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Abstract

In this work, a new formalism, the Transfer to the Continuum, is developed
for the description of (p, 2p) and (p, pn) reactions. The motivation behind
its development lies in a renewed interest in the nuclear physics community
on this kind of reactions, which has materialized in recent experimental
campaigns devoted to them. Apart from the marked spectroscopic utility of
nucleon removal (p, pN) reactions, one of the main reasons behind this revival
of such reactions can be found in the open problem of the asymmetry depen-
dence of the “quenching factors” which resulted from systematic campaigns
of nucleon knockout with heavy targets at medium energies performed in
the late 90s and early 2000s. The contested results found for these reactions
claimed for clearer reactions with better-understood mechanisms, such as
(p, pN) reactions.

However, the traditional description of (p, pN) use similar approxima-
tions to those used in the description of heavy-target nucleon knockout. A
different treatment, avoiding these approximations, is desirable to obtain
robust results with which to tackle this open problem. Such a treatment
is developed in this work, extending the coupled-channel methods used at
low energies, for which the nuclear physics group at the University of Seville
has developed a renowned expertise. It provides not only a robust stan-
dalone method to study (p, pN) reactions but also a testing ground for the
assumptions on the reaction mechanism used in other descriptions of (p, pN)

processes.

A description of the state of the art on (p, pN) reactions as well as on the
“quenching-factor” problem is given in Chapter 1, as well as a brief descrip-
tion of other methods used to describe these reactions. The new Transfer to
the Continuum formalism is described in Chapter 2, devoting special interest
to the modifications that must be introduced in standard coupled-channel
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formalisms and codes in order to properly describe (p, pN) reactions, which
mostly relate to the inclusion of relativistic effects. Chapter 3 presents some
benchmark calculations performed with other reaction theories used in the
literature to describe (p, pN) reactions, which serve both as a test of the
new formalism and as an exploration on the assumptions included in it as
well as the compared reaction models. Chapter 4 presents comparisons to
experimental results, with the main interest being the asymmetry depen-
dence of the obtained “quenching factors”, which is studied systematically
for all recently published data on (p, pN) reactions. Apart from this main
topic, momentum distributions are presented as a test of the adequacy of
the treatment of the reactions. Reactions at lower energies are also studied
to showcase the applicability of the method at those low energies. Finally,
Chapter 5 extends the formalism to reactions with Borromean nuclei, which
allow for the study of unbound systems, exploring the interesting but elusive
nucleon drip-lines. Results of the study of the 11Li(p, pn)10Li reaction are
presented, showing the necessity of a solid reaction formalism for the obten-
tion of reliable information on the structure of unbound nuclei such as 10Li.
The conclusions of this work are summarized in Chapter 6.
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Chapter 1

Introduction

Every new beginning comes from some
other beginning’s end

Seneca

The present work focuses on the development of a new reaction formalism
for the analysis of recent (p, pn) and (p, 2p) reactions performed in inverse
kinematics on stable and unstable nuclei. In this introductory chapter, a
historical review of (p, pn) and (p, 2p) reactions will be presented, along with
other closely related nucleon knockout reactions, such as (e, e′p), highlighting
the nuclear properties that can be extracted from them and the nuclear
structure models used to predict them. The closely-related open question
of the dependence of the “quenching factors” on proton-neutron asymmetry
will also be introduced. Finally, other formalisms used in the literature for
the study of (p, pn) and (p, 2p) will be briefly described.

1.1 Background

The atomic nucleus is an exquisitely complex quantal system formed by a
mesoscopic number of strongly-interacting fermions bound together by the
strong nuclear force, but which also feel strongly the electromagnetic and
weak nuclear forces. As such, its description escapes the perturbative and
statistical tools that are so fruitful in other fields of physics.

Given its complexity, it is rather remarkable that the rather simple nu-
clear shell model [1], developed in the 40s and 50s by several physicists, such

1
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as E. P. Wigner, M. G. Mayer and H. D. Jensen, gives a good prediction for a
large number of nuclei of nuclear properties such as the angular momentum
and parity of the ground and excited states, as well as their binding energies.
Perhaps, the most notorious and defining prediction of the nuclear shell
model is the existence of nuclear “magic numbers”: numbers of proton and
neutrons with deeper binding energies than those in their surroundings.

In its simplest version, the Independent Particle Model (IPM), the nu-
clear shell model describes nucleons as independent particles embedded in
a mean field, which populate the energy levels of this field following Pauli
exclusion principle. As such, magic numbers indicate the number of nucleons
which fill groups of levels which are relatively close in energy (See Fig. 1.1)
and the occupancy of each level is determined by the angular momentum j

associated to that level, leading to an occupation number of (2j + 1). For
more sophisticated models, the occupation number of each level is no longer
simply (2j + 1) and is expressed through the spectroscopic factor (SF ) of
the level. We leave a more precise definition of SF for Chapter 2.

This mean-field approach is not unlike the one used to describe the be-
haviour of electrons in the atom, but is more questionable in the nuclear
case. In the nucleus, the particles which generate the mean field are also
those which populate the energy levels. As such, it is their interactions
among themselves the ones generating the mean field, which at a first glance
seems antithetical with the assumption that they behave independently. An
assumption must be made that each nucleon interacts with the rest of the
nucleus through an average interaction, the mean field, without being too
sensitive to the particular properties of the other nucleons.

Such an assumption is rather questionable for the atomic nucleus, spe-
cially given the strength of the nucleon-nucleon interaction at short distances.
Therefore, it needs to be tested against experimental data to assess its valid-
ity. Given the IPM deals with independent particles, the best features of the
nucleus to be related to it are the single-particle properties, those describing
the behaviour of only one of the nucleons in the nucleus, usually the most
loosely bound, which is experimentally more easily explored.
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Figure 1.1: Sequence of single-particle orbitals. Figure from [2].

1.1.1 Nucleon removal reactions: (e, e′p) and (p, 2p)

Since the very discovery of the atomic nucleus by the experiment conducted
by Geiger and Marsden in 1909, nuclear reactions have proven to be an
excellent probe to test the properties of the nucleus. For single-particle
properties, this keeps being the case, with nucleon removal reactions being
the tool of choice for their study for several decades. In nucleon removal
reactions a projectile impinges in the nucleus of interest (with A nucleons)
and removes one of the nucleons of the nucleus, leaving a residual nucleus
(core) from whose properties (energy and momentum) information about the
removed nucleon can be inferred.

This is best shown assuming quasi-free scattering (QFS). This is an
approximation in which the projectile is assumed to interact only with the
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removed nucleon, with both projectile and nucleon separating from the core
without modifying its state of motion. With this assumption, we can envision
the target nucleus A as being composed by the struck nucleon N and the
core C, A = N + C. In the laboratory system, where A is at rest, if N
has a momentum pN “inside” A, core C must have the opposite momentum
pC = −pN to have A be at rest. Therefore, after the reaction, since C does
not change its state of motion, by measuring pC , we can recover pN , the
momentum of the nucleon inside A, so the momentum distribution of the
outgoing core can be related to the wavefunction of the removed nucleon in
momentum space. Fig. 1.2 shows a schematics of the process.

Figure 1.2: Description of the (p, pN) process in the quasi-free picture. Note
that the momentum of the core C is not altered during the reaction.

From this momentum distribution (or any observable that can be related
to it through conservation of energy and momentum), information can be
extracted from experimental data that can be compared to nuclear structure
models through a single-particle reaction calculation. The single-particle
prediction is computed assuming that exactly one nucleon is removed from a
definite nuclear level. The shape of the prediction as a function of angle,
energy or momentum is usually very sensitive to the quantum numbers
defining the level, in particular its orbital angular momentum, as can be
seen in Fig. 1.3 for the core momentum distributions of a (p, pn) reaction.

Within the simple assumption that the reaction takes place by removing
the nucleon from the corresponding level without changing the rest of the
nucleus, the cross section for the removal will be proportional to the occu-
pation number of the level (loosely speaking, the spectroscopic factor SF ),
which can then be extracted as the ratio between the total cross section and
the single-particle one:

SF =
σexp
σsp

. (1.1)
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Figure 1.3: Single-particle transversal (top) and longitudinal (bottom) mo-
mentum distributions for 23O(p, pn)22O computed for the removal of a neu-
tron from different nuclear levels. Figure from [3].

Let us highlight here the multiple assumptions involved in this formula: the
reaction is assumed to remove a nucleon only from the least bound level,
without affecting the rest of the nucleus, whose structure does not influence
the reaction, except by setting the number of nucleons in the least-bound
level, from which they may be removed.

Of course, the QFS picture described above for nucleon removal reactions
is too simplistic and flat-out inconsistent, since it assumes no interaction
between the outgoing N and C, although this interaction has to exist to
bind them into A in the first place. However, it indicates which features
an experiment must show in order for information on the removed nucleon
to be clearly extracted. The main of this features is the minimization of
the interaction between the projectile and the core, while keeping a strong
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interaction between projectile and nucleon. This criterion suggests the use
of light projectiles, whose interactions with the core are expected to be less
intense than those of heavier projectiles.

Another feature that should be required is the minimization of the inter-
action between the outgoing nucleon and the core. This favours experiments
with a beam energy of hundreds of MeV, for which the nucleon-nucleon inter-
action presents a minimum, as can be seen in Fig. 1.4. At these energies, the
mean free path of the outgoing nucleon in nuclear matter is maximal, so the
effects of its interaction with the core should be minimized. This condition
also imposes a degree of peripherality to the reaction, since nucleons removed
from the interior of the nucleus will have to cover a larger distance on their
“way out” of the nucleus, which make nucleon-core interactions more likely.

These features make (e, e′p) and (p, pN) (N being either a proton or a
neutron) reactions at hundreds of MeV an excellent probe to study single-
particle of nuclei. (e, e′p) reactions present a smaller interaction between
electron and core (smaller distortion), since only the electromagnetic inter-
action will take place between them, but at the same time the interaction
between electron and proton is small, so the overall cross section will be
reduced. As such, (e, e′p) reactions require beams with high luminosity which
can only be achieved in reactions with stable targets.

On the other hand, (p, pN) reactions have stronger distortion effects, but
the strong nuclear interaction between the incoming proton and the removed
nucleon provides a larger cross section.

In cases with high enough statistics, distortion effects can be further
reduced by performing exclusive measurements, keeping fixed the angles
and/or energies of the outgoing projectile and nucleon, selecting a geom-
etry for which the QFS condition is best fulfilled. We note that, if both
projectile and removed nucleon are detected, it is not necessary to measure
the core, since its momentum and energy are conditioned by conservation
laws. Of course, the detection of the core serves as a validation of the reaction
mechanism.

From as early as the 1960s, exclusive measurements of (e, e′p) [5] and
(p, 2p) [6] reactions have been performed to extract information on single-
particle properties of stable nuclei, with experiments still being carried out
to this day, with a special focus on nucleon removal from deep levels [7].

In the comparison of the results from these experiments to the IPM, it
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Figure 1.4: Nucleon-nucleon cross section as a function of projectile energy.
Notice the minimum at hundreds of MeV. Figure taken from [4].

was found that the model was successful in predicting the ordering of nuclear
levels. However, the occupation of the levels was found to be smaller than
the (2j+ 1) value predicted by the IPM by 30-40% in a systematic study for
(e, e′p) reactions [8] (see Fig. 1.5), leading to a “quenching factor” (the ratio
between experimental and theoretical cross sections, Rs =

σexp
σth

) of 0.6-0.7.
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Figure 1.5: “Quenching factors” compared to IPM as a function of the nucleus
mass, obtained from (e, e′p) reactions [8]. Figure taken from [9].

1.1.2 Nucleon-nucleon correlations and nuclear structure
models

This “quenching” of the occupation numbers when compared to the IPM
has been consistently reproduced in other “single-nucleon” reactions, such as
transfer [10], where the nucleon is transferred from the projectile to a bound
state of the target or vice versa, and (p, 2p) reactions [7, 11], although the
amount of this quenching varies depending on the reaction and the nucleus
studied.

Given the rather naïf picture of the IPM, these discrepancies with ex-
periments should come as no surprise and are a clear indication of beyond-
mean-field effects in nuclei. From these effects, those behind the depletion
of the spectroscopic factors are believed to be mostly related to nucleon-
nucleon correlations, appearing through the interaction between a pair of
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nucleons. Nucleon-nucleon correlations are usually separated in short-range
correlations (SRC) and long-range correlations (LRC). These correlations
couple different single-particle levels, reducing the occupancy of the levels
below the Fermi energy (the energy of the least-bound nucleon in the nu-
cleus), which is transferred to energies over the Fermi energy. This effect is
illustrated in Fig. 1.6 for nuclear matter and for 208Pb. It must be noted
that in this figure are presented both level occupancy and the related quasi-
hole strength, which is better related to nucleon removal reactions in systems
with correlations. Further information can be found in [12].

Figure 1.6: Occupation probability (n(ε)) and quasi-hole strength (Z(ε))
for nuclear matter and 208Pb. The transfer of quasi-hole strength from
levels below the Fermi energy εF to levels above it due to nucleon-nucleon
correlations is apparent. Figure taken from [13].

SRC are believed to originate in the strong tensor term and repulsive core
of the nucleon-nucleon interaction, coupling states with low energy to states
with high energy, and are believed to account for ∼15% of the “quenching’
of the spectroscopic factors. LRC couple single-particle motion to low-lying
states of the nucleus, which appear due to collective motion of the nucleons in
the nucleus resulting in effects such as nuclear deformation or superfluidity,
and are assumed to provide another ∼20% reduction in the single-particle
spectroscopic factors, resulting in a total reduction of ∼35%, as found in
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(e, e′p) experiments [9].

Nuclear structure models including at least some of these effects have
been developed to better describe the properties of nuclei. A list of various
nuclear structure models, which is not meant to be exhaustive nor compre-
hensive, is presented in the following:

• Interacting Shell Model (ISM): An extension of the IPM, keeping
the shell model scheme, is the inclusion of a residual interaction which
couples different IPM levels, resulting in a Hamiltonian whose diagonal-
ization gives the energy of the ground and excited states, whose asso-
ciated eigenvectors are a combination of different single-particle states,
such that the coefficient of the single-particle state can be related to
its spectroscopic factor. The diagonalization of the Hamiltonian is
usually performed in a truncated basis space (the valence space) from
which the nucleons from deep shells are excluded, forming an inert
core. The empty levels with energies far above the Fermi energy are
also excluded, assuming that they couple weakly to occupied levels. As
such, the valence space usually only involves occupied and empty levels
around the Fermi energy (εF ). This truncation of the space requires
the use of an effective nucleon-nucleon interaction to take into account
the effect of the excluded channels, which is adjusted to reproduce the
properties of nuclei in the region of interest. Due to the exclusion of
the high-energy levels, this prescription is expected to treat worse SRC
(which can couple these excluded states) than LRC. Many effective
interactions have been generated to produce predictions for energy
levels and spectroscopic factors for a wide variety of nuclei [14–16].
This model has become the standard tool for calculating spectroscopic
factors, thanks to its early development [17] and the accesibility of
computer codes which implement it, such as oxbash [18] or antoine

[19], so much that it is now usually referred to simply as shell model
(SM).

• Ab initio No-Core Shell Model (NCSM): The use of a truncated
valence space in SM introduces a rather strong approximation in the
description of nuclei and leads to serious problems when states out-
side the valence space interfere strongly with those included in the
calculation. As such, an improvement on SM which has been made



1.1. Background 11

available thanks to the increased computing capabilities of modern
computers is the inclusion of all nucleons in the valence space, as well
as extending the valence space in energy to include the relevant high-
energy states, in the No-Core Shell Model (NCSM). This model is based
on realistic nucleon-nucleon which reproduce two-nucleon phase-shifts
up to an energy of ∼350 MeV. These interactions usually present strong
repulsive cores, so they have to be renormalized so that the phase space
does not become too large [20, 21]. Three-body forces are also included
in the calculation. The Hamiltonian generated by the two- and three-
body forces among the A nucleons in the system is diagonalized in a
harmonic oscillator basis, to preserve translational invariance, though
this basis yields incorrect behaviour in the tails of the wavefunction.
This method is able to produce nuclear properties from nucleon-nucleon
interactions without introducing extra approximations. However it is
extremely computationally intensive, so results can only be produced
for nuclei with A . 16, without introducing some approximation, such
as an inert core [22].

• Self-Consistent Green Function (SCGF): In the Self-Consistent
Green Function method (SCGF), one aims to obtain the single-particle
propagator gαβ(ω), from which the occupancy of a certain level can be
obtained:

nα =

∫ EA0 −E
A−1
0

−∞
dω

1

π
Im(gαα). (1.2)

The propagator can be obtained from an equation such as

gαβ(ω) = g
(0)
αβ (ω) +

∑
γδ

g(0)
αγ (ω)Σ∗γδ(ω)gδβ(ω), (1.3)

where g(0)
αβ (ω) is obtained from a Hartree-Fock IPM calculation and

Σ∗γδ(ω), usually called the self-energy, is produced from g
(0)
αβ (ω) and

includes coupling between single-particle states and high-energy states
through SRC and between single-particle states and low-lying collective
states through LRC. An iterative procedure can be employed where
the resulting gαβ(ω) is taken as an input to produce Σ∗γδ(ω) and solve
Eq. 1.3 until convergence. The results can be proven to be independent
from the starting propagator g(0)

αβ (ω). Calculations have been produced
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to describe (e, e′p) experiments [9] and to produce spectroscopic factors
for various oxygen isotopes [23].

• Gamow Shell Model: For nuclei near the evaporation lines, the effect
of the continuum on nuclear structure becomes increasingly important.
However, the harmonic oscillator basis commonly used in shell model
calculations is not able to describe the continuum properly. For these
cases, a better description can be obtained by working with Berggren
states, which include bound states and resonances as well as the non-
resonant continuum, discretized along a contour surrounding the res-
onant states in the complex energy plane. As in the Interacting Shell
Model case, in the Gamow Shell Model, a valence space must be de-
fined and an effective nucleon-nucleon interaction used through which
to generate the matrix elements which will couple different Berggren
states. Gamow Shell Model has been used to compute the structure of
nuclei with different levels of exoticity, such as 18O or 6He [24].

• Nilsson model: The description of collective effects by the shell
model, whose main degrees of freedom are single-particle, requires a
large number of states, which is computationally heavy and sometimes
infeasible. However, the collective effect of nuclear deformation (nu-
clei presenting non-spherical shapes) is commonplace in medium-heavy
nuclei and found even for some lighter nuclei such as 10Be. For these
nuclei, the spherical harmonic oscillator basis is not the best one to
describe the nucleus. Instead, the eigenstates of a Hamiltonian such
as

H = T+
1

2

(
ω2
‖z

2 + ω2
⊥(x2 + y2) + vs.o.~ω0(l · s) + vll(l

2 − 1

2
N(N + 3))

)
(1.4)

are more suitable for such a description. For these states the relevant
quantum numbers are [N,n‖,Λ,Ω], with N the principal quantum
number, as in the harmonic oscillator, n‖ the number of quanta cor-
responding to the parallel direction z and Λ and Ω the projection of
the orbital and total angular momenta along z. These states separate
from the spherical values with an increasing deformation length δ:

δ = 3
ω⊥ − ω‖
2ω⊥ + ω‖

, (1.5)
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as can be seen in Fig. 1.7. We note that these states are not rota-
tionally invariant. The restoration of this symmetry results in the
different states developing a rotational band. The Nilsson model has
shown remarkable success in reproducing the spectra of medium-heavy
deformed nuclei, and it has been applied to more exotic nuclei, such
as halo nuclei with a deformed core, like 11Be [25] or in the so-called
island of inversion [26].

Figure 1.7: Spectrum of single-particle levels as a function of the deformation
length δ. Levels are labelled as [N,n‖,Λ,Ω]. Figure taken from [27].

These structure models have been used extensively to compare to ex-
perimental data, in particular the phenomenological shell model, due to
being developed earlier as well as being computationally less demanding,
and in general it was found that, although SM produced spectroscopic factors



14 Chapter 1. Introduction

which were smaller than those from IPM, some additional quenching was still
required to reproduce experimental findings, which has been understood as
the effect of the correlations that are not included in SM, in particular SRC.

1.1.3 Experiments on exotic beams: Nucleon knockout with
heavy targets

With the advent of radioactive beam facilities, more exotic nuclei became
accessible to experiment. However, reactions such as (e, e′p) are no longer
available with exotic unstable nuclei, for two reasons: first, exotic nuclei are
produced as part of a secondary beam after the collision of a primary stable
beam with some target. As such, the luminosity for these exotic beams is
rather small. This small luminosity, coupled to the rather small (e, e′p) cross
sections, makes the statistics for these reactions on exotic beams too small for
reliable information to be extracted from them. Secondly, due to the short
lifetimes, exotic nuclei cannot be used as targets since they would decay
during the preparation of the target. Instead they must be used as beams,
making difficult the use of electrons as probes, since this would require the
collision of the beam of exotic nuclei and a beam of electrons.

Transfer reactions are also difficult to study systematically, since they
depend on stringent matching conditions of energy and angular momentum,
which are best fulfilled at energies of tens of MeV. The exotic beams are pro-
duced from primary beams at energies of hundreds of MeV, so to reduce their
energy to the range where transfer reactions have significant cross sections
requires a significant moderation of the beam which reduces significantly the
luminosity of the beam. As such, transfer experiments on exotic beams are
difficult, although some experiments have been performed [28].

Since the 1990s, one of the most successful probes for the study of exotic
beams has been nucleon knockout with composite targets (heavier than
p), such as 12C and 9Be. In these reactions, as with (e, e′p) and (p, 2p)

reactions, the projectile nucleus A collides with the target so that one of its
nucleons is removed, and only a residual core with A− 1 nucleons remains.
These experiments are inclusive in nature, so that only the residual core is
measured, its momentum distribution being the main observable of interest,
since, as mentioned in Sec. 1.1.1 it can be used to infer relevant information
of the removed nucleon. These reactions present high cross section and are
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highly peripheral, due to the highly absorptive nature of the targets at the
relevant energies (∼ 100 MeV). This peripherality allows for the use of some
assumptions to simplify the description of the reaction mechanism. The
most extended formalism to describe knockout reactions [29, 30] relies on two
such assumptions: the sudden approximation and the eikonal approximation.
Assuming that the projectile nucleus is composed of two distinct subsystems,
the removed nucleon N and the residual core C, the sudden approximation
assumes that the knockout reaction takes place by a collision between the
nucleon N and the target in such a short time that the state of core C is not
modified by the reaction. This approximation is not unlike the description
of (e, e′p) and (p, 2p) reactions in Sec. 1.1.1. The eikonal approximation
is a high-energy approximation that assumes that the projectile, and its
constituents N and C follow straight-line trajectories during the reaction.
Such an approximation is valid for high energies and light targets, since
Coulomb repulsion may alter the trajectory of the projectile, and assumes
a small distortive effect due to the projectile-target interaction, or, at least,
that a strong interaction between projectile and target leads to absorption
so that processes with strong projectile-target interaction do not contribute
to the cross section.

With these approximations, the cross section leading to the emission
of core C can be expressed as the sum of two incoherent contributions,
the stripping contribution and the diffractive contribution. The stripping
contribution corresponds to processes in which the nucleon N interacts non-
elastically with the target while the core C “survives” and is detected. For a
projectile A with spin I, it can be expressed as:

σstr =
1

2I + 1

∑
M

∫
db
〈
φcIM |(1− |Sn|2)|Sc|2|φcIM

〉
, (1.6)

where b is the impact parameter, φcIM is the wave function of the knocked out
nucleon leaving the core in a certain state normalized to 1 (A more accurate
description of this function will be presented in Chapter 2) and Sn,Sc are the
S-matrices of the nucleon-target and core-target systems, computed for each
impact parameter and assuming eikonal trajectories for both. In a hand-
wavy description, Sn,Sc relate to the probability of survival of nucleon and
core, while the integral over φcIM gives the probability of finding the nucleon
at a certain impact parameter to be knocked out.
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The diffractive contribution is related to the elastic breakup of the pro-
jectile, corresponding to processes where both nucleon and core “survive”
and leave the target in its ground state. It can also be computed with the
same ingredients as the stripping contribution:

σdiff =
1

2I + 1

∫
db

∑
M

〈
φcIM ||SnSc|2|φcIM

〉
−

∑
M,M ′,i′

|〈φcI′M ′(i)|SnSc|φcIM 〉|
2

 ,
(1.7)

which can be understood as the probability of both core and nucleon sur-
viving (first term) subtracting the probability of them leaving in any of the
bound states i of the projectile, since that would not result in the detection
of the core. Both contribution are summed incoherently, leading to the
single-particle cross section.

Systematic studies of nucleon knockout reactions on stable and exotic nu-
clei during the 90s and 2000s showed a remarkable tendency for the “quench-
ing” of the spectroscopic factors, which were found to be markedly dependent
on the asymmetry of the studied nucleus [31, 32], as is shown in Fig. 1.8. In
it the x-axis corresponds to ∆S, the difference between the separation energy
of the species that was removed Sp(n) and the separation energy of the other
nuclear species Sn(p). Therefore, for proton knockout ∆S = Sp−Sn while for
neutron knockout ∆S = Sn−Sp. Since the separation energy of neutrons or
protons is related to their relative abundance in the nucleus (excess neutrons
or protons are less bound), more symmetric nuclei are situated near ∆S = 0,
while more asymmetric nuclei move to large |∆S|, going to negative values
when the less bound species is removed and to positive values when the more
bound species is.

As can be seen in the figure, despite a sizeable dispersion in the values of
the “quenching factors” Rs, a clear linear dependence is found between them
and ∆S, with the least bound nuclei in asymmetric species showing Rs close
to 1 while the most bound ones show Rs close to 0.2, showing a loss of single-
particle strength of 70-80%. We note that one must refrain from comparing
this figure to Fig. 1.5 due to the x-axis representing a different value, in
Fig. 1.5 being the nuclear mass and in Fig. 1.8 being the separation energy
asymmetry ∆S. In fact, all results from Fig. 1.5 would be concentrated near
0, since they are all referring to stable, fairly symmetric nuclei. Another
point of difference is the definition of Rs. In Fig. 1.5, the calculations were
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Figure 1.8: “Quenching factors” as a function of the difference in separation
energies ∆S = Sp(n)−Sn(p) for nucleon knockout reactions with heavy targets
at intermediate energies. Figure taken from [32].

referred to IPM spectroscopic factors, while in [32], the spectroscopic factors
were computed using the Shell Model, which can be rather different from
those of the IPM.

The reason for this asymmetry dependence is not clear. It suggests a
stronger effect of nucleon-nucleon correlations for the deficient species in a
nucleus, which may stem from it having a higher binding energy and thus
being confined to smaller radii, where the density of the nucleus is larger
and the interaction between nucleons may result stronger. Standard shell
model calculations would not be able to describe these correlations properly
since most of the observables they have been adjusted to reproduce relate to
nucleons in the valence orbits and not those in deeper levels. On the other
hand, nucleons in excess exhibit low binding energies and spatially extended
wavefunctions, so their wavefunctions explore regions with a reduced nuclear
density where the effect of short-range correlations would be smaller and
better described by the SM.
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1.1.4 Recent transfer experiments on exotic beams

Despite the difficulties of carrying out transfer experiments on exotic nuclei,
some systematic experiments have been published covering transfer from
stable as well as unstable nuclei. Here we note two recent publications:

• In [33], a (p, d) transfer reaction was reported at 33 MeV/A on different
argon isotopes: 34Ar, 36Ar, 46Ar. The reaction was analyzed using the
Adiabatic Distorted Wave Approximation (ADWA) [34, 35]. It was
found that although the values of the “quenching factors” Rs were
heavily dependent on the optical potentials used for the analysis of
the reaction, no clear dependence on ∆S (which spanned from -10 to
15 MeV) was found, and certainly not of the magnitude presented in
nucleon knockout experiments. This reduced dependence on the asym-
metry agrees with previous results of the same authors [36], although in
these results, the large dispersion of the Rs impeded solid conclusions.

• In [37], (d,3H) and (d,3He) transfer reactions were reported at an energy
of ∼18 MeV/A on different oxygen isotopes: 14O, 16O and 18O. The
experimental data were analized using the Coupled Reaction Channels
(CRC) formalism [38, 39]. The wave function for the transferred nu-
cleon has been computed through two methods: generating the radial
wavefunction from a Woods-Saxon potential normalizing it with the
spectroscopic factor obtained from a shell model calculation, and from
SCGF calculations. The resulting Rs of both analysis are presented in
Fig. 1.9. As can be seen the quantitative values of the Rs are similar
for 16O although somewhat different for 14O (no 18O SCGF calculation
is presented). Even so, the overall tendency, showing no dependence
on ∆S is observed in both analysis, despite a rather large range for
∆S: -20 to 20 MeV. Further analyses of the sensitivity of the Rs on
the inputs of the calculations show relatively large variations of the
values of Rs although the small dependence on ∆S is found to resist
the variations in inputs [40].

The results of these transfer experiments as well as some other systematic
studies on more stable species [10] point to the Rs as being independent
on the neutron-proton asymmetry ∆S. This result is in conflict with that
presented earlier for knockout reactions and raises questions on the origin of
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Figure 1.9: “Quenching factors” as a function of the difference in separation
energies ∆S = Sp(n) − Sn(p) for (d,3 H) and (d,3 He) reactions. Figure taken
from [37]. The top panel corresponds to calculations where the transferred
nucleon wavefunction has been computed from a Woods-Saxon potential
and normalized to the spectroscopic factor from SM. The bottom panel
corresponds to nucleon wavefunctions from SCGF.

the observed “quenching”: If the “quenching” originated in nucleon-nucleon
correlations as has been assumed, it should depend on the characteristics of
the explored nucleus and not on the probe used to study it. Even if some
disagreement is expected between analyses due to theoretical uncertainties,
such a discrepancy in the behaviour of the Rs is difficult to explain from
nuclear structure arguments.

Therefore, it has been considered whether the reaction formalisms used
to study these reactions are properly justified. For the analysis of mid-energy
nucleon knockout reactions, the sudden approximation (which assumes the
state of the core not to be modified during the reaction) has been put into
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question for the knockout of deeply-bound nucleons. These nucleons have
to be extracted from deeper regions inside the nucleus, so it is difficult for
the target to interact with these nucleons without altering the rest of the
projectile (the core) [23, 37].

As for transfer reactions, the marked dependence of the results on the
ingredients of the calculation, in particular in the rather involved CRC for-
malism, may introduce large uncertainties in the final Rs which may cloud
the extraction of overall tendencies [41].

1.1.5 (p, pn) and (p, 2p) reactions on exotic nuclei

The asymmetry dependence of the “quenching factors” Rs remains an open
problem in the nuclear physics community up to date. Further experimental
data studying nuclei with varying values for ∆S are desirable in order to
build a reliable systematics. The experiment should also involve a reaction
mechanism that is well understood in order to minimize the uncertainties of
the reaction calculation, so that the asymmetry dependence can be solidly
related to the properties of the studied nuclei.

In order to clarify the situation, very recently experimental campaigns on
(p, 2p) and (p, pn) reactions have been performed both by the R3B collabora-
tion in the GSI facility in Germany as well as by the group at RIBF/RIKEN
in Japan. (p, pN) reactions are particularly attractive because the nucleon-
nucleon interaction is well-known, so it is expected that a better description
of the reaction mechanism can be obtained than for knockout with heavier
targets. The QFS condition described in Sec. 1.1.1 is also pursued in order
to have a “cleaner” reaction. For this reason, reactions have been performed
at beam energies of 200-450 MeV/A, for which the nucleon mean free path
is maximal.

Experimental analyses of these reactions must deal with the problem of
low luminosity inherent to the use of exotic beams. In order to increase
statistics, the R3B collaboration has focused on inclusive observables, in
particular inclusive momentum distributions of the emitted core, in which
the angle and energy of the outgoing nucleons is not restricted. The two
outgoing nucleons are detected in order to ensure that the residual core is
in fact the product of a (p, pN) reaction, but are only taken as “gating”
of the relevant events. Results from this experimental campaign have very
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recently been published [23, 42, 43], and are subject of analysis in Sec. 4.2
so a comment on them is left for the corresponding section.

The measurements at RIBF have instead produced exclusive cross sec-
tions, where the quantities of interest were the energy and angle distributions
of the emitted nucleons, using the detection of a proper residual core as “gat-
ing” for the events of interest. Results for different isotopes of oxygen (14O,
16O, 18O, 22O, 24O) have been recently presented [44]. The obtained Rs as
a function of ∆S are presented in Fig. 1.10. Two results employing different
optical potential parametrizations in the theoretical analysis are presented:
The red triangles correspond to potentials from the phenomenological Dirac
parametrization [45, 46] while the blue ones use potentials obtained from
the folding of the nuclear densities with the Melbourne g-matrix effective
interaction [47]. As can be seen in Fig. 1.10, both results agree rather
reasonably between themselves and with the results from (e, e′p) and heavy-
ion knockout reactions presented in the figure. Despite a somewhat large
dispersion of the Rs, no clear Rs asymmetry dependence can be appreciated,
so these results seem to favour those from transfer as opposed to those from
heavy-ion knockout.

Figure 1.10: “Quenching factors” as a function of the difference in separation
energies ∆S = Sp(n) − Sn(p) for exclusive (p, 2p) reactions. Red and blue
triangles denote calculations with different optical potentials, while the green
circle and black asterisk are results from heavy-ion knockout and (e, e′p)
shown for comparison. Figure taken from [44].

The extraction of the Rs relies heavily on the reaction formalism used



22 Chapter 1. Introduction

to describe the reaction from which spectroscopic information is extracted,
since the distortion and absorption effects taking place during the reaction
influence heavily the experimental observables. As such, a proper description
of these effects is paramount to obtain a good description of the reaction and
in particular, of the magnitude of the cross section, which is essential for the
evaluation of “quenching”. In the following section, different formalisms used
to analyze (p, pn) and (p, 2p) reactions in recent works are presented.

1.2 Reaction formalisms for (p, pn) and (p, 2p) reac-
tions

In this section some reaction formalisms used in the literature for the analysis
of (p, pn) and (p, 2p) reactions are briefly described:

1.2.1 Plane-Wave Impulse Approximation (PWIA)

Although it is a rather unrealistic approximation, the plane-wave impulse
approximation is a useful model to shed some light on the dynamics of the
(p, pN) process. It assumes a similar portrayal of the reaction as that taken
in the QFS model from Sec. 1.1.1, in which both the incoming proton and
the outgoing proton, nucleon and core can be described by plane waves, thus
ignoring the interactions among them.

In this approximation, and assuming an infinitely massive core, whose in-
ternal degrees of freedom are not altered by the reaction, the matrix element
for the reaction can be expressed as:

Tif =
〈
e−ikp·rpe−ikN ·rN |TpN |eik0·rpϕnljm(rN )

〉
, (1.8)

where we ignore the spins of the nucleons for simplicity and where the p,N
and 0 subscripts correspond to the outgoing proton and nucleon and the
incoming proton respectively and ϕnljm denotes the wave function of the
bound nucleon. TpN is the transition matrix between the initial and final
states corresponding only to the VpN interaction.

Next, the Impulse Approximation approximates TpN by the free nucleon-
nucleon t-matrix between proton and nucleon. This neglects the interaction
of the proton with the rest of the target nucleus, as well as ignoring the effect
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of the binding energy during the collision:

TpN =
〈
κ′pN |tpN |κpN

〉
, (1.9)

with κpN the relative momentum between proton and neutron. Assuming a
slow variation of tpN with κpN , it is possible to perform a factorization of
TpN which results in a zero-range approximation:

Tif =
〈
e−ikp·rpe−ikN ·rN |δ(rp − rN )|eik0·rpϕnljm(rN )

〉 〈
κ′pN |tpN |κpN

〉
,

(1.10)
which can be related to the Fourier transform of ϕnljm:

Tif =

∫
drNe

−iQ·rNϕnljm(rN )
〈
κ′pN |tpN |κpN

〉
, (1.11)

with Q = kp + kN − k0. Since we have neglected the effect of binding
energy and distorting potentials, the elements

〈
κ′pN |tpN |κpN

〉
must be on-

shell due to conservation of energy. This allows to relate them to the free
nucleon-nucleon cross section.

|
〈
κ′pN |tpN |κpN

〉
|2 =

(2π~2)2

µ2
pN

dσpN
dΩpN

(EpN , θpN ), (1.12)

where EpN and ΩpN are the proton-nucleon relative energy and scattering
angle and are computed from κpN and κ′pN . From here the cross section for
the (p, pN) is found to be proportional to the product of the free nucleon-
nucleon cross section and the square of the Fourier transform of ϕnljm(rN ):

dσ

dkpdkN
∝

dσpN
dΩpN

(EpN , θpN )
1

2j + 1

∑
m

∣∣∣∣∫ drNe
−iQ·rNϕnljm(rN )

∣∣∣∣2 .
(1.13)

If, as usual, we normalize ϕnljm(rN ) to 1, and extract its norm as a spectro-
scopic factor, we find:

dσ

dkpdkN
∝ SFnlj

dσpN
dΩpN

(EpN , θpN )
1

2j + 1

∑
m

∣∣∣∣∫ drNe
−iQ·rNϕnljm(rN )

∣∣∣∣2 ,
(1.14)

which shows that, in the PWIA limit, the cross section is sensitive in its
magnitude to the spectroscopic factor of the level from which the nucleon
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is removed, and in its shape, to its Fourier transform, and therefore to its
angular momentum. This marks the remarkable spectroscopic power of the
reaction. We note that the plane-wave approximation is too extreme to give
a good description of the reaction, in particular of the magnitude of the cross
section. However, it has seen an extensive use in (e, e′p) reactions [48].

1.2.2 Distorted-Wave Impulse Approximation (DWIA)

The DWIA formalism faces the description of the A(p, pN)C reaction
through the so-called Impulse Approximation, as PWIA. It however includes
the effects of distortion originating in the interaction between proton and
target, proton and core and nucleon and core, which are included in the T
matrix by substituting the plane waves by distorted waves:

Tif =
〈
χ

(−)
p,kp

χ
(−)
N,kN

|tpN |χ(+)
p,k0

ϕnljm

〉
. (1.15)

Here χ(±) denote distorted waves corresponding to an incoming proton with
momentum k0, and outgoing proton and nucleon with momenta k1 and k2

respectively. In order to present more realistic formulae, in this section the
formalism for a core with finite mass is presented. The neglect of off-shell
effects is still maintained. We will be following the formulation in [49]. With
these approximations, the core momentum distribution in the system where
nucleus A is at rest is given by the expression:

dσ

dpAC
= C0SFnlj

∫
dp1dp2η

A
Mφ1δ(E

A
f − EAi )δ(pAf − pAi )

dσpN
dΩpN

×
∑
m

(2π)2

∣∣∣∣∫ dRχ
(−)∗
p,kp

χ
(−)∗
N,kN

χ
(+)
p,k0

ϕnljme
−ik0·R/A

∣∣∣∣2 , (1.16)

where the δ impose conservation of energy and momentum, the superscript
A denotes that the quantities are computed in the rest frame of A and where

C0 =
EA0

(~c)2pA0

1

2l + 1

~5

(2π)3µ2
pN

(1.17)

and

ηAMφ1 =
E1E2EB

EA1 E
A
2 E

A
B

, (1.18)
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ηAMφ1 being the Möller factor, which stems from the transformation from the
N −N frame to the N − A frame. Here the quantities without superscript
are computed in the center of mass system. More information can be found
in [50]. We note that this expression is similar to the PWIA one,but with a
distorted Fourier transform of the nucleon wavefunction.

The DWIA formalism has been used in the analysis of [44].

1.2.2.1 Eikonal DWIA

Due to the large energies involved in the (p, pn) and (p, 2p) reactions mea-
sured in GSI and RIBF, it is possible to simplify somewhat the calculations
by using the eikonal approximation [51], which assumes the particles involved
to describe linear trajectories during the reaction.

Following [52], in the eikonal approximation the distorted waves for the
incoming proton and outgoing proton and nucleon can be expressed as plane
waves multiplied by “survival amplitudes” Sin(out), which are functions of the
impact parameter b:

χ
in(out)
p(N) (r) = Sin(out)(b)e

ik
in(out)
p(N)

·r
, (1.19)

Sin(out)(b) = exp

[
− i

~v

∫ bin(out)

ain(out)

dz′U
in(out)
p(N) (r′)

]
, (1.20)

where, for the incoming proton the integral is performed between the point
where it starts to feel the interaction with the nucleus (formally −∞) and the
collision point, and for the outgoing proton and nucleon the integral starts
at the collision point until they stop feeling the interaction with the core
(formally ∞). It must be remarked that the incoming proton and outgoing
nucleons describe straight-line trajectories. However, they are not parallel,
as in standard eikonal theory, since the collision between two particles of
similar mass (the proton and the nucleon) can lead to a strong change in
direction. As such z′ and b have a different value for each distorted wave.

The cross section as a function of Q = kp +kN− A−1
A k0, the transferred

momentum (which corresponds to the definition in Sec. 1.2.1 in the infinite-
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mass limit), can be expressed as:

dσ

dQ
=

1

(2π)2

SFnlj
2j + 1

∑
m

〈
dσpN
dΩpN

〉
Q

∣∣∣∣∫ dre−iQ·r 〈S(b)〉Q ϕnljm(r)

∣∣∣∣2 . (1.21)

In this expression the brakets denote an average over all the configurations
that lead to a transferred momentum Q, and S(b) is the product of the three
survival amplitudes corresponding to the incoming proton, the outgoing pro-
ton and the outgoing nucleon. Since the transferred momentum can be easily
identified with the momentum of the core in the frame of reference where A
is at rest, this cross section can be immediately translated the momentum
distribution of the core. This formalism has been used in the analysis of
[23, 42] and further details can be found in [52].

1.2.3 Faddeev/AGS formalism

The Faddeev/AGS [53, 54] formalism allows to obtain the exact solution of a
non-relativistic three-body problem, through the evaluation of the operators
Uβα, whose on-shell matrix elements correspond to the transition amplitudes
and which are obtained solving the three-body AGS integral equations. As
opposed to the previous formalisms, it does not consider any approximation
beyond the assumption that the nucleus A can be treated as a two-body
system, and thus the p+A reaction can be treated as a three-body problem.
The operators Uβα fulfil:

Uβα = δ̄βαG
−1
0 +

∑
γ

δ̄βγtγG0U
γα, (1.22)

where α, β, γ denote states corresponding to one of the three possible parti-
tions of the problem: p+ (n+C), C+ (p+n), n+ (p+C) or to the breakup
state p+ n+C, δ̄βα = 1− δβα and tγ corresponds to the two-body t-matrix
in the 3-body medium:

tγ = vγ + vγG0tγ , (1.23)

where the odd-one out notation is used so for example, assigning 1 to the
p + (n + C) partition v1 = Vpn + VpC . Finally G0 is the free resolvent
G0 = (E + iε−H0)−1 in the limit ε→ 0. Breakup observables are obtained
from the on-shell matrix elements of U0α: T 0α =

〈
qp|U0α|ψα

〉
, where α

corresponds to the initial state: p+(n+C), and p,q are chosen as the Jacobi
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momenta for the C + (p + n) partition. From here the double differential
cross section for the energy and angle of the core can be computed as:

dσ

dECdΩC
= (2π)4mn +mC

Klab
mCkC

mnmp

mn +mp

∫
dp̂F|T 0α|2, (1.24)

with kC the momentum of the core, Klab that of the projectile in the labo-
ratory frame and

F =

√
2
mnmp

mn +mp
E − mnmpM

mC(mn +mp)2

(
k2
C +

m2
C

M2
KT − 2

mC

M
kc · kT

)
,

(1.25)
whereM = mp+mn+mC and KT is the total momentum, which is 0 in the
center of mass frame and Klab in the laboratory frame. More information
can be found in [55–57]. The Faddeev/AGS formalism has been used in the
analysis of [43].

It is the objective of this work to develop a new reaction formalism
able to compute (p, 2p) and (p, pn) reactions at low, intermediate and high
energies. For this, it will not be based on the impulse approximation, thus
allowing for its use at lower energies than PWIA and DWIA, and it includes
relativistic kinematics, which are not present in the Faddeev/AGS formalism
presented in the previous section and which are found to introduce important
modifications in the cross section at high energies. This formalism is called
Transfer to the Continuum and is presented and developed in Chapter 2.
Then, in Chapter 3, it is benchmarked to other reaction formalisms, DWIA
and Faddeev, in the regions and with the approximations to make the com-
parison meaningful. In Chapter 4, calculations using this new formalism
are compared with experimental data and special interest is devoted to the
analysis of the “quenching factors” Rs for the experiments carried out by the
R3B collaboration [23, 42, 43]. In Chapter 5, the formalism is extended to
study the energy distributions of the fragments obtained in (p, pn) reactions
on Borromean nuclei and results are presented for 11Li. Finally, an overall
summary of the results of the present project is presented in Chapter 6,
establishing an outlook for future developments.





Chapter 2

Formalism: Transfer to the
continuum

Someone told me that each equation I
included in the book would halve the sales

Stephen Hawking

The formalism used throughout this work is referred to as Transfer to the
Continuum (TC) and has been used previously to study breakup reactions
at low and intermediate energies [58, 59]. In short, it can be described
as a CCBA-like (Coupled-Channel Born Calculation) calculation akin to a
transfer reaction leading to continuum states of the projectile. In the next
section, the formalism is detailed, highlighting the modifications required
for its extension to high-energy reactions, where relativistic effects are of
importance.

2.1 Coupled equations

A reaction of the type A(p, pN)C can be studied within a three-body model
where the relevant bodies are the incoming proton p, the removed nucleon
N and the residual nucleus or core C. Of these, only the core C may have
internal degrees of freedom ξ, which will be assumed to be collective, in
nature. The excitation of the nucleons to a ∆ resonance requires too much
energy to be of relevance in the range of energies considered. As such, the

29



30 Chapter 2. Formalism: Transfer to the continuum

three-body Hamiltonian is as follows:

H3b = T +HC(ξ) + VpN (rpN ) + UpC(rpC , ξ) + UNC(rNC , ξ), (2.1)

where, as usual, rab denotes the relative position between particles a and
b. Since the core C is in reality a many-body system composed of A − 1

nucleon, the interactions UpC and UnC must be taken as effective nucleon-
nucleus interactions that model the interaction between the nucleon and the
A − 1 nucleons forming the core C. These effective interactions include an
imaginary part that accounts for the loss of flux to reaction channels not
included in the formalism.

In Eq. (2.1), T corresponds to the kinetic energy of the three bodies p,
N and C. In the center of mass system, it can be expressed as

T = −
~2∇2

R(i)

2µab−c
−

~2∇2
r(i)

2µab
= TR(i) + Tr(i) , (2.2)

where r(i) is the relative coordinate between the bodies a and b and Ri is
the relative coordinate between the center of mass of the a − b system and
body c. µab and µab−c are the reduced masses, defined as follows:

µab =
mamb

ma +mb
µab−c =

(ma +mb)mc

ma +mb +mc
. (2.3)

These coordinates are proportional to the Jacobi coordinates [60], and as
such, the shape of the kinetic energy is the same for whichever bodies are
chosen as a, b and c. In the 3-body case, 3 possible sets of Jacobi coordinates
are possible, which are illustrated in Fig. 2.1. Of these, set (1) is specially
relevant for the (p, pn) reaction because it is the set where the initial state
(where nucleonN is bound to the core C forming nucleusA) is most naturally
described. In fact, in standard Continuum-Discretized Coupled-Channel
(CDCC) calculations it is the only set of coordinates considered [61, 62].
For Transfer to the Continuum calculations, set (2) is also relevant, since it
corresponds to the states to which nucleon N is “transferred” to. Set (3) is
not taken into account in our reaction formalism although it is considered in
formalisms using the Faddeev/AGS equations [53, 54] where all Jacobi sets
are treated on an equal footing. In the following we will use the notation
shown in Fig. 2.1, that is R = RNC−p, r = rNC , R′ = RpN−C and r′ = rpN .
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Figure 2.1: Different Jacobi coordinates for a 3-body system.

Let us now express the Hamiltonian using Jacobi set (1) of Fig. 2.1:

H3b = TR + Tr +HC(ξ) + VpN (rpN ) + UpC(rpC , ξ) + UNC(r, ξ). (2.4)

The full 3-body wave-function for a certain center of mass energy E fulfills
the following Schrödinger equation:

(TR + Tr +HC(ξ) + VpN (rpN ) + UpC(rpC , ξ)

+UNC(r, ξ)− E+) Ψ3b(+)(R, r, ξ) = 0,
(2.5)

where as usual E+ = E+ iε and the superscript (+) denotes outgoing bound-
ary conditions. For the (p, pN) reaction, we are interested on the transition
matrix for an incoming wave of the type eiKpARφA(r, ξ), where φA(r, ξ) is
the wavefunction of the ground state of nucleus A and KpA is the relative
wave number between the proton and nucleus A in the incoming channel. As
such for very long distances the three-body wavefunction must behave as:

Ψ3b(+)(R, r, ξ) −−→
R�

φA(r, ξ)eiKpAR + outgoing waves. (2.6)

We will now approximate Ψ3b(+)(R, r, ξ) by a model wavefunction:

Ψ3b(+)(R, r, ξ) ' Ψmodel = XA(R)φA(r, ξ) + Ψb, (2.7)

with XA having the asymptotic behaviour

XA(R) −−→
R�

eiKpAR + fA,A(θ)
eiKpAR

R
, (2.8)

where we can recognise the second term as outgoing waves in the elastic
channel, leaving nucleus A in its ground state.

On the other hand, Ψb contains outgoing waves associated with the bound
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states of system pN (that is, the deuteron when N is a neutron) and in the
breakup states only. We note that by using this model wavefunction we are
excluding from our model space many reaction channels such as possible
excitations of A or multinucleon transfer. However, these channels will
only contribute to the (p, pn) cross section through coupling to the breakup
channels, which we expect to be small, due to the suddenness of the reaction,
which results from the high energy of the projectile.

By projecting Eq. (2.5) over 〈φA| (where, as per usual, the braket denotes
integration over internal variables only) we obtain the following equation:

〈φA|H − E|Ψb〉+ 〈φA|H − E|XAφA〉 = 0 (2.9)

Now we will introduce the approximation that 〈φA|H − E|Ψb〉 can be ne-
glected in Eq. (2.9). This is a sort of Born approximation, in which we will
assume that the coupling potential between XAφA (the incoming channel)
and Ψb (the outgoing channels) is small, so the elastic channel will not be
modified by the outgoing channels. As such, Eq. (2.9) is reduced to:

〈φA(r, ξ) |TR + Tr +HC + VpN (rpN ) + UpC(rpC, ξ) + UNC(r, ξ)

−E| XA(R)φA(r, ξ)〉 = 0,
(2.10)

Now, from the assumption that A is composed of the core C and nucleon
N with UNC binding N and C forming the ground state of A, we recognize
HA = Tr +HC + UNC , so

〈φA(r, ξ)|Tr +HC + UNC(r, ξ)|φA(r, ξ)〉 = EA, (2.11)

where EA can be taken as the binding energy of nucleus A, although as for
now the exact value of this energy is not important. This leaves Eq. (2.10)
as

〈φA(r, ξ)|TR + VpN (rpN ) + UpC(rpC, ξ)− Ecm,i|XA(R)φA(r, ξ)〉 = 0,

(2.12)
with Ecm,i = E − EA. We will now express the integral of UpC + VpN over
r and ξ as:

UpA(R) = 〈φA(r, ξ)|VpN (rpN ) + UpC(rpC, ξ)|φA(r, ξ)〉 , (2.13)
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so that we are left with an equation for XA such as

(TR + UpA(R)− Ecm,i)XA(R) = 0. (2.14)

Now we must propose an expression for Ψb, which leaves it in a form that
is more amenable to treatment with standard reaction theory and that also
allows us to define clearly the final state we are interested in. First, we note
that in the final state for a (p, pN) reaction, core C is detected and can be
in any of its possible excited states. As such we can decompose Ψb as

Ψb = Ψ3b
b,α(R′, r′)ΦC

α (ξ) +
∑
α′ 6=α

Ψ3b
b,α′(R

′, r′)ΦC
α′(ξ), (2.15)

where ΦC
α denotes the wavefunction of core C in a state α, and where we have

chosen α as the final asymptotic state of C (the state in which it is detected)
and α′ as all other possibles states for C. In this decomposition Ψ3b

b,α is
a three-body wavefunction that only depends on the relative coordinates
between p, N and C with C in state α. We choose to represent Ψ3b

b,α in the
set of coordinates corresponding to Jacobi set (2) of Fig. 2.1.

The next step on the derivation is the simplification of Ψ3b
bα, which, be-

ing a complex three-body wavefunction, is not amenable to be solved with
standard reaction calculations. We choose to expand Ψ3b

bα on eigenstates of
VpN with defined angular momentum and parity of the p−N subsystem:

Ψ3b
bα(R′, r′) '

∑
jπ

∫
dkφjπ(k, r′)Xjπα(K′,R′), (2.16)

where K′ and k are related through conservation of energy:

~2K ′2

2µpN−C
+

~2k2

2µpN
= Encm,f + enpN = E − ECα , (2.17)

where ECα is the binding energy of C in state α, verifying:

HCΦC
α = ECα ΦC

α . (2.18)

It must be noted that the bound states of the p−N system are included in
the expansion so in the (p, pn) case the transfer to the deuteron is computed
consistently with the (p, pn) breakup.
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There is an infinite number of φjπ(k, r′), and they are all infinitely oscil-
lating. Therefore, in order to obtain an expression which is mathematically
tractable, it is necessary to employ a method of continuum discretization,
which allows to express the infinite possible final states through a finite
number of representative states.

There are two main methods to discretize the continuum that have been
used in the literature: the first one is referred to as the pseudostate method
[63–66]. In it the Hamiltonian of interest is diagonalized in a basis of func-
tions that form a normalizable basis of L2, that is, that are orthogonal and
of finite norm and which form a complete basis of the space, verifying the
closure relation: ∑

n

|n〉〈n| = I. (2.19)

This method is specially suitable to describe structures in the continuum
such as resonances and has been applied successfully to study breakup at
low and intermediate energies [63–66].

The second method is the so-called binning procedure, in which the con-
tinuum is represented by a set of wave packets, called bins, built through the
linear superposition of the eigenstates of the potential for momenta between
two limit values kl and kh with a certain weight factor.

φ̃jπn (r′) =

√
2

πNn

∫ kh

kl

dkf jπn (k)φjπ(k, r′)

Nn =

∫ kh

kl

dk
∣∣f jπn (k)

∣∣2 . (2.20)

A nominal momentum is given to the bin, usually the average of its lower
and upper limits kn = (kh+kl)/2 and it can be shown that, by construction,
bins for disjunct intervals kl − kh are orthogonal.

Since the p−N continuum in the relevant energies for the studied reaction
does not present features that require special treatment, we have opted to
use the relatively simpler binning procedure, which is already available in
standard reaction codes such as fresco [67].

When using the binning procedure, the width of the bins ∆kn = kh − kl
as well as the maximum momentum kmax considered must be checked for
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convergence. In general the weight function has been considered as

f jπn (k) = e−iδ(k), (2.21)

where δ(k) is the p − N phase-shift. This choice of the weight guarantees
that the bin wavefunction will be real when the bin has only one channel
and close to real in the multichannel case.

Applying the binning procedure to Eq. (2.16) we obtain

Ψ3b
bα ' Ψbin

bα =
∑
jπn

φ̃j
π

n (r′)Xjπnα(K′n,R
′), (2.22)

where K′n is obtained from conservation of energy from the nominal momen-
tum of the bin kn. With this approximation Ψb can be approximated as:

Ψb ' φ̃j
π

n (r′)Xjπnα(K′n,R
′)ΦC

α (ξ) +
∑

j′π′n′ 6=jπn

φ̃j
′π′

n′ (r′)Xj′π′n′α(K′n,R
′)ΦC

α (ξ)

+
∑
α′ 6=α
j′π
′
n′

φ̃j
′π′

n′ (r′)Xj′π′n′α(K′n,R
′)ΦC

α′(ξ),

(2.23)

where as before we select n, jπ as the quantum numbers for the bin corre-
sponding to the final state we are interested in. Now, we will project Eq. (2.5)
on
〈

ΦC
α φ̃

jπ
n

∣∣∣
〈

ΦC
α φ̃

jπ

n |H − E|φ̃j
π

n XjπnαΦC
α

〉
+

∑
j′π′n′ 6=jπn

〈
ΦC
α φ̃

jπ

n |H − E|φ̃′
j′π
′

n′ Xj′π′n′αΦC
α

〉

+
∑
α′ 6=α
j′π
′
n′

〈
ΦC
α φ̃

jπ

n |H − E|φ̃′
j′π
′

n′ Xj′π′n′α′Φ
C
α′

〉
+
〈

ΦC
α φ̃

jπ

n |H − E|XAφA

〉
= 0

(2.24)

We will firstly consider the approximation where the internal degrees of
freedom of the core C are “frozen”, that is, that they will not be modified
during the reaction. This approximation is supported by the sudden nature
of the reaction, where, due to the high energy of the incoming proton, the
reaction takes place in such a short time that its energy cannot be transferred
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to the collective degrees of freedom of the core. From this the dependence of
the potentials on the internal degrees of freedom ξ can be ignored, assuming
a similar interaction between the nucleon p or N and all relevant states of the
core C and the third term of Eq. (2.24) can be eliminated, since no coupling
will take place between different states of C.〈

ΦC
α φ̃

jπ

n |H − E|φ̃j
π

n XjπnαΦC
α

〉
+

∑
j′π′n′ 6=jπn

〈
ΦC
α φ̃

jπ

n |H − E|φ̃′
j′π
′

n′ Xj′π′n′αΦC
α

〉

+

��������������������∑
α′ 6=α
j′π
′
n′

〈
ΦC
α φ̃

jπ

n |H − E|φ̃′
j′π
′

n′ Xj′π′n′α′Φ
C
α′

〉
+
〈

ΦC
α φ̃

jπ

n |H − E|XAφA

〉
= 0.

(2.25)

Let us now focus on the last term.〈
ΦC
α φ̃

jπ

n |H − E|XAφA

〉
=
〈

ΦC
α φ̃

jπ

n |TR + Tr +HC + VpN + UpC + UNC − E|XAφA

〉
=

=
〈

ΦC
α φ̃

jπ

n |TR + VpN + UpC − Ecm,i|XAφA

〉
, (2.26)

where we have performed the same transformation as in Eq. (2.12). Now
we can add and subtract UpA to the equation, noting that we can cancel
TR + UpA − Ecm,i since XA verifies Eq. (2.14):〈

ΦC
α φ̃

jπ

n |H − E|XAφA

〉
=
〈

ΦC
α φ̃

jπ

n |VpN + UpC − UpA|XAφA

〉
, (2.27)

forming the so-called source term of Eq. (2.25).

We note that the only terms dependent on the internal variables of the
core ξ are ΦC

α (ξ) and φA(r, ξ). Therefore we can perform the integral over
them: ∫

dξΦ∗Cα(ξ)φA(r, ξ) =
∑
lj

ϕ̃ACljα (r), (2.28)

obtaining the overlap function ϕ̃ACljα (r) that only depends on coordinate r.
l, j correspond to the orbital and total angular momentum of the removed
nucleon that couple A in its ground state and C in state α. The integral
from Eq. (2.28) involves in principle the position of all nucleons in nucleus
C so it is in general infeasible in most calculations. As such, it is usual
to approximate it by a single-particle wavefunction obtained from a simple
potential and normalized to 1, ϕACljα (r). The norm is obtained from a nuclear
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structure calculation which gives the spectroscopic amplitude, AACljα , whose
square is the spectroscopic factor, SACljα .

ϕ̃ACljα (r) ∼ AACljαϕACljα (r) (2.29)

SACljα = |AACljα |2 (2.30)

Let us remark that in this derivation no attention has been paid to the an-
tisymmetrization of identical protons and neutrons. This will gain relevance
in Sec. 2.4, but for the present discussion we believe a disgression to treat
it would be counterproductive. Furthermore, we will assume that only one
l, j configuration will be relevant for the reaction, in order to simplify the
notation. With this approximation, Eq. (2.25) results in

〈
ΦC
α φ̃

jπ

n |H − E|φ̃j
π

n XjπnαΦC
α

〉
+

∑
j′π′n′ 6=jπn

〈
ΦC
α φ̃

jπ

n |H − E|φ̃′
j′π
′

n′ Xj′π′n′αΦC
α

〉
+AACljα

〈
φ̃j

π

n |VpN + UpC − UpA|XAϕ
AC
ljα

〉
= 0,

(2.31)

which expanding the hamiltonian H can be expressed as〈
ΦC
α φ̃

jπ

n |TR + Tr +HC + VpN + UpC + UNC − E|φ̃j
π

n XjπnαΦC
α

〉
+∑

j′π′n′

〈
φ̃j

π

n ΦC
α |TR + Tr +HC + VpN + UpC + UNC − E|φ̃j

′π′

n′ Xj′π
′
n′α

ΦC
α

〉
+

AACljα

〈
φ̃j

π

n |VpN + UpC − UpA|XAϕ
AC
ljα

〉
= 0.

(2.32)

Now, for the first and second terms, we note that the kinetic term can be
reexpressed as a function of the coordinates in Jacobi set (2): TR+Tr = TR′+

Tr′ . We can then use the fact that the bin wavefunctions are approximately
eigenfunctions of the Vpn potential:〈

φ̃j
π

n |Tr′ + VpN |φ̃j
′π′

n′

〉
= δnjπ ,n′j′π′e

n
pN . (2.33)

We also note that the only dependence on ξ lies in ΦC
α and HC , and from
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Eq. (2.18) we easily get

〈
ΦC
α |HC |ΦC

α

〉
= ECα , (2.34)

and now from Eq. (2.17) ECα + enpN − E = −Encm,f , which can be related to
Ecm,i through

Encm,f = E − ECα − enpN Ecm,i = E − EA

Encm,f = Ecm,i + EA − ECα − enpN = Ecm,i − SAN − εα − enpN , (2.35)

where SAN is the nucleon separation energy for nucleus A and εα is the
excitation energy of state α of core C.

In order to simplify the notation we will also define Uββ′(R) as

Uββ′(R
′) =

∫
dr′φ̃j

π∗
n (r′) [UpC(rpC) + UNC(rNC)] φ̃j

′π′

n′ (r′), (2.36)

where β denotes the numbers required to define the final bin: n, jπ. After
these transformations the equations result as

(TR′ − Ecm,f + Uββ)Xβα +
∑
β′ 6=β

Uββ′Xβ′α+

AACljα

〈
φ̃j

π

n

∣∣∣VpN + UpC − UpA
∣∣XAϕ

AC
ljα

〉
= 0.

(2.37)

It can be put into question whether Ψbin
bα is a good description of the original

three-body wavefunction Ψ3b
bα. It is long known that wavefunctions obtained

through discretization and truncation of the continuum do not reproduce the
correct asymptotic behaviour of breakup components [68]. However we note
that in the reaction under study we are interested in the wavefunction in
the region where VpN +UpC −UpA is large. Since UpA and UpC are effective
interactions between the proton and nuclei A and C respectively, we expect
them to be similar and thus the so-called remnant term UpC − UpA will
be quite small. Therefore, we are only interested in the wavefunction in
the region where VpN is strong, that is, for small values of r′, the relative
coordinate between p and N . Since we have chosen the bins to be computed
based on the eigenfunctions of VpN , we expect an expansion on them to work
well for small values of VpN , which is our region of interest, so Ψbin

bα should
describe well the reaction of interest. In order to verify the adequacy of
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Figure 2.2: Schematics of the Transfer to the Continuum framework. Note
that the initial partition p+A serves as the source term for the final partition
(pn) + (A−1) as denoted by the single-direction arrow, while all channels in
the final partition are coupled to all orders, as denoted by the two-directional
arrows.

this approximation, benchmarks with the more rigorous three-body Faddeev
formalism have been performed and will be presented in Chapter 3. In
Fig. 2.2 the features of the formalism are shown schematically, remarking
how the initial p + A serves as a source for the (pn) + (A− 1) partition, in
which all channels are coupled to all orders.

2.2 Cross sections and momentum distributions

Using standard reaction theory, it is possible to compute the angular differ-
ential cross section to a given bin:

dσjπn
dΩ

=
1

(2sp + 1)(2JA + 1)

µpAµpn−C
(2π~2)2

K ′n
KpA

∑
m

∣∣∣T jπnif

∣∣∣2 , (2.38)

where sp is the spin of the proton and JA the one of nucleus A andm denotes
the spin projections of the incoming p and A and the outgoing C and pN

system. Ω denotes the scattering angle of the core in the center of mass
frame. From this cross section it is possible to obtain a double differential
cross section on Ω and the energy of the pN system by dividing the cross
section by the energy width of the bin ∆εn = εh− εl, assigning the obtained
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value of the cross section to the nominal energy of the bin:

dσjπ

dεpNdΩ

∣∣∣∣
εpN=εnpN

' 1

∆εn

dσjπn
dΩ

. (2.39)

From here we can obtain the distribution on the energy of the core and its
scattering angle through energy conservation:

Ecm,f = E − εCα − SAN − εpN

EC =
mpN

mpN +mC
Ecm,f

dσjπ

dECdΩ
=
mpN +mC

mpN

dσjπ

dεpNdΩ
,

(2.40)

and of course, we can obtain the total double differential cross section sum-
ming over all considered angular momenta and parities of the p−n subsystem:

dσ

dECdΩ
=
∑
jπ

dσjπ

dECdΩ
(2.41)

Since the cross section is now expressed as a function of the energy and
scattering angle of the core, it is rather simple to obtain the momentum
distribution of the core in the center of mass:

EC =
p2
C

2mC

dECdΩ =
pC
mC

dpCdΩ =
1

mCpC
d3pC

dσ

d3pC
=

1

mCpC

dσ

dECdΩ
.

(2.42)

2.3 Relativistic prescription

Since the reactions we are interested in correspond to a proton accelerated to
∼200-400 MeV, it reaches a speed of 0.57-0.71c. Therefore, relativistic effects
are relevant to the reactions involved and must be taken into account in order
to obtain a satisfactory description of the experimental results. Relativistic
effects appear in two distinct parts of our calculations: in the calculation
of the coupled Schrödinger equations and in the kinematic transformations
leading to the energy and momentum distributions.
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2.3.1 Relativistic corrections to the coupled equations

In Section 2.1, the derivations considered to arrive to the set of coupled
equations from Eq. (2.37) were performed assuming non-relativistic kine-
matics. This is specially apparent in the fact that the equation to be
solved is Schrödinger’s equation and not Dirac’s. In this respect, analyses of
various observables from proton-nucleus elastic scattering using Schrödinger
and Dirac formalisms were performed in the 90s [69] using the “best” in-
gredients available at the time and it was found that the description of
the observables was equally good for both formalisms, with proton energies
ranging from 20 to 800 MeV. We believe these results validate the use of
non-relativistic equations to describe (p, pN) reactions at the energies of
interests, or paraphrasing [69], relativistic dynamics are not necessary to
describe these. reactions. On the contrary, relativistic kinematics, with the
nomenclature from [69], must be taken into account when studying these
reactions. In order to have a clearer view on how this affects our coupled
equations, let us take the still non-relativistic Eq. (2.37) and multiply it all
by 2µpN−C/~2 keeping in mind that TR′ = −~2∇2

R′/2µpN−C :∑
j′π′n′

((
−∇2

R′ −K ′
2
n

)
δββ′ +

2µpN−C
~2

Uββ′

)
X
j′π
′
n′Cα

+

√
SACljα

2µpN−C
~2

〈
φ̃j

π

n |VpN + UpC − UpA|XAϕACα

〉
= 0.

(2.43)

Unfortunately, there is not a unique prescription to include relativistic kine-
matics in Schrödinger’s equation.

Following the relativistic prescription from [69], we will compute K ′n

relativistically from the laboratory energy of the projectile, through standard
relativistic formulas which are given in Appendix B. Energy conservation in
the initial and final partitions must also be imposed relativistically. The next
step in the relativistic prescription is to substitute the reduced mass µpN−C
by the reduced energy εpN−C , defined as

εpN−C =
εCεpN
εC + εpN

, (2.44)

where εC corresponds to its relativistic energy in the center of mass system

εC =
√
m2
Cc

4 + ~2c2K ′n
2. (2.45)
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The same is true for the pN system. However, since we are considering bins
which can have a relatively high relative energy between p and N this energy
must be included in the nominal mass of the pN system:

εpN =
√
m∗2pNc

4 + ~2c2K ′n
2 =

√(
mpc2 +mNc2 + enpN

)2
+ ~2c2K ′n

2.

(2.46)
Let us now introduce a factor γβ , defined as

γβ =
εpN−C
µpN−C

, (2.47)

so the substitution of the reduced mass by the reduced energy can be ex-
pressed by a multiplication of the potentials by the factor γβ :

∑
j′π′n′

((
−∇2

R′ −K ′
2
n

)
δββ′ + γβ

2µpN−C
~2

Uββ′

)
X
j′π
′
n′Cα

+

√
SACljα γ

2µpN−C
~2

〈
φ̃j

π

n |VpN + UpC − UpA|XAϕACα

〉
= 0,

(2.48)

which is a specially convenient way to write the equation since it shows it is
possible to modify non-relativistic equations to include relativistic equations
by multiplying the involved potentials by the factor γβ . Note that factor γ
depends on the channel considered β and thus changes for different equations.

Let us also remember that XA was obtained from a Schrödinger’s equa-
tion which also requires a relativistic modification:(

−∇2
R +

2µpA
~2

γAUpA −K2
pA

)
XA = 0. (2.49)

where KpA is computed relativistically and now γA is computed from the
reduced energies of p and A.

Another prescription to include relativistic kinematics in Schrödinger’s
equation can be found in [70] and is very similar to the one described before.
The equations are also solved considering the relativistic momentum, but
the factor γβ becomes instead:

γβ =
2(E −mA)

E −mA +mp
or

2(E −mC)

E −mC +m∗pN
, (2.50)

where E is the total relativistic center of mass energy.
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Different relativistic prescriptions may yield different cross sections and
it is not easy to determine which one is most suitable for the different cases.
In the following a consistency criterion has been taken: the nucleon-nucleus
potentials used in the calculations have been taken from parametrizations
which generate the potentials assuming certain relativistic prescriptions for
elastic scattering. When using these potentials, the relativistic prescription
assumed for their construction has been followed, which is in general the one
where γβ =

εpN−C
µpN−C

2.3.2 Relativistic corrections to cross sections and momen-
tum distributions

After including the modifications indicated above in the coupled-channel
equations, care must be taken when computing the cross sections and mo-
mentum distributions, since, once again, the relativistic relation between
energy and momentum must be applied. The relativistic density of states for
a certain energy is of special relevance in the relation between the transition
matrix and the cross section. Fortunately, there is a rather simple method
to correct it in the standard non-relativistic formulas [71], which consists in
replacing the reduced mass by the reduced energy defined in Eq. (2.44). As
such, the differential cross section can be computed as:

dσjπn
dΩ

=
1

(2sp + 1)(2JA + 1)

εpAεpn−C
(2π~2)2

K ′n
KpA

∑
m

∣∣∣T jπnif

∣∣∣2 , (2.51)

where K ′n and KpA are computed relativistically.

The relation between enpN and EC must also be revised, leading to a
change in the formula for the cross section Eq. (2.40), where we now define
EC as a the kinetic energy of core C as opposed to its full relativistic energy
εC , and use Mandelstam variable s. More details are found in Appendix B.

dσjπ

dECdΩ
=

√
s

m∗pN

dσjπ

dεpNdΩ
, (2.52)

Likewise, the modification for the momentum distribution is rather straight-
forward:

dσ

d3pC
=

1

εCpC

dσ

dECdΩ
. (2.53)
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Here it must be noted that the energy and momentum distributions have
been computed for their center of mass values, while there are other reference
frames which also appear in the literature, namely, the laboratory frame,
where the target nucleus is at rest and the projectile reference frame (rfp),
where the projectile is at rest. The laboratory frame is the one where the
actual measurements take place so it allows for a more direct comparison with
experimental data. In experiments in inverse kinematics, where the nucleon
is removed from the projectile, the rfp frame is of special interest because
the effects of the kinematics of the reaction are somewhat removed from
the momentum distribution so comparisons of reactions at different energies
are most significant in this reference frame. Given the importance of these
reference frames, we indicate in the following the relativistic transformations
from the center of mass momentum distribution to the ones in laboratory
and rfp frames. For this let us define pz, the longitudinal momentum as the
component of the momentum parallel to the direction of the projectile beam
and px and py as the perpendicular momentum, that perpendicular to it. Let
us note that, as long as neither the projectile nor the target are polarised,
the direction of px and py are irrelevant (given they are perpendicular to the
beam) and thus, the distribution on px is the same as in py. With these
definitions we obtain

dσ

dpCx
=

∫
dpCydpCz

dσ

d3pC
(2.54)

dσ

dpCz
=

∫
dpCxdpCy

dσ

d3pC
(2.55)

dσ

dpCx

∣∣∣∣
c.m.

=
dσ

dpCx

∣∣∣∣
lab

=
dσ

dpCx

∣∣∣∣
rfp

(2.56)

dσ

dpCz

∣∣∣∣
lab

=
εC(c.m.)

εC(lab)

dσ

dpCz

∣∣∣∣
c.m.

(2.57)

dσ

dpCz

∣∣∣∣
rfp

=
εC(c.m.)

εC(rfp)

dσ

dpCz

∣∣∣∣
c.m.

, (2.58)

(2.59)

where the momentum and energy of the core C in the different systems are
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related to those in the center of mass through standard relativistic formulae:

εC(rfp/lab) = γrfp/lab(εC(c.m.) − βrfp/labpCz(c.m.)) (2.60)

pCz(rfp/lab) = γrfp/lab(pCz(c.m.) − βrfp/labεC(c.m.)) (2.61)

pCx(rfp/lab) = pCx(c.m.), (2.62)

where

βrfp =

√
Tp(2mp + Tp)

mp + Tp +mA
βlab = −

√
TA(2mA + TA)

mA + TA +mp
(2.63)

γrfp/lab =
1√

1− β2
rfp/lab

, (2.64)

where TA is the kinetic energy of nucleus A in the laboratory system (as-
suming inverse kinematics), while Tp is the kinetic energy of the proton in
the rfp system, which would give the equivalent direct kinematics, and can
be shown to follow the very simple relation:

Tp =
mp

mA
TA. (2.65)

2.4 Antisymmetrization: the (p, 2p) case

In this section, we pay special attention to the antisymmetrization of the
wavefunction for identical particles in the Transfer to the Continuum reaction
formalism, since it has a very important effect in (p, 2p) reactions. We will
follow Section 2.11.3 from Satchler’s [72]. From Eq. (2.178) in [72] we get
that the antisymmetrized transition matrix can be expressed as

T (as)
βα =

∑
Πβ

εΠβ

〈
ΠβΨ

(−)
β |Vα|Φα

〉
, (2.66)

where for our case Vα = Vpn + UpC − UpA and. Πβ corresponds to a permu-
tation between identical particles and the sum is performed over all possible
permutations. εΠβ corresponds to (−1)

sΠβ where sΠβ denotes the number
of identical-fermion pairs that have been swapped in permutation Πβ . Let
us now focus on the (p, 2p) on a nucleus A with Z protons and N neutrons.
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For the initial partition p+A there are

Nα =
(Z + 1)!N !

Z!1!N !
(2.67)

possible permutations (see Eq. (2.167) from [72]), while for the final partition
(2p) +A− 1, the number of permutations is

Nβ =
(Z + 1)!N !

(Z − 1)!2!N !
(2.68)

From Eq. (2.174a) from [72] the cross section for the reaction is (non-
relativistically)

dσ

dΩ
=

µαµβ
(2π~2)2

kβ
kα

Nβ

Nα

∣∣∣T (as)
βα

∣∣∣2 , (2.69)

so
Nβ

Nα
=

Z!N !

(Z − 1)!N !

1!

2!
=
Z

2
(2.70)

As is standard in transfer reaction theory we must distinguish between the
“direct” term and the “exchange” terms. Loosely defined, the “direct” term
is the one that requires fewer rearrangements of particle labels to arrive to
the final channel. We will now ignore all “exchange terms”, deeming our
formalism unsuitable to treat them properly. It has been argued before
[72] that “exchange” terms contribute little to transfer reactions, and it can
be added that the “quasifree” kinematics of the experiments under study
further reinforce this approximation, due to the long mean free path of the
proton in the nucleus, which will hinder rearrangements during the reaction.
Therefore, we expect the exclusion of the “exchange” terms will lead to little
effect in the observables. The elimination of the “exchange” terms allows us
to keep only the permutations where Z − 1 protons and N neutrons are left
forming core C in the asymptotic state Cα. This leads to an expression of
the final state wavefunction as the 3-body wavefunction p1 + p2 + C in the
(p, 2p) case, where the nucleons in the core are considered distinct of the
incoming and the removed ones.

Therefore, from all possible permutations we are left with only two of
them

∑
Πβ

εΠβΠβΨ(−) = Ψ(−)(p1, p2, C)−Ψ(−)(p2, p1, C). (2.71)
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Now let us recover Eq. (2.28), but now we will use the decomposition
found in Eq. (15.34) from [72], which treats properly the antisymmetrization
of nucleons inside the nucleus:

ΦA(r, ξ) =
1√
A

∑
α,lj

ϕACljα (r)ΦC
α (ξ), (2.72)

where the factor
√
A is included to take into account that there can be A

nucleons which can be labelled by the coordinate r. If we distinguish between
protons and neutrons we get:

ΦA(r, ξ) =
1√
Z

∑
α,lj

ϕACljα (r)ΦC
α (ξ), (2.73)

since only a proton wave function may lead from A to C. As before, by im-
posing that the interaction potentials do not depend on the internal variables
of the core we can integrate over them obtaining:∫

dξΦC∗
α (ξ)φA(r, ξ) =

AACljα√
Z
ϕACljα (r), (2.74)

where as in Sec. 2.1 we will assume that only one l, j configuration for the
removed proton can couple the ground state of A and state α of C. Then,
the matrix element can be expressed as

T (as)
βα =

AACljα√
Z

〈
Ψ3b(−)
α (p1, p2, C)−Ψ3b(−)

α (p2, p1, C)|Vα|XAϕ
AC
ljα

〉
. (2.75)

Now we will try to relate Ψ
3b(−)
α (p1, p2, C) and Ψ

3b(−)
α (p2, p1, C). Let us

perform the expansion on eigenstates as in Eq. (2.22).

Ψ3b(−)
α ' Ψbin(−)

α =
∑
jπn

φ̃j
π

n (r′)X
(−)
jπnα(K′n,R

′). (2.76)

Let us now expand φ̃j
π

n (r′) employing the LS coupling scheme:

φ̃j
π

n (r′) =
∑
LS

φ̃j
π

nLS(r′)
[
YL(r̂′)⊗ [χsp1 ⊗ χsp2 ]S

]
jπ
, (2.77)

where χsp are the spin functions of the protons and YL is the spherical
harmonic for their relative movement.
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If we permute protons 1 and 2 in this model wavefunction we note that
XjπnCα(K′n,R

′) will not be modified since it only depends on the center of
mass of the p1−p2 system, which does not change through the permutation.
As for φ̃j

π

n (r′), r′ is the vector going from p1 to p2 so it must change sign.
This makes a phase (−)L appear. Also the labels of the spin functions are
swapped, but they can be swapped back through Clebsch-Gordan permuta-
tion properties:

Π
(
φ̃j

π

n (r′)
)

=
∑
LS

φ̃j
π

nLS(r′)
[
YL(−r̂′)⊗ [χsp2 ⊗ χsp1 ]S

]
jπ

=
∑
LS

(−)L(−)(−sp1−sp2+S)φ̃j
π

nLS(r′)
[
YL(r̂′)⊗ [χsp1 ⊗ χsp2 ]S

]
jπ
.

(2.78)

Therefore,

Ψ
3b(−)
Cα

'
∑
jπLSn

(1−(−)L+S−1)φ̃j
π

n (r′)
[
YL(r̂′)⊗ [χsp1 ⊗ χsp2 ]S

]
jπ
X

(−)
jπnα(K′n,R

′),

(2.79)
where we have considered sp1 = 1/2, and it can be seen that for channels
where L + S is odd the wavefunction is cancelled, while for L + S even,
the wavefunction is doubled. This allows us to relate the antysimmetrized
matrix element to the one where particles are distinguishable rather easily

T (as)
βα = 2

AACljα√
Z

as∑
jπ

T j
π

βα , (2.80)

where the matrix elements to the right are computed assuming distinguish-
able particles and the sum over jπ is restricted to values that are not can-
celled by the antisymmetrization. Let us express now the cross section from
Eq. (2.69):

dσ

dΩ

∣∣∣∣
(p,2p)

=

as∑
jπ

µαµβ
(2π~2)2

kβ
kα

Z

2
4
SFACα
Z

∣∣∣T jπβα ∣∣∣2
= 2

as∑
jπ

SACljα
dσj

πα

dΩ
.

(2.81)

We can see we have reached the very simple result that in order to compute
the cross section taking into account antisymmetrization is enough to remove
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those channels blocked by antisymmetrization and to double the cross sec-
tion from the rest of the channels, computed in a standard way considering
distinguishable particles.

Let us also note that for the (p, pn) case, once exchange terms are ne-
glected we are left with a p+ n+C system, in which the three particles are
distinguishable so further antisymmetrization considerations are not neces-
sary:

dσ

dΩ

∣∣∣∣
(p,pn)

=
∑
jπ

SACljα
dσj

π

dΩ
. (2.82)

2.5 Features of the calculation

In this section, some properties of the calculations performed within the
Transfer to the Continuum formalism are explored. In particular, we will
study the dependence of the cross section on jπ, the effects of distortion and
of the relativistic corrections.

2.5.1 Cross section jπ dependence

As was indicated in Chapter 2, the wavefunction corresponding to the final
three-body state is expanded in continuum bins with good angular momen-
tum and parity of the p−N subsystem, jπ. Due to the large number of bins,
we find that calculations coupling all of them are barely feasible without the
use of high-performance-computing facilities. As such, we have chosen to
uncouple bins with different total angular momentum and parity jπ. Due to
the impossibility of performing the full calculation, it is difficult to assess how
strongly this approximation affects the results. As a test to try to evaluate
its relevance, a calculation was made for the reaction 11Be(p, pn)10Be at 200
MeV, as in Sec. 3.2, considering final states only in the 1±, 2± and 3±

waves. The calculation was performed coupling all six different jπ and its
total cross section was compared to the sum of the cross sections from the
six calculations resulting from the uncoupling of different jπ. It was found
that the total cross sections with coupled and uncoupled states differ only
slightly, 0.8%. Admittedly, in order to perform the coupled calculation, the
bins had to be broader than in other calculations, so as to decrease the
number of coupled channels (in spite of this, the calculation with coupled
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channels took one month). As such, in order to be conservative, we consider
that the effect of uncoupling the channels with different jπ modifies the cross
section for a value of ∼5%.

In most of the calculations presented in the following section, we have
opted to compute the cross sections for a value of jπ = 5±. For this value, we
find the cross section to be adequately converged, as can be seen in Fig. 2.3,
where the cross sections leading to states of the p−N subsystem with certain
values of jπ are presented in the top panel for the reactions 16O(p, pn)15O
and 16O(p, 2p)15N at 451 MeV/A, assuming a removed neutron from the p1/2

wave with a spectroscopic factor (SF) of 1.

One feature that becomes apparent from Fig. 2.3 is the lack of 1+,
3+ and 5+ components for the (p, 2p) reaction. This is a result from the
antisymmetrization of the two outgoing protons, as developed in Sec. 2.4.

In the bottom panel, the cross section for the elastic scattering between
proton and neutron and proton and proton (ignoring Coulomb interaction
to obtain non-divergent cross sections) is shown as a function of jπ, the
relative momentum between the two colliding particles. For this calculation,
the Reid93 potential has been considered and the energy of incident particle
has been taken as 450 MeV, to reproduce the energy of the 16O(p, pn) and
16O(p, 2p) reactions. The similarity of the profiles of (p, pN) and elastic
cross sections is remarkable, and is a result of the “quasi-free” nature of the
(p, pN) process at these high energies, being the interaction between proton
and nucleon the one most strongly affecting the reaction. This also allows
us to estimate the effect of the higher jπ excluded from our calculation by
computing their contribution to the elastic pn and pp cross section (a much
lighter and stable calculation), which confirms that their contribution to the
overall cross section is rather small.

2.5.2 Effects of distortion

Given the strength of the potentials at high energies, in particular of their
imaginary part, it is expected that they strongly modify the reaction observ-
ables. In order to study their effects, in Fig. 2.4, the longitudinal momentum
distribution is presented for the reaction 15C(p, pn)14C at 420 MeV/A, ob-
tained from a full calculation, as described in Chapter 2 (labelled “Distorted
wave”), and from a “plane-wave” calculation, in which all optical potentials
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Figure 2.3: Cross section leading to states with a defined jπ, for the
16O(p, pn)15O and 16O(p, 2p)15N reactions on the top panel, and for the
elastic pn and pp cross sections, ignoring Coulomb, in the bottom panel.
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Up15C, Up14C and Up14C have been removed, only leaving Vpn in Eq. (2.37)
(labelled “Plane wave”). This is equivalent to a calculation in which a free
proton collides with a neutron bound in a wave corresponding to that of the
valence neutron of 15C, with neither of them interacting further with the 14C,
thus neglecting all distortion and absorption effects. Since no comparison to
experimental data will be considered, the removed neutron is assumed to
populate a 2s state with SF = 1.
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Figure 2.4: Longitudinal momentum distribution for 15C(p, pn)14C at 420
MeV/A. Calculations including and excluding distorting potentials are pre-
sented. The calculation including distortion is also shown rescaled to give
the peak of the calculation without distortion.

As can be seen in Fig. 2.4, the inclusion of distortion effects strongly
reduces the cross section, which is of 40.6 mb for the plane-wave calculation
and falls to 21.9 mb when considering distortion and absorption. It also
modifies the shape of the momentum distribution, which can be more clearly
seen comparing the plane-wave curve to the rescaled distorted-wave one.
The most remarkable modification is the severe reduction of the shoulders
of the distribution in the distorted-wave calculation. This reduction can be
understood from the PWIA description of the reaction, where the momentum
distributions are found to be proportional to the Fourier transform of the
wave function of the bound nucleon times the free nucleon-nucleon cross
section (times a phase-space factor that should not be too relevant at these
high energies [50]). In the Fourier transform, the shoulders seen in the plane-
wave calculation appear because the wavefunction presents a node (being a
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2s1/2 state) at small distances (∼ 2 fm). At these small distances, the effects
of absorption are intense so, when they are considered, the reaction loses
sensitivity to this part of the wavefunction and the effect of the node (the
appearance of shoulders) is reduced in the final momentum distribution.

In 15C the valence neutron has a very low binding energy, Sn = 1.22 MeV,
and it is an established halo nucleus. As such, its wave function extends to
large distances when compared to other nuclei in its vicinity. This makes
it likely that the effects of the distorting potentials are somehow reduced,
since the “collision” between the proton and the neutron may happen at
large distances of the core, where the effects of the potential are not that
strong. It would be also desirable to check the effects of distortion on waves
which do not include a node, to explore how the shapes of their momentum
distributions are modified by distortion.

In order to answer these questions, in Fig. 2.5, the reaction 22O(p, pn)21O
is explored in a similar way to that of Fig. 2.4. For this nucleus the bind-
ing energy is larger, Sn = 6.85 MeV, and the nucleus is no longer a halo.
The valence neutrons for 22O populate both the 2s1/2 and the 1d5/2 waves,
so that realistic calculations can be performed for both waves. As before,
the removed neutron is assumed to populate either the 2s1/2 or the 1d5/2

waves with SF = 1. In this figure, transversal momentum distributions are
presented along longitudinal momentum distributions.

Looking at the longitudinal momentum distribution for the 2s1/2 wave,
it is apparent that the reduction of the cross section is stronger than in
the 15C case, the cross section dropping from 44.2 mb without distortion
to 8.9 mb with it. As for the shape the same overall features than for 15C
are found, with a reduction of the relative importance of the shoulders due
to absorption. This can be understood due to the larger binding energy,
which restricts the neutron wave function to smaller distances to the core,
at which the effects of the potentials, and in particular the absorption, are
more intense. There is also a slight shift in the distribution which could
also be noticed in the 15C case, being somewhat larger for 22O. This shift
can be understood as being due to distortion effects shifting the momentum
distribution, as discussed in [50]. However, the shift is so small that it could
be a numerical artifact.

The reduction in cross section for the 1d5/2 is similar, going from 44.5
mb to 8.7 mb. The width of the distribution is reduced by the distorting
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Figure 2.5: Longitudinal and transversal momentum distribution for
22O(p, pn)21O at 415 MeV/A. Longitudinal momentum distributions are
presented in the top row, while transversal momentum distributions are
presented in the bottom. The left column corresponds to a neutron removed
from the 2s1/2 wave while the right one corresponds to the 1d5/2 wave. Cal-
culations including and excluding distorting potentials are presented. The
calculation including distortion is also shown rescaled to give the peak of the
calculation without distortion.

potentials. This can once again be understood noting that the potential is
highly absorptive at small distances. This makes the reaction sensitive only
to the value of the wavefunction at large distances, effectively resulting in a
“more extended” wave function, whose Fourier transform is narrower. Simi-
lar effects have been described for nucleon knockout reactions with heavier
targets [73].

The distorted longitudinal momentum distribution for 1d5/2 shows a
smaller asymmetry than the “plane-wave” one. There is no simple picture to
describe this behaviour, which results from two competing effects: one is the
distortion of the momentum distribution by the real part of the distorting
potential (described in [50]) and the other is the absorption of configurations
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with uneven energies between proton and neutron. These configurations
lead to asymmetry in the “plane-wave” momentum distribution, because
they are related to different free nucleon-nucleon cross sections, as shown
in Fig. 2.6, but they are strongly absorbed in “distorted-wave” calculations
because they result in one of the particles having a small energy with respect
to the core, which make it more likely to be absorbed. As such, these
asymmetry-generating configurations are reduced in the “distorted-wave”
calculation, leading to some restoration of the asymmetry. The asymme-
try of the distorted momentum distribution thus depends on a complicated
interplay between effects, which does not permit a simple explanation.

Since the momentum distribution for the s-wave is more strongly peaked,
it is more accurately described by the quasi-free mechanism, and the effect
described above is less likely to become apparent.
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Figure 2.6: Free p−n and p−p cross section (ignoring Coulomb) as a function
of the laboratory energy, computed with the Reid93 potential assuming J =
5 maximum angular momentum between proton and nucleon.

The transversal momentum distributions show similar features to the
longitudinal ones, with the exception of the shift and asymmetry, since
transversal momentum distributions are symmetric thanks to rotational in-
variance.
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2.5.3 Relativistic effects

Given the large energies (∼ 200-400 MeV/A) at which (p, pn) and (p, 2p)

reactions have been measured, relativistic effects, englobed in the relativistic
prescriptions described in Sec. 2.3, are bound to influence strongly reaction
observables. In order to quantify their importance, in Fig. 2.7 the longitu-
dinal momentum distribution for 15C(p, pn)14C is presented for two incident
energies, 100 and 420 MeV/A. The longitudinal momentum distribution is
computed with and without the relativistic corrections from Sec. 2.3. As
can be seen in the figure the effects of the relativistic prescription is much
more important for an incident energy of 420 MeV/A, where their inclusion
increases the cross section by 45%, than for an incident energy of 100 MeV/A,
where the cross section is modified only 3%. If compared to the results from
Fig. 3.5, which correspond to the same reaction, the effects of relativistic
corrections are somewhat larger in this comparison. This arises from the
choice of optical potentials, which are taken from Dirac parametrization here,
while in Fig. 3.5 were taken from Köning-Delaroche (KD) parametrization.
Since Dirac potentials are deeper than KD ones, the effect of relativistic
corrections (multiplying by γ from Eq 2.47) over them is more important
when using Dirac potentials.

It is remarkable that the shape of the distributions are not modified much
by the relativistic corrections giving virtually coinciding shapes. This can
be understood because the factor γ does not change much for the different
final states considered. Therefore, to a first approximation it can be seen as
a global factor which affects the overall cross section, not modifying much
the shape of the momentum distributions.

It is also of note how different the two momentum distributions are,
despite corresponding to a neutron removed from the same orbital. The
reason is twofold: first, at 100 MeV, the impulse approximation, which
allows to establish a clear relation between the momentum distribution and
the Fourier transform of the bound nucleon wave function, breaks down.
Secondly, even if we assume that the momentum distribution can still be
described as the wave function Fourier transform times the nucleon-nucleon
cross section, at lower incident energies the nucleon-nucleon cross section is
evaluated at lower energies, which, as can be seen in Fig. 2.6, correspond
to a much steeper variation of the cross section, which alters heavily the
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Figure 2.7: Longitudinal momentum distribution for the 15C(p, pn)14C
reaction at 100 MeV/A and 420 MeV/A with and without the relativistic
corrections described in Sec. 2.3. For the energy 420 MeV/A the calculation
without relativistic corrections is shown rescaled to reproduce the cross sec-
tion of the calculation with relativistic corrections for the sake of comparison.

momentum distribution. In particular, this explains the increase of the cross
section at high momenta for the incident energy of 100 MeV/A, since these
high momenta correspond roughly to a high energy of the core in the center
of mass system, which in turn, through conservation of energy, relates to a
small proton-nucleon energy, which leads to a high cross section.





Chapter 3

Benchmark with other reaction
formalisms

Science is really about individual experts
reaching a consensus

Alan Stern

Before comparing with experimental data, we assess the reliability and
accuracy of the proposed reaction formalism against other methods used in
the literature for the analysis of (p, pN) data.

As such, benchmark calculations are presented in this chapter for (p, pn)

reactions where the Transfer to the Continuum (TC) formalism is compared
to other reaction formalisms. Two reactions are analysed, 15C(p, pn)14C for
a proton energy of 420 MeV/c, which is compared to DWIA (Distorted-
Wave Impulse Approximation) and to published results employing the Fad-
deev/AGS formalism [57]; and 11Be(p, pn)10Be at 200 MeV per nucleon,
which is compared to the Faddeev/AGS formalism. For each reaction a
description of the different inputs of the calculation is presented followed
by the results of the calculations, which will be focused on the momentum
distributions of the outgoing core.

3.1 15C(p, pn)14C at 420 MeV/A

The DWIA calculations shown in this section were performed by Dr. K.
Yoshida and Dr. K. Ogata, to whom the author of this thesis is greatly
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thankful.

3.1.1 Inputs and details for the calculation

In this subsection, the inputs for the Transfer to the Continuum calculation
performed for the benchmark are presented, as well as specific details of the
calculation.

The bound state for the neutron has been computed as the eigensate of
a Woods-Saxon potential:

V (r) =
V0

1 + e

r − r0A
1/3

a0

, (3.1)

corresponding to the quantum numbers 2s1/2. The parameters for the po-
tential are taken as r0 = 1.25 fm, a0 = 0.65 fm and A = 14, corresponding to
the outgoing core. The depth of the potential V0 is varied in order to obtain
the desired separation energy. The 14C core is assumed to have angular
momentum and parity 0+, so that the ground state of 15C corresponds to a
1/2+ state.

The distorting potentials p−15C, p−14C and n−14C are taken from the
EDAD2 parameter set from Dirac phenomenological parametrization [45,
46]. These potentials are produced for a Schrödinger equation following
the relativistic prescription from [69]. Therefore, this same prescription is
followed in the TC calculations. This prescription gives potentials which are
energy dependent. In the initial partition, p+15C, the energy is defined by
the laboratory energy of the proton, which is taken as 420 MeV. For the final
partition, p + n+14C, however, the energy between p and 14C and between
n and 14C, is not defined for the final states considered in TC, where the
energy that is defined is the one between 14C and the pn pair. The “quasifree”
nature of the (p, pn) reaction at high proton energies results in the most likely
outcome of the reaction being an equal distribution of energy between the
incoming proton and the removed neutron. As such, we have chosen for the
outgoing potential of the p+14C and n+14C pairs the one resulting from the
EDAD2 Dirac parametrization at half the proton incident energy, that is,
210 MeV. In the DWIA formalism, the outgoing energies of the proton and
neutron are well defined for the final states studied. This allows us to study
the effect of the described choice of the outgoing potential in the reaction
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observables.

The p−N potential is paramount for the description of the (p, pn) reac-
tion, since it is the main interaction that drives the reaction. For it, we have
chosen the Reid93 [74] parametrization, a revision and extension of the Reid
Soft Core potential [75], developed by the Nijmegen group. This potential
consists of central, spin-orbit and central terms and it has been fitted to
describe elastic p−n and p− p scattering observables for energies up to 350
MeV (see Appendix C). Although the energy of the incoming proton (420
MeV) is higher than the maximum for which the Reid93 potential was fitted,
given the smooth energy dependence of the p − n scattering cross section,
we expect this potential to describe accurately the p − n interaction at the
energies of interest.

In order to have a more meaningful comparison with the DWIA for-
malism, the so-called remnant of the transfer vertex is neglected in the TC
calculations: UpC − UpA = 0.

In the TC calculations, the maximum angular momentum of the p − n
subsystem was taken as Jmax = 5. In order to be consistent between the
DWIA and TC formalisms, the double differential cross section in energy and
angle was produced for the free p− n reaction with the restriction Jmax = 5

and read in the DWIA calculation. Given the small contribution of higher
angular momenta to the free p − n cross section, it is expected that the
contributions left out are small and will not modify the conclusions of the
benchmark.

As described in Sec. 2.5.1, we uncouple the states with different p − n
angular momentum and parity. Given the uncertainties in the cross sections
due to the choice of potentials and the limits of the calculations, we deem
this approximation to be well justified.

Different binning meshes for the outgoing channels have been taken for
the calculations for different angular momenta and parities of the final p−n
system. For the angular momenta and parities jπ = 0, 1, 2± the bins are
evenly spaced in energy with a width ∆E = 10 MeV for a p − n energy
between 30 and 330 MeV. For jπ = 3±, the width was increased to ∆E = 15

MeV while for jπ = 4, 5± it was taken as ∆E = 25 MeV. The reason for
the increase in the width is twofold: first, the majority of the cross section
was found to correspond to jπ = 1, 2±, so a smaller width should be taken
for these states in order to have a better description of these states, which
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will give most of the cross section. Second, calculations are both heavier and
more unstable for larger jπ, due to the increase of channels coupled for each
total angular momentum and to the steeper centrifugal barrier faced by the
bin wavefunctions. A reduction in the number of channels through the use of
fewer broader bins helps to achieve numerical stability for the calculations.

The maximum total angular momentum for the calculation was taken as
Jmax = 60, where the contribution to the cross section was less than 0.05% of
the total cross section. Larger total angular momenta proved very unstable,
in particular for calculations with the bigger p− n angular momenta.

3.1.2 Results

In this section the results for the benchmark calculation are presented. Most
of these results have been published in [49]. First, in Fig. 3.1, we present the
results corresponding to the benchmark employing the experimental neutron
separation energy for 15C, Sn = 1.22 MeV. The observable studied is the
longitudinal momentum pz distribution of the outgoing 14C in the rest frame
of 15C. In the figure, the panel to the left corresponds to the full calculation
as described in the previous section. We can see that the agreement between
TC and DWIA calculations is excellent both in shape and magnitude. A
few minor differences can be seen, but they are likely to be produced by
the interpolations and averages trough which the differential cross section is
computed from the TC calculation (see Sec. 2.2).

In order to explore the effect of the distorting potentials in the degree
of agreement, a “plane-wave” calculation has been performed in which the
distorting potentials have been switched off. This also allows us to explore
the effect of absorption and distortion in the cross section for this case. The
results are presented in the right panel of Fig. 3.1. As can be seen, the
agreement keeps being excellent, though the peak seems to be a bit larger
in the plane-wave impulse approximation (PWIA) calculation and the left
shoulder presented by the distribution is a little larger as well. However we
find the differences too small to be significant.

In the figure the effect of the distorting potentials can be also analysed.
We see that the shape of the cross section is changed: the “plane-wave”
calculation presents two very marked shoulders which are greatly reduced in
the full calculation. The cross section is highly reduced as well. For the TC
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Figure 3.1: Benchmark calculation between TC and DWIA formalisms for
15C(p, pn)14C at a proton energy of 420 MeV. The left panel corresponds
to the full calculation where the distorting potentials have been considered
as described in Sec. 3.1.1. The right panel corresponds to a “plane-wave”
calculation, where the distorting potentials are set to 0.
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calculation, the cross section computed is of 40.6 mb for the “plane-wave”
calculation, while for the full calculation it is reduced to basically half this
value: 21.9 mb. Both effects can be understood by the highly absorptive
nature of the distorting potentials: This absorption greatly reduces the
outgoing flux, and with it the overall cross section for the considered (p, pn)

channel. As for the shoulder structure, it can be seen that it originates from
the Fourier transform of the wavefunction of the removed nucleus, and in
particular from it corresponding to a 2s state, whose wave function presents
a node. In order for the cross section to be sensitive to that node, it is
necessary that the small distances where it can be found are explored by the
reaction. Since absorption increases at small distances between the proton
and 15C, the proton is likely to be absorbed prior to exploring such deep
parts of the neutron wavefunction. Therefore, the ratio of the shoulders,
which can be related to the inner parts of the wavefunction, to the peak,
which explores the outermost parts of the wavefunction, is reduced when
including absorption in the calculation.

Nucleus 15C has a low neutron binding energy which in turn results in a
halo structure where, for the geometry chosen for this work, the root mean
square radius has the very large value of 5.5 fm. At these large distances
the effects of distorting potentials are diminished and the reaction can be
understood through a simply geometrical description, where the cross section
is merely related to the likelihood of finding the neutron outside of a certain
absorption area. Therefore, it can be argued that the agreement of both
formalisms is a product of the simplicity of the reaction mechanism in this
particular case. In order to explore the evolution of the agreement when
this simple picture is weakened we have computed two reactions where the
separation energy of the neutron has been increased artificially to 5 and
18 MeV. The results for these calculations are shown in Fig. 3.2. As can
be seen in the figure the agreement remains remarkably good for the two
new calculations although in the case with Sn = 18 MeV the TC calculation
seems to overestimate the high momentum tail when compared to the DWIA
calculation. To this respect, it was found that in the DWIA calculation this
tail was particularly sensitive to the choice of Epn, the energy at which the
free p − n cross section is evaluated (see Eq. (1.12)), as is shown in Fig.
3.3. In the figure initial corresponds to computing the energy from κ, final
corresponds to κ′ and average to the average of both energies. As can be seen
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Figure 3.2: Benchmark calculation for the same reaction as Fig. 3.1, where
the separation energy has been artificially increased to Sn = 5 and 18 MeV.

the differences between these choices are not too important at this incident
energy, but they alter somewhat the agreement with the Transfer to the
Continuum calculation in the peak and tail.

Let us remark that this ambiguity in the choice of Epn stems from the

approximation of |tpn|2 by
dσ

dΩ
, the free p − n cross section. When tpn is

accessible for different initial and final energies (off-shell t-matrix) in the
DWIA calcualtion, it is not necessary to make an on-shell approximation.
From the results presented in Figs. 3.1, 3.2 we conclude that the agreement
between both formalisms is satisfactory within the uncertainties of each
formalism, and consider that the benchmark shows them as fully consistent.

One of the main difficulties faced by the Transfer to the Continuum
formalism is the loss of the information on the relative energy between n

and core and p and core. Since in the formalism optical potentials that
depend on energy are used, this lacking information opens the question of
which energy should be used when evaluating the potential. As mentioned
in Sec. 3.1.1, we opted to use the potentials at half the incident energy,
but we are left to ponder how this choice affects the results. The DWIA
formalism retains the information on the relative energy and can select the
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Figure 3.3: Dependence of the DWIA momentum distribution on the selec-
tion of Epn, the energy of evaluation of the free p− n cross section.

corresponding potentials at the relative energy for each final configuration
(see Eq. (1.16)). Thus, we can compare DWIA calculations using the same
prescription for the potentials as the Transfer to the Continuum and using the
distorting potentials corresponding to the relative energies for each outgoing
configuration. This should illustrate the effect on the observables of the
choice of potentials made in the Transfer to the Continuum calculations.
The corresponding calculations are shown in Fig. 3.4. In the figure, EI-
DWIA corresponds to the DWIA calculation where the outgoing potentials
are fixed to half the incident energy, while ED-DWIA corresponds to the
calculation where the outgoing potential has been computed based on the
relative p−14C and n−14C energy for each outgoing state. As can be seen in
the figure, in general the inclusion of the energy dependence of the potential
increases the shoulders and tails of the distributions, while reducing the
peak contribution. The total cross section is however not changed much,
being reduced by 3.4% for Sn = 1.22 MeV, by 3% for Sn = 5 MeV and in-
creased by 0.4% for Sn = 18 MeV. From this, we may expect the momentum
distributions obtained using the choice of potentials taken in the Transfer
to the Continuum to give cross sections close to those obtained using the
energy-dependent potentials, although the momentum distributions may be
somewhat narrower with higher peaks and reduced tails. This issue will be
relevant when comparing to experimental data in Chapter 4.
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Figure 3.4: Distorted wave results from Figs. 3.1, 3.2 compared to DWIA
results where outgoing potentials are calculated for each of the outgoing
configurations.

3.1.3 Comparison with published Faddeev/AGS results. Ef-
fect of relativistic corrections

The reaction 15C(p, pn)14C at a proton energy of 420 MeV was studied using
the Faddeev/AGS formalism in [57]. There, the study of the reaction was
performed using non-relativistic kinematics. As such, their results could not
be compared to those from the DWIA calculation, which was implemented
fully relativiscally. However, we were able to compare them to the Transfer to
the Continuum calculations by removing the relativistic corrections described
in Sec. 2.3.

In order to have a more meaningful comparison we employ the potentials
presented in [57], which for completion are presented in Table 3.1. We also
include the potential for p+15C. In the Faddeev/AGS formalism this poten-
tial is not required as an input, since the p+15C is built from the binary
interactions between p and n and p and 14C. However, in the Transfer to
the Continuum formalism this is not the case and a certain choice of this
potential must be provided as an input. For consistency and convenience,
we have chosen to generate this potential from the Köning-Delaroche (KD)
parametrization [76] evaluated at 200 MeV, as the p, n−14C potentials were
taken. The potentials present a Woods-Saxon-shaped real part and an imag-
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inary part with Woods-Saxon and Woods-Saxon-derivative components:

V (r) = − V0

1 + e
r−r0A1/3

a0

− i W0

1 + e
r−r0A1/3

a0

− 4iWs
e
r−r0sA

1/3

a0s(
1 + e

r−r0sA1/3

a0s

)2 , (3.2)

where A is taken as 14, corresponding to the core. From the cases presented

V0 (MeV) W0 (MeV) r0 (fm) a0 (fm) Ws (MeV) r0s (fm) a0s (fm)
Vp−14C 13.121 13.115 1.136 0.676 0.195 1.304 0.526
Vn−14C 16.161 11.044 1.136 0.676 0.138 1.304 0.542
Vp−15C 13.345 13.121 1.140 0.676 0.205 1.303 0.527

Table 3.1: Parameters for the König-Delaroche potentials used in the calcu-
lation.

in [57] we have chosen the one explored in the previous benchmark: a neutron
removed from a 2s state with separation energy Sn = 1.22 MeV. We present
the transversal momentum px distribution in Fig. 3.5. In the figure, in the
left panel, the Faddeev/AGS calculation taken from [57] is presented in a blue
solid line, while two Transfer to the Continuum calculations are presented:
the red dot-dashed line corresponds to a calculation without relativistic cor-
rections while the green dashed line includes them. It can be seen that the
agreement between the Faddeev/AGS and non-relativistic Transfer to the
Continuum calculation is excellent. Since the Faddev/AGS calculation was
computed non-relativistically we conclude that Transfer to the Continuum
and FaddeeV/AGS give fully consistent results. It must be remarked that
the Vpn interaction used in both calculations is different: the Faddeev/AGS
calculation employs CD-Bonn interaction [77] while the Transfer to the Con-
tinuum uses Reid93, as mentioned above. In the elaboration of this study,
we were not able to implement CD-Bonn potential in our reaction code, so
a comparison using the same Vpn interaction was not feasible. However, we
must note that both potentials reproduce experimental p−n phaseshifts up
to energies of hundreds of MeV, so they present the same on-shell behaviour
and should yield very similar observables in the (p, pn) reaction. In order
to isolate the effect of the Vpn interaction, in the right panel a “plane-wave”
calculation is presented where all the distorting potentials have been set
to 0, which can be compared to a similar calculation shown in [57]. The
agreement is still excellent, from where we conclude that both interactions
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Figure 3.5: Transversal momentum distribution for 15C(p, pn)14C at 420
MeV proton energy computed using the Faddeev/AGS formalism through
non-relativistic equations and using the Transfer to the Continuum formal-
ism with (green dashed line) and without (red dot-dashed line) relativistic
corrections. The left panel shows the full calculation while the right one
shows the “plane-wave” calculation where all distorting potentials are set to
0.

seem to result in the same cross sections, which should not be surprising
since both reproduce the same free p− n observables.

We must mention that the inclusion of the relativistic prescription results
in a marked increase in the cross section computed for the Transfer to the
Continuum formalism, of around 30%, which corresponds roughly to the
factor γ2 (see Eq. (2.47)) when following the prescription from [69]. We
conclude from here that relativistic corrections can severely affect the cross
sections obtained and therefore must be taken into account when trying to
obtain information from comparing theoretical calculations to experimental
data.
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3.2 11Be(p, pn)10Be at 200 MeV/A

In this case we perform non-relativistic calculations, since the Faddeev/AGS
implementation is non-relativistic. As such we have chosen a lower proton
energy (200 MeV) so as not to be so influenced by relativity. This energy
is also chosen because it is the upper limit for the prescription used for the
distorting potentials: Köning-Delaroche’s [76]. The Faddeev/AGS calcula-
tions shown in this section were performed by Dr. A. Deltuva, to whom the
author of this thesis is greatly thankful.

3.2.1 Inputs and details for the calculation

In this calculation all excitations of 10Be will be ignored. In reality the
ground state of 11Be has a finite overlap with the excited state 10Be(2+)[78],
but for the sake of simplicity we will assume a ground state for 11Be with
only one channel: 10Be(0+).

As in the previous benchmark, the bound state for the neutron has been
generated with a Woods-Saxon potential, which in this case has the following
geometry: R0 = 1.39×101/3 fm, a0 = 0.52 fm. The depth of the potential is
adjusted to obtain the eigenstate at the neutron separation energy Sn = 0.5

MeV.

For the distorting potentials p−10Be, n−10Be the KD parametrization
has been used, selecting a nucleon energy of 200 MeV for its evaluation.
In the Faddeev/AGS calculation, for the n−10Be partial wave supporting
the initial bound state, the potential must be fixed to that generating the
bound state. In that respect, there is a difference between the Faddeev/AGS
calculation and the Transfer to the Continuum one. In the Faddeev/AGS
calculation all partial waves but that supporting the initial bound state
are assigned the KD potential, while the one supporting the bound state
is assigned the binding Woods-Saxon potential. In the Transfer to the Con-
tinuum one, the final states do not have a defined n−10Be configuration, so
different potentials cannot be assigned to different configurations. As such, in
the coupled-channel calculation, the n−10Be potential is always taken from
KD, and the binding potential is only used to generate the bound neutron
wavefunction.

Another difference arises in the treatment of the p+11Be potential. As
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mentioned above, the Faddeev/AGS formalism does not require this poten-
tial as an input, since it only uses binary interactions between p, n,10Be, while
in TC this potential is involved in the calculation of the distorted wave for
the incident channel (Eq. (2.14)). For the TC calculation, two choices for
this potential are explored: the first computes this potential by folding Vpn
and Vp10Be with the bound neutron wavefunction in order to produce Vp11Be

U fold
p11Be(R) =

∫
drn10Be |ϕ11Be(rn10Be)|2

(
Vpn(rpn) + Up10Be(rp10Be)

)
. (3.3)

The second takes Vp11Be from KD parametrization at 200 MeV. We note
that, when the final state wavefunction is the exact solution of Schrödinger’s
equation the choice of Vp11Be is arbitrary and does not modify the transition
matrix. As such, if our approximation for the final wavefunction Ψbin

b is a
good representation of the exact solution for the region of space explored by
the reaction, we expect the choice of Vp11Be not to modify much the reaction
observables.

For Vpn, a Gaussian interaction is assumed [61].

V = −V0e
− r

2

a2
0 . (3.4)

The Gaussian interaction is taken as attractive for the waves with even p−n
orbital angular momentum and as repulsive for those with odd p−n orbital
angular momentum. This choice was taken for simplicity and because the
Reid93 potential was not implemented in the Faddeev/AGS program at the
moment of this benchmark.

All distorting potentials as well as Vpn are presented in Table 3.2. The
potentials are taken as spin-independent, which allows us to take all involved
particles as spinless. Coulomb interaction is also ignored, as it is expected to
influence little the reaction observables. This reduces the computational cost
of the calculations, and in particular allows all partial waves for the outgoing
p−n system to be coupled in the Transfer to the Continuum calculation, in
contrast to the previous benchmark. In the calculations, p and n are assumed
to have a mass of 1 average nuclear mass 1 a.n.m. = 1.00797 amu, while 10Be
and 11Be masses are taken as 10 and 11 a.n.m. respectively. The maximum
orbital angular momentum considered for the p−n pair is taken as lmax = 3,
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V0(MeV) W0(MeV) r0(fm) a0(fm) Ws(MeV) r0s(fm) a0s(fm)
Vp−10Be 13.445 13.095 1.116 0.676 0.204 1.308 0.524
Vn−10Be 15.970 10.997 1.116 0.676 0.128 1.308 0.543
Vp−11Be 13.740 13.100 1.122 0.676 0.217 1.307 0.524

Vpn
l even 72.15 1.484
l odd -72.15 1.484

Table 3.2: Parameters for the potentials used in the calculation. All poten-
tials are taken from [76] but Vpn, which is based on the parametrization from
[61].

since most of the cross section is expected to be contained in the considered
partial waves and higher l make the calculation both significantly heavier
and less stable. The maximum total angular momentum for the three-body
system is taken as Jmax = 60. Test calculations with Jmax = 70 showed
negligible differences.

In the Transfer to the Continuum calculations the binning mesh used is
the following: bins are computed evenly spaced in energy with a width of
∆E = 5 MeV. For lpn = 0, 1 the mesh is extended from 0 to 160 MeV, while
for lpn = 2, 3 the mesh is taken from 20 to 160 MeV. A test calculation with
∆E = 2.5 MeV shows a change in the cross section of ∼0.6%, so we consider
the calculation with ∆E = 5 MeV to be sufficiently converged.

Let us remark that in contrast to the previous calculation, the remnant
term Vp10Be − Vp11Be is kept in the calculations, since the “recoil” effect
introduced by this term is also accounted for by the Faddeev/AGS formalism.

3.2.2 Results

In this section the results for the benchmark are presented. Two different
cases are studied in this benchmark: in the first one, the neutron is assumed
to be removed from a 2s state, corresponding to the component with highest
population probability for the halo neutron of 11Be. The second assumes a
neutron extracted from a 1p state. Both calculations are performed assuming
the same neutron separation energy Sn = 0.5 MeV. This allows us to explore
the dependence of the agreement between both formalisms on the quantum
numbers of the removed nucleon, which have a fundamental influence on the
shape of the observables, in particular of the momentum distributions.

The observables we have chosen to present are the following, all refer-
ring to the outgoing 10Be core: in the top left, the transversal momentum
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distribution:
dσ

dpx
, in the top right, the longitudinal momentum distribution

measured in the center of mass system:
dσ

dpz
, in the bottom left, the energy

distribution measured in the center of mass:
dσ

dE10Be
and in the bottom

right, the angular differential cross section in the center of mass:
dσ

dΩ
. The

results of the benchmark assuming a neutron in the 2s state are presented
in Fig. 3.6.

For each calculation, two TC calculations are presented which differ in
the choice of Vp11Be. In Fig. 3.6, the blue dashed line corresponds to the
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Figure 3.6: Benchmark calculation for removal of a 2s neutron. The blue
dashed line corresponds to the FaddeeV/AGS calculation, the black solid
line corresponds to a TC calculation with Vp11Be obtained through folding as
described in Sec. 3.2.1 and the red dotted line corresponds to TC with Vp11Be

from KD parametrization. The oservables presented all refer to the outgoing
core 10Be in the c.m. frame and are as follows: a) transversal momentum
distribution, b) longitudinal momentum distribution, c) energy distribution,
d) angular distribution.

Faddeev/AGS calculation while two Transfer to the Continuum calculations
are presented: the black solid line corresponds to a calculation where Vp11Be
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is obtained from the folding procedure mentioned in Sec. 3.2.1, while the
red dotted line corresponds to a calculation where Vp11Be is taken from
the KD parametrization. It must be noted that the cross section leading
to the deuteron, 11Be(p, d)10Be, has been included in the Transfer to the
Continuum calculations but not in the Faddeev/AGS ones. The cross section
for this channel only amounts to 0.2 mb, so we find this difference not to be
essential for the benchmark. In the longitudinal momentum and 10Be energy
distributions the deuteron contribution can be seen at the high energy and
momenta and has been given an artificial width of 1 MeV in order to emulate
the effects of finite experimental energy and momentum resolution and to
avoid an infinite peak in the cross section.

We can see that the agreement is remarkably good for all observables
except for the angular differential cross section at small scattering angles,
where the Faddeev/AGS result falls under both Transfer to the Continuum
calculations, which agree rather well between themselves. We note that due
to the solid angle factor sin(θ), these small angles contribute little to the cross
section, which explains why this difference is not so apparent in the rest of
the observables. The integrated cross section is larger for the Faddeev/AGS
calculation, as can be seen in the legend of the figure. Closer inspection shows
the Faddeev/AGS calculation to give a slightly bigger peak in the energy
distribution and a somewhat greater contribution in the low momentum tail
in the longitudinal momentum distribution. It is difficult to elucidate a
physical reason for these differences, although it could be argued that the in
the Transfer to the Continuum, the use of the KD potential for all partial
waves may introduce a small extra source of absorption, when compared to
the Faddeev/AGS calculation, which uses the real binding potential for the
l = 0 partial wave.

With these cautionary notes, we may conclude that the agreement be-
tween both formalisms, which use slightly different inputs and may not give
a priori compatible results, is rather satisfactory. We also note that the
Transfer to the Continuum observables is remarkably similar for both choices
of Vp11Be. This can serve as an indication that our approximation for the
final three-body wavefunction is reasonable in these reactions, since formally
the exact solution is independent of the choice of Vp11Be.

In Fig. 3.7, the same observables as in Fig. 3.6 are presented for the
calculation where the neutron is removed from a 1p orbital. In general,
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Figure 3.7: As Fig. 3.6 but for removal of a 1p neutron.

the same features are observed as in the case with removal from the 2s

orbital. All calculations give a rather good agreement, with the Transfer
to the Continuum calculations giving a cross section which is somewhat
smaller than that of Faddeev/AGS ones. As before the deuteron contribution
is included in the Transfer to the Continuum calculations but not in the
Faddeev/AGS ones. In this case the contribution is even smaller, of 0.04
mb, so this difference should not be too relevant for the comparison. The
difference in the angular distribution is reduced in this case, although this
is likely due to the reduction of the contribution of the lower angles, which
tend to be more unstable and sensitive to the intricacies of the calculation.

Although the differences are small, the Transfer to the Continuum cal-
culations seem to differ somewhat more in this case when compared to the
2s one. The differences are however too small to be given physical meaning,
since they may well be simply a result of the numerical calculation. Let
us also remark that once the final wavefunction is not the exact solution of
Schrödinger equation, the choice of Vp11Be may influence the cross section,
and it is difficult to relate the dependence of the observables on it with
the adequacy of the approximate wavefunction, beyond a merely qualitative
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discussion.

Both Transfer to the Continuum calculations seem to give slightly nar-
rower momentum distributions than the Faddeev/AGS calculation. We must
remark that, in contrast to what was found in the benchmark with DWIA
presented in Sec. 3.1, this is not related to the energy dependence of the
potential, which in this case is fixed at a certain energy in both Faddeev/AGS
and Transfer to the Continuum calculations. Again the difference is too small
to try and give physical meaning to it.

Calculations with Reid93

We note that the Gaussian interaction used up until now in the comparison
with the Faddeev/AGS formalism is adjusted to describe well the binding
energy and mean square radius of the deuteron and the low-energy phase
shifts for the p−n subsystem in the 3S1 wave. However, it does not produce
the well known d wave component of the deuteron, nor does it reproduce the
phase shifts for the other waves of the p− n subsystem.

For these reasons we find it suitable to perform some other benchmark
calculations using the Reid93 nucleon-nucleon potential, in order to check
whether the consistency found in the previous calculations is maintained
when introducing the new NN interaction. Given that the Reid93 in-
teraction is spin-dependent we no longer can remove the spins of proton
and nucleon. Instead of performing the calculation for final states with
l = 0− 3 relative angular momentum between proton and neutron, we have
opted to consider the states with total angular momentum between them of
Jπ = 0− 3±. Since the number of final states increases by a factor of 4 due
to the spins of both proton and neutron, it is no longer feasible to perform
the calculation coupling all final states. Following the method taken for
the other calculations in this work, we uncouple states with different total
angular momentum and parity jπ, computing independently the cross section
leading to each set of states.

The results are presented in Fig. 3.8 assuming a neutron removed from
a s1/2 state and in Fig. 3.10 from a p1/2 state. As can be seen from the
figures both TC and Faddeev/AGS calculations keep showing very similar
shapes for all the distributions presented, again the TC ones being slightly
narrower than the ones from Faddeev/AGS. However, the TC distribution
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Figure 3.8: As Fig. 3.6 taking the Reid93 as NN interaction, assuming a
neutron removed from the 2s1/2 wave.

is noticeably smaller than Faddeev’s, with a reduction of ∼ 8%. Given the
excellent agreement found in the study employing the Gaussian potential,
this difference is quite intriguing. In order to try to clarify the origin of this
difference and to check the implementation of the Reid93 interaction, we
have performed a comparison of our plane-wave calculations for the case
with the neutron removed from the p wave, whose results are shown in
Fig. 3.10. For the plane-wave calculation we find that the agreement between
Faddeev/AGS and TC is once more excellent. Since in this calculation the
only relevant potential is the NN interaction, it should be most sensitive to
the intricacies of the Reid93 interaction. The agreement of the plane-wave
calculation thus indicates a compatible behaviour of the Reid93 interaction
in the Faddeev/AGS and TC formalisms.

The origin of the difference between both formalisms in Figs. 3.8 and
3.10 is therefore not found (only) in the Reid93 interaction and has not been
clarified by the time of composition of this work. One possible cause is
the effect of uncoupling the final states with different jπ for the final p − n
subsystem, which could, in principle, affect the total cross section. The
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Figure 3.9: As Fig. 3.6 taking the Reid93 as NN interaction, assuming a
neutron removed from the 1p1/2 wave.

effects of this approximation are difficult to test because the full calculation
requires too much computer time and resources to be feasible in a reasonable
time. As will be detailed in Sec. 2.5.1, a rough calculation was performed
coupling the most relevant waves and the difference between this calculation
and the uncoupled ones was found to be much smaller than the one found
here. As such, it does not seem likely that this is the origin of the discrepancy.

Another possible origin of the difference between the calculations lies in
the potential between p and 11Be, as mentioned in previous sections. For
the TC calculations, as in previous cases, we have explored two different
prescriptions for this potential, one obtained from the KD parametrization
and the other from a folding of the n−10Be and pn interactions over the
square of the wave function of 11Be. On the other hand, the Faddeev/AGS
formalism only considers binary interactions between p, n and 10Be.

The excellent agreement between both TC calculations is remarkable and
is indication of the final CDCC wavefunction Ψbin

bα being a good approxima-
tion of the exact 3-body wavefunction Ψ3b

bα, since for the exact wavefunction
the choice of Up11Be does not affect the interaction. This could be understood
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Figure 3.10: Plane wave calculation for the 11Be(p, pn)10Be reaction at 200
MeV/A, assuming the removal of the neutron from the 1p1/2 wave. Red
dots correspond to the TC calculation, while the blue line corresponds to
the Faddeev/AGS one.

as Up11Be having a small effect on the final cross section. However, calcula-
tions rescaling the Up11Be potential still show some dependence of the cross
section, so the result is not independent on Up11Be. The agreement between
both prescriptions for the potential rather stems from the folding being dom-
inated by the p−10Be interaction, which comes from the KD parametrization
and is very similar to the one for p−11Be.

It can be questioned whether these simple descriptions of the p−11Be
interaction are able to mimic the complex behaviour of the Faddeev/AGS
equations, specially when the p−n interaction is as strong and peaked as the
Reid93 interaction, as well as being and l-dependent. A milder potential such
as the Gaussian of the previous section may result in a better description by
smooth potentials such as the ones used in the TC calculations.

The results presented here seem at odds with those presented in Sec. 3.1.3.
We do not have a satisfactory explanation for the disagreement in the
calculations presented in this section and the agreement found there. It is
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possible that the inclusion of J = 4±, 5± in our calculations for Sec. 3.1.3
had helped increase the TC cross section, thus meeting the Faddeev/AGS
one or that the discrepancies are reduced for the larger energy of 420 MeV/A
considered there.

Despite these discrepancies, the excellent agreement between TC and
DWIA both in shape and magnitude as well as the agreement between TC
and Faddeev/AGS, good in shape and fair in magnitude, serve as validation
for the TC formalism to be used in comparison to experimental data for
(p, pn) and (p, 2p) reactions, which will be presented in the next section.



Chapter 4

Comparison with experimental
data

It doesn’t matter how beautiful your
theory is, it doesn’t matter how smart

you are. If it doesn’t agree with
experiment, it’s wrong.

Richard P. Feynman

In this chapter, results of calculations with the Transfer to the Continuum
formalism are presented and compared to published experimental data.

4.1 Experimental results for low- and medium-
energy experiments

The Transfer to the Continuum (TC) formalism is not based in the Impulse
Approximation nor it requires any eikonal approximation. In fact, the main
approximations taken in its development is the Born approximation per-
formed in Eq. (2.10) and the ansatz for Ψb given in Eq. (2.15) both of which
can be related to the assumptions that the coupling to the excited states of
the parent nucleus is small and that the reverse coupling, from the breakup
p+ n+ C states to the p+A state is small.

Both assumptions are verified at lower energies than the energies usually
required for the applicability of the eikonal and impulse approximations. As

81
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such, we expect TC to be valid at these lower energies, under 100 MeV/A. As
such, we present in the following a pair of (p, pn) reactions at low energies
which we analyse using TC to show the validity of the formalism at low
energies and the information that it can provide from these reactions.

4.1.1 18C(p, pn)17C∗ at 81 MeV/A

The first reaction we present in this section is the (p, pn) reaction on 18C
leading to 17C in its excited states, which was performed in the RIBF facility
at an energy of 81 MeV/A and whose results were published in [79]. In that
work, experimental data were compared to CDCC calculations, which are
similar to TC ones but which expand the 3-body p + n+17C final state
in states with good angular momentum and parity of the n+17C subsystem
instead of the p+n subsystem, as in TC. As such, CDCC calculations cannot
include the (p, d) channel.

We now present a reanalysis of the experimental data for this reaction
using the TC formalism. The inputs of the reaction have been taken follow-
ing closely the prescriptions for the CDCC calculations in [79]: the optical
potentials between p, n−18,17C have been taken through a folding procedure
between the JLM effective interaction [80] (valid for nuclei with 12<A<208
at energies E<160 MeV) and the density of 18C or 17C, obtained using the
subroutine dens, which is part of the oxbash package [18]. The bound state
for the neutron is obtained as the eigenvalue for a Woods-Saxon potential
with r0 = 1.25 fm and a = 0.7 fm, whose depth has been adjusted to
reproduce the effective neutron separation energy (S∗n = Sn + Ex) where
Sn = 4.18 MeV is the neutron separation energy of the ground state of
18C leading to the ground state of 17C while Ex is the excitation energy of
the excited state of 17C∗. Spectroscopic factors have been obtained from a
shell-model calculation with the WBP interaction [15].

For the p−n interaction, in [79] they have used the semirealistic Malfliet-
Tjon V potential [81], which was adjusted to reproduce only the 1S0 and 3S1

p−n phase shifts. Since in TC the p−n interaction is the main one leading
the reaction, we have chosen instead to use the Reid93 [74] interaction, which
reproduces all phase shifts for the p− n states of interest here.

In this reaction, two excited states of 17C are populated, one at Ex=0.21
MeV and another at Ex=0.33 MeV. The ground state is also populated, but
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due to its small overlap with the ground state of 18C, the cross section to
it is small and could not be established accurately. As such, we have chosen
not to compute the cross section to the ground state, since the experimental
data to compare with are not well established.

As indicated in Sec. 2.5.1, the cross section to states with a certain p−n
angular momentum and parity jπ is computed independently. In this case
we have only computed states with j up to 3. As is shown in Fig. 4.1, the
cross section is strongly dominated by the 1+ contribution, and it decreases
with increasing j. therefore, the states with j > 3 will not contribute much
to the cross section. This can be easily understood as the phase shift for the
free p− n process at low energy is much larger for the 3S1 wave than for all
of the other waves.
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Figure 4.1: Cross section for the 18C(p, pn)17C∗ (0.33 MeV) reaction as-
suming removal from the d5/2 state as a function of the final p − n angular
momentum and parity jπ.

Cross sections are computed using the formula:

σth =
∑
α

C2Sα

(
A

A− 1

)N
σαsp, (4.1)

where α denotes the states of the core which contribute to the reaction, σαsp
is the corresponding single-particle cross section, C2Sα is the spectroscopic
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Ex (MeV) Jπ σexp C2S σCDCCsp σCDCCth RCDCCs σTCsp σTCth RTCs

0.21 1/2+ 11(2) 0.65 28 21 0.52(10) 21.8 15.9 0.69(13)
0.33 5/2+ 43(5) 2.80 18 57 0.75(9) 17.4 54.6 0.79(9)

Table 4.1: Cross section and “quenching factors” Rs for 18C(p, pn)17C∗ ob-
tained from CDCC [79] and TC calculations. The first and second columns
indicate the energy and the angular momentum and parity of the state,
respectively, while the third column shows the experimental cross section.
The fourth column shows the spectroscopic factor obtained with the WBP
interaction for each state. The fifth, sixth and seventh columns show the
CDCC single particle cross section, theoretical cross section and “quenching
factor”, respectively. The eight, ninth and tenth columns do the same for TC
values.

factor with the necessary isospin factor, A denotes as usual the mass number
of the parent nucleus and N is the shell main quantum number for the
orbital from which the nucleon is removed. We must note here that the(

A
A−1

)N
factor has been strictly derived for the Independent Particle Model

in a harmonic oscillator basis [82] and its use can be questionable in the
present case, where we use shell-model SF. Noting this caveat, we include
this factor nonetheless, following previous authors [32] with whose results we
intend to compare. We have computed the cross section for the 1/2+ state at
Ex =0.21 MeV assuming removal from the 2s1/2 level and for the 5/2+ state
at Ex =0.33 MeV assuming removal from the 1d5/2 level. The results for
the total cross section, as well as for the “quenching factors” Rs = σexp/σth

are presented in Table 4.1. Results from the CDCC calculation in [79] are
presented as well for comparison. Transversal momentum distributions are
presented in Fig. 4.2.

As can be seen in Fig. 4.2, the agreement in shape between the TC
calculation and experimental data, after convolution with the experimental
resolution (FWHM=71 MeV), is very good for both excited states of 17C:
1/2+ in the left panel and 5/2+ in the right one. In the table we can see that
the “quenching factors” Rs obtained in the TC calculation are larger than
those obtained with the CDCC calculation. They are also more consistent
between themselves, both agreeing within error (which was computed prop-
agating the error from the experimental cross section) while this is not the
case for the CDCC calculation.

However, a very interesting feature appearing in our calculation is the
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Figure 4.2: Transversal px momentum distributions for the 18C(p, pn)17C∗

reaction. Experimental data are from [79]. The left panel corresponds to
(p, pn) leading to the Ex = 0.21 MeV 17C excited state, while the right
panel corresponds to the Ex = 0.33 MeV excited state. The blue solid line
corresponds to the full calculation rescaled to give the experimental total
cross section. The blue dashed line corresponds to the calculation removing
the contribution from the (p, d) transfer reaction, rescaled by the same factor
as the full calculation. All theoretical calculations have been convoluted with
the experimental resolution.

contribution of the (p, d) reaction channel. We must note that experimentally,
only the 17C core was detected, so the contribution of the (p, d) channel, if
significant would be incorporated to the experimental observables. For the
1/2+ single-particle cross section, (p, d) contributes with 0.83 mb, which
amounts only to 3% of the cross section, being rather small. However, for
the 5/2+ its contribution rises to 2.61 mb, 15% of the single particle cross
section.

In order to check whether this strong contribution of the (p, d) channel is
an artifact of the calculation we have performed simple DWBA calculations
for the 18C(p, pn)17C∗(Ex = 0.33)MeV reaction. A calculation using An-Cai
[83] potential between d and 17C, which is valid for this range of masses and
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energy, and the same JLM prescription of the TC calculation for the p−18C
potential yields a transfer cross section of 2.18 mb, while a calculation using
An-Cai for d−17C and Köning-Delaroche for p−18C yields 2.48 mb. The
variation of the values with the potential is expected and known for transfer
calculations [40]. However, overall value of the cross section is coherent and
consistent with that found in TC.

From this, we conclude that the contribution of (p, d) transfer reaction
to the total cross section is indeed important at these energies. Therefore,
we must discourage the use of formalisms which do not include this channel,
such as CDCC, for reactions such as this, in which this channel contributes
strongly, in favour of those which include it, such as TC.

4.1.2 20C(p, pn)19C at 40 MeV/A

In this section, we analyze the reaction 20C(p, pn)19C using the Transfer
to the Continuum formalism. This reaction was measured at the RI Beam
Factory (Japan) and the experimental data published in [84]. This reaction is
of particular interest because it populates the bound states of 19C, whose low-
energy spectrum is still under debate. As can be seen in Fig. 4.3, experimental
evidence is conflicting on the existence of a bound 5/2+ state, with results
from [85, 86] favouring a bound 5/2+ state while measurements from [87–89]
suggest the state is rather an unbound resonance. Also, a reanalysis of the
data from [85] presented in [90] shows them to be compatible with the 5/2+

state being unbound. The 20C(p, pn)19C reaction can be used to shed some
light on the existence of a 5/2+ bound state, since if it does exist, it should be
populated in the reaction, and rather strongly, as will be shown below. In a
similar way to the analysis in [84], we base our calculations in the level scheme
resulting from a shell-model calculation using the effective nucleon-nucleon
WBP interaction [15], taking from it the spectroscopic factors and excitation
energies of the corresponding levels. The latter are used to compute the
effective separation energy S∗n = Sn + Ex with Sn = 2.9 MeV. The bound
states for the different states are computed using Woods-Saxon potentials
with a depth adjusted to give the effective separation energy and a reduced
radius adjusted to give the mean square radius of a Hartree-Fock calculation
using the SkX interaction [93]. In this calculation the 1d3/2 configuration was
found to be unbound, so for it the value of the reduced radius from the 1d5/2
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Figure 4.3: Experimental and theoretical levels for 19C. The level scheme
from a) has been constructed from the results in [85, 86] while that in b)
is based on the results from [87, 89, 91]. The theoretical results have been
obtained from a shell model calculation using the WBP interaction [15] and
from a P-AMD model [92]. Note that the first 5/2+ state is either bound or
unbound for different experiments and models. Figure taken from [90].

calculation has been considered. Details on the calculation are presented in
Table 4.2.

The optical potentials between p, n and 19,20C have been computed as in
the previous section, through a folding procedure between the JLM effective
interaction [80] and Hartree-Fock densities. Due to the low beam energy, the
coupling between p− n states with different angular momentum and parity
becomes relevant. From the results of the previous section, which show that
states with Jπ ≥ 3 do not contribute much to the cross section, we have
restricted the calculations to states with Jπ < 3, which are all coupled. The
results of the calculations are shown in Fig. 4.4. The single-particle cross
sections are shown in the dot-dashed lines, blue, red and green for the states
1/2+, 3/2+ and 5/2+, respectively. The orange solid line corresponds to the
sum of the contributions for the 1/2+ and 3/2+ states, following Eq. 4.1,
while the dark green solid line corresponds to the sum of the contributions
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to the three considered states.

As can be seen in Fig. 4.4, both results overestimate experimental data,
though it is evident that the inclusion of the 5/2+ increases greatly the
cross section separating it much more from experimental data. In the right
panel, the calculations excluding and including the 5/2+ state have been
rescaled to give the experimental cross section. The rescaling factor for the
calculation excluding the 5/2+ state is rescaled by a factor 0.59(22) while the
one including it is rescaled by a factor 0.20(7), which we consider to be too
small to be credible. It is notable that despite the different shape shown by
both calculations, after rescaling both reproduce relatively well experimental
data, due to the large error bars for these data.

We take these results as support for the models where the 5/2+ is un-
bound, since its inclusion worsens the agreement with experimental data,
leading to a too small rescaling factor. The method employed here, which
takes the spectroscopic factors from a shell model calculation, but allows for
a change in the energies of the corresponding states may be put into question.
However, we note that in shell model calculations spectroscopic factors tend
to be more stable than the energies of the levels, which are more sensitive to
the interactions and model spaces used in the calculation. We have repeated
the nuclear structure calculation using the WBT [15] interaction. This has
switched the positions of the 1/2+ and 5/2+ states, leading to a 5/2+ ground
state for 19C. However, the spectroscopic factors have shown changes of less
than 15%, being 1.053, 3.946 and 0.202 for 1/2+, 5/2+ and 3/2+ states
respectively, which is in agreement with the previous interpretation.

Jπ Ex (MeV) C2S r0 (fm) σsp (mb)
1/2+ 0.00 1.099 0.905 27
5/2+ 0.19 3.649 1.145 19
5/2+ 0.62 0.247 1.145 18

Table 4.2: Results for the considered levels of 19C. The first, second and
third column denote the angular momentum and parity, excitation energy
and spectroscopic factors for the states obtained using the WBP interaction
respectively. The fourth column indicates the reduced radius used for the
computation of the bound state wavefunction. The last column shows the
single particle cross section to each state.
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Figure 4.4: Experimental data and Transfer to the Continuum calculations
for the 20C(p, pn)19C reaction. The left panel shows the single-particle cross
sections for the states 1/2+, 3/2+ and 5/2+ in the blue, red and green dash-
dotted lines, respectively, while the orange and dark green solid lines denote
the total contribution for states 1/2+ and 3/2+ and 1/2+, 3/2+ and 5/2+

respectively. In the right panel the orange and dark green lines have been
rescaled to reproduce the experimental cross section, with the result shown
in the dashed lines and the rescaling factor appearing in the legend

4.2 Comparison with R3B data

As mentioned in Chapter 1, the R3B collaboration has very recently per-
formed a campaign of (p, pn) and (p, 2p) reactions at energies of 300-500 MeV,
whose fist results have only very recently been published [23, 42, 43]. The
results published correspond to carbon, nitrogen and oxygen isotopes and
their analysis with the Transfer to the Continuum formalism is presented in
the following, with special interest in the dependence of the found “quenching
factors” on the isospin asymmetry of the nuclei.
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4.2.1 Choice of optical potentials

Fundamental ingredients in the calculations presented in this document are
the optical potentials used to describe the distortion and absorption suffered
by the incoming proton and the outgoing nucleons due to their interaction
with the rest of the nucleus. In general we have chosen two parametriza-
tions to produce the optical potentials, one that can be considered more
“microscopic” and one more “phenomenological”.

1. Paris-Hamburg (PH)

The first interaction we consider is the “microscopic” one. It is built
through the folding of an effective nucleon-nucleon interaction with
the nuclear densities of the involved nuclei. For the effective nucleon-
nucleon interaction we have chosen the Paris-Hamburg g-matrix ef-
fective interaction [94, 95], which includes nuclear medium effects (in
particular, Pauli blocking) and has shown to give a good description of
proton-nucleus elastic scattering for energies from 100 to 400 MeV, on
various nuclei such as 12C and 208Pb. The nuclear densities are obtained
from Hartree-Fock calculations based on the SkX Skyrme interaction
[93], using the subroutine dens as before. The folding is performed
with the code lea [96]. From now on this potential will be referred to
as PH potential.

2. Dirac

The other “phenomenological” potential has already been briefly intro-
duced in Sec. 3.1[45, 46]. It is based on the application of the Dirac
equation to describe the dynamics of the proton and has been fitted to
a vast number of experimental data on elastic proton-nucleus scattering
ranging from 12C to 208Pb and for energies from 20 to 1040 MeV. From
the multiple parametrizations presented, we have chosen the EDAD2
one (Energy-Dependent A-Dependent), which provides potentials for
nuclei beyond those used for the fitting and is energy-dependent, thus
giving a better fit to experimental data. Even though the potentials
are originally produced for the Dirac equation, they can be modified
to be suitable for the Schrödinger equation we use in our calculations.
From now on, we will refer to this potentials as Dirac potentials.



4.2. Comparison with R3B data 91

It must be remarked that in order to give meaningful results, the pro-
duction of the potentials must be consistent with the equation to be solved.
In particular, the relativistic prescription used in this work (the substitution
of the reduced mass µ by the reduced energy ε and the momentum by its
relativistic value, see Sec. 2.3) has to be consistent with the codes used to
generate the potential. The code LEA indeed generates potentials assum-
ing this prescription and the program we have used to generate our Dirac
potentials has an option to consider this prescription as well.

As in Sec. 3.1, a choice must be made for the outgoing proton-core
and neutron-core potentials. In our formalism, the energy between outgoing
nucleon and core is not well defined for the final states considered, so it is
difficult to assign an energy at which to evaluate the potentials. Using the
same criteria as in Sec. 3.1 we have evaluated the potentials for the outgoing
channels at half the incident energy, since the maximum of the cross section
is expected at this nucleon-nucleus energy. Based on the results presented
in Fig. 3.4, we expect the effects of the energy dependence of the potential
(which we do not include) to be relatively minor, although we note that we
have only tested them in one case, at high energies and corresponding to
removal from an s wave, so the extension of these results to other cases can
be put into question and would deserve further study.

As a summary, in Eq. (2.37), the potentials used to generate Uββ′

[Eq. (2.36)] are evaluated at half the incident energy, while the potential
UpA is evaluated at the incident energy. For the potential UpC in the third
term of Eq. (2.37) (the reaction vertex), we have chosen to evaluate it at
the incident energy, since it is to be applied on XA, the wavefunction in the
incoming channel. This choice also allows to minimize the so-called remnant
term, UpC − UpA.

In Fig. 4.5 both PH and Dirac potentials are presented between proton
and 16O at three different energies: 400, 200 and 100 MeV. As can be seen
in the figure, at higher energies potentials become highly absorptive. This
results in the global (p, pN) corresponding to only a few percent of the full
reaction cross section. It also implies that (p, pN) are not very sensitive to
the nuclear interior, although it can be argued that they are not as peripheral
as transfer or knockout reactions with heavier targets [52]. They also become
repulsive at small distances. However, due to the strong absorption, the
features of the real potential in the nuclear interior are not reflected much in
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Figure 4.5: Proton-16O potentials at three different energies using PH and
Dirac parametrizations (See text). The shaded area marks the distances up
to the rms radius of 16O.

the reaction observables. The behaviour at small distances is rather different
for both potentials, even though they have been adjusted to reproduce similar
experimental data. This can be understood easily due once again to the
insensitivity of the observables (in this case, elastic differential cross sections)
to the nuclear interior, where the value of the potential is not relevant for
the reaction.

In order to test the potential sets and our implementation of them,
in Fig. 4.6 the elastic differential angular cross section is computed with
both potentials and compared to experimental data at energies of 200, 300
and 398 MeV [97–99]. Both calculations agree well with experimental data
at small angles, but for larger angles Dirac potentials agree systematically
better. This should come as no surprise, since the Dirac parametrization was
obtained through fitting of very similar data, the experimental data at 200
and 398 MeV actually being used for the fitting procedure. The agreement
with experimental data serves as a validation for the use of these potentials
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Figure 4.6: Angular differential cross sections for the elastic scattering be-
tween p and 12C at 200, 300 and 398 MeV incident proton energy compared
to theoretical calculations using PH and Dirac potentials. Experimental data
are from [97–99] for the energies of 200, 300 and 398 MeV respectively.

as descriptors of the interaction between nucleon and nucleus in (p, pN),
noting that elastic scattering is less sensitive to the nuclear interior than
(p, pN) reactions, so that a part of the potentials that may be relevant for
the latter is not being probed by this test.

4.2.2 Spectroscopic factors and binding potentials

Before the comparison to experimental data of (p, pn) and (p, 2p) reactions
at high energies, the parameters chosen to generate the spectroscopic factors
and the binding potentials which bind the to-be-removed nucleon to the core
must be described.
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Spectroscopic factors and core excited states

The observables we will present in the following section are inclusive in the
states of the residual core, requiring just the detection of the core. Excited
states of the core under the particle emission threshold will deexcite by
emitting a γ photon leading to the core in the ground state, so they will
be counted in the experimental observables. On the other hand, excited
states over the particle emission threshold will decay by the emission of a
proton or a neutron, thus “breaking” the core, so they are excluded from the
experimental observables. Therefore, we need to determine which states are
below the particle emission threshold and which are not. Given that some
of the reactions studied involve exotic nuclei for which the excited states are
not established experimentally, we require a theoretical framework to predict
the level scheme.

We have chosen to generate the energy levels using a shell model calcu-
lation based on the WBT interaction [15]. We are interested in a systematic
study of the (p, pn) and (p, 2p) cross sections. Therefore, a consistent de-
scription of all nuclei using the same inputs is essential for our conclusions
and, as such, the use of a general interaction such as WBT is the best choice.

The shell model calculations were performed using the code oxbash,
which provides both the energy levels and the associated SF between the
parent nucleus and the residual core. The calculation can be performed
including n particle-n hole excitations. We have chosen to keep n as the
minimum value required to produce non-zero SF between the parent nucleus
and the residual “core”, since the WBT interaction was designed for pure
np-nh configurations, without mixing different n [15].

Further discussions on spectroscopic factors are presented in Appendix A.

Binding potentials

The overlap between parent nucleus and residual core is an essential part
of the reaction calculation. Its obtention from the wavefunctions of both
nuclei is, however, a very difficult to solve many-body problem. As such,
some approximation must be taken to produce the overlap.

Following previous works [32], we produce the overlaps as the eigenstates
for a Woods-Saxon potential with a diffuseness a = 0.7 fm and a spin-orbit
term with a depth of 6 MeV and the same geometry as the central term.
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The radius of the Woods-Saxon potential is adjusted to reproduce the
root-mean-square (rms) radius of the corresponding partial wave obtained
from a Hartree-Fock calculation (using code oxbash), noting that the rms
radius from the Hartree-Fock calculation must be multiplied by a factor√
A/(A− 1) before comparing it with the result of the Woods-Saxon poten-

tial. This factor accounts for the displacement of the center of mass of the
A system with respect to the A− 1 one.

The depth of the potential is then adjusted to reproduce the effective
nucleon separation energy, Sp,n = Sp,n + Ex.

4.2.3 Momentum distributions

In this section, momentum distributions are computed and compared to
experimental results. As has been shown in Sec. 2.5.2, momentum distri-
butions are sensitive not only to the features of the wavefunction of the
removed nucleon but also to distorsion and absorption effects. As such, they
are an excellent test for our formalism prior to studying the behaviour of
the “quenching factors” Rs. In the following, we present comparisons to mo-
mentum distributions from different publications by the R3B collaboration,
focusing on the agreement in the shapes, since the agreement in magnitude
will be taken into account in the next section.

• 12C(p, 2p) at 398 MeV/A

In this section we compare our TC calculations to the momentum
distributions for 12C(p, 2p) presented in [42]. The results are shown
in Fig. 4.7.

In the figure calculations using Dirac and PH are presented. The
single-particle momentum distribution is computed for the p1/2 and
p3/2 waves and then scaled by the corresponding spectroscopic factors
(0.627 and 3.654 respectively, more detailed information is provided in
the next section). Then, both distributions are added and multiplied by
the “quencing factor” Rs (0.69 for PH and 0.73 for Dirac) to reproduce
the experimental cross section. Note that the momentum distribution
is presented for 5 MeV bins, as such, the theoretical distribution must
be further multiplied by 5 in order to reproduce experimental data.

The momenta for which the distribution is presented are somewhat
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unusual. The top panel corresponds to the transversal momentum dis-
tribution pt =

√
p2
x + p2

y while the bottom one shows the modulus of
the momentum of the core measured in the projectile reference frame
(rfp) Ptot.

We note that when comparing to these experimental data, experimen-
tal resolution must be properly taken into account. The transversal
momentum (pt) and longitudinal momentum (pz) present different ex-
perimental resolution (a Gaussian distribution with σ=20 and 50 MeV,
respectively). For Ptot the resolution cannot be expressed as a Gaussian
with constant width, which instead becomes momentum-dependent. In
order to compute the distribution on Ptot with experimental resolution,
we have computed the double differential cross section dσ

dptdpz
, we have

convoluted it with the experimental resolution for pt and pz and from
the convoluted double differential cross section we have extracted the
distribution on Ptot. In order to check the influence of the experimental
resolution we show the momentum distributions without considering
it in the black dot-dashed and red dotted lines for PH and Dirac
respectively. As can be seen the experimental resolution does not mod-
ify much the pt distribution, broadening it somewhat. On the other
hand, the distribution on Ptot shows a significant modification, both
broadening and shifting its peak to larger momenta.

Both PH and Dirac calculations give very similar shapes of the mo-
mentum distributions, even though they lead to cross sections which
are somewhat different (See Table 4.4). When comparing both cal-
culations to experimental data, we find that they compare relatively
well to experiment, giving well the position of the peak, though they
are somewhat narrower, specially for Ptot, underestimating the high-
momentum tail.

It can be pondered whether different weights for the p3/2 and p1/2 waves
would change the shape of the distribution, thus endowing momentum
distributions with stronger spectroscopic discernibility. Unfortunately,
as can be seen in Fig 4.8, the shape of the momentum distributions for
both orbitals is rather similar. Given the similarity of the shapes for
both orbitals the relative occupancy of each cannot be established from
the shape of the momentum distribution, be it transversal, longitudinal
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or total momentum.
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Figure 4.7: Momentum distributions for 12C(p, 2p) at 398 MeV/A. Ex-
perimental data are from [42]. Calculations are presented using PH and
Dirac calculations (black and red lines respectively). The black solid and
red dashed lines have been convoluted with an experimental resolution of 20
MeV for the transversal momentum px and 50 MeV for the longitudinal one
pz. Black dot-dashed and red dotted lines correspond to calculations without
the experimental resolution.
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• 16O(p, 2p) @ 451 MeV/A

In Fig. 4.9, the transversal momentum distribution (px) is presented
for 16O(p, 2p)15N at an incident energy of 451 MeV/A, for which ex-
perimental data are taken from [23].
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Figure 4.9: Transversal py momentum distribution for 16O(p, 2p). Experi-
mental data are from [23]. Calculations are presented using PH and Dirac
calculations (black solid and red dashed lines respectively) rescaled to repro-
duce the experimental cross section.

The same procedure as for 12C(p, 2p) has been followed to generate the
theoretical cross sections. The waves p1/2 and p3/2 have been considered
for the removed proton, with SF 2.00 and 4.09 respectively. The Dirac
and PH calculations have been multiplied by the “quenching factor” Rs
0.74 and 0.78 respectively.

A similar result is found as for 12C(p, 2p). Both PH and Dirac cal-
culations present similar shapes, both of which agree reasonably well
with the experimental data, though they are somewhat narrower than
experiment. In this case, it is the PH calculation the one that is slightly
narrower than the Dirac one, as opposed to the previous case. As in
12C, the shape of the single-particle momentum distributions is very
similar for removal from p1/2 and p3/2 orbitals.

• 22O(p, pn) @ 414 MeV/A

In this section the transversal py momentum distribution for 22O(p, pn)

is presented together with the experimental data from [43] in Fig. 4.10.
Theoretical calculations have been obtained through the same proce-
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dure as the previous cases, though since in this case experimental data
are given in arbitrary units results have been rescaled to reproduce the
integral of experimental data, instead of by the Rs factor.
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Figure 4.10: Transversal py momentum distribution for 22O(p, pn). Experi-
mental data are from [43]. Calculations are presented using PH and Dirac
calculations (black solid and red dashed lines respectively) rescaled to re-
produce the integral of experimental data (given in arbitrary units). The
dotted and dot-dashed lines correspond to the contributions of s1/2 and d5/2

orbitals, having all been scaled by the same arbitrary factor, and as such
conserving their relative weight.

For this reaction two orbitals with different orbital angular momentum
intervene, s1/2 and d5/2. Both waves show momentum distributions
with markedly different shapes, as can be seen in Fig. 4.10, where
the dotted lines correspond to s1/2 and the dot-dashed ones to d5/2.
Therefore, different relative weights for both orbitals lead to different
shapes of the total cross section, so its comparison to the experimental
shape has spectroscopic value. Instead of trying to fit the shape of the
distribution, we have represented the momentum distribution resulting
from the sum of both waves scaled with the SF obtained from a shell-
model calculation, as described in 4.2.2, showing the contribution of
each orbital (dotted lines for s1/2 and dot-dashed ones for d5/2). Let us
remark that since both PH and Dirac calculations have been rescaled
to give the total integral of the data, the difference in magnitude for
both calculations (with the Dirac cross section being 7% larger than
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the PH one) is not apparent in the figure.

We find a good agreement in the distribution shape for the shell-model
SF, which serves as a test for these values. As with the previous cases,
both Dirac and PH yield distributions with very similar shapes, which
are somewhat narrower than experimental data.

In general, we find a reasonably good agreement between experimental
momentum distributions and our theoretical calculations, although the for-
mer seem to be systematically broader than the latter. We also find that the
shape of momentum distributions is rather insensitive to the prescription for
optical potentials chosen, even with the magnitude of the full cross section
showing a stronger dependence on these potentials, as will be shown in the
following section.

A thorough comparison between the distributions produced with PH and
Dirac potentials seems to show that the calculation resulting in a smaller
cross section tends to produce a (slightly) narrower cross section. This would
relate a stronger absorption to a narrower momentum distribution, which
agrees with the qualitative description in Sec. 2.5.2. Given that our distri-
butions are narrower than experimental ones, this could indicate an overes-
timation of the effect of absorption in our calculations.

Another explanation for the narrowness of our distributions is the effect
of energy dependence in the potentials. As was shown in Sec. 3.1, the inclu-
sion of energy dependence for the optical potentials in DWIA calculations
broadens slightly the distributions without modifying much the total magni-
tude. Since we are not including energy-dependence, our distributions may
be narrower for this exclusion.

In spite of the previous caveats, we find the agreement between our
calculations and the momentum distributions to be in general good for all of
the considered cases, which span nuclei with high and low nucleon binding
energies, and as such, take it as a validation of the method, which will in the
following be applied to study the systematics of the “quenching factors” Rs.

4.2.4 Comparison with integrated cross section. “Quenching
factors”

In this section we present our results for the “quenching factors” Rs, the
ratios between experimental and theoretical cross sections and which have
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Reaction E/A (MeV) Sp(n) (MeV) Ref Reaction E/A (MeV) Sp(n) (MeV) Ref
13O(p, 2p) 401 1.51 [23] 21O(p, 2p) 449 20.99 [23]
14O(p, 2p) 351 4.63 [23] 21N(p, pn) 417 4.59 [43]
15O(p, 2p) 310 7.30 [23] 21N(p, 2p) 417 19.60 [43]
16O(p, 2p) 451 12.13 [23] 22O(p, pn) 414 6.85 [43]
17O(p, 2p) 406 13.78 [23] 22O(p, 2p) 414 23.26 [43]
18O(p, 2p) 368 15.94 [23] 23O(p, pn) 445 2.73 [43]
12C(p, 2p) 398 15.96 [42] 23O(p, 2p) 445 24.71 [43]

Table 4.3: Detail of the reactions considered, with the incident energy of the
beam, the separation energy of the removed nucleon (proton for (p, 2p) and
neutron for (p, pn)) and the reference from which experimental data have
been taken.

already been described in the introduction.

As described in Secs. 4.2.2, only (p, pN) processes leading to states of the
residual core which are below the nucleon separation energy and which give a
SF larger than 0.1 are considered. Single-particle cross sections (with SF=1)
have been computed using both Dirac and PH potentials in order to test
the dependence of our results to the choice of potential and they are used to
compute total theoretical cross section through Eq. 4.1, as in Sec. 4.1.1.

Single-particle cross sections have been computed for the different states
assuming a certain orbital from which the nucleon is removed. These single
particle cross sections are detailed in Appendix A. When two states corre-
spond to the same orbital and lie close in energy we have opted to use the
same σsp for both states, usually taking the value computed for the state
which lies lower in energy. States for which the σsp has not been computed
present an asterisk in the value of σsp.

Theoretical cross sections have been computed for all the cases presented
in Table 4.3, which are the ones that have been published by the R3B collab-
oration up to the date of composition of this document. For 22O(p, 2p) and
23O(p, 2p), two different but compatible analysis were performed in [43] and
[23]. We have taken the experimental cross sections from [43] in both cases.

For all of these reactions, the “quenching factors” Rs = σth/σexp have
been computed, using both Dirac and PH potentials. The values are shown
in Table 4.4. The Rs are presented as a function of ∆S (Sp − Sn for (p, 2p)

reactions and Sn − Sp for (p, pn) ones) in Fig. 4.11 in order to study their
dependence on ∆S and compare it to that found in knockout experiments
with heavier targets [31, 32]. In the figure, Rs factors from [23, 42], which
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were obtained using an eikonal DWIA formalism [52], are also shown as well
as those from [43], which were obtained from the Faddeev/AGS formalism.
The errors in Rs have been propagated from the errors in the experimental
cross sections.
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Figure 4.11: “Quenching factors” Rs as a function of ∆S, the difference
between proton and neutron separation energy. Results from this work are
presented in black circles using PH potentials and in red squares using Dirac
potentials. The brown band corresponds to the systematics found in knock-
out experiments [31, 32]. Rs from [43], [23] and [42] are presented in green
triangles, blue squares and pink diamonds respectively.

Despite the relatively large dispersion in the values of Rs for both po-
tential sets, in particular for PH potentials, it can be clearly seen that both
sets of Rs present a dependence on ∆S which is much milder than the one
found in knockout experiments (represented with the shaded area). In order
to quantify their dependence on ∆S, both sets of quenching factors have
been fitted with a linear function, which is presented in Fig. 4.11 in a dashed
line (black for PH and red for Dirac). We obtain from this fit a dependence
such as Rs = 0.697(17) − 2.5(12) · 10−3∆S for the calculations employing
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Dirac potentials and Rs = 0.766(18) + 0.4(13) · 10−3∆S for the calculations
with Paris-Hamburg potentials. The corresponding reduced χ2 values are,
1.15 and 0.76, for Dirac and PH calculations, respectively. The very small
value of the slope for both sets of calculations serves as a clear indication of
the small dependence of the reduction factors on ∆S. It is rather remarkable
that the slope for PH potentials is positive instead of negative. However,
given that the error error of the slope is larger than its value, we can only
conclude from its value that the PH calculation is compatible with a flat Rs
with no dependence on ∆S.

When comparing our results with those from [23] and [42] we find that
the agreement is reasonably good for 14O, 16O, 12C and 17O, with our Rs
being overall larger than those from [23] and [42]. However, for 21O and
23O, our Rs show a marked disagreement with those of [23]. First, we must
remark that we are using SF resulting from shell model calculations while in
[23] they used the independent particle model (so that the associated SF are
2 for 21O(p, 2p) and 23O(p, 2p)). As can be seen in Table 4.4, the total SF for
23O(p, 2p) is quite close to 2, so the comparison is meaningful at this respect.
This is not the case for 21O(p, 2p), where the total SF is 1.88. However, if we
assume a SF of 2 to compare to the Rs from [23], we obtain a Rs of 0.67±0.05
with Dirac potentials and one of 0.76(6) with PH potentials, which are still
incompatible to the Rs = 0.58(4) from [23].

Given that both analyses are based in different formalisms which use
different inputs (in particular different optical potentials) it can be argued
that the comparison between results of such different analyses is not mean-
ingful. However, the eikonal DWIA used in [23] is formally similar to the
one presented in the benchmark calculation in Sec. 3.1, where we found an
excellent agreement when using the same input ingredients. As well, the
agreement found for the other nuclei (14O, 16O, 12C and 17O) seems to
suggest that both formalisms are reasonably compatible.

We note that the nuclei for which the disagreement is larger are located
to the right of Fig. 4.11, so that they correspond to the knockout of the
most bound species of the nucleus. We also note that, overall, the agreement
between TC calculations with PH and Dirac potentials is better to the left of
the figure (for removal of less bound species) than to the right (for removal
of more tightly bound nucleons). This suggests that TC (p, pn) and (p, 2p)

cross sections for more deeply bound nuclei are more sensitive to the optical
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potentials describing the interaction between nucleon and nucleus.

In order to test this idea, we have chosen the 23O(p, pn) and 23O(p, 2p)

reactions, which are situated to the extremes of Fig. 4.11 and we have per-
formed a “notch test”: we have added a deep and very narrow Gaussian term
(V (r) = V0e

−(r/a)2
V0=-50 MeV, a=0.2 fm) to the potential Vp23O and have

analyzed the sensitivity of the cross section to the position of the notch. In
order to speed up calculations, this test has only been performed on the
cross section leading to p − N states with jπ = 1−, which yield the largest
cross section (See Sec. 2.5.1). The results of the test are presented in the left
column of Fig. 4.12, where the black line denotes the relative change in the
cross section as a function of the position of the node.
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Figure 4.12: To the left, “notch test” performed on the 23O(p, pn) and
23O(p, 2p) reactions (see text). The thin black line corresponds to the relative
variation of the cross section with the position of the notch. The density of
23O is shown in arbitrary units for comparison. To the right the Dirac and
PH potentials for 23O are presented, the yellow area denoting the “area of
sensitivity” which starts roughly at the position where the notch changes the
cross section by ∼5%.

As can be expected, when the notch is situated at small distances, the
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cross section is only weakly sensitive to it. This is an indication of the
peripherality of the reaction and a result of the strong absorption of the
potentials. As the notch moves to larger distances, the reaction becomes
more sensitive to it and the cross section varies more strongly. We note that
the 23O(p, pn) reaction seems to require the notch to be at larger distances
to be sensitive to it than the 23O(p, 2p) reaction: for the former the cross
section is modified by ∼5% when the notch is found at ∼3.5 fm, while for
the latter this modification is already found at ∼2.5 fm. In Fig. 4.12 the
density of 23O is also plotted in arbitrary units. From the notch test we can
see that the 23O(p, pn) reaction is clearly sensitive only to the tail region
of the density distribution, while the 23O(p, 2p) one is more sensitive to the
interior. This can be easily understood by noting that the wave function of a
more deeply bound nucleon (such as the proton in 23O) drops exponentially
faster and is more concentrated near the origin. Therefore, in order to extract
the nucleon the incoming proton has to probe deeper inside the nucleus,
thus being more sensitive to the features of the interaction in this deeper
area. This also relates naturally to the reduction of the cross section with
separation energy, a larger separation energy requires the proton to probe
deeper regions where absorption is stronger.

Taking (rather arbitrarily) the position of the notch for which the cross
section is changed 5% as the radius of sensitivity for the reaction, we can
check which areas of the Vp23O potential are explored by the reaction. This
is shown in the right column of Fig. 4.12, where starting at the radius of
sensitivity, the “area of sensitivity” is presented in yellow. We can see that
for the 23O(p, pn) reaction, this area corresponds to the tail of the potentials,
where PH and Dirac potentials are rather similar. On the other hand, the
23O(p, 2p) is sensitive to deeper regions where potentials differ more strongly,
thus leading to more different cross sections.

We admit this description to be rather heuristic and phenomenological
but we find it gives a qualitative and intuitive explanation for the differences
found between the PH and Dirac calculations and between them and the re-
sults from [23] (where the nucleon-nucleus interactions are obtained through
a very different method [52]).

We now compare our results to those presented in [43] (open triangles in
Fig. 4.11), finding a larger disagreement. For the negative ∆S, the difference
is of about 25%, while for the positive ∆S, our Rs are about twice larger
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than those from [43]. More importantly, their results seem to show a greater
dependence on ∆S than ours. Given the relatively good agreement found in
the benchmark calculation with the Faddeev/AGS formalism (See Sec. 3.2),
this disagreement cannot be fully attributed to the difference in the used
formalisms.

We note three main differences between our reaction inputs and those of
[43]:

1. The geometry of the binding potential: Here we use, as described in
Sec. 4.2.2 a diffuseness a = 0.7 fm and a radius adjusted to give the
Hartree-Fock rms radius. In [43] the geometry was taken as a = 0.65

fm and r0 = 1.25 fm.

2. The optical potentials: Here we use Dirac and PH potentials, while in
[43] they use Köning-Delaroche (KD) potentials.

3. Relativistic corrections: Here we have used the relativistic corrections
described in Sec. 2.3, while in [43] the calculation was performed non-
relativistically.

In order to check whether the discrepancies in the Rs values stem from
these differences in the analysis, we have performed a calculation where we
have tried to emulate all of the mentioned features of the analysis in [43]. The
result is presented in Fig. 4.13. As can be seen in the figure the agreement
between our new calculation and that of [43] is improved substantially. Most
notably, the ∆S dependence of the new calculation is increased, becoming
similar to that of [43]. Our Rs keep being larger than those of [43], resulting
from smaller single-particle cross sections when compared to Faddeev/AGS
ones. This is consistent with the results found in the benchmark calculation
with the Reid93 potential in Sec. 3.2.

From this comparison we conclude that the stronger ∆S dependence
found in [43] is largely related to the inputs used in the calculation. In
particular we find that the use of KD potentials increases heavily the cross
sections, due to their relatively small absorption when compared to PH and
Dirac potentials, as can be seen in Fig. 4.14. KD potentials have been fitted
for proton energies up to 200 MeV, so their use in reactions of ∼400 MeV/A
can be put into question, trusting better calculations using PH and Dirac
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Figure 4.13: Rs from Faddeev/AGS calculations [43] (open green triangles)
and from a TC calculation (in violet triangles) where KD potentials have
been used, relativistic corrections omitted and the geometry of the binding
potentials modified to r0 = 1.25 fm, a = 0.65 fm, following the prescription
from [43].

potentials, which have been adjusted to reproduce data in the energy range
of the reactions we are studying.
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200 MeV.

For these calculation, the weak dependence of the Rs on ∆S is a solid
conclusion obtained using both PH and Dirac potential sets, which agrees,
at least semi-quantitatively, with the analysis from [23], performed on only
five of the reactions considered here. It is also consistent with the recent
conclusions for transfer reactions on oxygen and argon [33, 37, 40] as well as
on systematic studies on transfer reactions [10]. A small ∆S is also reported
on exclusive (p, 2p) measurements in [44] and has been obtained from state-
of-the-art ab-initio calculations reported for the proton-hole strength based
on the self-consistent Green’s function (SCGF) theory [100].
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Reaction
∑
C2S1p3/2

∑
C2S1p1/2

∑
C2S1d5/2

∑
C2S2s1/2 σsp σth σexp Rs

13O(p, 2p) – 0.66 – – 10.562 6.975 5.78(0.91)[0.37] 0.83(14)
10.813 7.140 0.81(14)

14O(p, 2p) – 1.97 – – 8.509 16.769 10.23(0.80)[0.65] 0.61(6)
8.065 15.895 0.64(6)

15O(p, 2p) 1.94 1.60 – – 7.026 24.856 18.92(1.82)[1.20] 0.76(9)
6.072 21.481 0.88(10)

16O(p, 2p) 4.09 2.00 – – 5.965 36.308 26.84(0.90)[1.70] 0.74(5)
5.631 34.279 0.78(6)

17O(p, 2p) – 2.07 – 5.777 11.944 7.90(0.26)[0.50] 0.66(5)
5.064 10.471 0.75(5)

18O(p, 2p) 3.40 2.00 – – 5.048 27.274 17.80(1.04)[1.13] 0.65(6)
4.198 22.685 0.78(7)

21O(p, 2p) – 1.88 – – 4.008 7.532 5.31(0.23)[0.34] 0.71(5)
3.493 6.5656 0.81(6)

21N(p, 2p) 0.33 0.72 – – 4.118 4.290 2.27(0.34) 0.53(8)
3.398 3.540 0.64(10)

21N(p, pn) – – 4.95 0.65 10.059 56.274 48.52(4.04) 0.86(7)
10.809 60.471 0.80(7)

22O(p, 2p) 0.73 1.87 – – 3.533 9.175 6.01(0.41) 0.65(4)
2.962 7.693 0.77(5)

22O(p, pn) – – 5.89 0.25 8.690 53.349 39.24(2.34) 0.74(4)
8.122 49.865 0.79(5)

23O(p, 2p) – 1.99 – – 3.302 6.577 4.93(0.96) 0.76(15)
2.844 5.663 0.89(17)

23O(p, pn) – 1.13 5.89 1.00 8.765 70.474 54.0(10.8) 0.77(15)
8.536 68.636 0.79(16)

12C(p, 2p) 3.65 0.63 – – 6.143 26.298 19.2(1.8)[1.2] 0.73(8)
6.498 27.816 0.69(8)

Table 4.4: Experimental [23, 42, 43] and calculated cross sections. The second
to fifth columns correspond to the sum of the spectroscopic factors from
the prediction of shell-model calculations for the indicated waves, restricted
to bound states of the residual core. The next column indicates the single
particle cross section σsp, computed using Dirac (upper value) and PH (lower
value) potentials. Next the theoretical cross section σth =

∑
C2Sσsp, and

the experimental cross sections σexp are presented. Finally the quenching
factor Rs = σexp/σth is shown.





Chapter 5

Application of (p, pN) reactions
to Borromean nuclei

There are things known and there are
things unknown and in between are the

doors of perception.

Aldous Huxley

In this chapter, we extend and apply the Transfer to the Continuum
formalism to (p, pN) reactions induced by Borromean nuclei. As mentioned
in the introduction, when a nucleon N1 is removed from a Borromean nu-
cleus N1 + N2 + C, the two-body system that is left, N2 + C, is unbound
and will decay trough the emission of the remaining nucleon. Through the
measurement of the momenta of the decay products N2 and C, it is possi-
ble to reconstruct the energy and momentum distributions of the residual
system N2 + C, thus exploring the properties of an unbound system which
is otherwise difficult to study. Under some assumptions, this is expected to
provide valuable information on two-body correlations within the original 3-
body nucleus. We will focus mainly on the study of the energy distribution of
the residual system. For this, an extension of the Transfer to the Continuum
formalism is necessary, which will be developed in Sec. 5.1, while results for
the 11Li(p, pn)10Li∗ reaction will be presented in Sec. 5.2.

113



114 Chapter 5. Application of (p, pN) reactions to Borromean nuclei

5.1 Extension of the formalism

In order to extend the formalism to the case of Borromean nuclei, let us
start by establishing a slightly different notation: first, the target nucleus
(projectile in inverse kinematics) will be denoted by A and we will model it
as three particles: two nucleons and a core N1 +N2 +C. After the removal of
one of the nucleons, which we will denote as N1, an unbound residual system
is left, which we will denote as B = N2 + C. As such, the residual nucleus
B takes the place of the residual nucleus C in the formalism developed in
Chapter 2.

As we did in Eq. (2.15), we will expand the part of the wavefunction
corresponding to the final partition Ψb in the basis of the eigenstates of the
residual nucleus B = N2 + C.

Ψb =
∑
Bα

Ψ3.b.
bBαΦBα , (5.1)

where Bα denotes the possible states of the two-body system Bα = N2 +C.
Now we will adopt a two-body model for B where we will take N2 and C

as inert. Within this model, the state of B can be described fully through
the relative motion between N2 and C and their spin projections. We will
express the relative motion using the relative coordinate x, and the associated
relative momentum as q. As such we can denote an eigenstate of the unbound
system B as

ΦBα = ϕ
(−)
q,σ2,ς(x), (5.2)

where σ2 and ς are the spin projections of N2 and C respectively and as
usual (−) denotes incoming boundary conditions between N2 and C. Let us
note that the only requirement that we must impose on our set of states ΦBα

is that they form a complete basis for the breakup of B. Therefore, we could
have chosen ϕ

(+)
q,σ2,ς , but a description through ϕ

(−)
q,σ2,ς is more suitable for

the final states of the reaction. In fact, in order to compute ϕ(−)
q,σ2,ς we will

instead compute ϕ(+)
q,σ2,ς [72], expanding it in the spin-orbit coupling scheme

as:

ϕ
(+)
q,σ2,ς(x) =

4π

qx

∑
LJL′J ′JTMT

iL
′
Y ∗LM (q̂) 〈LMs2σ2|JMJ〉

× 〈JMJIς|JTMT 〉 fJTLJ,L′J ′(q, x) [[YL′(x̂)⊗ χs2 ]J ′ ⊗ χI ]JTMT
,

(5.3)
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where L is the orbital angular momentum betweenN2 and C, s2 and I are the
spins of N2 and C respectively and χs2 , χI are their spin wavefunctions. We
choose the radial functions fJTLJ (q, x) to verify the usual scattering boundary
conditions:

fJTLJ,L′J ′(q, x) −−−→
x→∞

i

2
eiσL

[
H

(−)
L (qx)δLJ,L′J ′ − SJTLJ,L′J ′H

(+)
L (qx)

]
, (5.4)

with H(±) being the Coulomb functions. To recover ϕ(−)
q,σ2,ς we will use the

fact that ϕ(−)
q,σ2,ς is the time reverse of ϕ(+)

q,σ2,ς [72], which leads to an expression
for ϕ(−)

q,σ2,ς such as:

ϕ
(−)
q,σ2,ς(x) =

4π

qx

∑
LJL′J ′JTMT

iL
′
Y ∗LM (q̂) 〈LMs2σ2|JMJ〉

× 〈JMJIς|JTMT 〉 fJT ∗LJ,L′J ′(q, x) [[YL′(x̂)⊗ χs2 ]J ′ ⊗ χI ]JTMT
.

(5.5)

To provide a consistent description of nucleus A with that of nucleus B,
the former will be modelled as a three-body system composed of the inert
fragments N1, N2 and C, so that it only depends on Jacobi coordinates x

and y, as shown in Fig. 5.1.

The wavefunction for the ground state of A is expanded in hyperspherical
harmonics [60, 101], leading to

φA(x,y) =
∑
β3b

wjβ3b
(x, y)

{[
[Ylx(x̂)⊗ χs2 ]jx ⊗ χI

]
j1
⊗
[
Yly(ŷ)⊗ χs1

]
jy

}
jµ

,

(5.6)
where β3b = {K, lx, jx, j1, ly, jy} is a set of quantum numbers fully describing
the relative motion of the three particles N1, N2 and C. Here K is the
hypermomentum, lx and ly are the orbital angular momenta associated to
coordinates x and y, respectively and jx, j1 and jy result from the coupling
of the orbital angular momenta to the spins of N1, N2 and C as shown
in Eq. (5.6), with the restriction that the total angular momentum j must
correspond to the spin of the ground state of A.

Now we express the total wavefunction in a similar way to Eq. (2.7),
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Figure 5.1: Scheme of a (p, pN) reaction on a three-body nucleus, with the
relevant coordinates involved in the TC formalism.

expanding Ψb in the states defined by Eq. (5.5):

Ψ3b(+)(R,y,x) ' XA(R)φA(x,y) + Ψb =

XA(R)φA(x,y) +

∫
dq
∑
σ2,ς

ϕ
(−)
q,σ2,ς(x)Ψ3.b.

bqσ2ς(R
′, r′).

(5.7)

We will now impose a participant-spectator approximation, analogous to the
frozen core approximation performed in Chapter 2, in which we will assume
that the (p, pN) reaction only modifies the motion of the removed nucleon
N1, while the state of the residual nucleus B will not be affected by the
reaction. As in Chapter 2, this results in the decoupling of the different
states of B, which in the present case implies that the states with different
q, σ2 and ς can be computed independently. The potentials in the reaction
are assumed to be independent of the internal variables of B, which in this
case corresponds to x. As such, we can reach an equation equivalent to Eq.
(2.28): ∫

dxϕ
(−)∗
q,σ2,ς(x)φA(x,y) = ϕABq,σ2,ς

(y), (5.8)

where now we do not impose a normalization on ϕABq,σ2,ς
. In order to have

expressions with a defined total angular momentum, let us define

ϕAB,LJJTMT
(q,y) =

∑
L′J ′

iL
′
∫

dx
fJTLJ,L′J ′(q, x)

x
[[YL′(x̂)⊗ χs2 ]J ′ ⊗ χI ]

∗
JTMT

×φA(x,y),

(5.9)
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where it is rather trivial to obtain:

ϕABq,σ2,ς
(y) =

4π

q

∑
LJJTMT

YLM (q̂) 〈LMs2σ2|JMJ〉

× 〈JMJIς|JTMT 〉ϕAB,LJJTMT
(q,y).

(5.10)

As in Chapter 2, we expand Ψ3.b.
bqσ2ς

in discretized states with good angular
momentum and parity of the p−N1 subsystem:

Ψ3b
bqσ2ς '

∑
jπn

φ̃j
π

n Xjπnα, (5.11)

and we can compute the transition matrix to a certain state of the p−N1:

T ifq,σ2,ς,n,jπ
=
〈
ϕ

(−)
q,σ2,ς φ̃

jπ

n X
q,σ2,ς
jπnα |VpN + UpB − UpA|XAφA

〉
=
〈
φ̃j

π

n X
q,σ2,ς
jπnα |VpN + UpB − UpA|XAϕABq,σ2,ς

〉
,

(5.12)

where in the second line, we have made use of Eq. 5.8 and Eq. 5.9 under
the assumption that the potentials appearing in the matrix element are
independent of x, so that they can be extracted from the integration over it.
We can transform the transition matrix to:

T ifq,σ2,ς,n,jπ
=

4π

q

∑
LJJTMT

YLM (q̂) 〈LMs2σ2|JMJ〉 〈JMJIς|JTMT 〉

×
〈
φ̃j

π

n X
LJJTMT
jπnα |VpN + UpB − UpA|XAϕAB,LJJTMT

〉
=

4π

q

∑
α

YLM (q̂) 〈LMs2σ2|JMJ〉 〈JMJIς|JTMT 〉 T ifα ,

(5.13)

where α = {LJJTMT , nj
π}. Now we note that each of the T ifα can be

computed independently as an independent (p, pN) reaction, and therefore,
the TC formalism can be applied to obtain it as described in Chapter 2. Let
us now get the cross section leading to a certain final state, ϕ(−)

q,σ2,ς and a
certain state of the p−N1 subsystem φ̃j

π

n :

dσ

dΩ

∣∣∣∣n,jπ
q,σ2,ς

=
1

(2sp + 1)(2JA + 1)

µpAµpn−C
(2π~2)2

Kf

KpA

∑
m

∣∣∣T ifq,σ2,ς,n,jπ

∣∣∣2 , (5.14)

where as in Chapter 2, Ω corresponds to the scattering angle of the (center
of mass of) residual nucleus B.
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Now we can apply the decomposition:

dσ

dΩ

∣∣∣∣n,jπ
q,σ2,ς

=
1

(2sp + 1)(2JA + 1)

µpAµpn−C
(2π~2)2

Kf

KpA

16π2

q2

×
∑

mp,mA,md,MT

∣∣∣∣∣∑
α

YLM (q̂) 〈LMs2σ2|JMJ〉 〈JMJIς|JTMT 〉 T ifα

∣∣∣∣∣
2

,

(5.15)

where we now explicitly state the spin projections of the nuclei involved in
the reaction. In order to produce a differential cross section on q, we multiply
by the differential element and the number of states per momentum-space
element (N(q)), which for our definition corresponds to [71]:

N(q) = (2π)−3, (5.16)

which we note does not depend on q, so we will denote it as Nq. This
expression leads to:

dσ

dΩdq

∣∣∣∣n,jπ
σ2,ς

=
dσ

dΩ

∣∣∣∣
q,σ2,ς

Nqd
3q. (5.17)

Since we are only interested in the energy distribution of the residual nucleus
B, we may integrate over the angles of q and sum over the spin projections
of both N2 and C, that is over σ2 and ς. Now we can use the properties:∫

dq̂Y ∗LM (q̂)YL′′M ′′ (q̂) = δLL′′ δMM ′′ (5.18)

and ∑
M,σ2

〈LMs2σ2|JMJ〉 〈LMs2σ2|J
′′
MJ〉 = δJJ ′′ (5.19)

to get an expression for the cross section to a certain q

dσ

dΩdq

∣∣∣∣n,jπ =
1

(2sp + 1)(2JA + 1)

µpAµpn−C
(2π~2)2

Kf

KpA
16π2

×
∑

mp,mA,md,MT

∣∣∣∣∣∑
α

T ifLMJTMT

∣∣∣∣∣
2

Nq,

(5.20)
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which can be easily recognised as

dσ

dΩdq

∣∣∣∣n,jπ = 16π2Nq

∑
LJJTMT

dσ

dΩ

∣∣∣∣
q,α

. (5.21)

The cross section to a state {LJJTMT } can be computed using TC by
summing over the cross sections to all the bins:

dσ

dΩdq
= 16π2

∑
α

dσ

dΩ

∣∣∣∣
q,α

Nq. (5.22)

Of course, integration over Ω yields the formula for the differential cross
section with the modulus of q:

dσ

dq
= 16π2

∑
α

σ|q,αNq. (5.23)

From here, we can easily obtain the distribution for the relative energy be-
tween N2 and C, by multiplying by transforming from momentum to energy
through:

εN2C =
~2q2

2µN2C

dq

dεN2C
=
µN2C

~2q
(5.24)

leading to:
dσ

dεN2C
= 16π2µN2C

~2q
Nq

∑
α

σ|q,α (5.25)

Here the use of the non-relativistic expression for the density of states is
justified by the low relative energies between N2 and C, which tend to
encompass only a few MeV. Finally let us note that in the previous derivation
neither the integration over Ω nor the sum over the different bins n, jπ is
a fundamental part of the derivation. As such it is possible to obtain a
differential cross section over εN2C and the center of mass momentum of the
outgoing residual nucleus B (see Section 2.2) which still verifies the property
that it can be constructed through the incoherent sum of the differential
cross sections for the different states {LJJTMT }.
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5.1.1 Comment on antisymmetrization

Borromean systems in which two of the bodies are nucleons (the ones we
are interested in in this work) must be of the type n+ n+ C or p+ p+ C,
since a system such as p + n + C would not be Borromean, since the two-
body subsystem p+n can be bound forming the deuteron. Therefore, special
attention must be paid to the fact that the two nucleons are identical particles
so they must be properly antisymmetrized. This antisymmetrization must be
taken into account in the calculation of φA, and is most easily considered
by working in the T -system, where the orbital angular momentum between
the two nucleons is defined. There, the components where L+ S (with S =

sN1 + sN2) is odd can be removed, and those where it is even multiplied
by a factor

√
2, in a similar way to Section 2.4. We must then transform

the wavefunction to the Y -system as in Eq. (5.6), since there the overlap
with nucleus B is simpler. Let us remark that in the actual calculations it is
common to leave the factor

√
2 out of the calculation, so that the final cross

sections obtained must be multiplied by a factor 2.

5.2 11Li(p, pn)10Li∗

5.2.1 Brief introduction

11Li has the honour of being the first established halo nucleus, after the
experiments by Tanihata et al [102] showed it to have a interaction cross
section which was much larger than other nuclei of its neighbourhood. This
was interpreted as 11Li having a much larger radius, which was later under-
stood as having two valence neutrons orbiting a 9Li core at a large radius,
forming the halo.

Despite the numerous experiments performed on 11Li, the structure of its
ground state is not clearly established yet. It is experimentally agreed upon
that the ground state of 11Li is an admixture of s2

1/2 and p2
1/2 [103], but the

weight of each component is not clear, with predictions for the weight of the
(sd)2 component ranging from 0 to 100% [104], with the predictions for the
s2 occupation based on the matter radius of 11Li being around 30-50%.

The associated unbound system 10Li presents a spectrum that has yet to
be clarified as well, as can be seen from Table 5.1, which has been adapted
from [104]. Currently, the general consensus is that the ground state of 10Li
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Year Reaction Energy (MeV) Width (MeV) l Ref
1997 10Be(12C,12 N) 0.24(4) 0.10(7) [105]
1999 9Be(9Be,8 B) 0.50(6) 0.40(6) [106]
1999 fragmentation <0.05 s [107]
2001 p removal from 11Be g.s. is s [108]
2003 9Li(d, p) 0.35(11) <0.32 [109]

or <0.2 and 0.77(24) – and 0.62
2006 9Li(d, p) ∼0 s [110]

∼0.38 ∼0.2 p

2015 2p removal from 12Be 0.11(4) 0.2 p [111]
0.50(10) 0.8 p

2016 11Li(p, d) 0.62(4) 0.33(7) p [112]

Table 5.1: Position of the resonances and virtual states found for 10Li in
various experiments, adapted from [104]

corresponds to a s wave with an energy very close to threshold and that it
has one or more resonances corresponding to a p wave in the range of 0.2-0.7
MeV.

5.2.2 Models for 11Li and 10Li

As was indicated in Sec. 5.1, the main structure ingredient required for the
computation of the (p, pn) energy distribution is the overlap between the
ground state of the Borromean nucleus (11Li) and the unbound residual two-
body system (10Li) at different n+9Li relative energies. In order to produce
this overlap, the wave functions of both systems have to be produced, in this
case, employing a 3-body model for 11Li (n + n+9Li) and a two-body one
for 10Li (n+9Li).

The main input ingredients for these models are the potentials between
the subsystems considered. Given that in the three body system two of the
particles considered are identical (the two neutrons) only two potentials are
required in these calculations: Vnn and Vn9Li.

For Vnn, the well tested GPT interaction [113] has been chosen, which
is able to reproduce the scattering length for this system. Given that the
relevant energy range between the two neutrons inside 11Li will be relatively
small, Enn < 5 MeV, we find that a good description of the scattering length
is enough to describe the n− n interaction.

The n−9Li interaction is less well established since the properties of 10Li
are not that well known. As such, we have produced 5 different interactions
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which yield different spectra for 10Li. This allows us to explore the sensitivity
of the reaction observables to the characteristics of the n−9Li continuum.

One main property of the n−9Li interaction we explore in this work is
the spin-spin coupling between n and 9Li, which leads to splitting of the
structures of the continuum (resonances and virtual states) depending on
the relative orientation of the spins of both systems. The shapes for the
interactions including spin-spin terms is different in the literature than that
of the interactions excluding this term. As such distinctions must be made
between them.

The interactions excluding spin-spin coupling have been based in the
parametrization of Thompson and Zhukov [114]:

V
(L)
n9Li

= V (L)
c (x) + V

(L)
so−v(x)L · sn, (5.26)

where the depth of the interactions depend on the orbital angular momentum
(L) between n and 9Li, with the central term following a Woods-Saxon
shape and the spin-orbit term following a Woods-Saxon derivative, both
with geometries with the parameters R = 2.642 fm (note it is R and not r0)
and a = 0.67 fm. Meanwhile the interactions including spin-spin coupling
are based on the parametrization of Garrido et al. [115]:

V
(L)
n9Li

= V (L)
c (x) + V

(L)
so−v(x)L · sn + V

(L)
so−C(x)L · sC + V (L)

ss (x)sn · sC, (5.27)

presenting central, spin-spin and spin orbit terms for both n and 9Li spins.
The geometry for these terms is Gaussian V (r) = ve−r

2/a2 with a = 2.55

fm. As in the previous case the depths of the potentials are L-dependent.

The depths of the different terms for the potentials considered in the
following sections are presented in Table 5.2. The potentials with an I in
their names (P1I and P2I) include spin-spin terms, while those without it
(P3, P4 and P5) exclude them.

Looking at the depths of the central part for the s wave it can be seen
that they are much shallower for P1I and P2I than for P3, P4 and P5. As
well, we can see that for the p-wave the potential is highly repulsive for P1I
and P2I. This is done to push out the p3/2 component in what is called
the repulsive core approach [116]. This method results in the s-wave states
produced being 1s1/2 states, which do not present a node. We do not expect
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Model v
(0)
c v

(1)
c v

(2)
c v

(0)
ss v

(1)
ss v

(1)
so-c v

(1)
so-v

P1I -5.4 260.75 – -4.50 1.00 1.00 300
P2I -5.0 260.25 – -2.00 1.00 1.00 300
P3 -50.5 -39.0 -50.5 – – – 40.0
P4 -49.6 -39.4 -50.5 – – – 35.5
P3 -50.5 -39.0 -53 – – – 40.0

Table 5.2: Potential depths for the 11Li models used in this work. Spin-orbit
terms have the same depth for L = 1, 2 and spin-spin terms for L = 0, 2.

Er[p1/2] (MeV) a (fm) Er[d5/2] (MeV) %p1/2 %s1/2 %d5/2 rmat (fm) rch (fm)
1+ 2+ 1− 2−

P1I 0.37 0.61 – -37.9 – 31 67 1 3.2 2.41
P2I 0.30 0.55 -1.1 -6.7 – 44 54 <1 3.0 2.40

P3 0.50 -29.8 4.3 30 64 3 3.6 2.48
P4 0.23 -16.2 4.3 67 27 3 3.3 2.43
P5 0.50 -29.8 1.5 35 39 23 3.2 2.42

Table 5.3: Features of the 10Li structure for the different potentials employed
in this work. The second column shows the energy of the p1/2 resonance
while the third one shows the scattering length of the s1/2 virtual state.
Note that for the model with spin, both the resonance and virtual state are
split. The fourth column shows the position of the d-wave resonance, only
for the models without spin. The fifth, sixth and seventh columns show the
weights of the p1/2, s1/2 and d5/2 waves in the 11Li ground state respectively,
while the last two columns show its matter and charge radii.

this to influence the energy distributions we intend to study, although it may
change momentum distributions, which will not be explored in this work.

As for P3, P4 and P5, they produce deeply-bound 1s1/2 and 1p3/2 com-
ponents which have to be removed from the spectrum using the adiabatic
projection method [117].

Apart from these potentials, the three-body calculation for 11Li includes
a three-body force to reproduce the two-nucleon separation energy for 11Li,
S2n = −0.37 MeV. Let us remark here that Vn9Li is used consistently for the
calculations for 10Li and 11Li.

The features of the 10Li continuum obtained for these potentials as well
as the weight of the different waves for the n−9Li system in the 11Li ground
state wave function are presented in Table 5.3. The charge and matter radii
for 11Li are also presented.

In our adjustment of potential depths, we have tried to reproduce the
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overall features for the 10Li continuum, a p-wave resonance at ∼0.5 MeV
and a virtual state at low energies with a (negative) scattering length of
∼ 20 − 30 fm for the P1I and P3 potentials. Let us note that, while we
have a relative freedom to displace the position of the resonances and virtual
states by changing the depths of the interaction, this also modifies strongly
the weights of the associated waves in the ground state of 11Li. This can be
understood quite intuitively, as a resonance at lower energies is more easily
populated as one at higher energies, so a model with a lower resonance in
the p-wave will have a larger weight for this wave than one with the resonace
at a higher energy, as can in fact be seen when comparing models P4 and
P3.

Actually, models P2I and P4 have been produced, not to be “realistic”,
but to give a larger p-wave component. As can be seen in Table 5.3, this can
only be achieved either by reducing the scattering length of the s-wave, as
for P2I, effectively pushing the energy of the associated virtual state away
from the threshold; or by reducing the energy of the p-wave resonance, as in
P4.

This shows that our method establishes a relation between the energy of
the structures in the 10Li and the weight of their contribution, thus linking
the height of the resonance peaks to their position. This severely restricts
the distributions we can produce, thus endowing them with stronger spec-
troscopic capabilities.

5.2.3 11Li(p, pn)10Li∗ at 280 MeV/A

In this section we compare our calculations to experimental results measured
at GSI, Germany, and published in [118]. In this work, the experimental
momentum distribution was adjusted assuming a Breit-Wigner shape for the
resonance and the shape for the virtual state from [119]. From this analysis
they concluded that the spectrum of 10Li presented a p-wave resonance at
∼0.5 MeV and a virtual state with a scattering length of -20 to -30 fm. We
note that in this fitting procedure the energy of the resonance, the scattering
length of the virtual state and their weights are all independent parameters,
as opposed to our method where the weight of each component is closely
related to its energy.

For this calculation, the optical potentials between p and 11Li and be-
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tween p, n and 10Li have been generated through the same method as the PH
potentials in Sec. 4.2.1, through the folding of the Paris-Hamburg g-matrix
effective interaction with the density of the nucleus computed from a Hartree-
Fock calculation with the code oxbash. Since 10Li is unbound, we have opted
to use the density of 9Li instead. We note that the use of mean-field densities
for the case of such exotic and light nuclei can be questionable. However, we
have not found a better prescription to build the optical potentials for these
cases, so we have kept to this one. The p− n interaction is taken as Reid93,
as in the other cases presented in this document.

The (p, pn) calculation has been computed for 20 to 30 p− n bin states
for each configuration of the final 10Li, in order to produce the energy dis-
tribution. This means a large number of calculations has to be performed
in order to produce the energy distribution. Therefore, in order to reduce
computation time we have only computed the cross section leading to p− n
states with angular momentum and parity jπ = 0±, 1±, 2±, which are the
waves that contribute the most at the incident energy of 280 MeV/A. Some
test calculations including higher jπ suggest that by this truncation we are
underestimating the cross section by 10-15%. Since we are not interested in
the magnitude of the cross section nor in “quenching factors” and noting that
our choice of potentials may well induce larger uncertainties in the total cross
section, we consider this precision to be enough. It can be questioned whether
this approximation may alter the relative weights of different components of
10Li. Test calculations indicate that the ratio between the contributions of
different jπ is similar for different components of 10Li. As such, the error
induced by the truncation should affect all components of 10Li similarly, not
affecting their relative weights.

Now we present calculations for the different models for 10Li presented
in the previous section, and use the results in order to extract information
on the structure of 10Li. These results have been published in [120]

5.2.3.1 P3 and P4 models: No spin splitting, no d-wave

From the spectrum of [118], we try to build a 10Li spectrum with a p-wave
resonance at E = 0.5 MeV and a virtual state for the s-wave with a scattering
length of −20 to −30 fm. Such a spectrum can be produced from potential
P3 from Table 5.3. We therefore compute the energy distribution using TC
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Figure 5.2: Energy distribution for 11Li(p, pn)10Li using potential P3 (see
Table 5.3). The left panel shows the contribution of the s and p waves along
with their sum. The right panel shows the full distribution before and after
convoluting with the experimental resolution. Experimental data are from
[118].

and present the results in Fig. 5.2.

Looking at the left panel of Fig. 5.2 it can be seen that the contribution
of the s wave is concentrated at low energies, where it is markedly strong,
presenting a behaviour consistent with a near-threshold virtual state. As for
the p wave it shows a somewhat smaller contribution with the characteristic
behaviour of a resonance at 0.5 MeV. In the right panel the strong dis-
torting effect of the experimental resolution is apparent. It reduces strongly
the low-energy contribution as well as smoothening out the features of the
distribution. In particular, the peak of the resonance is barely visible due to
the resolution. The theoretical prediction gives quite well the magnitude of
the cross section, which is of 32 mb for the theoretical result and of 30 mb
for the experimental data (between 0 and 2 MeV). This is rather surprising
given the strong approximations used in its computation and the rather
uninspired choice of potentials. However, the most interesting feature of the
distribution, its shape, is not well reproduced, even having a 10Li spectrum
showing similar characteristics to those found in [118]: a p-wave resonance
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at 0.5 MeV and a virtual state with scattering length a ∼ 20− 30 fm.

The reason for this discrepancy can be understood in the weights of the
s and p waves. The s wave has a weight in the ground state of 11Li of
around 64%. Since its contribution seems to severely overestimate experi-
mental data, we can conclude that this weight is too large, and that a better
description of the 10Li continuum should transfer part of it to the p wave.
However, as we have mentioned in the previous section, the weight of each
component is strongly correlated to the position in energy of the related
structures (resonances and virtual states). As such, we cannot modify much
the relative weight between the s and p waves without modifying the position
of the virtual state and the resonance, thus separating our model from the
experimental results established in [118].

Despite this caveat, we find illustrative to show the shape for a calculation
in which the weight of the p-wave is markedly larger than that of the s-wave.
This is achieved through potential P4, whose p-wave component has been
increased to 67% at the cost of reducing the energy of the resonance to 0.23
MeV moving it farther from the value from [118]. The scattering length for
the s wave virtual state has also been reduced, although it is still reasonably
close to the results in [118]. The resulting energy distribution is shown in
Fig. 5.3

As can be seen in Fig. 5.3 the modification in the spectrum of 10Li has
not helped improve the agreement with the experimental distribution. The
s-wave contribution has indeed decreased reducing the contribution at low
energies. However, in order to increase the contribution of the p wave, the
resonance had to be shifted to lower energies, so our theoretical result keeps
overestimating the distribution at low energies and underestimating it at
higher energies.

From these tests we can conclude that we cannot modify much the rel-
ative weights of the s and p waves without distorting the positions of the
resonance and virtual state beyond what is consistent with experimental
data. Given that the agreement with experimental data is lacking, this in-
dicates that the model we have been using for 10Li (including only s and p
wave states without coupling to the spin of 9Li) is not enough to reproduce
experimental data. In the following sections we present some extensions to
the model to improve the agreement.
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Figure 5.3: As Fig. 5.2, but showing the results for potential P4 (see Table
5.3).

5.2.3.2 P5 model: No spin splitting, d-wave

In the analysis of recent neutron removal experiments on 11Li with a carbon
target [121], the existence of a d-wave resonance at low energies (∼ 1.5

MeV) has been suggested in order to reproduce experimental data. Such a
resonance has not been considered in many other experiments on 10Li, so its
introduction can be contested.

However, it is interesting to check whether such a resonance can improve
the agreement to experimental data so we have generated a calculation with
potential P5, which shows a d-wave resonance at 1.5 MeV with a significant
weight of the d wave in the ground state of 11Li: 23%. The results of this
calculation are presented in Fig. 5.4.

As can be seen in the figure, the inclusion of the d-wave resonance im-
proves considerably the agreement with the experimental distribution. The
reason for this improvement is twofold: first the appearance of a resonance
at 1.5 MeV increases the cross section at high energies, which improves the
agreement to experimental data in this region, where previous calculations
were lacking. Secondly, as can be seen in Table 5.3, the weight of the d-wave
in the ground state of 11Li is drained almost exclusively from the s wave,
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Figure 5.4: As Fig. 5.2, but showing the results for potential P5 (see Table
5.3).

which is left with a weight of 35%, around half that for P3. This reduces the
contribution of the s wave, which is concentrated at low energies due to the
virtual state, so the cross section at low energies decreases, approaching the
experimental data.

Despite the sharp improvement in the agreement to experimental data,
the lack of further support for the existence of a low-energy d-wave resonance
makes us reluctant to accept this model of 10Li. Therefore in the next section
we will explore another model which does not include this resonance.

5.2.3.3 P1I model: Spin splitting, no d-wave

A feature of the 10Li continuum that we have not included yet and that
is widely accepted in the nuclear phsyics community, as opposed to a low-
energy d-wave resonance, is the splitting of the structures of the continuum
due to coupling to the spin of 9Li (3/2−). Such a splitting is present in many
other nuclei and has been suggested as an explanation for the dispersion in
the suggested values of the position of the p-wave resonance [104]. If such
a resonance is split in two, some experiments could be sensitive to one of
them, at a certain energy and others to the other one, at another energy.
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Figure 5.5: As Fig. 5.2, but showing the results for potential P1I (see Table
5.3). Due to splitting, the s wave gives 1− and 2− states for 10Li, while the
p wave gives 1+ and 2+ states.

Our P1I potential produces a spectrum with such a splitting, breaking
the p-wave resonance in a 1+ resonance at 0.37 MeV and a 2+ resonance at
0.61 MeV. The virtual state is also broken in 1− and 2− components. In this
case, the 1− component loses its virtual state properties and results instead
in a non-resonant continuum, while the scattering length of the 2− state is
increased to −37.9 fm. The weights in 11Li ground state for the 1−, 2−, 1+,
2+ components are 27%, 40%, 12% and 19% respectively. The results of the
calculations with P1I are presented in Fig. 5.5.

As can be seen in the figure the agreement with experimental data also
improves considerably when considering the splitting of the states due to
coupling with the spin of 9Li. The low-energy contribution is reduced due to
the splitting of the virtual state in the 2− and 1− components. Due to the
non-resonant 1− continuum, its contribution is effectively “lost”, decreasing
the effect of the virtual state. Moreover, the splitting of the p−wave resonance
leads to an effectively broader resonance which tends to fill the high-energy
tail of the distribution, thus improving the agreement for that area.
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It can be questioned whether our results for P1I are compatible with the
spectrum found in [118], that is, a resonance at 0.5 MeV and a scattering
length of 20-30 fm. As for the resonance, an average of the resonance peak for
1+ and 2+ weighted by their contribution to the ground state of 11Li (12%
and 19% respectively) yields a centroid for the resonance of 0.52 MeV. Given
that both resonances are not resolved due to the experimental resolution
this result is compatible with a resonance at 0.5 MeV. As for the scattering
length, we note that the square of the scattering length is proportional to the
cross section at low energies σ ∝ a2 and that the cross section to the s wave
can be expressed as the sum of the contributions of the 1− and 2− states,
weighted by their contribution to the 11Li ground state. Assuming that the
proportionality between scattering length and cross section is the same for
s wave, 1− and 2−, we can build an effective scattering length through:

aeff =

√
C1−a

2
1− + C2−a

2
2−

C1− + C2−
, (5.28)

with Ci being the weight of component i in the ground state of 11Li. As-
suming a scattering length a1− = 0 fm since it does not present a virtual
state gives an effective scattering length aeff = −29.3 fm which is rather
consistent with our restraints over the scattering length.

In summary, applying our formalism we have found that we cannot de-
scribe the experimental data assuming just a p-wave resonance at 0.5 MeV
and a virtual state with scattering length a = −20 − 30 fm, as was found
in [118], because the weights we obtain for each contribution, which are not
free parameters in our model, are incompatible with the experimental data.
A remarkable improvement in the agreement with experimental data can be
achieved either by the addition of a d-wave resonance at 1.5 MeV or the
introduction of a spin-spin interaction which breaks the p-wave resonance in
1+ and 2− resonances at 0.37 and 0.61 MeV respectively, as well as giving an
effective scattering length aeff = −29.3 fm. From both modifications to the
10Li continuum we favour the spin splitting because it is in better agreement
with previous works on 10Li. Let us remark the very important smearing
effect of the experimental resolution, which makes two very different theo-
retical predictions, such as P5 and P1I, give very similar distributions after
convolution with the resolution. Our calculations predict (p, pn) reactions
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to be sensitive to both resonances in the case of spin splitting. As such, an
experiment with better resolution, able to resolve both resonances, would
prove of high spectroscopic value.

5.2.3.4 Distorting effects of the reaction mechanism

When extracting spectroscopic information from observables such as the
energy distribution from a (p, pn) reaction, it is usual to assume a clear
relation between the experimental distribution and the “real” spectrum of
the nucleus. For example, a peak at a certain energy is usually assumed to
indicate a resonance at that energy and the relative heights of different peaks
are used to extract the relative strength of the associated components of the
wave function.

In order to establish this relation, a main assumption is that the reaction
mechanism is “transparent” to the nuclear structure, so that the results of
the reaction are a mirror of the properties of the nucleus, perhaps with
some overall kinematic factor accounting for conservation of energy and
momentum.

This picture of the reaction mechanism is overly simplistic and known
to fail to describe experimental observables at low energies, where the rela-
tively long interaction time between projectile and target impedes a simple
relation between the nuclear reaction predictions and the properties of the
outgoing fragments of the reaction, whose properties and state of motion
have undergone many changes ont their way out of the interaction area.

For high energies, it is expected that the experimental observables mirror
closely the resonant structure of the unbound nucleus, without being affected
much by the reaction mechanism, which would have a interaction time too
short to distort the observables significantly. We have seen in Sec. 2.5.2 that
absorption and distortion effects (associated to the reaction mechanism and
not to the structure of the nucleus) tend to narrow significantly momen-
tum distributions even at high energies, so the simplified picture we have
described seems not to apply to them.

We are left to ponder how strong the effect of the reaction mechanism
is in the energy distribution for (p, pN) reactions on Borromean nuclei and,
therefore, how reliable the extraction of spectroscopic information is when
extracted directly from experimental observables.
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Since we have developed a full reaction formalism to describe (p, pn)

reactions, we are in a position to study the effect of the reaction mechanism
on the experimental energy distributions. To quantify these effects we will
assume that the cross section for each value of q, the relative momentum
between n and 9Li, is proportional to the norm of the overlap:

σα(q) ' Cαηα(q) ηα(q) =

∫
dy |ϕAB,α(q,y)|2 , (5.29)

where all quantities take the definitions from Sec. 5.1. This approximation
is not unlike the one where the spectroscopic factor is factored out from the
cross section [Eq. (2.28)]. With this approximation, the total cross section
can be expressed as:

dσ

dεN2C
= 16π2µN2C

~2q
Nq

∑
α

Cαηα(q). (5.30)

In these expressions, we have intentionally omitted the dependence of Cα on
q, because we will assume that Cα does not depend on the energy of the final
10Li, since such a dependence would imply that the reaction would distort
the structure energy distribution by favouring lower or higher energies. In
Fig. (5.6) we compare the cross section obtained from Eq. (5.30) (dashed
lines) with the full cross section from Eq. (5.25) (solid line). The factors
Cα have been adjusted for each partial wave heuristically to give a good
agreement with the full calculation.

We can see in the figure that the agreement between both equations is
remarkably good, excellent for the p-wave components, although for the s-
wave ones the full calculation is somewhat larger at lower energies than at
higher energies when compared to the calculation from Eq. (5.30).

From these results we can interpret that the reaction behaves similarly
for states of 10Li with different energies. This is understandable by comparing
the range of energies covered here (0-2 MeV) to the energy of the reaction
(280 MeV/A). Clearly, the reaction will take place similarly when it provides
0.3 MeV to the 10Li, yielding 10Li in the breakup threshold and when it
provides 2.3 MeV, yielding 10Li with a relative energy of 2 MeV, since it has
280 MeV to spare. This result is also in agreement with the quasi-free picture
of the (p, pn) reaction, in that the reaction is quite insensitive to the state of
the 10Li, being led by the interaction between the proton and the removed
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nucleon.

We must note however that the Cα computed for the different waves
differ rather strongly, by 27% for P3, when comparing the s and p waves and
by 11% for P1I comparing the 2− and 2+ waves.

These rather large differences for the different waves make the use of
a proper reaction formalism essential to extract quantitative spectroscopic
information from the experimental momentum distribution, since it alters
the relative weights of the different components in the nuclear structure
spectrum and in the experimental distribution.

With all of these results in mind, a first-order computationally lighter
method for studying these reactions without involving as many calculations
as the full reaction calculation is suggested: Since the overall scaling factor
Cα is fairly constant for all considered values of the n−9Li energy, it is
only necessary to compute the full cross section for one value of the energy
(preferably one with high cross section). then the cross section is compared
to ηα at that energy to obtain the factor Cα, which is then applied to the
whole energy distribution. This process is repeated for all 10Li configurations
to account for the difference in Cα and allows to obtain energy distributions
rather similar to those obtained for the full calculation, reducing the compu-
tation time in a factor of 20-30 (the number of energies required to produce
a significant energy distribution). Since for the s wave states this method
is expected to give a worse agreement, it could be considerd to skip this
approximation completely or to perform calculations at low, mid and high
energies to describe roughly the behaviour of factor Cα.
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Eq. 5.30 (dashed lines). The factors Cα are computed for each configura-
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5.2.4 11Li(p, d)10Li∗ @ 5.7 MeV/A

The
〈

10Li|11Li
〉
overlaps are quantities resulting from a pure nuclear struc-

ture calculation. Therefore, they are not exclusive for a certain reaction. It
is interesting then to check whether they can reproduce experimental data
from other reactions which are sensitive to them.

To this respect, the reaction 11Li(p, d)10Li was measured recently in the
IRIS facility at TRIUMF at a beam energy of 5.7 MeV/A [112]. There, they
found a resonance at 0.62(4) MeV, which they associated to a p1/2 state with
a spectroscopic factor of 0.67(12) by comparing theoretical calculations to
the angular differential cross section.

The theoretical calculation was performed using the DWBA formalism
whose most questionable ingredient was the wavefunction for the transferred
nucleon when bound to 11Li. It was approximated by a Woods-Saxon poten-
tial with a rather conventional geometry (r0 = 1.15 fm and a = 0.6 fm) whose
depth was adjusted to give a p1/2 eigenvalue at 0.98 MeV, the two-neutron
separation energy plus the energy of the resonance.

The use of such a simple model for one of the valence neutrons of a
Borromean system is rather doubtful, so we have performed a reanalysis of
the experimental data using our

〈
10Li|11Li

〉
overlaps, deeming them a more

reliable description of the behaviour of the neutron in 11Li.

As for the reaction calculation, we have opted to follow closely that of
[112]. We have also performed a DWBA calculation using the same ingredi-
ents as those form [112]: The p−n potential and the p−11Li potentials were
taken directly from [112] and the d−10Be was fitted to the data on d−11Li
from [122], as theirs. The values of the potentials are presented in Table 5.4.
A test has been made using Reid93 as Vpn, finding only small differences
in the cross section. Therefore we have chosen to keep the prescription from
[112] so that the only difference between their calculation and ours lies in the
neutron wave function. The results of these calculations have been published
in [123] and are shown in the following.

In order to study the sensitivity of the reaction to the models used we
present calculations for potentials P1I, P2I, P3 and P4 (See Table 5.3). We
have computed the cross section for 20 bins equispaced in momentum for a
n−9Li from 0 to 2 MeV for P3 and P4 and for 30 bins from 0 to 3 MeV for P1I
and P2I, since they extend somewhat further in energy. Energy distributions
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V V0 r0 a0 W0V r0V a0V W0s r0s a0s Vso rso aso
p−11Li 95.93 1.00 1.10 15.00 0.65 0.50 11.90 0.67 1.1 10.70 0.80 0.75
d−10Li 65.86 1.28 0.61 11.48 1.46 1.41 – – – – – –
p− n 165.54 0.4 0.6 – – – – – – – – –

Table 5.4: Potentials used to compute 11Li(p, d)10Li. For the d−10 potential,
A = 11 has been used.

Figure 5.7: Resonance energy spectrum from [112]. The dotted red line
denotes the calculated 9Li+n + d three-body non-resonant phasespace and
the solid red line denotes the extracted background for the determination of
the cross section.

for the four models are presented in Fig. 5.8, where the contribution of each
10Li configuration is presented separately, as well as the total, which is also
shown after convolution with the experimental resolution (σ = 0.31 MeV).

The strong effect of the experimental resolution is evident in the distri-
butions. Despite the different shapes shown by the total energy distribution
prior to the convolution with the experimental resolution, all of them result
in a Gaussian shape with roughly the same width and centered in roughly
the same position.

The comparison of Fig. 5.8 with Figs. 5.2, 5.3 and 5.5 shows that the
transfer reaction seems to increase the contribution of the p-wave contribu-
tions with respect to the s-wave ones, when compared to the (p, pn) reaction,
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as can be easily seen comparing the peaks of the p-wave resonances to the
s-wave tails at their energy. This reinforces the importance of the description
of the reaction mechanism when extracting spectroscopic information from
experimental observables, as it makes it apparent how the same nuclear
structure spectrum may be modified by different reactions.

In [112], an energy spectrum is presented, which is reproduced in Fig. 5.7.
However, we refrain from comparing our distributions to this figure for two
reasons. First, the energy distribution is given in counts instead of a cross
section, so a comparison of magnitude is not possible. Second and more im-
portant is the fact that the distribution is presented without the background
extracted.

The extraction of the background introduces a problem in our comparison
to experiment. In [112], the background is extracted by fitting the energy
distribution by a Breit-Wigner shape to describe the resonance and a linear
function to describe the background. This marks the background as the
events that do not fit a Breit-Wigner shape. However, the events forming
the Breit-Wigner are not necessarily related to the p-wave resonance of 10Li.
As can be seen in Fig. 5.8, the rather broad experimental resolution mixes
all contributions in an overall peak, making it very difficult to distinguish
the resonant from the non-resonant continuum.

Moreover, the origin of the background events is not clear either, since
they may come from the 11Li(p, d)10Li reaction leading to non-resonant states
of the continuum of 10Li or they may result from more complex processes
between the four particles (p+n+n+9Li) which end up producing outgoing
deuteron and 9Li, the two detected particles.
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We have therefore to decide which events from our calculation contribute
to the experimental cross section. We have considered only the contributions
leading to p-wave configurations, taking the whole considered 10Li energy
interval, and leaving out the s-wave contribution. The reasoning behind this
choice is that the shape for the s-wave contribution is certainly not Breit-
Wigner-like and is therefore likely to be considered as background in the
fitting procedure. Also, the whole p-wave spectrum for the energy En9Li =

0− 3 MeV seems to be dominated by the resonances, and any non-resonant
part will be rendered indistinguishable by the experimental resolution, thus
the inclusion of the whole range seems the most adequate choice.

After these considerations we compare our theoretical angular differential
cross section to the experimental angular differential cross section from [112]
in Fig. 5.9. The theoretical cross section has been computed by integrating
over En9Li the double differential cross section on En9Li and Ωc.m., the center-
of-mass angle of the outgoing deuteron, produced for the p-wave contribu-
tions. We note that no scaling factor is included in the calculations, which
are compared directly to experimental data.

We find a good agreement in the shape of all contributions with that of
the experimental data, corresponding to transfer from a p-wave. In magni-
tude, both P1I and P3 agree very well with experimental data, while P2I
and P4 overestimate them. The blue dotted line shows the contribution of
the s wave for P1I. Rather fortituously, its contribution is minimal at the
angles where experimental data exist, although it would still be significant
had we included it.

It is rather remarkable that two models as different as P1I and P3 give
such a similar agreement with experimental data. Given the markedly dif-
ferent energy distributions presented by both models, we may conclude that
the angular differential cross section for the reaction is not sensitive to the
structure of 10Li. We find that the angular cross section is only sensitive to
the angular momentum of the transferred neutron in the resonant state and
to the p-wave component of the ground state of 11Li. Looking at Table 5.3,
we can see that the p-wave accounts for 30% and 31% of the ground state for
P1I and P3 respectively. These similar values of the p-wave content result in
similar cross sections, which agree with experimental data and, in turn, the
contents of 44% and 67% for P2I and P4 result in their overestimation of
the experimental data.
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Figure 5.9: Angular differential cross section computed for 11Li(p, d)10Li.
Experimental data are from [112]. Dashed lines denote calculations with
models without coupling to the 9Li spin while solid lines denote models
including it. The contribution of the s wave components for P1I is shown in
the blue dotted line.

From here we conclude that the experimental data from [112] agree well
with models giving a p-wave component of∼30%, and are rather independent
from other features of the model. As a test of this assertion, in Fig. 5.10, the
calculation for P5 (which was produced after the present work on transfer
reactions was developed and published) are shown. P5 has a p-wave compo-
nent of 35%, so it is expected to show a good agreement with experimental
data, as can be seen in the figure. We must also note that, since 11Li has
two valence neutrons, an occupation of ∼30% corresponds to a spectroscopic
factor of 0.6, fully consistent with that found in [112].

To finish this chapter let us remark that our models P1I and P5 are
able to reproduce two different reactions (11Li(p, pn) and 11Li(p, d)) at very
different incident energies (280 MeV/A and 5.7 MeV/A), which are sensitive
to different features of our models. From these two models, we favour model
P1I over P5, because the d-wave resonance presented by the latter has only
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Figure 5.10: As Fig. 5.9 including the calculation for P5.

been reported by the analysis of one experiment, while the former presents
splitting of the spectrum due to coupling to the spin of 9Li, a feature which,
despite not having been confirmed experimentally due to poor experimental
resolution, is widely accepted in the relevant literature.



Chapter 6

Summary and conclusions

And here, poor fool! with all my lore
I stand no wiser than before

Faust, Johann Wolfgang von Goethe

In this work, a new reaction formalism has been developed for the study
of (p, pn) and (p, 2p) nucleon knockout reactions at intermediate and high
energies. This formalism, referred to as Transfer to the Continuum, is based
on the prior representation of the matrix element for the (p, pN) process, so
that the main interaction leading the reaction is that between the incoming
proton and the removed nucleon, consistently with the quasi-free picture
of (p, pN) reactions, which relates them to the free scattering between the
incoming proton and the removed nucleon.

The Transfer to the Continuum formalism does not explicitly assume the
Impulse Approximation nor the factorization approximation, as the widely-
used Distorted-Wave Impulse Approximation (DWIA) formalism and, as
such, is applicable at lower energies.

For the larger energies considered in this work (∼ 200 − 400 MeV),
relativistic kinematics must be taken into account, although the use of the
Schrödinger equation is still well-founded, including the proper modifications
to account for relativistic kinematics. These modifications yield an increase in
the cross section of around 1−3% at energies of 100 MeV/A and of 30−45%
at 400 MeV/A. As such, their inclusion is essential for the description of
experimental data.

The main observables of interest in this work are the total integrated
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cross sections and the momentum distributions. The latter present a shape
which is heavily dependent on the quantum numbers of the removed nucleon,
most notably the orbital angular momentum. As such, they are valuable in
spectroscopic studies. However, they are modified by distortion and absorp-
tion effects, so a proper reaction formalism is required to extract reliable
information from them.

In order to test the Transfer to the Continuum formalism, benchmark
calculations have been performed comparing with other theories for the study
of (p, pN) nuclear reactions: the Distorted-Wave Impulse Approximation
(DWIA) and the Faddeev/AGS equations.

The comparison with DWIA was analysed for the 15C(p, pn)14C reaction
at 420 MeV/A [49], finding an excellent agreement between both formalisms,
both in shape and magnitude. The comparison was tested for different sepa-
ration energies of the removed neutron: 1.22, 5 and 18 MeV, finding a similar
degree of agreement for all these cases. Since in the Transfer to the Contin-
uum the dependence of the optical potentials with the nucleon-nucleus energy
is not considered but in DWIA it can be included, the effect of this energy
dependence has been studied, finding it to be relatively small,with a slight
broadening of the distributions without a change in the total cross section.
This validates the use of energy-independent optical potentials employed
by the Transfer to the Continuum for the study of (p, pN) reactions. A
comparison with published Faddeev/AGS momentum distributions for this
reaction [57] also gives an excellent agreement, once relativistic effects have
been ignored.

Benchmark calculations with Faddeev/AGS were performed for the
11Be(p, pn)10Be reaction at 200 MeV/A, ignoring relativistic effects, since
the Faddeev/AGS code used did not include them. The dependence of the
benchmark on the angular momentum of the removed nucleon was studied
by computing the cross sections for the removal of the neutron from a 2s1/2

and a 1p1/2 orbital. Two proton-neutron interactions have been used in the
benchmark calculations, namely a simple Gaussian central interaction and
the more realistic Reid93 interaction [74]. Using the Gaussian interaction,
modified to better reproduce the phaseshifts for odd parity waves, yielded an
excellent agreement between Faddeev/AGS and Transfer to the Continuum,
with differences in the cross section of 5-6%, which are barely noticeable
in the momentum distributions. The use of the Reid93 interaction for the
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proton-neutron potential yielded larger differences, of 8-9%. The origin for
these larger discrepancies is not clear to us yet. In order to understand their
origin we have performed a plane-wave calculation which yields a much
reduced discrepancy, of less than 1%. This indicates that the origin of the
discrepancy is not simply the proton-neutron interaction, but rather its
influence in the calculation. In particular, the steeper nature of the Reid93
interaction may make it more difficult for both formalisms to describe
similarly the p−11Be interaction, since the Transfer to the Continuum uses
relatively smooth interactions for it, while for the Faddeev/AGS formalism,
it appears as a complicated composition of the binary interactions between p
and n, p and 10Be and n and 10Be. Given the steep and l-dependent nature
of the Reid93 interaction, the result of this composition is unlikely to be well
described by a smooth l-independent potential.

Since the Transfer to the Continuum formalism does not consider the
impulse approximation nor the factorization approximation used by DWIA,
it is applicable at lower energies than it. As a test to its adequateness at these
lower energies, we have reanalysed experimental results from 18C(p, pn)17C∗

at 81 MeV/A. The reanalysis gives a good description of the momentum
distributions for the reaction leading to the excited states at Ex =0.21 MeV
and Ex =0.33 MeV (the cross section to the ground state was too small to
extract an adequate momentum distribution) when considering a neutron
removed from 2s1/2 and 1d5/2 orbitals respectively. The “quenching factors”
found using the Transfer to the Continuum for both states were somewhat
larger and similar between themselves than those reported by a previous
analysis using CDCC. The most interesting result from this reanalysis was
a sizeable cross section for the (p, d) transfer reaction, which accounted for
∼15% of the total (p, pn) cross section for the Ex = 0.33 MeV state. This
result was verified using conventional DWBA calculations. Given that in the
experiment only the residual core was detected, the transfer reaction con-
tributes to the experimental cross section. As such, for similar reactions the
use of reaction formalisms that do not treat the transfer channel explicitly,
such as CDCC, should be discouraged in favour of models which consider it,
such as Transfer to the Continuum, or at least, the relevance of the reaction
channel should be checked through DWBA calculations prior to the use of
such formalisms.

The reaction 20C(p, pn)19C at 40 MeV/A incident energy has also been
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studied, lending support to the models of 19C which do not show a bound
5/2+ state, since its inclusion leads to a severe overestimation of the cross
section. This result must be taken just as an indication rather than as solid
evidence due to the lack of a trustworthy model for 19C.

The open problem of the dependence of “quenching” on the isospin asym-
metry of nuclei has been tackled with the Transfer to the Continuum for-
malism. We have computed the “quenching factors” for all the (p, 2p) and
(p, pn) reactions published by the R3B collaboration at GSI, Germany up
to the date of composition of this document [23, 42, 43], and have studied
their dependence on ∆S = Sp(n) − Sn(p), the difference between the binding
energy of the proton and neutron for (p, 2p) reaction and between neutron
and proton in (p, pn) reactions. The sensitivity of the results to the optical
potentials used in the calculation has been studied by employing two different
potential parametrizations. As a test of the adequateness of the formalism, we
have computed momentum distributions and compared them to published
results. In general, the agreement is good and rather independent of the
binding energy of the removed nucleon, with our theoretical results being
somewhat narrower than the experimental distributions and showing little
dependence on the potential parametrizations used.

For both parametrizations, a small dependence has been found of the
“quenching factors” on ∆S. This small dependence is in agreement with
the results found for transfer reactions [10, 33, 37] and recent analysis of
exclusive (p, 2p) reactions measured at RIKEN (Japan) [44]. It is however
at odds with the trend found for nucleon knockout reactions with heavy
targets at intermediate energies, which showed a marked dependence of the
“quenching factors” on ∆S [31, 32]. The overall “quenching factor” for the
reactions is Rs = 0.7 − 0.77, which is in reasonable agreement with other
analysis, though perhaps somewhat larger than the mean “quenching factor”
found in the literature.

The “quenching factors” found for both potential parametrizations are
very similar when considering reactions where a weakly-bound nucleon is
removed. However, for more deeply-bound nucleons the “quenching factors”
are more dependent on the optical potentials used. This results in dependen-
cies on ∆S which are slightly different for both potential parametrizations,
although they are both markedly weaker than the dependence shown by mid-
energy nucleon knockout data. The origin of these difference arises from the
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reactions for deeply-bound nucleons being more sensitive to deeper parts of
the wavefunction, where the potentials show larger differences and are not
well constrained. The extraction of elastic scattering data for the measured
reactions could prove useful in order to constrain the optical potential used
for their analysis, although it could prove to be insufficient, since elastic
scattering is more peripheral than (p, pn) and (p, 2p) reactions, specially for
deeply-bound nucleons.

The reactions for nuclei which are well described by the Independent
Particle Model have been studied using the eikonal version of the DWIA for-
malism [23], with reported results which are consistent with those presented
here, finding a small dependence of the “quenching factors” on ∆S with an
overall value of 0.66, which is somewhat smaller than the results presented
here. The “quenching factors” for particular reactions show a greater agree-
ment between our results and theirs for removal of weakly-bound nucleons
and larger differences for deeply-bound nucleons. This points to the origin
of the difference being the optical potentials used in the calculations.

Other analysis for (p, pn) and (p, 2p) reactions on 22,23O and 21N,
“quenching factors” have been published using the Faddeev/AGS formalism
[43]. These “quenching factors” present a larger dependence on ∆S and are
quite smaller than ours for these reactions. We obtained a greater agreement
with these results using similar inputs to theirs in our calculations. However,
these calculations were non-relativistic and used potentials which in our
opinion do not have enough absorption for the energies of the reactions.
As such we consider that our previous calculations, including relativistic
kinematics and stronger absorption, give more realistic quenching. With
these considerations we manage to obtain a consistent description of all of
the reactions published by the R3B collaboration, solving the discrepancies
between the different results published by the collaboration.

The agreement between our results with Transfer to the Continuum,
and those from eikonal DWIA must be remarked, since the approximations
assumed by both formalisms are rather different, so their agreement is mutu-
ally validating. This is specially relevant given the discrepancy of the trend
found and that for mid-energy heavy-target knockout reactions, which may
shed doubts on the reaction model used to describe (p, pN) or heavy-target
knockout reactions. In this dichotomy, the fact that two reaction formalisms
starting from different assumptions give similar conclusions is a strong argu-
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ment in favour of their description of the reaction, and poses doubts on the
description of heavy-ion knockout, which leads to a different dependence on
isospin asymmetry.

In the next section of this work, we have extended our reaction formalism
to include (p, pN) reactions to the case of Borromean nuclei. Given their
Borromean nature, (p, pN) reactions lead to an unbound residual core whose
spectrum can be studied by measuring the energy distribution from the
reaction. This energy distribution can be computed using the Transfer to
the Continuum formalism and a three-body description of the Borromean
nucleus, leading to a parameter-free description of the energy distribution.
This is a great improvement over the traditional treatment of (p, pN) re-
actions on Borromean nuclei, which relies on an R-matrix fitting of the
energy distribution. One fundamental element included by our treatment
of the reaction which was missing on previous descriptions is the consistency
between the two-body spectrum and the description of the three-body bound
nucleus, which is perhaps most evident in the relation between the position
of the resonances and their relative weight. It also provides a prediction for
the absolute value of the cross section.

The formalism has been applied to the 11Li(p, pn)10Li reaction, which
was recently measured at an energy of 280 MeV/A. Our analysis shows that
the previous description of the energy distribution including just a p-wave
resonance at 0.5 MeV and a s-wave virtual state with a scattering length of
a = 20− 30 fm is not enough, since the weight of the s-wave virtual state is
underestimated by the R-matrix fitting, and leads to too large a contribution
when considering a realistic weight for it. As such, the model was extended
in two ways that led to an improved description of the experimental energy
distribution.

The first of these extensions is the inclusion of a d-wave resonance at
1.5 MeV, which has been suggested by some experiments but discarded
by other. This model presents a reduced weight of the s-wave, thus im-
proving the agreement with experimental data. The second includes spin-
spin interactions which split the resonance and virtual state leading to a
better description with the data. Although no experimental data has yet
conclusively confirmed this splitting, it is theoretically expected and widely
accepted.

We have also studied the distorting effect of the reaction on the energy
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distribution, finding that the shape of the energy distribution is not affected
much by the reaction and mirrors that obtained from three-body nuclear
structure calculations for the different configurations. However, different con-
figurations are differently enhanced and suppressed by the reaction, so, in
order to have precise spectroscopic information a reliable reaction formalism
is required to provide scaling factors between experimental data and nuclear
structure calculations.

Both models for 11Li and 10Li have also been used in the description
of the 11Li(p, d)10Li reaction at 5.7 MeV/A, showing great success in the
reproduction of the angular distribution without the need of rescaling factors.
This success stems from the transfer reaction being sensitive mostly to the
weight of the p−wave in the ground state of 11Li which is of ∼30% in both
models, despite their markedly different nature. As such, we have produced
two models for 11Li and 10Li which present the outstanding success of re-
producing experimental results for two different reactions at very different
energies: 11Li(p, pn)10Li at 280 MeV/A and 11Li(p, d)10Li at 5.7 MeV/A.
From them, we favour that with spin splitting over that with the d-wave
resonance, because the latter is rather disputed in the literature on 10Li,
although the experimental data considered here cannot distinguish between
them.

In conclusion, the Transfer to the Continuum formalism has been devel-
oped and implemented to study (p, pn) and (p, 2p) reactions at intermediate
and high energies. It has been benchmarked to other reaction formalisms,
finding encouraging agreement. A systematic study of recently published
(p, pn) and (p, 2p) reactions using the Transfer to the Continuum formalism
has shown a small dependence of the “quenching factors” on isospin asymme-
try, thus providing a solid answer to this open problem. The Transfer to the
Continuum formalism has also been extended to study the energy distribu-
tions resulting from (p, pn) and (p, 2p) reactions on Borromean nuclei. This
extended formalism has been applied to the 11Li(p, pn)10Li reaction, show-
ing that the description of the experimental distribution requires either the
inclusion of a low-energy d-wave resonance or the splitting of the resonance
and virtual state through interaction with the 9Li spin.

Further extensions of the present work include its application to other
(p, pn) and (p, 2p) data in order to build a stronger systematics to verify the
small asymmetry dependence of the “quenching factors”, as well as the study
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of other Borromean nuclei, such as 14Be and 17Ne, for which experimental
data exist. For the analysis of reaction with Borromean nuclei, the study of
other observables, such as momentum distributions or proton-core angular
correlations, can provide further constrains on the nuclear models used to
describe them.



Appendix A

Details on the calculations for
R3B data

This Appendix supplements the information provided in Sec. 4.2. In Tab. A.1,
the states of the residual core considered in the calculation of the cross
section are presented along with the orbital from which the nucleon is
extracted and the corresponding spectroscopic factor (multiplied by a factor
(A/(A − 1))N ) and the theoretical energy of the state. The two latter
quantities were obtained from shell-model calculations using the WBT [15]
interaction. When experimental data exist, the experimental energy of the
associated state is presented for comparison. Finally the reduced radius
r0 used in the Woods-Saxon potential which generates the bound state is
presented. Since the radius only depends on the orbital of the removed
nucleon, it is not repeated when the orbital appears multiple times. In
general, we have only considered configurations whose spectroscopic factor
was greater than 0.1 and which lie under the the neutron and proton emission
threshold. When there are states that are unbound theoretically and bound
experimentally or vice versa, we have opted to include or exclude them based
on the experimental spectrum, although an exception has been made for the
23O(p, 2p)22N case, where a high-lying 2− state has been excluded, as in
[43].
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Table A.1: Detailed information on the levels considered in Sec. 4.2. The first
column denotes the reaction considered. The second indicates the angular
momentum and parity of the residual core, while the third indicates the
orbital from which the nucleon is removed. The fourth column shows the
spectroscopic factor associated to that state, with the factor (A/(A − 1))N

already multiplied. The fifth and sixth show the theoretical and experimen-
tal (when available) excitation energy of the state respectively. Finally the
seventh column shows the reduced radius used in the computation of the
bound state wavefunction.

Reaction Iπ n`j C2S Eth Eexp r0

13O(p, 2p)12N 1+ 1p1/2 0.66 0 0 1.214
14O(p, 2p)13N 1/2− 1p1/2 1.97 0 0 1.258

15O(p, 2p)14N

1+ 1p1/2 1.31 0 0 1.305
1+ 1p1/2 0.29 4.112 3.948
1+ 1p3/2 0.60 4.112 3.948 1.280
2+ 1p3/2 1.34 6.831 7.029

16O(p, 2p)15N
1/2− 1p1/2 2.00 0 0 1.335
3/2− 1p3/2 4.09 5.725 6.323 1.316

17O(p, 2p)16N
2− 1p1/2 0.87 0.049 0 1.351
3− 1p1/2 1.20 0.541 0.298

18O(p, 2p)17N

1/2− 1p1/2 2.00 0 0 1.362
3/2− 1p3/2 0.27 1.941 1.373 1.346
3/2− 1p3/2 0.27 4.097 3.906
3/2− 1p3/2 2.87 6.244 5.515

21O(p, 2p)20N
2− 1p1/2 0.77 0 1.376
3− 1p1/2 1.11 0.932

21N(p, 2p)20C
0+ 1p1/2 0.72 0 1.387
2+ 1p3/2 0.33 2.177 1.371

21N(p, pn)20N

2− 1d5/2 1.97 0 1.145
0− 2s1/2 0.16 0.584 0.973
1− 2s1/2 0.49 1.140
3− 1d5/2 2.98 0.932

22O(p, 2p)21N
1/2− 1p1/2 1.87 0 0 1.375
3/2− 1p3/2 0.73 1.861 1.160 1.375
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Reaction Iπ n`j C2S Eth(MeV) Eexp(MeV) r0(fm)

22O(p, pn)21O
5/2+ 1d5/2 5.73 0 0 1.173
1/2+ 2s1/2 0.25 1.331 1.220 1.001
5/2+ 1d5/2 0.16 3.149 3.073

23O(p, 2p)22N
0− 1p1/2 0.51 0 0 1.392
1− 1p1/2 1.49 0.76 0.183

23O(p, pn)22O

0+ 2s1/2 0.87 0 0 1.013
2+ 1d5/2 2.27 3.374 3.199 1.182
3+ 1d5/2 3.37 4.829 4.584
0+ 2s1/2 0.13 4.614 4.909
1− 1p1/2 0.81 5.808 5.800 1.239
0− 1p1/2 0.34 6.059
2+ 1d5/2 0.26 6.503 6.512

12C(p, 2p)11B
3/2− 1p3/2 3.49 0 0 1.236
1/2− 1p1/2 0.63 1.938 2.125 1.245
3/2− 1p3/2 0.16 4.288 5.020

In Table A.2, more detailed information on the computed cross section
is presented than in Table 4.4, with the cross sections for each level of the
residual core detailed along with the corresponding spectroscopic factor.

Table A.2: Detailed information on the calculation of the cross sections
in Sec. 4.2. The first column denotes the reaction considered. The second
indicates the angular momentum and parity of the residual core, while the
third indicates the orbital from which the nucleon is removed. The fourth
column shows the spectroscopic factor associated to that state, with the
factor (A/(A−1))N already multiplied. The fifth, sixth and seventh columns
correspond to the single particle, theoretical σth = C2Sσs.p. and experimen-
tal cross sections respectively, with the top value resulting from a calculation
with Dirac potentials and the lower one to a calculation with PH potentials
(See Sec. 4.2.1). Finally the eighth column correspond to the “quenching
factor” Rs. Asterisks in σs.p. indicate that it has been taken from other state
from the same nucleus.

Reaction Iπ n`j C2S σsp σth σexp Rs

13O(p, 2p) 1+ 1p1/2 0.66
10.562 6.975

5.78(0.91)[0.37]
0.829

10.813 7.140 0.809
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Reaction Iπ n`j C2S σsp σth σexp Rs

14O(p, 2p) 1/2− 1p1/2 1.97
8.509 16.769

10.23(0.80)[0.65]
0.610

8.065 15.895 0.644

15O(p, 2p)

1+ 1p1/2 1.31
7.487 9.780

18.92(1.82)[1.20]
0.761
0.881

6.562 8.571

1+ 1p1/2 0.29
6.771 1.959
5.829 1.686

1+ 1p3/2 0.60
7.044 4.246
6.047 3.645

2+ 1p3/2 1.34
6.624 8.872
5.658 7.578

16O(p, 2p)

1/2− 1p1/2 2.00
6.355 12.710

26.84(0.90)[1.70]
0.739
0.783

5.997 11.994

3/2− 1p3/2 4.09
5.773 23.598
5.452 22.285

17O(p, 2p)

2− 1p1/2 0.87
5.777 4.996

7.90(0.26)[0.50]
0.661
0.754

5.064 4.380

3− 1p1/2 1.20
5.777* 6.948
5.064* 6.091

18O(p, 2p)

1/2− 1p1/2 2.00
5.165 10.313

17.80(1.04)[1.13]
0.652
0.785

4.312 8.611

3/2− 1p3/2 0.27
5.296 1.430
4.413 1.191

3/2− 1p3/2 0.27
5.296* 1.407
4.413* 1.173

3/2− 1p3/2 2.87
4.924 14.123
4.083 11.710

21O(p, 2p)

2− 1p1/2 0.77
4.008 3.082

5.31(0.23)[0.34]
0.705
0.809

3.493 2.686

3− 1p1/2 1.11
4.008* 4.450
3.493* 3.879

21N(p, 2p)

0+ 1p1/2 0.72
4.104 2.939

2.27(0.34)
0.529
0.641

3.388 2.426

2+ 1p1/2 0.33
4.149 1.351
3.421 1.113
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Reaction Iπ n`j C2S σsp σth σexp Rs

21N(p, pn)

2− 1d5/2 1.97
9.896 19.486

48.52(4.04)
0.862
0.802

10.658 20.987

0− 2s1/2 0.16
11.301 1.761
11.960 1.863

1− 2s1/2 0.49
11.301* 5.557
11.960* 5.881

3− 1d5/2 2.98
9.896* 29.470
10.658* 31.739

22O(p, 2p)

1/2− 1p1/2 1.87
3.497 6.524

6.01(0.41)
0.646
0.771

2.932 5.471

3/2− 1p3/2 0.73
3.625 2.651
3.039 2.222

22O(p, pn)

5/2+ 1d5/2 5.73
8.680 49.733

39.24(2.34)
0.736
0.787

8.112 46.484

1/2+ 2s1/2 0.25
8.925 2.253
8.348 2.107

5/2+ 1d5/2 0.16
8.680* 1.389
8.112* 1.298

23O(p, 2p)

0− 1p1/2 0.51
3.302 1.667

4.93(0.96)
0.762
0.885

2.844 1.436

1− 1p1/2 1.49
3.302* 4.909
2.844* 4.227
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Reaction Iπ n`j C2S σsp σth σexp Rs

23O(p, pn)

0+ 2s1/2 0.87
13.841 12.042

54.0(10.8)
0.766
0.787

13.379 11.640

2+ 1d5/2 2.27
8.419 19.103
8.207 18.621

3+ 1d5/2 3.37
8.419* 28.342
8.207* 27.626

0+ 2s1/2 0.13
13.841* 1.815
13.379* 1.755

1− 1p1/2 0.81
6.106 4.947
5.999 4.861

0− 1p1/2 0.34
6.106* 2.043
5.999* 2.007

2+ 1d5/2 0.26
8.419* 2.181
8.207* 2.126

12C(p, 2p)

3/2− 1p3/2 3.49
6.205 21.654

19.2(1.8)[1.2]
0.730
0.690

6.557 22.883

1/2− 1p1/2 0.63
5.785 3.629
6.155 3.861

3/2− 1p3/2 0.16
6.205* 1.015
6.544* 1.073



Appendix B

Relativistic kinematics

In this appendix, formulae for the relativistic treatment of the kinematics
of nuclear reactions are presented, focusing on the quantities required for
the development of the Transfer to the Continuum formalism, detailed in
Chapter 2.

We will start from a proton with mass mp impinging with a kinetic
energy TLAB on a target with mass mA at rest. The target A is composed of
a nucleon with mass mN and a core with mass mC , bound through a binding
energy Sn. We will consider the final state leading to an outgoing core and
p − N system, with a relative energy between proton and nucleon epN . We
will assume a system of units with c = 1 to simplify the notation. As such,
we first note

mA = mN +mC − Sn, (B.1)

through conservation of energy and we will define the effective mass of the
p−N system as

m∗pN = mp +mN + epN . (B.2)

We now define the Mandelstam variable s as

s = (pp + pA)2, (B.3)

the square of the sum of the four-momentum of the proton and the target.
We note that, as this quantity is built out of Lorentz invariants (the four-
momenta), it is conserved in all reference frames. Its computation in the
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laboratory frame yields:

s = (mp +mA)2 + 2mATLAB. (B.4)

It is possible to express the momentum (or the wave number) and energy
of proton and target in the center of mass, as a function of s and the rest
masses [71, 124]

KpA =
1

~

√
(s−m2

p −m2
A)2 − 4m2

pm
2
A

2
√
s

(B.5)

εp =
s+m2

p −m2
A

2
√
s

(B.6)

εA =
s+m2

A −m2
p

2
√
s

. (B.7)

It is easily shown that in the center of mass s corresponds to the square of
the total relativistic energy (since the total momentum is 0 in the center of
mass). Therefore it is conserved during the reaction, so the final momentum
and energy in the center of mass (leading to a certain p−N state with energy
epN ) can be computed analogously:

Kn′ =
1

~

√
(s−m∗pN

2 −m2
C)2 − 4m∗pN

2m2
C

2
√
s

(B.8)

εpN =
s+m∗pN

2 −m2
C

2
√
s

(B.9)

εC =
s+m2

C −m∗pN
2

2
√
s

. (B.10)

As indicated in Chapter 2 the Transfer to the Continuum formalism produces
the cross section to each bin, with energy epN which can be transformed
into a differential cross section on epN through Eq. (2.39). However, our
experimental observable of interest is the distribution for the outgoing core,
which can be obtained trivially through Eq. (B.10),

dσ

dεC
=

dσ

depN

∣∣∣∣∣ ∂epN∂m∗pN

∂m∗pN
∂εC

∣∣∣∣∣ =
dσ

depN
· 1 ·

√
s

m∗pN
, (B.11)

leading to Eq. (2.52). From the double differential cross section on energy
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and angle it is trivial to obtain the momentum distribution through the
expression of the relativistic energy:

εC =
√
m2
C + p2

C (B.12)

dσ

d3pC
=

dσ

dεCdΩC

∣∣∣∣dpCdΩC

d3pC

dεC
dpC

∣∣∣∣ =
dσ

dεCdΩC

1

p2
C

pC
εC

=
1

pCεC

dσ

dεCdΩC
.

(B.13)





Appendix C

Reid93 potential

In this appendix, a brief description of the Reid93 potential [74], used as the
p−N interaction in most of the calculations in this work, is presented.

The Reid93 parametrization is based on the Reid68 [75] one, which de-
scribes the nucleon-nucleon interaction as composed of three terms: central,
spin-orbit and tensor, whose radial shapes depend on the nucleon-nucleon
configuration α = L,S,J, with L being the orbital angular momentum
between the nucleons, S their total spin S = s1 + s2 and J the total angular
momentum:

Valpha = V α
C (r) + V α

T (r)S12 + V α
LS(r)L · S, (C.1)

where S12 is the usual tensor operator:

S12 = 3(σ1 · r̂)(σ2 · r̂)− (σ1 · σ2). (C.2)

The radial shapes were taken as sums of Yukawians (V (r) = V0e
−µr/r) and

their derivatives, taking µ as integer multiples of the value corresponding to
the pion mass µ ∼ n · 0.7 fm−1. The Reid68 potential was adjusted for the
existing phase-shift data for J ≤ 2 and E<350 MeV to avoid pion production
and other relativistic effects.

The data was reasonably precise for p− p scattering but rather poor for
p−n scattering. As such, the advent of new more abundant and precise p−n
data required a revision of the Reid68 to better describe it.

This revision led to the Reid93 parametrization, which we use in this
work. In it, as in the Reid68 one, the potential considers only central, spin-
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orbit and tensor terms. However for its radial shape it uses sums of regular-
ized Yukawians for the central part, in order to avoid singularities near the
origin:

V α
C (r) =

∑
µ

V µ
C φ

0µ
C =

∑
µ

V µ
C

e−µr − e−Λr
(

1 + Λ2−µ2

2Λ2 Λr
)

µr
, (C.3)

while the tensor and spin-orbit terms are taken as the derivatives of the
shapes for the central part

V α
T (r) =

∑
µ

V µ
T φ

0µ
T (r) =

∑
µ

V µ
T

1

3µ2
r

d

dr

(
1

r

d

dr

)
φ0µ
C (r) (C.4)

V α
LS(r) =

∑
µ

V µ
LSφ

0µ
LS(r) =

∑
µ

V µ
LS −

1

µ2r

d

dr
φ0µ
C (r). (C.5)

As before, the values of µ are taken as integer multiples of the value corre-
sponding of the pion mass, although for this parametrization it is taken as
the average mass of the neutral and charged pions:

m̄ =
1

3
(mπ0 + 2mπ±), (C.6)

while the cutoff parameter is taken as Λ = 8m̄. For all nucleon-nucleon
configurations, the potential is separated in a one-pion-exchange (OPE) part
and a non-OPE part. The OPE potential is taken as

VOPE(pp) = f2
πV (mπ0) (C.7)

VOPE(pn) = −f2
πV (mπ0)± 2f2

πV (mπ±), (C.8)

different for p− p and p− n scattering and where:

V (m) =

(
m

mπ±

)2

m[φ0µ
T (r)S12 +

1

3
(φ0µ
C − 4πδ3(µr))(σ1 · σ2)], (C.9)

while the non-OPE part is fitted through a sum of the regularized Yukawians
and their derivatives. The parameters for the potential (50 independent ones)
were fitted to p−p and p−n data up to 350 MeV, using the same parameters
for all waves with J ≥5, obtaining a very successful fit with a value of
χ2/N = 1.03. The resulting parameters are not presented here but can be
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found in [74].

In the implementation of the Reid93 potential in code fresco [67],
we face a difficulty: fresco describes states in a j − j coupling scheme,
[[L, s1]j1, s2]J . As such, S = s1 + s2 is not a good quantum number in this
scheme, so the implementation of the Reid93 interaction (in which potentials
depend on S) cannot be performed directly. Instead we modify the central
potential and include a spin-spin term in the potential (which is allowed as an
input by fresco), which is built according to the following set of equations:

VS=0 = VC + Vss 〈S = 0|s1 · s2|S = 0〉 (C.10)

VS=1 = VC + Vss 〈S = 1|s1 · s2|S = 1〉 (C.11)

The matrix element can be computed in a similar way to the spin-orbit terms

s1 · s2 =
S2 − s2

1 − s2
2

2
, (C.12)

thus yielding:

VS=0 = VC −
3

4
Vss (C.13)

VS=1 = VC +
1

4
Vss, (C.14)

which leads trivially to

VC =
1

4
VS=0 +

3

4
VS=1 (C.15)

Vss = VS=1 − VS=0. (C.16)

As a test of the implementation of the Reid93 interaction in fresco

we have computed the phase-shifts for various waves of the p− n and p− p
systems, and compared them with the ones provided by the Nijmegen webiste
[125], with the results being shown in Fig. C.1 for p − n phase-shifts and
Fig. C.2 for p−p phase-shifts. As can be seen in both figures, the agreement
is excellent, which validates our implementation of the Reid93 potential in
fresco.
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Figure C.1: Phase-shifts for the p−n system for various configurations as a
function of laboratory energy. In black solid, the results of our calculations
with fresco are compared to the results from [125] in red dashed.
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Figure C.2: Phase-shifts for the p− p system for various configurations as a
function of laboratory energy. In black solid, the results of our calculations
with fresco are compared to the results from [125] in red dashed.
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