flow in time. Thus, we can consider

the system of differential equations driven by time dependent sources α(t) (and/or γij(t)), given

by:

_ui ¼ ui aiðtÞ þ
XN

j¼1

gijuj

 !

; i ¼ 1; :::;N: ð6Þ

Informational fields. Note that an IS is not only a complex network of possible configura-

tions of a graph. Moreover, it is well organized by their connections, showing the intrinsic

Fig 2. A. Mechanism with five nodes u1, � � �, u5 representing five interacting components represented as a graph G. B. α values and

γ values (position (i, j) in the matrix represents the influence of node ui over uj) are the parameters defining the dynamics of the

system. C. Nonlinear system of five equations to calculate the stationary points of the dynamical system. D. Informational Structure

(IS) associated to the mechanism. Observe that the IS is a new complex network made by directed links, related to dynamics, of

subgraphs Gi of the original one G: Each node in the IS contains a stationary point of the dynamical system. Nodes of each Gi with a

value greater than 0 are shown in black. Grey nodes have value 0. Arrows in the IS relates to the cause-effect power of each state,

going from one state to another. The relation induced by the arcs is transitive, but only the minimal arcs to understand the

dynamics of the IS are represented.

https://doi.org/10.1371/journal.pcbi.1006154.g002
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dynamics within the IS and, acting as a global attractor, it determines the behaviour of every

particular realization in the system. In this sense, it is not only that every point in the IS pos-

sesses an amount of information, but every point of the phase space is enriched from the

information given by the IS. Indeed, every state of the mechanism is determined by the Infor-

mational Field (IF) associated to the IS. See Fig 3 for an illustration of IFs. In this way, the IS

can be seen just as the skeleton of a real body organized as a global vector field describing all

the possible flows of information in the system. This is why, related to integrated information,

it is the IS and its associated dynamics (IF) the object to be studied. Actually, it is the IF what is

really responsible of the cause-effect power of a IS.

Dynamical informational structures. It seems clear that brain dynamics does not

behave by converging or stabilizing around a fix set of invariants, but it can be described as a

continuous flow of quick and irregular oscillations [53, 54]. We deal with this situation by

Fig 3. Informational fields. Informational structures are the skeleton of informational fields, the ones with the power of causality to

the past and the future in the IS. For a mechanism of two nodes as in Fig 1 there exist different possible ISs. We plot the four ones

related to the existence of one, three or four equilibria for equations in (7), which depends on the values of the α and γ parameters.

Observe that the IF produces a curvature of the XY-phase space, and governs the dynamics of all the states in the IF. Top left.

Informational field for the informational structure in Top right in Fig 1, the one for which the four equilibria exist. Note that (0, 0) is

unstable, (0, 1) and (1, 0) are saddle equililibria, and (2.5, 3) is a globally stable stationary solution. These stability and instability

properties of each node, characterised from their eigenvalues and eigenvectors, define the curvature of the bidimensional plane

drawn by the IF. Top right. IF for the IS with the three equilibria, the (0, 0) and the semitrivial equilibria (0, 1) in the Y-axis and (1,

0) in the X-axis, with the global stationary solution in the Y-axis. Bottom left. IF for the IS with the three equilibria, the (0, 0) and the

semitrivial equilibria (0, 1) in the Y-axis and (1, 0) in the X-axis, with the global stationary solution in the X-axis. Bottom right. IF

where (0, 0) is the only stationary solution, which is globally stable, making a global pending towards this stationary point.

https://doi.org/10.1371/journal.pcbi.1006154.g003

Informational structures: A dynamical system approach for integrated information

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006154 September 13, 2018 10 / 33

https://doi.org/10.1371/journal.pcbi.1006154.g003
https://doi.org/10.1371/journal.pcbi.1006154


introducing dynamic informational structures (DIS), i.e., a continuous time map on infor-

mational structures so that their influence can be realized at each time value (Fig 4). We can

make parameters in (4) depend on time, so that for each time t 2 Rþ we have an associated

Informational Structure I t . Thus, we can define Dynamical Informational Structures (DIS)

Fig 4. Dynamic informational structures. Changes in the parameters governing the dynamics of a mechanism produce changes in

the corresponding informational structures. Actually, these changes can be proved to be continuous with respect to time when, for

instance, they are associated to the global model of differential equations in (4). Top. Example for the evolution in time of αi
parameters of a system of four nodes; γ parameters are fixed. Black bars select six different time points. Bottom. For a given

mechanism, different ISs corresponding to the time steps shown above.

https://doi.org/10.1371/journal.pcbi.1006154.g004
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as a continuous flow

S : Rþ ! 2I

SðtÞ ¼ I t; for all t 2 Rþ

which is giving a dynamical behaviour on the complex network of connected subgraphs

given by the ISs at each time t. 2I is the set of subsets of I , where I is the set of all stationary

solutions. Note that S induces a continuous movement of structures. The determination of

critical values in which topological and/or geometrical changes are crucial, and will be

related to bifurcation phenomena of attractors [55, 56].

The reader wishing to retrace our formulation will find all code developed for the imple-

mentation of the results and the generation of the technical figures herein from the Open Sci-

ence Framework (https://osf.io/5tajz/).

Results

Integrated information: A continuous approach

In this section we define a preliminary version of IIT postulates: existence, composition, infor-

mation, integration and exclusion. We do not try to mimic or generalize the concepts of IIT

3.0 (see Section Discussion), where they appear in a more elaborated fashion, allowing finer

computations and insights. For example, IIT considers the integrated information of each sub-

set of a mechanism (candidate set), while we always focus on the whole mechanism.

Existence: Mechanisms in a state. We consider mechanisms like in Fig 5. The mechanism

contains a set of nodes with links representing the influences between them. On nodes we

define a dynamical system driven by the set of differential equations (a particular case of (4)):

u0iðtÞ ¼ aiuiðtÞ � uiðtÞ
2
þ
X

1 � j � N
j 6¼ i

gijuiðtÞujðtÞ
ð7Þ

for each node ui from 1 to N (in Fig 5, N = 4). Values αi are relative to each node. Values γij rep-

resent the influence of node ui over uj.

The dynamics of system (7) generates an attractor, which is a structured set of stationary

points (or equilibria) for the system, for which there exists a globally stable stationary point

(represented at the right part of Fig 5).

Colours in the nodes of Fig 5 (bottom left) go from dark blue (−3) to red (3) and represent

αi values. Fig 5 (right) shows the whole attractor corresponding to the system on the left with

the given α and γ parameters. We call this attractor the informational structure (IS) for the

mechanism. Note that the same mechanism with different αi and γij values generates different

ISs. Nodes in the IS correspond to distinguished states of the mechanism. We call them states
of the IS. Each of these states is a subgraph of the mechanism in Fig 5 (bottom left) correspond-

ing to a non-negative solution of (7). Black points represent non-zero values in the stationary

solutions (i.e., ui> 0 in the equilibrium) and grey point are zero values (ui = 0). Each state of

the IS governs the behaviour of a family of states of the mechanism, those with the same posi-

tive nodes. That is, the cause-effect power of each node of the IS determines the cause-effect

power of the mechanism in a state represented by that node.

Cause-effect power of a mechanism in a state. The cause-effect power of nodes (i.e., sta-

tionary points or, equivalently, states) in an informational structure is represented by defining

transition probability matrices (TPMs). Given that the attractor captures the behaviour of all

solutions looking to the future (t! +1) and to the past (t! −1), for each state we intro-

duce two matrices, one with the transitions to the future and the other to the past. The
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Fig 5. Existence. Left: The mechanism is given by a set of nodes (in the figure, u1, . . ., u4) and the α and γ parameters. Parameters αi
affect only the dynamics of the node ui. Parameters γij model the influence of ui over uj. Right: The dynamics given by (7) on the

mechanism generates an informational structure with nodes the non-negative solutions of the corresponding system of differential

equations. This structure controls the behaviour of the system (all possible states of the mechanism). There exists a hierarchy (energy

levels, represented by horizontal rows) between the points in the informational structure, with just one global stable point and arcs

between them, representing solutions going from one point to another. There is an arc from stationary solution u�i 2 R
4 to another

one u�j 2 R
4 when the set of non-zero values in u�i is a subset of non-zero values in u�j . For clarity, we have removed arcs going to

each node to itself and all arcs that can be obtained by transitive closure of those already represented.

https://doi.org/10.1371/journal.pcbi.1006154.g005
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procedure is analogous for both distributions. Observe that we do an approach by probability

distributions of both the informational structure and the informational field.

We know that local dynamics on each node (stationary solution) in the IS can be described

by the associated eigenvalues and eigenvectors when we linearize (7) on nodes [57]. Indeed,

given f : RN ! RN by

fiðu1; � � � ; uNÞ ¼ aiui � u2
i þ

X

1 � j � N
j 6¼ i

gijuiuj; i ¼ 1; � � � ;N;

the associated N × N Jacobian matrix is given by J ¼ ðJijÞ1�i;j�N 2 R
N2

, with

JijðuÞ ¼
@fi
@uj
ðuÞ; 1 � i; j � N:

On each node (state of the IS) u� 2 RN , we calculate the eigenvalues λi and associated eigen-

vectors, normalise to one, wi ¼ ðwi
1
; � � � ;wi

NÞ 2 R
N for matrix J(u�). The exponential of nega-

tive eigenvalues gives the the strength of attraction towards the node. The exponentials of

positive eigenvalues give the the strength of repulsion from the node, and the repulsion direc-

tions are given by the associated eigenvectors of this node. To take into account the influence

of the wi, we also take vi = abs(wi), the absolute value of wi. Thus, if u� is a saddle node with

associated eigenvalues λi = λi(u�)> 0, we calculate the N-dimensional vector

Rp�!ðu�Þ ¼
X

li>0

liv
i; ð8Þ

and we define the repulsion rate from u� as

Rpðu�Þ ¼ expð
X

1�k�N

Rp�!ðu�ÞðkÞÞ: ð9Þ

In the same way, if u� is a saddle node with eigenvalues λi = λi(u�)< 0,

Att�!ðu�Þ ¼
X

li<0

� liv
i; ð10Þ

and so the attraction rate to u� is given by the exponential of the sum of the N-components of

vector Att(u�), i.e.

Attðu�Þ ¼ expð
X

1�k�N

Att�!ðu�ÞðkÞÞ: ð11Þ

Heuristically, this functional on positive eigenvalues reflects the exponential divergence of

trajectories in the unstable manifolds being pushed out from a neighbourhood of its associated

node; the functional on negative eigenvalues of a node describes the exponential convergence

of trajectories in the stable manifold being attracted to the node. Thereby, we reflect the degree

to which the saddle fixed points (nodes) locally attracts, or repels trajectories to create a chain

with the other nodes in the global attractor. Fig 6 shows and example for this calculation on

R4.

Our aim is to give a mathematical measure on connections between IS-nodes (i.e., between

vertices in the IS). We go through the informational field, which is really causing the deforma-

tion of the phase space leading to these connections. Note that we will just consider the

strengths which are directly pushing to create a link between nodes, given by the repulsion

rates around all the intermediate nodes and the attraction rate to the final node. This is not the
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only option we could have been considered, as we could also have taken into account the

attraction rates between intermediate nodes. This fact would not produce any relevant differ-

ence to our treatment. Specifically, if we start at IS-node u�i which is connected in the future

to u�j , with i< j, we may pass through the local dynamical action of all intermediate nodes

u�iþ1
; . . . u�j� 1

between them. In this way, to measure the strength connection (to the future)

(Sfut) from u�i to u�j we sum the repulsion action of u�i given by (9), the (exponential) repulsion

from all intermediate nodes. Finally, we add the (exponential) attraction from u�j given by (11).

Thus, the strength of the connection (to the future) from u�i and u�j can be written as

Sfutðu�i ; u
�
j Þ ¼ c

Xj� i� 1

k¼0

Rpðu�iþkÞ þ Attðu�j Þ;

where constant c is a corrector term for the difference between the dimension of the unstable

manifold of u�i and the stable manifold of u�j , and is given by

c ¼ 2
dimðWuðu�i ÞÞ� dimðWsðu�j ÞÞ:

To measure connections in the past we follow a similar argument, by changing the signs of

attraction and repulsion values: if we start at IS-node u�j which is connected in the past to u�i ,

Fig 6. Calculation of the eigenvalues and eigenvectors associated to each stationary solution for the system in Fig 5. Rows

correspond to the nodes (states) of the IS. States will be denoted by the list of components with a value greater than 0. This way, the

second state, (1.8, 0, 0, 0), will be denoted by (u1). State (0, 0, 0, 0) is abbreviated by (0). Attraction is calculated from negative

eigenvalues by (10), given a vector in R4: Repulsion is calculated by positive eigenvalues from (8), again a vector in R4.

https://doi.org/10.1371/journal.pcbi.1006154.g006
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with j> i, we pass through the local dynamical action of all intermediate IS-nodes u�j� 1
; . . . uþiþ1

between them. In this way, to measure the strength connection (to the past) from u�j to u�i ;
once we have changed signs, we sum the (exponential) attraction of u�j , the (exponential)

attraction from all intermediate nodes and finally the (exponential) repulsion dynamics from

u�i .
The normalization of these values so that their sum is 1 allows a natural translation into

probability distributions associated to each state, one for the past and another for the future.

Thus, to build the TPM for the future, noted as TPMfut with entries TPMfut(i, j) we make

pf ðu�i ; u
�

j Þ ¼
Sfutðu�i ; u

�
j Þ

P
k�i Sfutðu�i ; u�kÞ

;

with pf ðu�i ; u
�
j Þ ¼ TPMfutði; jÞ.

Figs 7 and 8 contain the transition probability matrices for the informational structure of

Fig 5 (right) by looking, respectively, at the future and the past. States (nodes) in the informa-

tional structure are represented (with parentheses as notation) by the list of elements (nodes of

the mechanism, Fig 5 left) with a value greater than 0. The state with no elements greater than

0 is represented by (0). Recall that a stationary solution u�j can be reached from u�i if and only

if u�i � u�j , in the sense that solutions are represented by the set of nodes with values greater

than 0.

Information. Inspired by IIT, the level of information of a mechanism in a state is com-

pared both for the past (cause information) and the future (effect information).

Fig 7. Transition probability matrix for the future of the IS in Fig 5.

https://doi.org/10.1371/journal.pcbi.1006154.g007

Fig 8. Transition probability matrix for the past of the IS in Fig 5.

https://doi.org/10.1371/journal.pcbi.1006154.g008
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In order to introduce the formal definitions, consider an informational structure IS with N
nodes fu�

1
; . . . ; u�Ng. Also,

#�
u�i
¼ jfu�j j 1 � j � N; u�i � u�j gj

#̂�
u�i
¼ jfu�j j 1 � j � N; u�j � u�i gj

#�
u�i

is the number of points in the informational structure accessible from u�i to the future

(supersets of u�i ) and #̂�
u�i

the number of accessible points from u�i to the past (subsets of u�i ).

Note that each node in the IS determines a subset of it.

Cause information. Cause information measures the different probability distributions to

the past obtained by considering the knowledge of just the structure (unconstrained past, pup)

and the structure in the current state (cause repertoire, pcr). The probability distribution for

unconstrained past, pup, is obtained by considering that any node u�j can be the actual one with

the same probability. Formally,

pupðu�i Þ ¼
1

N

XN

j¼1

ppðu�i j u
�

j Þ ð12Þ

where cause repertoire is directly defined by pp in the TPM (past)

pcrðu�i j u
�
j Þ ¼ ppðu�i j u

�
j Þ; ð13Þ

and

ppðu�i ; u
�
j Þ ¼ TPMpastði; jÞ:

Cause information is the distance between both probability distributions. Earth mover’s

distance EMD (or Wasserstein metric) [58] is used, so that

ciðISÞ ¼ EMDðpup; pcrÞ ð14Þ

Effect information. Effect information is computed analogously to those presented for

cause information. Formally,

puf ðu�i Þ ¼
1

N

XN

j¼1

pf ðu�i j u
�

j Þ ð15Þ

perðu�i j u
�
j Þ ¼ pf ðu�i j u

�
j Þ ð16Þ

eiðISÞ ¼ EMDðpuf ; perÞ ð17Þ

Cause-effect information. Finally, the cause-effect information of the informational struc-

ture IS is the minimum of cause information and effect information,

ceiðISÞ ¼ minfciðISÞ; eiðISÞg: ð18Þ

Fig 9 shows the distributions involved in the calculation of cause-effect information in state

(u1, u3) of the informational structure in Fig 5 (that is, the state in which only u1 and u3 have a

value greater than 0).
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Integration. Information is said to be integrated when it cannot be obtained by looking at

the parts of the system but only at the system as a whole. We can measure the integration of an

informational structure by trying to reconstruct it from all possible partitions.

As we are considering mechanisms with a dynamical behaviour, when a partition P=�P of a

mechanism with nodes {u1, . . ., uN} is considered, the IS is computed by taking apart from the

dynamics of each ui the nodes outside the same partition. Partitions are computed for a mech-

anism at a given state u� ¼ ðu�
1
; . . . ; u�NÞ, so in the equation for ui, any node uj in the other par-

tition is given the constant value u�j . So, the IS for the partition P=�P is not computed by using

(7) but

u0iðtÞ ¼

aiuiðtÞ � uiðtÞ
2
þ
X

uj2P
uj 6¼ui

gijuiðtÞujðtÞ þ
X

uj2�P

gijuiðtÞu
�

j if ui 2 P

aiuiðtÞ � uiðtÞ
2
þ
X

uj2
�P

uj 6¼ui

gijuiðtÞujðtÞ þ
X

uj2P

gijuiðtÞu
�

j if ui 2
�P

8
>>>>><

>>>>>:

ð19Þ

The informational structure of the partition contains the set of stable points of (19) together

with the transition probability matrices for them, as defined above.

To measure integration, all partitions with non empty P and �P are considered. Cause and

effect repertoires are calculated for all of them, following (12) and (15). The partition with the

cause repertoire closer to the cause repertoire of the IS is MIPcause, the minimum information
partition with respect to the cause. The partition with the effect repertoire closer to that of IS is

MIPeffect. Fig 10 shows the minimum information partitions for the informational structure of

Fig 5. The MIPcause is {u1, u3}/{u2, u4} (top) and MIPeffect is {u1, u2, u4}/{u3} (bottom).

Fig 9. Information in state (u1, u3). Cause and effect probabilities of both the structure (unconstrained repertoire given by (12))

and dynamics (cause repertoire from (13)) are compared by using EMD. Cause-effect information (cei) is the minimum of cause

information (ci) and effect information (ei).

https://doi.org/10.1371/journal.pcbi.1006154.g009
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Fig 10. Minimum information partition (MIP) for state (u1, u3). (A-C): Partition {u1, u3}/{u2, u4} of the system in

Fig 5 with the cause repertoire closer to that of the complete system for state (u1, u3) (Fig 9). The ISs in A and B

correspond to the submechanisms {u1, u3} and {u2, u4}, respectively. Nodes in the IS C are those in the Cartesian

product of A and B. States of the ISs are highlighted in pink, observe that only u1 and u3 have values greater than 0 in

the state of each IS, as the partition is for state (u1, u3). (D-F): Partition {u1, u2, u4}/{u3} with the effect repertoire closer

to that of the whole system for state (u1, u3).

https://doi.org/10.1371/journal.pcbi.1006154.g010
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Finally, integration ϕ is given by the minimum of ϕcause and ϕeffect, where ϕcause is the dis-

tance between the cause repertoires of IS and MIPcause, and ϕeffect is the distance between the

effect repertoires of IS and MIPeffect. Both distances are calculated using EMD. Fig 11 shows

the calculation of ϕ for the system of Fig 5 in state (u1, u3).

Exclusion. Consciousness flows at a particular spatio-temporal grain, and this is the

base for the exclusion postulate in IIT 3.0 [21], which we do not develop here (see Section

Discussion). First, in a mechanism with many nodes, it may happen that not all of them are

simultaneously contributing to the conscious experience. While ϕ = 0 for the whole mecha-

nism, it may happen that for some submechanism ϕ> 0. Indeed, it may be the case that several

submechanisms of the same given mechanism are simultaneously integrating information at a

given state. Moreover, consciousness flows in time. But the way it evolves is slower than neuro-

nal firing. In our conception, integrated information is related to the values given by α and γ
parameters in (7). Those parameters may be associated with intensity on connectivity (γij)
and neuromodulators (αi) which change at a slower flow than neuronal firing [21]. In our

approach, small changes in the parameters do not always imply a change in the informational

structure, if parameters move within the same cone (see [59, 60]). This fact might explain how

a conscious experience may persist while neural activity is (chaotically) changing. However,

when change moves the parameters to a different cone the IS suffers a bifurcation on its struc-

ture, so changing the level of integrated information.

Topology of a mechanism and integrated information

Although ISs and mechanisms possess quantitative and qualitative major differences on the

structure and topology of both networks, it is clear that ISs possess an strongly dependence

of their mechanisms’ topology. To show this dependence (but no determination) between

mechanisms and associated ISs, we have tried to model the continuous evolution of integrated

information for simplified mechanisms. This is probably one of the virtues of our continuous

approach to integrated information. In particular, we consider the cases of totally disconnected

mechanisms, lattice ones, the presence of a hub, and totally connected mechanisms, showing

the key functions of the topology and strength of connections with respect to integrated infor-

mation. To allow the comparison of the different topologies, the reference value for αi is 1.6

Fig 11. Calculation of ϕ for state (u1, u3). Cause and effect repertoires of the MIP (partitions for past and future) are compared

to the repertoires of the informational structure of the complete system. The integration of the system is given by ϕ, the

minimum of ϕcause and ϕeffect. Left: The cause repertoire of the MIPcause (Fig 10, top) at state (u1, u3). It is compared by using

EMD with the cause repertoire of the whole system (Fig 9, top left) resulting ϕcause = 0.000208394. Right: ϕeffect is calculated in an

analogous way.

https://doi.org/10.1371/journal.pcbi.1006154.g011
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and for γij is 0.1. The behaviour of ϕ-cause and ϕ-effect when some of these parameters change

is shown for the different mechanisms.

Totally disconnected mechanisms. The way we define the cause-effect power of a discon-

nected mechanism always leads to null integration for the level of information. We highlight

that integrated information is positive only if we connect the parts in the mechanism, also

showing the dependence on the value of integrated information related to the continuous

change on the strenght of the connecting parameter.

Fig 12 shows an example of a disconnected mechanism. There are two groups of nodes

{u1, u2} and {u3, u4, u5}. Connections are only inside each group but not from one group to the

other. The consequence is that the IS of the mechanism behave like the Cartesian product of

the ISs of the partition (left and right ISs in the figure).

We can set the connections between u2 and u3, looking at the integration in different states

of the mechanism (Fig 13). As expected, when γ23 = γ32 = 0 there is no integration.

Cyclic mechanisms. Now we consider a mechanism of 5 nodes {u1, u2, u3, u4, u5} with all

αi values equal to 1.6. Connections γij create a cycle so that all of them are 0 except {γ12, γ23,

γ34, γ45, γ51} that have the same value. Fig 14 shows the changing level of integration of the

mechanism in states (u1, u2, u3) and (u1, u3, u5) as the strength of the connections grows up. If

we look at min(ϕ- cause, ϕ- effect), it is 0 when connections are 0, then it grows up to some

maximum and then return to 0.

Fig 12. A totally disconnected mechanism. Top: Disconnected mechanism. Left and right: Each of the partitions in the

disconnected mechanism has an associated IS. The nodes of the IS of the whole mechanism (not represented in the figure)

correspond to the Cartesian product of both smaller ISs. For example, the values for nodes u2 and u3 in the state (u2, u3) of the

whole IS are the same that their values at states (u2) and (u3) of the left and right ISs, respectively (states highlighted in pink).

Bottom: αi and γij values for the mechanism.

https://doi.org/10.1371/journal.pcbi.1006154.g012
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Small world mechanisms: Presence of hubs. Fig 15 shows a mechanism where node u3

has the role of a hub connecting all other nodes. Fig 16 shows the integration of the system in

two different states as the value of α3 changes. Observe that in this case ϕ-effect is more sensible

than ϕ-cause to small changes on the strength of the hub connection.

Totally connected mechanisms. We consider now a totally connected mechanism of 5

nodes with all γij values equal to 0.1. Fig 17 shows how integration changes as the αi values

change. It is observed that, even for a totally connected mechanism, integrated information is

a delicate measure which generically does not hold with positive values. In both states, when αi
values are greater to 2, integration (ϕ-effect) is 0.

Fig 13. Integration of the mechanism in Fig 12 as we increase the value of the connections between u2 and u3. Values of ϕ-cause

and ϕ-effect are shown. The resulting ϕ = min(ϕcause, ϕeffect) at each point is the minimum of both values. Top: Integration in state

(u1, u3). Bottom: Integration in state (u2, u3, u4).

https://doi.org/10.1371/journal.pcbi.1006154.g013
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Discussion

Dynamics on complex networks characterized by informational structures

The concept of informational structure is not only related to the understanding of brain pro-

cesses and their functionality but, more broadly, as an inescapable tool when analyzing dynam-

ics in complex networks [19, 20]. For instance, in Theoretical Ecology and Economy related

to the modeling of mutualistic systems [61, 62], a very important subject is the study of the

dependence between the topology of complex networks (lattice systems, unconnected systems,

Fig 14. Integration in a cyclic mechanism. Top: Integration in state (u1, u2, u3). Bottom: Integration in state (u1, u3, u5). Note

that the level of integrated information is not only a consequence of the topology of the mechanism (a lattice one in this case), but

also on the strength of the connecting parameters and the particular state. In case of state (u1, u2, u3) the three nodes with a

positive value are consecutive and in (u1, u3, u5) while u1 and u5 are linked in the cycle, u3 is separated.

https://doi.org/10.1371/journal.pcbi.1006154.g014
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Fig 15. A mechanism with a hub node u3. Values of parameters αi and γij are shown at the right, with α3 = x acting as a variable.

https://doi.org/10.1371/journal.pcbi.1006154.g015

Fig 16. Integration in different states of the hub mechanism of Fig 15 as α3 increases. Top: Integration in state (u1, u3). Bottom:

Integration in state (u1, u2, u3).

https://doi.org/10.1371/journal.pcbi.1006154.g016
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totally connected ones, random ones, “small world” networks) and the observed dynamics on

their sets of solutions. The architecture of biodiversity [63, 64] is thus referred as the way in

which cooperative systems of plants-animals structure their connections in order to get a

mechanism (complex graph) achieving optimal levels in robustness and life abundance.

The nested organization of this kind of complex networks seems to play a key role for higher

biodiversity. However, it is clear that the topology of these networks is not determining all the

future dynamics [65], which seems also to be coupled to other inputs as modularity [66] or the

strength of parameters [67]. This is also a very important task in Neuroscience [54, 68]. Infor-

mational structures associated to phenomena described by dynamics on complex networks

contain all the future options for the evolution of the phenomena, as they possess all the

Fig 17. Integration in a totally connected mechanism. Parameters γij are all equal to 0.1. The evolution of ϕ-cause and ϕ-effect

when αi values go from 0 to 3 is shown for two different states.

https://doi.org/10.1371/journal.pcbi.1006154.g017
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information on the forwards global behaviour of every state of the system and the paths to

arrive into them. Moreover, the continuous dependence on the parameters measuring the

strength of connections and the characterization of the informational structure allow to under-

stand the evolution of the dynamics of the system as a coherent process, whose information is

structured, so giving a comprehension to the appearance of sudden bifurcations [69].

From a dynamical system point of view [44], informational structures introduce several

conceptual novelties in the standard theory. In particular, for phenomena associated with

high dimensional networks or models by partial differential equations [15, 18, 29]. On the one

hand, an informational structure has to be understood as a global attractor at each time, i.e., we

do not reach this compact set as the result of the long time behaviour of solutions, but it exists

as a complex set made by selected solutions which is causing a curvature of the whole phase

space at each time. Because we allow parameters to move in time, the informational structure

also depends on time, so showing a continuous deformation of the phase space by time evolu-

tion. It is a real space-time process explaining all the possible forwards and internal backwards

dynamics. On the other hand, the understanding of attracting networks as informational

objects is also new in this framework, allowing a migration of this subject into Information

Theory. It is remarkable that dynamical systems cover from trivial dynamics, as global conver-

gence to a stationary point, to the much more richer one usually referred as chaotic dynamics

[43, 44, 57] and dynamics of catastrophes [70]. While the first one can be found with total gen-

erality, attractors with chaotic dynamics can be only described in detail in low dimensional

systems.

Note that some of the classical concepts of dynamical systems have been reinterpreted.

In particular, the global attractor it is understood as a set of selected solutions (organized in

invariant sets and their connections in the past and future) which creates the informational

structure. This network, moreover, produces a global transformation of the phase space (the

informational field) enriching every point in the phase space on the crucial information on

possible past states and possible future states. It is the continuous change on time of informa-

tional structures and fields what allows to talk on an informational flow for which we can ana-

lyse the postulates of IIT. Our approach deals with dynamics on a graph for which a global

description of the asymptotic behaviour is posible by means of the existence of a global

attractor. That is, dissipative dynamical system for which a global attractor exists. It is impor-

tant to remark the Fundamental Theorem of Dynamical Systems in [33], inspired in the work

of Conley, because it gives a general characterisation of the phase space by gradient and recur-

rent points, so leading to a global description of the phase space as invariants and connections

among them. This is the really crucial point which allows for a general framework on the kind

of systems to be considered. The Lotka-Volterra cooperative model we consider is for the

applications to IIT, because in this case we have a detailed description of the global attractor,

which allows to make concrete computations for the level of integrated information on it.

Thus, in application to L-V systems, we are considering heteroclinic channels inside the global

attractor. But all the treatment in the paper can be done for every dissipative systems for which

a detailed description of the global attractor is available, i.e., this description has not be to be

restricted to heteroclinic channels coming from L-V models. Gradient dynamics [15, 27, 29,

31] describes the dynamics from heteroclinic connections and associated Lyapunov func-

tionals [29, 32], and it naturally suits into higher order systems including infinite dimensional

phase spaces [27, 34, 35]. Thus, although our description of informational structures associated

to Lotka-Volterra systems is general enough to describe real complex networks, we think the

concept may be also well adapted both for different topologies in the networks and also differ-

ent kind of non-linearities defining the differential equations [51, 52]. Actually, for compari-

son with data and experiments associated for real brain dynamics we certainly need to allow
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much more complex networks as primary mechanisms as well as different kinds of dynamical

rules and nonlinearities. But, in all of them, we expect to find the existence of dynamical infor-

mational structures providing the information on the global evolution of the system. The con-

cise geometrical description of these structures and their continuous dependence on sets of

parameters is a real open problem in the dynamical systems theory.

A continuous approach to integrated information

We have presented a preliminary approach to the notion of integrated information from

informational structures, leading to a continuous framework for a theory inspired by IIT, in

particular in order to define integrated information of a mechanism in a state. The detailed

characterization of informational structures comes from strong theorems in dynamical sys-

tems theory about the characterization of global attractors. The description of causation in an

informational structure by a coherent and continuous flow of integrated information is new in

the literature. Indeed, the definition of TPMs between two equilibria in the IS by the strength

of eigenvalues and direction of eigenvectors associated to these and intermediate equilibria

produces a global analysis of the level of information contained in a particular IS. The same

procedure for partitions of the associated mechanism allows a preliminary measure for inte-

gration. Moreover, the continuous dependence of the structure of ISs on parameters also

opens the door to the analysis to sudden bifurcations, from an intrinsic point of view, for criti-

cal values of the parameters. It seems also very clear the close dependence between the topol-

ogy of a mechanism, the actual value of the parameters and the current state with respect to its

level of integrated information, so pointing for optimality for a “small world” configuration of

the brain [71].

Global brain dynamics from informational structures and fields

With respect to global brain dynamics, we think the concept of informational structures and

informational fields could serve as the abstract objects to describe functionality and global

observed dynamics now described by other concepts and methodologies as multistability [6]

or metastability [72, 73]. In [53] the notion of ghost attractors is used, which would seem to

suit into our informational fields and its bifurcations under the movement of the coupling

parameter in the connectivity matrix. We think it could also serve as a valuable tool in line of

the perspectives developed in [5]. In [54] a detailed study of different attractor repertoires is

studied for a global brain network for which a (local, global and dynamic) Hopfield model is

defined. Note that, depending on parameters, the authors observe the bifurcation of dozens or

even hundreds of stationary hyperbolic fixed points, which basis of attraction and stability

properties has to be analyzed in an heuristic way by simulation of thousands of realizations

related to initial conditions. The comparison with empirical data occurs at the edge of multi-

stability. All of these phenomena could naturally enter into a broader global approach, by the

study of an abstract formulation of their associated informational fields, creating a network of

attractors and their connections, and their dependence on parameters to better understand

transitions and bifurcations of structures. Moreover, the continuous approach for ISs possibly

leads, if we are able to fit them to real data of brain activity, to a useful tool to analyze the func-

tional connectivity dynamics [74].

Limitations and future work

The ability to mathematically represent human consciousness can help to understand the

nature of conscious processes in human mind, and the dynamical systems approach may

indeed be also a correct tool to start this trip towards a complementary mathematical approach
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to consciousness. Indeed, informational structures allow to associate the processes underlying

consciousness to a huge functional and changing set of continuous flow structures. However,

we think we are still far to the aim of describing a conscious experience with the actual devel-

opment, which will be continued in the near future. We have introduced the postulates for IIT

associated to ISs, and, in particular, we have developed a first approach for definitions of infor-

mation and integration, leading to the introduction of measures as cei (cause-effect informa-

tion) or ϕ (integrated information of a mechanism).

However, in order to make this approximation comparable to the latest published IIT ver-

sion for discrete dynamical systems of this theory [21], a series of additional developments are

required: In IIT 3.0 the exclusion postulate is applied to the causes and effects of the individual

mechanisms, so that only the purview that generates the maximum value of integrated infor-

mation intrinsically exists as the core cause (or core effect) of the candidate mechanism that

generates a concept. In fact, a concept is defined as a mechanism in a state that specifies a maxi-

mally irreducible cause and effect, the core cause and the core effect, and both specify what the

concept is about. The core cause (or effect) can be any set of elements, but only the set that

generates the maximum value of integrated information in the past (or future) exists intrinsi-

cally as such. We can see the present work as a simplified particular case in which the candi-

dates to core cause and effect, the candidate set to be a concept and the complete system

match. But in general they will be different sets. In addition, elements outside the candidate set

should be treated as background conditions. On the other hand, the partitions in this work iso-

late one part of the system from another for any instant of time. However, in line with IIT 3.0,

partitions should be performed in this way: two consecutive time steps are considered (past

and present or present and future) and the elements of the candidate mechanism in the present

are joined to the elements of the candidate to core cause in the past (or core effect in the future)

to form a set that will be separated in two, so that in each of the parts there may be elements of

the two time steps or not. It is also necessary to distinguish between mechanisms for which the

value of ϕ for each concept or quale sensu stricto is calculated, and systems of mechanisms for

which F for each complex or quale sensu lato is calculated. For the later a conceptual structure

or constellation of concepts is defined as the set of all the concepts generated by a system of

mechanisms in a state. It is necessary to specify how the conceptual information (CI) and the

integrated conceptual information F of that system and its corresponding constellation of con-

cepts are calculated. To this aim an extended version of the earth mover’s distance (EMD) is

used. When the exclusion postulate is applied to systems of mechanisms, the complexes are

defined as maximum irreducible conceptual structures (MICS), that is, local maxima of inte-

grated conceptual information. To do this we should use unidirectional partitions with which

to verify that integrated conceptual structures are formed and see if apart from the major com-

plex, and in a non-overlapping way, minor complexes are formed. We are now working in all

of these items, and hope, with a much higher computational complexity, a refinement of the

results, also in relation to the topology of mechanisms and the integrated information.

Note that the aim to relate (informational) fields and matter by a mathematical treatment is

not restricted to our approach or even IIT theory. It is remarkable in this line of research the

description of central neuronal systems (and more generically, biological systems) as a gauge

theory where a lagrangian approach to model motion is the crucial adopted formalism ([75,

76]). Our techniques are different, since we move into a more classical approach given by

dynamical systems related to differential equations. In this way we take advantage of the huge

theory on the qualitative analysis of differential equations. In particular, the curvature in the

phase space produced by the informational field, closely related to the local stability of station-

ary points given by their associated eigenvalues, is translated into dynamical properties in the

physical space, as a gauge theory approach. But the informational field, in our case, is, for each
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time, a global transformation of the phase space. This characterisation of an energy landscape

(the phase space) evolves continuously in time. It remains an interesting and outstanding chal-

lenge to relate gauge theoretic treatments based upon information geometry (for example, the

free energy principle) ([76], S3 appendix, or [77]) to our dynamical formulation; however,

their common focus on information geometry (and manifold curvature) may admit some con-

vergence in the future. This framework may provide a promising and fruitful perspective.

Thus, our approach provides many open questions and possibilities for future work. Three

key problems arise at this stage, showing the necessity for a really interdisciplinary work in the

area: the necessity to define the level of information of a global attractor (a totally new question

in dynamical systems’ theory), which notion of information better suits to our purposes, and

how this concept of information is related to causality [78] on past and future events. We need

to continue the development of the dynamical systems version of IIT 3.0, finding the intrinsic

representation of cause-effect repertoires and a measure to assess the quantity and quality of

integrated information encoded in the informational structure. We also need to represent the

evolution in continuous time of this information, and to find a way to measure the strength of

attraction and repulsion through measure and dimension of stable and unstable sets and their

intersections. Finally, use this notion to define the measure of integrated information compli-

ant with IIT’s Fmax and describe the dynamics of this measure, by also creating computer

codes for the informational structures evolution.

Informational structures are really grounded in the topology of their associated mecha-

nisms. In a very natural way, we can combine the (continuous) relation between structural

networks and informational structures. A huge further research is probably deserved on this

subject, not only in neuroscience, but in the huge area of dynamics on complex networks. This

approach also opens the door to the development of a theory on the dependence of the struc-

ture of informational structures on parameters and on the topology on the complex graphs

supporting them. To this aim, we need a theory on bifurcations of invariants and a theory on

bifurcation of attractors, both in the autonomous and non-autonomous cases.

In order to the comparison of this approach with real data, we need to develop global mod-

els for brain dynamics where the functionality of informational structures and informational

fields can be tested. We will need to use the global models of brain dynamics [4, 5, 13, 74, 79],

allowing to the use of a brain simulator [80] which correlates with functional networks, and

functional connectivity dynamics as developed from real data on human brains.
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tillo, Fernando Soler-Toscano.

References
1. Mortveit HS, Reidys CM. An introduction to sequential dynamical systems. Universitext. New York:

Springer Verlag; 2008.

2. Osipenko G. Dynamical Systems, Graphs, and Algorithms. Lecture Notes in Mathematics 1889. Berlin:

Springer-Verlag; 2007.

3. Cabral J, Kringelbachb ML, Deco G. Exploring the network dynamics underlying brain activity during

rest. Progress in Neurobiology. 2014; 114: 102–131. https://doi.org/10.1016/j.pneurobio.2013.12.005

PMID: 24389385

4. Deco G, Jirsa VK, McIntosh AR, Sporns O, Kotter R. Key role of coupling, delay, and noise in resting

brain fluctuations. Proceedings of the National Academy of Sciences of the USA. 2009; 106: 10302–

10307. https://doi.org/10.1073/pnas.0901831106 PMID: 19497858

5. Deco G, Tononi G, Boly M, Kringelbach ML. Rethinking segregation and integration: contributions of

whole-brain modelling. Nature Reviews Neuroscience. 2015; 16(7): 430–439. https://doi.org/10.1038/

nrn3963 PMID: 26081790

6. Kelso JA. Multistability and metastability: understanding dynamic coordination in the brain. Philosophi-

cal Transactions of the Royal Society of London: Series B, Biological Sciences. 2012; 367: 906–918.

https://doi.org/10.1098/rstb.2011.0351

7. Hirsch MW, Smale S, Devaney RL. Differential Equations, Dynamical Systems, and an Introduction to

Chaos, third edition. Oxford: Academic Press; 2013.

8. Sandefur GT. Discrete Dynamical Systems: Theory and Applications. New York: Clarendon Press;

1990.

9. Cammoun L, Gigandet X, Meskaldji D, Thiran JP, Sporns O, Do KD, Maeder P, Meuli R, Hagmann P.

Mapping the human connectome at multiple scales with diffusion spectrum MRI. Journal of Neurosci-

ence Methods. 2012; 203: 386–397. https://doi.org/10.1016/j.jneumeth.2011.09.031 PMID: 22001222

10. Collins DL, Zijdenbos AP, Kollokian V, Sled JG, Kabani NJ, Holmes CJ, Evans AC. Design and con-

struction of a realistic digital brain phantom. IEEE Transactions on Medical Imagin. 1998; 17: 463–468.

https://doi.org/10.1109/42.712135

11. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot

M. (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcel-

lation of the MNI MRI single-subject brain. NeuroImage. 2002; 15: 273–289.

12. Kotter R. Online retrieval, processing, and visualization of primate connectivity data from the CoCoMac

database. Neuroinformatics. 2004; 2: 127–144. https://doi.org/10.1385/NI:2:2:127 PMID: 15319511

13. Ghosh A, Rho Y, McIntosh AR, Kotter R, Jirsa VK. Cortical network dynamics with time delays reveals

functional connectivity in the resting brain. Cognitive Neurodynamics. 2008; 2: 115–120. https://doi.org/

10.1007/s11571-008-9044-2 PMID: 19003478

14. Honey CJ, Kotter R, Breakspear M, Sporns O. Network structure of cerebral cortex shapes functional

connectivity on multiple time scales. Proceedings of the National Academy of Sciences of the USA.

2007; 104: 10240–10245. https://doi.org/10.1073/pnas.0701519104 PMID: 17548818

15. Hale JK. Asymptotic Behavior of Dissipative Systems. Math. Surveys and Monographs. Providence:

Amer. Math. Soc.; 1988.

16. Ladyzhenskaya OA. Attractors for semigroups and evolution equations. Cambridge University Press,

Cambridge, England; 1991.

17. Robinson JC. Infinite-Dimensional Dynamical Systems. Cambridge: Cambridge University Press;

2001.

Informational structures: A dynamical system approach for integrated information

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006154 September 13, 2018 30 / 33

https://doi.org/10.1016/j.pneurobio.2013.12.005
http://www.ncbi.nlm.nih.gov/pubmed/24389385
https://doi.org/10.1073/pnas.0901831106
http://www.ncbi.nlm.nih.gov/pubmed/19497858
https://doi.org/10.1038/nrn3963
https://doi.org/10.1038/nrn3963
http://www.ncbi.nlm.nih.gov/pubmed/26081790
https://doi.org/10.1098/rstb.2011.0351
https://doi.org/10.1016/j.jneumeth.2011.09.031
http://www.ncbi.nlm.nih.gov/pubmed/22001222
https://doi.org/10.1109/42.712135
https://doi.org/10.1385/NI:2:2:127
http://www.ncbi.nlm.nih.gov/pubmed/15319511
https://doi.org/10.1007/s11571-008-9044-2
https://doi.org/10.1007/s11571-008-9044-2
http://www.ncbi.nlm.nih.gov/pubmed/19003478
https://doi.org/10.1073/pnas.0701519104
http://www.ncbi.nlm.nih.gov/pubmed/17548818
https://doi.org/10.1371/journal.pcbi.1006154


18. Temam R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Berlin: Springer-Ver-

lag; 1988.
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