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1. Introduction

Inspired by the behaviour and structure of the living cell, P systems have emerged in recent years
as powerful computational tools [15]. Many variants of P systems have been introduced and a
number of theoretical aspects have been studied intensely: the computational power of different
variants, their capabilities to solve hard problems, such as nondeterministic polynomial time (NP)-
complete ones, decidability, complexity aspects and hierarchies of classes of languages generated
and/or recognized by these devices [17]. In the last few years, there have also been significant
developments in using the P system paradigm to model, simulate and formally verify various
systems [3,17], including a number of well-known distributed algorithms and problems [14].
In many cases, however, the specifications produced required additional features or constraints
compared with the original definition of the P system variant used; such additional features added
expressiveness to the specification and clarified complex aspects of the system involved. Although
extremely useful for the actual modelling, the ad hoc addition of such extra features is meant to lead
to an adverse effect on the capability of P systems to provide a coherent analysis and verification
framework.
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To alleviate this problem, kernel P systems (kP systems, for short) have been defined recently [7].
This is a low-level specification language that uses the established features of existing P system
variants and also includes some new elements. Most importantly, kP systems offer a coherent
way of integrating these elements into the same formalism. On a longer term, it is envisaged that
a kP system simulator will be developed and integrated into the P-Lingua platform [6,18] and
model-checking facilities will also be available, thus providing a coherent platform for system
analysis and verification.

In this paper, a particular type of kP system, called simple kernel P system (skP system, for short),
is introduced. Like a kP system, this uses a graph-like structure, but rules of only two types:

• membrane division rules, which divide an existing compartment into two or more compartments
of the same type, and

• rewriting and communication rules, which evolve objects inside a compartment and may also
send some of the resulting objects to compartments linked with the current compartment.

The execution of a rule is conditioned by a guard, defined in a general manner using activators
and inhibitors. The execution strategy of kP systems is defined in a more general way than in
traditional P systems. However, skP systems, the particular case considered in this paper, use only
the well-established maximal parallelism mode.

This paper illustrates the modelling power of skP systems by using a well-known NP-complete
problem, the 3-colouring (3-Col) problem. A tissue P system with cell division that models the 3-
Col problem is available in the literature [5] and will be used as a term of reference for our models.
A kP system that models the 3-Col problem has been produced recently in [12]; however, this
system uses division rules in which a membrane is divided into three membranes, which make the
performance comparison between the two systems unrealistic. To facilitate a realistic comparison,
an skP system using membrane division rules in which a membrane is always divided only into
two membranes is produced here. A second skP system which only uses membrane division rules
with no objects rewritten is also considered. For each of the two skP systems, it is proved that it
solves the 3-Col problem and, in each case, a comparison between the original tissue P system
and the new skP system model is performed. The skP systems are implemented and simulated
using P-Lingua and MeCoSim [19,20]. Furthermore, a number of case studies are presented in
order to illustrate the behaviour and performances of various skP systems introduced here and the
potential benefit of using a formal verification for checking their different properties.

The results show that skP systems are flexible specification mechanisms – different distinct
solutions are produced for the same problem, and given their rich set of features, whereby more
complex rewriting and communicating rules and powerful guard expressions are utilized, suc-
cinct, but still easy-to-understand, solutions are obtained. The skP system models provide better
solutions, with respect to execution steps and the number of cells utilized, compared with the
tissue P systems [5], but the rules applied, as it has been mentioned earlier, are more complex. It is
worth mentioning that the topics discussed in this paper, such as kP systems, complexity aspects
and formal verification, are some of the research areas of membrane computing envisaged to be
studied in the near future [8].

The paper is structured as follows. Section 2 introduces skP systems. The two skP system models
for the 3-Col problem are presented in Section 3 together with some particular cases. Section 4
describes the MeCoSim platform and presents the implementation and simulation of these skP
system models using P-Lingua and MeCoSim and shows how the systems can be analysed using
these tools or model-checking approaches. Finally, conclusions are drawn and future work is
outlined in Section 5.



2. Background

This section presents a simplified version of a kP system (for more details about this formalism, see
[7]). The model of a kP system presented in [7] includes features dealing with object transformation
and communication, aspects related to ways of dynamically changing the structure of the system
and strategies of running it. In this paper, apart from operations regarding object transformation
and communication, cell division is considered – as a mechanism to generate new components of
the system – and it is assumed that its execution is handled according to the principle of maximal
parallelism, widely used in membrane computing [16,17]. This formalism is called skP system.
In the following, the necessary concepts to formalize this model will be introduced.

An alphabet, A, is a non-empty set whose elements are called symbols. A finite sequence of
symbols is a string or a word. If u and v are strings over A, then so is their concatenation uv,
obtained by juxtaposition, that is, writing u and v one after the other. The number of symbols
in a string u is the length of the string and it is denoted by |u|. As usual, the empty string (with
length zero) will be denoted by λ. The set of all strings over an alphabet A is denoted by A∗. When
the empty string is not considered, the set is denoted by A+. Subsets, finite or infinite, of A∗ are
referred to as languages over A. If u ∈ A∗ and a ∈ A, then |u|a denotes the number of occurrences
of symbol a in string u.

A multiset m over a set A is a pair (A, f ) where f : A → N∪{∅} is a mapping. The support
of multiset m is defined as supp(m) = {x ∈ A | f (x) > 0}. A multiset, which in general might be
infinite, is empty (respectively, finite) if its support is the empty set (respectively, a finite set).
If m = (A, f ) is a finite multiset over A and supp(m) = {a1, . . . , ak}, then it will be denoted as
m = {af (a1)

1 , . . . , af (ak)

k }. It can also be represented by the string af (a1)

1 · · · af (ak)

k over the alphabet
{a1, . . . , ak}. Nevertheless, all permutations of this string identify the same multiset m precisely.
Throughout this paper, only ‘the finite multiset m’ is considered, where m is a string, meaning
‘the finite multiset represented by the string m’.

Definition 2.1 Let Rel = {<, �, =, �=, �, >} be a set of relational operators. Let A be a non-
empty finite set and denote Ā = {ā | a ∈ A}. A multiset over A ∪ Ā with relational operators from
Rel is an expression w = θ1an1

1 · · · θkank
k , where an1

1 · · · ank
k is a string over A ∪ Ā (in which ai and

aj are not necessarily distinct, 1 ≤ i < j ≤ k), and θj ∈ Rel, for each j, 1 ≤ j ≤ k.

Definition 2.2 A guard g is a finite disjunction of expressions w introduced by Definition 2.1.

Observation 2.1 |g|, g as in Definition 2.2, denotes the number of w expressions occurring in
g; |g| is called the length of the guard g.

A guard is a finite disjunction of expressions involving multisets over A – activators (or
permitting symbols), or Ā – inhibitors (or forbidding symbols).

A particular case of a guard g is the empty set. In this case, the guard is omitted.

Definition 2.3 Given two non-empty finite sets A (alphabet), L (labels) and l ∈ L, the set of
rules associated with l is denoted by Rl. A rule from Rl has one of the following two forms:

(a) [x]l → [y1]l1 · · · [yh]lh{g}, where x ∈ A, yj ∈ A∗, lj ∈ L for all 1 ≤ j ≤ h, and g is a guard
(h-membrane division rule). The length of the rule is defined as 1 + |y1| + · · · + |yh| (|g| can
also be considered).

(b) x → y{g}, where x ∈ A+, y is a string over A × L, y = (a1, t1) · · · (ah, th), with aj ∈ A and
tj ∈ L, and g is a guard (rewriting and communication rule). The length of the rule is defined
as |x| + |y| (the complexity of the guard g, denoted |g|, can also be considered for this rule).



A particular case of type (a) rules is that of an h-membrane division rule with no objects
rewritten, that is,

(a’) []l → []l1 · · · []lh{g}. This rule is applicable if and only if the guard is true.

An example of a guard which is true is g =< a2 = b̄ with the current multiset containing at
most one a and no b, for instance, ac – see Definition 2.5 for a more general setting.

Definition 2.4 Given two non-empty finite sets A, L, a compartment, C, is a tuple (l, w0, Rl),
where l ∈ L, w0 is a multiset over A and Rl is a set of rules associated with l.

A compartment can be viewed as a region labelled by an element l of L which initially contains
a multiset w0 of objects (elements of A) and such that it is associated a set Rl of rules.

Definition 2.5 Let r be a rule from Rl, a set of rules associated with a compartment C =
(l, w0, Rl), such that the guard of r is g, then g is considered true at an instant when the current
multiset of compartment C is z if and only if the following happens:

(a) If g = θ1an1
1 · · · θkank

k , then for every j, 1 ≤ j ≤ k, either (i) if aj ∈ A, then |z|aj θj nj holds, or
(ii) if aj ∈ Ā, then |z|ajθjnj does not hold.

(b) If g is a finite non-empty disjunction of multisets over A ∪ Ā with relational operators from
Rel, g = w1| · · · |wp, then there exists j, 1 ≤ j ≤ p, such that wj is true, according to (a).

(c) If g is the empty set, then it is always evaluated true.

Definition 2.6 An skP system of degree n ≥ 1 is a tuple

sk� = (A, L, IO, C1, . . . , Cn, μ, i0),

where

• A and L are non-empty finite sets,
• IO is a finite alphabet IO ⊆ A,
• C1, . . . , Cn are compartments,
• μ = (V , E) is an undirected graph, where V ⊆ L are vertices and E the edges, and
• i0 ∈ L.

An skP system, sk� = (A, L, IO, C1, . . . , Cn, μ, i0), can be viewed as a set of n compartments,
C1, . . . , Cn, interconnected by edges from E, of an undirected graph μ. The elements of the set A
are called objects and the elements of L are called labels. IO is the alphabet of the environment
objects. Each compartment is identified by a label of L, has initially a multiset over A, and a finite
set of rules. The compartment receiving the result of a computation is denoted by i0; in the sequel,
this will always be the environment.

An h-membrane division rule [x]l → [y1]l1 · · · [yh]lh {g} associated with a compartment C =
(l, w0, Rl) is applicable at a given instant to the current multiset z if the guard g is evaluated
true with respect to z and the object x is in the multiset z. When applying such a rule to x, the
compartment labelled l will be replaced by h compartments labelled l1, . . . , lh and x is replaced
by multiset yj in compartment lj; the content of l, but x, after using all the applicable rewriting
and communication rules is copied in each of these compartments; all the links of l are inherited
by each of the newly created compartments.

A rewriting and communication rule x → (a1, t1) · · · (ah, th){g} associated with a set of rules,
Rl, of a compartment C = (l, w0, Rl), is applicable at a given moment to the current multiset z if
the guard g is evaluated true, x is contained in z and the target tj ∈ L, 1 ≤ j ≤ h, must be either



the label of the current compartment, l, or the label of its existing neighbour ({l, tj} ∈ E). When
applying such a rule, objects aj are sent to the compartment labelled by tj, for each j, 1 ≤ j ≤ h. If a
target, tj, refers to a label that appears more than once, then one of the involved compartments will
be non-deterministically chosen. When tj indicates the label of the environment, the corresponding
object aj is sent to the environment.

In an skP system, the rules are applied in a maximally parallel way with the usual restriction that
at most one rule of type (a) (membrane division rule) can be applied per membrane in each step.

3. Results

In order to illustrate the modelling and expressive power of skP systems and their efficiency, the
3-Col problem [5] is considered and, below, it is shown how this can be specified within this
formalism and also how its complexity aspects with respect to the number of objects, rules and
execution steps can be estimated.

In general, the k-colouring problem is formulated as follows: given an undirected graph G =
(V , E), decide whether or not G is k-colourable; that is, if there exists a labelling of the vertices
of G, using k different labels (colours) such that for every edge {u, v} ∈ E, the colours of u and v
are different.

Observation 3.1 Obviously, the 3-Col problem has no solutions for (a) a complete graph with
n > 3 vertices and (b) a graph that contains a subgraph with at least four vertices, any two
connected by an edge.

As shown in [5], the 3-Col problem can be solved in linear time by a recognizer tissue P system
with cell division and symport/antiport rules. In what follows, an skP system model that solves
the same problem is presented and the two approaches are compared. The proof of this result is
based on the idea presented in [12], but it is adapted for an skP system with 2-membrane division
rules.

Notation. Denote by Csk�(t, s, o, m1, l1, γ1, m2, l2, γ2) the class of skP systems with t types of
compartments, s initial compartments, using an alphabet with o objects, having m1 2-membrane
division rules (type (a), according to Definition 2.3) – with length at most l1 and guards of length
at most γ1 – and m2 rewriting and communication rules (type (b), according to Definition 2.3) –
with length at most l2 and guards of length at most γ2.

Theorem 3.1 The 3-Col problem for a graph with n, n ≥ 2, nodes can be solved by an skP
system of type Csk�(2, 2, n(n − 1)/2 + 7n + 10, 2n, 5, 1, 2n + 7, 3, 3n(n − 1)/2) and an answer
to whether a solution exists or not is obtained in at most 2n + 3 steps using maximum 3n + 1
compartments.

Proof For a given undirected graph G = (V , E), where V contains n ≥ 2 vertices, we build the
following skP system (which depends on n):

sk�(n) = (A, L, IO, μ, C1, C2, 0),

where

• A = {A1, . . . , An} ∪ {Ai,j | 1 ≤ i < j ≤ n} ∪ {T1, . . . , Tn} ∪ {B1, . . . , Bn} ∪ {R1, . . . , Rn} ∪ {G1,
. . . , Gn} ∪ {a, s, X , Y , T , yes, no} ∪ {X1, . . . , X2n+3}, where Ai, 1 ≤ i ≤ n, stand for the n ver-
tices, Ai,j, 1 ≤ i < j ≤ n, are for all possible edges between the n vertices, Ti, 1 ≤ i ≤ n, are
used in the division process of C2 compartments, Bi, Ri, Gi, 1 ≤ i ≤ n, stand for the three



colours, blue, red and green, respectively, that can be associated with the n vertices; the object
a is used only in compartment C1 to select one single answer to be sent to the environment;
s, X, Y are used in compartments C2, T is sent to compartment C1, yes, no are the two possible
answers – with one of them being sent from C1 to the environment at the end of the computation;
X1, . . . , X2n+3 are used to count the maximum number of steps, 2n + 2, requested for the last
possible input from C2;

• L = {0, 1, 2}; 0 is the label of the environment and 1 and 2 are the labels of the two types of
compartments;

• IO consists of yes, no;
• C1 = (1, w1,0, R1), C2 = (2, w2,0, R2), where w1,0 = aX1, w2,0 = A1scode(n), with code(n)

being the multiset of edges of the graph to be coloured; an edge {i, j} is codified as Ai,j,
1 ≤ i < j ≤ n;

• μ is given by the graph with edge {1, 2};
• R1 and R2 are given below:

(1) R1 contains
r1,i : Xi → Xi+1, 1 ≤ i ≤ 2n + 2,
r1,2n+3 : aT → (yes, 0),
r1,2n+4 : aX2n+3 → (no, 0){≥ T̄};
rules r1,i, 1 ≤ i ≤ 2n + 2, are for counting the first 2n + 2 steps; in the first 2n + 2 steps,
for each solution found, an object T will be sent from C2 to C1; when one or more T ’s
are received from compartments C2, that is, there is at least one solution, compartment C1

releases yes into the environment; otherwise, when no T ’s are received, after 2n + 3 steps,
a no is sent out instead;

(2) R2 contains
membrane division rules:
r2,2i−1 : [Ai]2 → [RiAi+1]2[Ti]2{= s},
r2,2i : [Ti]2 → [BiAi+1]2[GiAi+1]2, 1 ≤ i ≤ n − 1, and
r2,2n−1 : [An]2 → [RnX]2[Tn]2{= s},
r2,2n : [Tn]2 → [BnX]2[GnX]2;
these are applied in at most 2n steps and all the possible combinations of colouring n ver-
tices with three colours are obtained, given that the guards are true;
rewriting and communication rules:
r2,2n+1 : s → λ{= A1,2 = B1 = B2| = A1,2 = G1 = G2| = A1,2 = R1 = R2| · · · | = An−1,n

= Bn−1 = Bn| = An−1,n = Gn−1 = Gn| = An−1,n = Rn−1 = Rn} (one rule with a guard con-
taining 3n(n − 1)/2 terms); it checks for any pair 1 ≤ i < j ≤ n that the colour of the nodes
i and j is the same and s is available; if so, s is erased; when s disappears, no further cal-
culations are performed in the corresponding compartment;
r2,2n+2 : X → Y ; when all the calculations are completed, X is transformed into Y ;
r2,2n+3 : Ys → (T , 1); this rule is applied when there is a solution in the current compartment
C2, and T is sent to compartment C1.

The skP system sk�(n) works as follows: a solution is sought in a compartment C2 as a multiset
x1 · · · xn, where xi ∈ {Bi, Ri, Gi}, 1 ≤ i ≤ n, such that xi and xj, 1 ≤ i < j ≤ n, do not indicate the
same colour (Bi, Bj or Ri, Rj or Gi, Gj). The skP system starts with two compartments, C1 and C2,
containing their initial multisets, w1,0 and w2,0; the presence of s in compartment C2 means that a
potential solution can be developed in that compartment; when s is no longer present, this shows
that two adjacent nodes of the graph have the same colour. As long as s is present in a compartment
C2, a membrane division rule, r2,2i−1, 1 ≤ i ≤ n, can be applied and two new compartments C2

replace the current C2, with one of them having colour Ri for node i and the other being divided in
the next step when two new compartments will appear with colours Bi and Gi for the same node



Table 1. Tissue P systems versus skP systems.

Type/specification Tissue P systems skP systems

Alphabet 6n2 + 12n + 2m + 2[log m] + 29 n(n − 1)/2 + 7n + 10
Rules 2n & 6n(n − 1)/2 + 8n + 2m + 3[log m] + 25 2n & 2n + 7
Maximum number of compartments 3n + 1 3n + 1
Number of steps 2n + m + [log m] + 11 2n + 3

– this way, all the three possible colours for node i are generated in three distinct compartments
C2. In each computation step, the rule r2,2n+1 checks whether there are two adjacent nodes with
the same colour, and if yes, then s is removed from the compartment. The process of generating
the compartments C2 for all possible colourings and their validation through rule r2,2n+1 last for
2n steps. In the step 2n + 1, the object X introduced after the last membrane division step is
transformed into Y in all compartments C2 that might contain solutions. If s will remain in these
compartments C2 after this step, then in the next one, rule r2,2n+3 is sending T to compartment
C1. If at least a T is received in compartment C1 from one of the compartments C2, then a yes is
sent out to the environment, using rule r1,2n+3, signalling that there is a solution; otherwise a no
is sent out instead. �

Observation 3.2 Table 1 summarizes some comparative data concerning the specification of the
3-Col problem with the model from [5] using symport/antiport rules and the skP system solution.
In this table, n is the number of vertices and m the number of edges of the graph. The table shows
that the number of symbols and rules is less than that of the tissue P system model. However,
the reduction of the number of rules is achieved at the expense of their complexity; indeed, the
length of the rewriting and communication rules is bounded by 3, with a guard length of maximum
3n(n − 1)/2, for skP systems, whereas in the case of the tissue P systems, the corresponding rules
have their length up bounded by 4 and no guards [5]. The division rules have similar complexity
values: rule length up bounded by 5 and guard length by 1 for skP systems and rule length up
bounded by 3, with no guards, for the tissue P systems [5]. A further discussion on the trade-off
between the number of rules and the guard complexity is addressed by Observation 3.3. The actual
number of compartments labelled 2, produced by the skP system, may in general be (significantly)
less than 3n since division rules are only performed when no two adjacent nodes have the same
colour – see some examples given in the next section. In the case of the tissue P system, 3n

compartments labelled 2 are always produced.

Observation 3.3 The rule r2,2n+1 can be replaced either by m rules s → λ with a guard, g, of
the form = Ai,j = Bi = Bj| = Ai,j = Gi = Gj| = Ai,j = Ri = Rj (|g|=3 – see Observation 2.1) or
by 3m rules of the same form, but with simpler guards, = Ai,j = xi = xj (of length 1), where x is
one of R, B, G; so, in this case, the number of rules increases with either m or 3m, but the guard
length goes down to 3 or 1, respectively. Even in these cases, the number of rules of the skP system
is less than the number of rules of the tissue model.

If we now consider 2-membrane division rules with no objects rewritten (type (a’) rules), then
Theorem 3.1 can be reformulated as follows.

Theorem 3.2 The 3-Col problem for a graph with n, n ≥ 2, nodes can be solved by an skP
system of type Csk�(6, 2, n(n − 1)/2 + 11n + 8, 5, 0, n, 9n + 6, 3, 3n(n − 1)/2) and an answer
to whether a solution exists or not is obtained in at most 5n + 2 steps using maximum 3n + 1
compartments.



Proof The construction used in the proof of Theorem 3.1 will be used here with some changes
mentioned in the sequel. Only the rules will be described; the alphabet and the structure of the
skP system will follow from them and Theorem 3.1.

First, let us observe that we have six types of compartments, Ci, 1 ≤ i ≤ 6; these are labelled
1, 2, 20, 21, 22 and 23, respectively.

Initially, the skP system consists of two compartments, C1 and C2, with initial multisets w1,0 =
aX1, w2,0 = A1s code(n), as in Theorem 3.1.

The set of rules from compartment C2, denoted R2, consists of the following:

• membrane division rules:
r2,1 : []2 → []21[]20 {= A1 = s| · · · | = An = s};

• rewriting rules:
r2,i : A′

i → Ai, 2 ≤ i ≤ n,
r2,n+1 : s → λ {= A1,2 = B1 = B2| = A1,2 = G1 = G2| = A1,2 = R1 = R2| · · · | = An−1,n

= Bn−1 = Bn| = An−1,n = Gn−1 = Gn| = An−1,n = Rn−1 = Rn},
r2,n+2 : X → Y ;

• communication rule:
r2,n+3 : Ys → (T , 1).

Set R20 in compartment C3, with label 20, contains the membrane division rule r20,1 : []20 →
[]22[]23.

Compartments C4, C5 and C6, with labels 21, 22 and 23, respectively, have the following sets
of rules:

• R21

r21,1 : []21 → []2 {= A′
2| · · · | = A′

n| = X},
r21,i+1 : Ai → BiA′

i+1, 1 ≤ i ≤ n − 1, r21,n+1 : An → BnX;
• R22

r22,1 : []22 → []2 {= A′
2| · · · | = A′

n| = X},
r22,i+1 : Ai → GiA′

i+1, 1 ≤ i ≤ n − 1, r22,n+1 : An → GnX;
• R23

r23,1 : []23 → []2 {= A′
2| · · · | = A′

n| = X};
r23,i+1 : Ai → RiA′

i+1, 1 ≤ i ≤ n − 1, r23,n+1 : An → RnX.

Set R1 contains r1,i : Xi → Xi+1, 1 ≤ i ≤ 5n + 1, and the last two rules from set R1 occurring
in the proof of Theorem 3.1, relabelled according to the current set of labels:
r1,5n+3 : aT → (yes, 0),
r1,5n+4 : aX5n+3 → (no, 0) {≥ T̄}.

The division rules r2,i, 1 ≤ i ≤ 2n, from the proof of Theorem 3.1 are replaced by two rules,
r2,1 and r20,1; r2,1 splits a compartment with label 2 into one with label 21 and another one labelled
20 and r20,1 splits a compartment labelled 20 into two compartments with labels 22 and 23,
respectively. The rule r2,1 is applied only when an Ai, 1 ≤ i ≤ n, and an s appear in the current
compartment with label 2.

In each of the compartments labelled 21, 22 and 23, the current Ai, 1 ≤ i ≤ n − 1, is transformed
into BiA′

i+1 in 21, GiA′
i+1 in 22 and RiA′

i+1 in 23, using r21,i+1, r22,i+1 and r23,i+1, respectively.
When object An arrives in one of the compartments 21, 22 and 23, it is transformed into BnX in
21, GnX in 22 and RnX in 23 (one of r21,n+1, r22,n+1, r23,n+1 is used). Each of such compartments
is then transformed into a compartment labelled 2, by using one of the rules rx,1, x ∈ {21, 22, 23}.
This transformation is allowed only when either A′

i, 2 ≤ i ≤ n, or X appear in one of the above-
mentioned compartments (see the guard of rx,1); this happens only after applying one of rx,i+1,
x ∈ {21, 22, 23}, 1 ≤ i ≤ n. Now in compartment 2, A′

i, 2 ≤ i ≤ n, is transformed into Ai (rule r2,i)



or X into Y (rule r2,n+2). When Ai, 1 ≤ i ≤ n, and s appear in the current compartment with label
2, the division process restarts; otherwise if only Ai is available, it stops. When Y is obtained, a
solution exists in the current compartment labelled 2, and in the next step, the rule r2,n+3 sends T
to compartment C1.

The complexity values stated by this theorem can be obtained by comparing the above proof
with the values provided in Table 1. Indeed, the size of the alphabet of the skP system from the
proof of Theorem 3.1 is n(n − 1)/2 + 7n + 10, and in the proof given above, there are 3n − 1
more Xi objects and n − 1 new A′

i objects; hence, the size of the alphabet given above is n(n −
1)/2 + 11n + 8. Note that the maximum number of steps is 5n + 2 (3n − 1 more steps than those
for the system in Theorem 3.1 – this is because r2,i is applied only n − 1 times). The number
of rules is as follows: five 2-membrane division rules of type (a’) (r2,1, r20,1, r21,1, r22,1, r23,1);
9n + 6 rewriting and communication rules (n + 2 in R2; 5n + 4 in R1; and n in each of R21, R22

and R23). �

Some better values for the complexity parameters stated by Theorems 3.1 and 3.2 can be
obtained further.

Observation 3.4 For Theorem 3.1, it can be observed that an edge {i, j}, 1 ≤ i < j ≤ n, is
checked when node j is introduced, after node i; this is between (j + 1)th and (2j + 1)th steps
(similar values can be obtained for Theorem 3.2); compartments for which there exists an edge
{i, j}, 1 ≤ i < j ≤ n, and i and j have the same colour, will no longer divide.

The particular cases of graphs G(n, k) = (V , E), n ≥ 2, 1 ≤ k ≤ n, can be considered – the
graphs with these two parameters, n, k, are introduced in order to differentiate them, where
V = {1, . . . , n}, and E has edges of types (i, k) and (k, j), where k is a fixed vertex, 1 ≤ k ≤ n
and i, j ∈ V\{k}, i < k, j > k. Two specific cases are G(n, 1), where edges are of type (1, i), with
i ∈ V\{1}, and G(n, n) where edges are of type (i, n), with i ∈ V\{n}.

The graphs G(n, k), n ≥ 2, 1 ≤ k ≤ n, are of interest as they are 2-colourable, so easier to
handle than the general undirected graphs with n vertices, provide the worst case for the division
process and will also appear in some of the examples analysed in the next section.

Before proceeding any further, it can be observed that for all G(n, k), n ≥ 2, 1 ≤ k ≤ n, the
following results hold (the proofs are immediate and are only sketched).

Observation 3.5

(a) The answer to the question ‘is the graph G(n, k) 3-colourable’ is ‘yes’and it is obtained after
n + 4 steps.

(b) When the computation stops, after at most 2n + 3 steps, all the 3 · 2n−1 valid solutions of the
problem are obtained.

(a) Indeed, let k be the fixed vertex of the graph (the more general case of 1 < k < n is
considered, but the other two, k = 1 and k = n, are similar to this one). It is easy to observe that the
first valid solution of the problem found by our algorithm is of the form R1 · · · Rk−1BkRk+1 · · · Rn

or R1 · · · Rk−1GkRk+1 · · · Rn and it is obtained after n + 4 steps.
(b) Choosing randomly one of the three colours for the fixed vertex, each of the other vertices

can be coloured with any of the other two colours, so there are 2n−1 possible combinations in each
of the three cases corresponding to the possible colour chosen for the fixed vertex.

The maximum number of compartments obtained at the end of the computation is 3n + 1
– as stated by Theorem 3.1. This is obtained for a graph G(n, n), using the above-introduced
notation.



Proposition 3.1 For a graph G(n, n) = (V , E), V = {1, . . . , n}, with edges of the form (i, n),
i ∈ V\{n}, the number of compartments labelled 2 is

(a) 2h, after h steps, with 1 ≤ h ≤ n;
(b) 2n+1 − 1, after n + 1 steps;
(c) 3n, at the end of the division process (after 2n steps).

Proof The rule r2,2n+1 can be applied only when there appear two vertices i, j having an edge
between them and coloured the same. This particular kind of graph has only edges of type (i, n),
1 ≤ i < n; consequently, the object s might be eventually deleted only after colouring the node
n, which happens after colouring all the previous nodes 1, . . . , n − 1. The computational process
involves in the first n steps the division of each compartment labelled 2; consequently, their number
is 2h, for each 1 ≤ h ≤ n.

After n steps, the only compartment labelled 2 which will not be further divided is the one
containing R1 · · · Rn. All the others will divide; consequently, in configuration n + 1, 2n+1 − 1
compartments are obtained.

After 2n steps, all the possible combinations of three colours are generated, each in a distinct
compartment; hence, their number is 3n. �

4. Modelling, simulation and verification framework

In this section, a methodology for modelling, simulation, analysis and formal verification is pre-
sented, by using model checking, for skP systems (for more details, see [13]). The methodology,
outlined in Figure 1, is supported by a software framework called MeCoSim [20], which contains
a specification language, P-Lingua [18,19], which covers various variants of P systems, includ-
ing skP systems. Finally, this methodology is utilized for the simulation, analysis and formal
verification of some instances of the 3-Col problem.

The above-mentioned methodology involves a number of steps. First, the problem is mod-
elled as an skP system, which is then translated into a P-Lingua specification [6,18]. A custom
set of interfaces, specifically designed in MeCoSim [19,20], allows us to handle input data for
each problem, provides visualization results and extracts suitable output data. Simulations are
performed within MeCoSim by using the simulator engine of pLinguaCore [6]. Properties and
invariants can be detected from a pool of selected output data or formulated in accordance with

Figure 1. Specification, analysis and verification framework.



Figure 2. Example graph, n=12.

Figure 3. MeCoSim – input edges (left) and output objects.

the system behaviour, and the results can be verified by using model-checking techniques (e.g.
using Spin for a model written in the Promela language [2]). For a more detailed description,
see [13].

According to the above-mentioned methodology and its associated steps, the models described
by Theorems 3.1 and 3.2 have been written in P-Lingua, as skP systems, including variable
parameters configurable for different examples, as illustrated in Figure 3, left picture, for the
graph given in Figure 2.

The simulation is performed starting from the initial configuration of the P system and the com-
putation runs until a halting configuration is reached. Other options are available: the P system can
be simulated step by step or for a given number of steps; a selection of objects and compartments
can be produced or, alternatively, all of them can be generated. In addition, the output tables in the
custom interface show the information selected to be generated. A solution to the example graph
described by Figure 2 is provided in the output table from Figure 3, right picture. In order to help
interpreting the result, a visualization tool, included in MeCoSim, has been used for representing
the result, where each colour is represented by a specific symbol (the tool also allows us to use



Figure 4. Visualization of a solution.

colours for vertices) – see Figure 4 (colour online). In this way, not only a dry answer to the 3-Col
problem is provided, but a visual representation of the solutions found is also associated with it.

A number of simulations have been performed for different instances of the 3-Col problem by
implementing the algorithms presented in the proofs of Theorems 3.1 and 3.2. These implemen-
tations aim to show the benefits of using the approach based on skP systems with respect to other
formalisms using P systems. Note that these implementations cannot be compared with ad hoc
implementations of the 3-Col problem, as these P system models describe a generic strategy of
dynamically handling the compartments, which can be avoided in a direct implementation by
specific programming techniques that do not represent this general process – for instance, by
finding a recurrent process for generating candidate solutions.

It has been shown that, on the one hand, when skP systems are used, the number of rules is
smaller than that in the case of tissue systems, but, on the other hand, these rules can be more
complex, so there is a trade-off between these two aspects. The examples given below show that
the simulations produced utilize less compartments and exhibit a better execution time when skP
systems are used. These examples envisage arbitrary graphs with n vertices and G(n, 1), G(n, n)

graphs for n = 4, 6, 8. The results for arbitrary graphs are presented in Table 2 for the algorithms
associated with Theorem 3.1 (kernel 1) and Theorem 3.2 (kernel 2) and for the tissue P systems.
The difference in the number of compartments and execution time between the skP systems and
the tissue variant can be observed. This is not surprising when taking into account that a smaller
number of rules is utilized by these systems and the fact that the compartments where the condition
for producing a solution is no longer true (there are already two vertices with the same colour)
stop dividing.

Assuming that the division rules utilized in the proofs of Theorems 3.1 and 3.2 no longer take
into account the guards, this leads to a division process that continues for 2n steps irrespective of
the combination of colours – very similar to the case of tissue P systems. An illustration of the
differences in execution time between skP systems with and without guards attached to division
rules is shown in Figure 5 for n = 4, 6, 8.

In certain cases, n can be increased even more. For some examples of graphs for which there is
no solution, which implies that the number of compartments might be smaller – for instance, for
complete graphs with at least four vertices – the simulator has produced good results for n = 25
and 30.

The two specific graphs G(n, 1) and G(n, n) have been tested, by using the algorithm from the
proof of Theorem 3.1; the results show that although for a smaller number of vertices (n = 4)



Table 2. Simulation results.

n Model Time Membranes Steps

4 kernel 1 49 49 10
4 kernel 2 53 34 22
4 tissue 1200 82 28
6 kernel 1 63 103 14
6 kernel 2 125 70 32
6 tissue 24,086 730 33
8 kernel 1 325 283 18
8 kernel 2 500 214 42
8 tissue 632,092 6562 41

Figure 5. Times in models kernel 1 and kernel 2, with and without s in guards.

they are both executed within less than 0.03 ms, for n = 10 the algorithm for the first graph runs
for 7 s, whereas the implementation for G(n, n) requires more than 4 min.

A final remark regarding a further substantial improvement, with minimal implementation costs,
refers to a mechanism for stopping the use of compartments which no longer produce a solution
and no rules are applicable there. Although, in theory, a compartment where no rule is applicable
should not count in the execution of a system, it turns out that simply checking that some rules
are not applicable might introduce an overhead that becomes significant when the number of such
compartments is large and the rules have complex guards or their number is large. In order to
alleviate this, a mechanism to stop evaluating a compartment where no rule is applicable has been
considered, and this has been implemented in the current version of P-Lingua. A consequence
of this approach is the possibility of completely removing these compartments and consequently
reducing the number of overall compartments. This approach has been tested for complete graphs,
where for n > 3, there is no solution. The tests have been executed for values up to n = 30 and,
without the stopping mechanism, the algorithm runs for 25 s, whereas with the stopping option
being included, it takes only 5 s and it still produces an answer for n = 70 in 208 s, that is, a little
more than 3 min.



Lastly, here it is shown how a Spin model checker is used to formally verify certain properties
of the 3-Col problem. Formal verification based on model checking has been used for various
classes of P systems in connection with Maude [1] or Spin [4]. The use of Spin has been also used
in association with a Kripke structure attached to a P system [10], for generating test sets for P
system specifications [9] or for verifying P systems with active membranes [11]. In this paper,
Spin is used as part of the methodology presented above for a more systematic study of various
systems. In this case, Spin specifications, written in Promela, are automatically generated from
P-Lingua. Some of the properties investigated here have also been presented in [12], but in [12],
the translation from P-Lingua was obtained manually and the verification was performed only for
very small values of n, the number of vertices of the graph.

The properties verified can be grouped into two categories. One group consists of properties
that hold at (or near) the end of the computation. For example, it is verified that ‘eventually, there
will be either a YES or a NO into the environment’ or that ‘if in a membrane labelled 1 objects
a, T are present, then in the next step YES will be sent out into the environment’. Properties
enumerated by Observation 3.5 or Proposition 3.1, which hold after a certain number of steps,
have also been verified. The formulae involved in all these properties have been calculated for
graphs with six vertices and 8–12 edges, whereas the relation stated by Observation 3.5(b) has
been checked for n = 12. These results are superior to those reported so far in the literature related
to the verification of P systems. In [4], the number of compartments is 3 and the number of steps
is bounded by 6, and in [12], the graph has only three nodes. The P system reported in [4] is
also verified for a P system with a fixed structure, whereas in our case, the structure changes and
finally reaches 3 × 2n−1 compartments C2 for Observation 3.2(b).

The second group of properties verified consists of some ‘invariants’. One of them can be
formulated as follows: if at a certain step, in a compartment with the label 2, there exists an edge
with the two vertices of the same colour, then at the next step, this compartment would not divide
anymore. Another invariant, similar to the previous one, but a bit more subtle, states that for any
i, 2 ≤ i ≤ n, if there is a compartment C2, such that it contains Ais at step st, then, at st + 1, there
is a compartment C2 (derived from the previous one through membrane division), containing
Ris, iff the graph has the neighbours of the vertex i coloured differently from red (i is red, Ri).
Another similar invariant can be written for the colours green and blue. These invariants have
been verified for graphs with six vertices and the second one has also been written as an assertion
in the Promela code.

Some more results and comparisons regarding the simulations described above and details
concerning the format of the queries used in model checking and the corresponding output can be
found on the MeCoSim website [20] on the page related to 3-Col problem solved with skP systems.

5. Conclusions

The kP systems offer an unified and elegant way of integrating the established features of existing P
system variants with new elements, valuable for formal modelling. This paper introduces a partic-
ular type of kP systems, called skP systems, and illustrates their expressive power and efficiency on
the 3-Col problem. It presents two skP systems that model the problem and analyses them in terms
of efficiency and complexity. The skP models prove to be more succinct (in terms of the number
of rules, objects, number of cells and execution steps) than the corresponding tissue P system used
in the current literature. The efficiency, in terms of execution time, of skP systems for modelling
3-Col problem is revealed through a number of examples that clearly show the benefits of using
some of the characteristics of these systems. The experiments also suggest new features that further
improve efficiency, such as a stopping mechanism associated with the execution of the system.

Overall, the paper takes a first step towards assessing the modelling power and efficiency of
(s)kP systems; this will be continued in a future work on other, more complex, case studies. Future



work also involves the development of a platform for the simulation and formal verification of kP
systems.
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