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Abstract. Common Algorithmic Problem is an optimization problem,

which has the nice property that several other NP-complete problems can be

reduced to it in linear time. In this work, we deal with its decision version in

the framework of tissue P systems. A tissue P system with cell division is a

computing model which has two types of rules: communication and division

rules. The ability of cell division allows us to obtain an exponential amount

of cells in linear time and to design cellular solutions to computationally hard

problems in polynomial time. We here present an effective solution to Common

Algorithmic Decision Problem by using a family of recognizer tissue P systems

with cell division. Furthermore, a formal verification of this solution is given.
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1. Introduction

Membrane Computing is a branch of Natural Computing, which is inspired by the
structure and the functioning of living cells [10], as well as the organization of cells in
tissues, organs, and other higher order structures. The devices of this model, called P
systems, provide distributed parallel and non-deterministic computing models. Since
being introduced by Gh. Păun in 1998, Membrane Computing has received important
attention from the scientific community. As computer scientists, biologists, formal
linguists and complexity theoreticians plug into this area, Membrane Computing has
definitely become a rich and exciting realm of cross-disciplinary research. Please refer
to [11] for an introduction of Membrane Computing, to [13] for a recent overview,
and to [15] for further bibliography.

In last years, many different classes of P systems have been investigated. The most
studied variants are the cell-like models of P systems, where membranes are hierar-
chically arranged in a tree-like structure. Most of them are computationally universal
(i.e., able to compute whatever a Turing machine can do), as well as computationally
efficient (i.e., able to trade space for time and solve in this way presumably intractable
problems in a feasible time) [1–3,9].

Another interesting class of P system is that of tissue P systems [7], where instead
of considering a hierarchical arrangement, membranes are placed in the nodes of a
graph. Tissue P systems are abstracted from the intercellular communication and
the cooperation between cells in tissues [8]. Here, we focus on a variant of tissue P
systems: tissue P system with cell division [12].

Common Algorithmic Problem (CAP) [6] is an optimization problem, that can be
defined as follows. Let S be a finite set and F be a family of subsets of S. Find
the cardinality of a maximal subset of S which does not include any set belonging
to F . The sets in F are called forbidden sets. Several other NP–complete problems
can be reduced to CAP in linear time (using a logarithmic bounded space), this is the
case for independent set problem, vertex cover problem, maximum clique problem,
satisfiability problem, Hamiltonian path problem and tripartite matching problem
[6, 14], so we can say that they are subproblems of CAP in the sense of linear time
reduction.

In [14], an effective solution to CAP was proposed using a family of recognizer P
systems with active membranes. However, there is no known way to transform a
recognizer P system with active membranes to a tissue P system. Tissue P systems
with cell division can solve some NP-complete problems in polynomial time, e.g., the
subset sum problem [4], the partition problem [5], and the 3–coloring problem [3].
But it remains open how to compute the reduction of an NP problem to another
NP–complete problem by P systems. So, in this work, we give a direct solution to
CAP in the framework of tissue P systems with cell division.

The paper is organized as follows. Some preliminaries are recalled in section 2 in-
cluding the definition of recognizer tissue P systems with cell division. A polynomial–
time solution to CAP is presented in section 3, and the formal verification is also given
to prove the solution correctness. Some discussion is presented in section 4.
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2. Preliminaries

An alphabet Σ is a non empty set, whose elements are called symbols. An ordered
sequence of symbols is a string. The number of symbols in a string u is the length of
the string, and it is denoted by |u|. As usual, the empty string (with length 0) will
be denoted by λ. The set of strings of length n built with symbols from the alphabet
Σ is denoted by Σn and Σ∗ = ∪n≥0Σ

n. A language over Σ is a subset of Σ∗.
A multiset m over a set A is a pair (A, f), where f is a map from A to the set

of natural numbers N. If m = (A, f) is a multiset, then its support is defined as
supp(m) = {x ∈ A | f(x) > 0} and its size is defined as

∑
x∈A f(x). A multiset is

empty (resp. finite) if its support is the empty set (resp. finite).
If m = (A, f) is a finite multiset over A, and supp(m) = {a1, . . . , ak}, then it

will be denoted as m = {{af(a1)
1 , . . . , a

f(ak)
k }}. That is, superscripts indicate the

multiplicity of each element, and if f(x) = 0 for any x ∈ A, then this element is
omitted. If m1 = (A, f) and m2 = (A, g) are multisets over A, then the union of m1

and m2 is defined as m1m2 = (A, h), where h = f + g.
A recognizer tissue P system with cell division of degree q ≥ 1 is a tuple of the

form

Π = (Γ,Σ,Ω, w1, . . . , wq,R, iin, iout), where:

• q ≥ 1 is the initial degree of the system, which contains q cells labeled with
1, 2, . . . , q; all these q cells are placed in a common environment labeled with 0;

• Γ is the working alphabet, which contains two distinguished objects yes and
no, at least one copy of them occurring in some initial multisets w1, . . . , wq, but
not occurring in Ω;

• Σ is an input alphabet strictly contained in Γ;

• Ω ⊆ Γ is the set of objects occurring in the environment, each one in arbitrarily
many copies;

• w1, . . . , wq are strings over Γ, describing the multisets of objects located in the
cells of the system at the beginning of the computation;

• R is a finite set of rules of the following forms:

(a) Communication rules: (i, u/v, j), for i, j ∈ {0, 1, 2, . . . , q}, i ̸= j, u, v ∈ Γ∗

(|u|+ |v| is called the length of the communication rule (i, u/v, j)).

(b) Division rules: [a]i → [b]i[ci], where i ∈ {1, 2, . . . , q}, a ∈ Γ and b, c ∈
Γ ∪ {λ}.

• iin ∈ {1, . . . , q} is the input cell;

• iout ∈ {0, 1, . . . , q} indicates the output region, where iout = 0 denotes that the
output region is the environment.
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All computations halt (that is, they always reach a configuration where no further
rules can be applied). During a computation of Π, either the object yes or the object
no (but not both) must be released into the environment, and only in the last step of
the computation.

When a division rule [a]i → [b]i[c]i is applied, all the objects in the original cells
are replicated and the copies of them are placed in each of the new cells, with the
exception of the objects a, which is replaced by b ∈ Γ ∪ {λ} in the first new cell and
by c ∈ Γ ∪ {λ} in the second one.

When a rule (i, u/v, j) is applied, the objects of the multiset represented by u
are sent from region i to region j and simultaneously the objects of the multiset
v are sent from region j to region i. For a cell in the system Π, it is possible to
have more than one applicable communication rules in a step. These applicable
communication rules are used in non-deterministic maximally parallel manner (the
system non-deterministically chooses and applies a multiset of communication rules
that is maximal, no further rule can be added).

In each step, all cells which can evolve must evolve in a maximally parallel way.
This way of applying rules has only one restriction: when a cell is divided, the division
rule is the only one which is applied for that cell in that step; the objects inside that
cell do not evolve by means of communication rules. The labels of the cells produced
by division precisely identify the rules which can be applied to them in the subsequent
steps.

A configuration of Π at an instant t is described by the multisets of objects over Γ
associated with all the cells present in the system at that moment, and the multiset
over Γ− Ω associated with the environment at the instant t. All computations start
from the initial configuration and proceed as defined above. A computation C is
called an accepting computation (respectively, rejecting computation) if the object
yes (respectively, no) appears in the environment associated to the corresponding
halting configuration of C, and only in the last step of the computation.

Definition 1. Let X = (IX , θX) be a decision problem, where IX is a language
over a finite alphabet (whose elements are called instances) and θX is a total boolean
function over IX (that is, a predicate). The decision problem X is solvable in poly-
nomial time by a family Π = {Π(n) | n ∈ N} of recognizer tissue P systems with cell
division if the following holds:

• The family Π is polynomially uniform by Turing machines, that is, there exists
a deterministic Turing machine working in polynomial time which constructs
the system Π(n) from n ∈ N.

• There exists a pair (cod, s) of polynomial-time computable functions over IX
such that:

− for each instance u ∈ IX , s(u) is a natural number and cod(u) is an input
multiset of the system Π(s(u));

− the family Π is polynomially bounded with regard to (X, cod, s), that is,
there exists a polynomial function p, such that for each u ∈ IX every
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computation of Π(s(u)) with input cod(u) halts and, moreover, performs
at most p(|u|) steps;

− the family Π is sound with regard to (X, cod, s), that is, for each u ∈ IX , if
there exists an accepting computation of Π(s(u)) with input cod(u), then
θX(u) = 1;

− the familyΠ is complete with regard to (X, cod, s), that is, for each u ∈ IX ,
if θX(u) = 1, then every computation of Π(s(u)) with input cod(u) is an
accepting one.

We denote by PMCTDC the set of all decision problems which can be solved by
means of recognizer tissue P systems with cell division in polynomial time.

3. A Solution to Common Algorithmic Decision Problem

Common Algorithm Decision Problem (CADP) can be defined as follows. Given S
a finite set, F a family of subsets of S, and k ∈ N , we ask if there exists a subset A
of S such that |A| ≥ k, and which does not include any set belonging to F . The sets
in F are called forbidden sets.

We address the solution of this problem via a brute force algorithm, in the frame-
work of recognizer tissue P systems with cell division. Our strategy will consist of the
following phases:

• Generation Stage: The initial cell, labeled by 2, is divided into two new cells.
The division is iterated until we have all possible subsets to the problem (one
subset of S for each membrane with label 2). Simultaneously, in the membrane
with label 1 there is a counter, and it will determine the moment in which the
checking stage starts.

• Checking Stage: The system checks whether or not there exists a subset A of S
such that A does not include any forbidden set in the family F and |A| ≥ k.

• Output Stage: The system sends to the environment the right answer according
to the results of the previous stage.

Let us consider the polynomial time computable function between N3 and N,
⟨n,m, k⟩ = ⟨⟨n,m⟩, k⟩, induced by the pair function ⟨n,m⟩ = ((n + m)(n + m +
1)/2) + n. We shall construct a family Π = {Π(i) | i ∈ N} such that each system
Π(⟨n,m, k⟩) will solve all instances of CADP with given size paraments: the size n of a
finite set S, the size m of the family F of forbidden sets, and the target subset size k.

For each (n,m, k) ∈ N3, the system Π(⟨n,m, k⟩) = (Γ(⟨n,m, k⟩),Σ(⟨n,m, k⟩),
Ω(⟨n,m, k⟩), w1, w2,R(⟨n,m, k⟩), iin, iout) is constructed with the following compo-
nents:

• Γ(⟨n,m, k⟩) = Σ ∪ {aj , Tj , Fj , fj | 1 ≤ j ≤ n}
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∪{ri | 1 ≤ i ≤ m} ∪ {bi | 1 ≤ i ≤ 2n+m+ 1}
∪{Fi,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}
∪{di | 1 ≤ i ≤ 2n+mn+ 2m+ k + 1}
∪{ei | 1 ≤ i ≤ 2n+mn+ 2m+ k + 3}
∪{ci | 1 ≤ i ≤ n+ 1} ∪ {f, g, yes, no}.

• Σ(⟨n,m, k⟩) = {si,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

• Ω(⟨n,m, k⟩) = Γ(⟨n,m, k⟩)− {yes, no}.

• w1 = {{b1, c1, d1, e1, g, yes, no}}.

• w2 = {{f, a1, a2, · · · , an}}.

• R(⟨n,m, k⟩) is the set of rules:

1. Division rule:
r1,j ≡ [aj ]2 → [Tj ]2[Fj ]2, for 1 ≤ j ≤ n.

2. Communication rules:
r2,i ≡ (1, bi/b

2
i+1, 0), for 1 ≤ i ≤ n;

r3,i ≡ (1, ci/c
2
i+1, 0), for 1 ≤ i ≤ n;

r4,i ≡ (1, di/d
2
i+1, 0), for 1 ≤ i ≤ n;

r5,i ≡ (1, ei/ei+1, 0), for 1 ≤ i ≤ 2n+ 2m +mn+ 2;
r6 ≡ (1, bn+1cn+1dn+1/f, 2);
r7,j ≡ (2, cn+1Fj/cn+1F1,j , 0), for 1 ≤ j ≤ n;
r8,ij ≡ (2, Fi,j/fjFi+1,j , 0), for 1 ≤ i ≤ m, 1 ≤ j ≤ n;
r9,i ≡ (2, bi/bi+1, 0), for n+ 1 ≤ i ≤ 2n+m;
r10,i ≡ (2, di/di+1, 0), for n+ 1 ≤ i ≤ 2n+m +mn;
r11,ij ≡ (2, b2n+m+1fjsij/b2n+m+1ri, 0), for 1 ≤ i ≤ m, 1 ≤ j ≤ n;
r12,i ≡ (2, d2n+mn+m+iri/d2n+mn+m+i+1, 0), for 1 ≤ i ≤ m;
r13,ij ≡ (2, d2n+mn+2m+iTj/d2n+mn+2m+i+1, 0), for 1 ≤ i ≤ k,1 ≤ j ≤ n;
r14 ≡ (2, d2n+mn+2m+k+1/g yes, 1);
r15 ≡ (2, yes/λ, 0);
r16 ≡ (1, e2n+mn+2m+k+3 g no/λ, 2);
r17 ≡ (2, no/λ, 0).

• iin = 2 is the input cell.

• iout = 0 is the output region (i.e., the environment).

3.1. An Overview of a Computation

First of all we define a polynomial encoding for CADP in Π. Let u = ({s1, · · · ,
sn}, (B1, · · · , Bm), k) be an instance of CADP. Let the size mapping be s(u) = ⟨n,m, k⟩
and the encoding of instance be cod(u) = {si,j | sj ∈ Bi}, for a given CADP-instance
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u = ({s1, · · · , sn}, (B1, · · · , Bm), k). Next we informally describe how the system
Π(s(u)) with input cod(u) works.

Let us start with the generation stage. In cells with label 2, the division rules are
applied. Cells with label 2 are repeatedly divided, each time expanding one object aj ,
corresponding to sj in the finite set S, into Tj and Fj , corresponding to the existence
or absence of sj in certain subset. In this way, after n steps we get 2n cells with label
2, each one associated with a subset of S. The object f is duplicated, hence a copy of
it will appear in each cell. In parallel with the above operation of dividing cells with
label 2, the counters bi, ci, di, ei from cell with label 1 grow their subscripts. In each
step, the number of copies of objects of the first three types is doubled, hence after
n steps we get 2n copies of bn+1, cn+1, and dn+1 in cell with label 1. Object bi is
used to check whether a forbidden set Bi is not included in the corresponding subset
A, object ci is used to multiply the number of copies of fj , object di is used to check
whether there exists at least one subset A such that A does not include any forbidden
set Bi from the family F and |A| ≥ k. The object ei will be used to produce the
object no, if this will be the case, at the end of the computation.

The checking stage starts when the generation stage is finished after n steps. Note
that cells with label 2 cannot divide any more, because the objects aj were exhausted.
At this moment, the content of the cell with label 1 is {{b2nn+1, c

2n

n+1, d
2n

n+1, en+1, g, yes,
no}}. At step n + 1, the counters bn+1, cn+1, dn+1 are brought into cells with label
2, in exchange of f by applying rule r6. Because we have 2n copies of each object of
these types and 2n cells with label 2, each one containing exactly one copy of f , due
to the maximality of the parallelism of using the rules, each cell 2 gets precisely one
copy of each of bn+1, cn+1, dn+1.

Recall that Tj represents that sj is in the corresponding subset, while Fj represents
that sj is not in the corresponding subset. The object Fj introduces the object F1,j ,
when cn+1 is present. This phase needs at most n steps, because only one copy of
cn+1 is available in each cell with label 2. Then further m steps are necessary for F1,j

to grow its first subscript generating m copies of fj . (Object fj represents element sj
from S not in the corresponding subset A. In order to check which forbidden sets are
not included in A, it is possible to need one copy of fj for each forbidden set.) The
counters bi and di increase their subscripts, until reaching the value 2n +m + 1. In
parallel, object ei increases its subscript to 2n+m+ 2 in cell with label 1.

When object b2n+m+1 is present, we apply the rules r11,ij to check which forbidden
sets are not included in the corresponding subset of S. The objects ri represents that
the forbidden set Bi is not included in the corresponding subset of S. It takes at most
mn steps, because there is only one copy of b2n+m+1 in each cell with label 2. After
step 2n+m+mn+ 1, the rule r12,i is used to check whether there exists a subset A
which does not include any forbidden set. If and only if it is positive, the subscript
of di in the corresponding cell with label 2 grows to 2n + 2m +mn + 1. After step
2n + 2m + mn + 1, in the cell with label 2 whose corresponding subset of S does
not include any forbidden set, the rule r13,ij is used to check whether the cardinality
of the corresponding subset is not less than k. If and only if it is still positive, the
subscript of di in the corresponding cell with label 2 grows to 2n+2m+mn+ k+1.

When the checking stage is done, the subscript of object ei in cell with label 1
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grows to 2n+2m+mn+k+2. The output stage starts from step 2n+2m+mn+k+2.

– Affirmative answer: If there exists at least one subset of set S which does not
include any forbidden set, and its cardinality is not less than k, then there is
an object d2n+2m+mn+k+1 in the corresponding cell with label 2 as described
above. One of the cells with label 2 containing object d2n+2m+mn+k+1 gets the
objects yes and g in exchange of d2n+2m+mn+k+1 by the rule r14. In the next
step, the object yes in cell 2 leaves the system by the rule r15, signaling the fact
that there exists one subset A of S such that |A| ≥ k, and A does not include
any forbidden set from the family F . At that step, the cell with label 1 contains
the object e2n+2m+mn+k+3 but not the object g. The computation halts at step
2n+ 2m+mn+ k + 3.

– Negative answer: In this case, the subscript of counter ei reaches 2n + 2m +
mn+ k + 3 and the object g is still in the cell with label 1. The object no can
be moved to the environment by the rules r16 and r17, signaling that there is
no subset A of S such that |A| ≥ k, and A does not include any forbidden set
from the family F . The computation finishes at step 2n+ 2m+mn+ k + 4.

3.2. Formal Verification

In this subsection, we prove that the family built above solves the common al-
gorithmic decision problem in a polynomial time, according to Definition 1. First of
all, this definition requires that the defined family is consistent, in the sense that all
systems of the family must be recognizer tissue P systems with cell division. By con-
struction (types of rules and working alphabet) it is clear that it is a family of tissue
P systems with cell division. In order to show that all members in Π are recognizer
systems it suffices to check that all the computations halt (this will be deduced from
the polynomial boundness), and that either an object yes or an object no is sent out
exactly in the last step of the computation (this will be deduced from the soundness
and completeness).

3.2.1. Polynomial uniformity of the family

We now show that the family Π = {Π(⟨n,m, k⟩) | n,m, k ∈ N} defined above is
polynomially uniform by Turing machines. To this aim we are going to prove that
it is possible to build Π(⟨n,m, k⟩) in polynomial time with respect to the size of the
instances of the CADP.

It is easy to check that the rules of a system Π(⟨n,m, k⟩) of the family are defined
recursively from the values n,m and k. Besides, the necessary resources to build an
element of the family are of a polynomial order, as shown below:

• Size of the alphabet: 4mn+ 11n+ 6m+ 2k + 10 ∈ Θ(mn);

• Initial number of cells: 2 ∈ Θ(1);

• Initial number of objects: n+ 8 ∈ Θ(n);
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• Number of rules: 4mn+ 8n+ 5m+ k + 7 ∈ Θ(mn);

• Maximal length of a rule: 5 ∈ Θ(1).

Therefore, a deterministic Turing machine can build Π(⟨n,m, k⟩) in a polynomial
time with respect to n, m and k.

3.2.2. Polynomial boundness of the family

In order to prove that the system Π(s(u)) with input cod(u) is polynomially
bounded, it suffices to find the moment in which any computation halts, or at least,
an upper bound for it.

Proposition 1. The family Π = {Π(⟨n,m, k⟩) | n,m, k ∈ N} is polynomially bounded
with respect to (CADP, cod, s).

Proof. We will informally go through the stages of the computation in order to es-
timate an upper bound for the number of steps. The computation will be checked
more in detail when addressing the soundness and completeness proof.

Let u = ({s1, s2, · · · , sn}, (B1, B2, · · · , Bm), k) be an instance of CADP. We shall
check what happens during the computation of the system Π(⟨n,m, k⟩) with the input
cod(u) in order to find the halting step, or at least, an upper bound for it.

Firstly, the generation stage has exactly n steps, performing all the divisions of
the cells of the system. The order in which the divisions are performed is nondeter-
ministically chosen in each computation, but the divisions are carried out in the first
n steps in all cases.

After one more step, the objects bn+1, cn+1 and dn+1 arrive at cells labeled by 2,
and then the checking stage starts with the rule r7,j . The objects Fj introduce the
objects F1,j . This phase needs at most n steps. Then we need further m steps for F1,j

to grow its first subscript and introduce m copies of fj for each of the forbidden sets.
From step 2n +m + 2, the rules r11,ij are applied in each cell with label 2 in order
to check which forbidden sets are not included in the corresponding subset. This
checking needs at most mn steps. When the subscript of di grows to 2n+m+mn+1,
the system starts to check whether there exists a subset A that does not include any
forbidden set. This process needs at most m steps. Then we need k steps to check
whether the cardinality of the subset is not less than k by applying r13,j . The checking
stage ends at step 2n+ 2m+mn+ k + 1.

The last one is the answer stage. The longest case is obtained when the answer is
negative. In this case, at step 2n + 2m +mn + k + 2 only the counter ei is working
and produces the object e2n+2m+mn+k+3. In next step the object e2n+2m+mn+k+3

works together with object g bringing the object no to a cell with label 2. Finally, at
step 2n+ 2m+mn+ k + 4, the object no is sent to the environment.

Therefore, there exists a polynomial bound (with respect to n, m and k) on the
number of steps of the computation.
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3.2.3. Soundness and completeness of the family

In order to prove the soundness and completeness of the family Π with respect to
(CADP, cod, s), we shall prove that for a given instance u of CADP, the system Π(s(u))
with input cod(u) sends out the object yes if and only if the answer to the problem
for the considered instance u is affirmative, or, otherwise, the object no is sent out.
In both cases the answer will be sent to the environment at the last step of the
computation.

Recall that each cell with label 2 represents a subset of the given set S. For
simplification in the following proofs, we introduce the function ψ from P (S)× N to
Γ as follows:

ψ(A, j) =

{
Tj , if sj ∈ A,
Fj , if sj /∈ A,

where A ⊆ S = {s1, s2, · · · , sn}, 1 ≤ j ≤ n.
Given a computation C, we denote by Ci the configuration at the i-th step. More-

over, Ci(j) will denote the multiset associated with the cell or the enviroment with
label j in such configuration. In what follows, the system means the system Π(s(u))
with input multiset cod(u).

We start analyzing the generation (i.e., the first n steps of the computation). It
has two parallel processes, each of them in one kind of cells with label 1 or 2.

Proposition 2. If C is an arbitrary computation of the system, then Ci(1) = {{b2ii+1,

c2
i

i+1, d
2i

i+1, ei+1, g, yes, no}}, for all i (0 ≤ i ≤ n).

Proof. We shall reason by induction on i.
Base Case. We have C0(1) = {{b1, c1, d1, e1, g, yes, no}}, thus the proposition

holds for i = 0.
Let i < n and let us suppose the result holds for i. By inductive hypothesis,

for all i (1 ≤ i < n), we have Ci(1) = {{b2ii+1, c
2i

i+1, d
2i

i+1, ei+1, g, yes, no}}. In this
configuration, only the rules r2,i – r5,i can be applied in cell with label 1, and therefore

Ci+1(1) = {{b2i+1

i+2 , c
2i+1

i+2 , d
2i+1

i+2 , ei+2, g, yes, no}}.

Proposition 3. If C is an arbitrary computation of the system, then

• for each subset A ⊆ {s1, s2, · · · , sn} there exists only one cell with label 2 in Cn
whose multiset is {{si,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}} ∪ {{f, ψ(A, 1), . . . , ψ(A,n)}},
and the multiset {{ψ(A, 1), . . . , ψ(A,n)}} does not appear in the other cells with
label 2;

• there exist exactly 2n cells with label 2 in configuration Cn, in each one of them
there is an object f .

Proof. In the initial configuration, C0(2) = {{f, a1, a2, · · · , an}}. In the following
n steps, only rule r1,j can be applied to produce cells with label 2 containing the
objects ψ(A, 1), · · · , ψ(A,n). More precisely, for each j (1 ≤ j ≤ n), if sj ∈ A
then after applying the rule r1,j , we take the cell where Tj occurs, and if sj /∈ A,
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we take the cell where Fj occurs. In this way, it is easy to see that the multiset
{{ψ(A, 1), · · · , ψ(A,n)}} does not appear in the other cells with label 2.

The order that objects aj participate in the division process is non-deterministic.
But after n steps no more division rules are applied in any cell with label 2. The rules
r1,j ensure that each of the 2n possible subsets will be represented by one cell with
label 2 in the system.

Proposition 4. If C is an arbitrary computation of the system, then

• Cn+1(1) = {{en+2, f
2n , g, yes, no}};

• for each subset A ⊆ {s1, s2, · · · , sn} there exists only one cell with label 2 in
Cn+1 whose multiset is {{si,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}} ∪ {{bn+1, cn+1, dn+1,
ψ(A, 1), · · · , ψ(A,n)}}, and the multiset {{ψ(A, 1), · · · , ψ(A,n)}} does not ap-
pear in the other cells with label 2.

Proof. The multiset Cn+1(1) is obtained from Cn(1) by the application of the rule r6.
The object en+1 increases its subscript by one by the rule r5,i, so one copy of en+2

appears in Cn+1(1). By proposition 3, at step n, there exist exactly 2n cells with label
2, each of them containing one copy of object f . At step n + 1, the rule r6 can be
applied, 2n copies of objects bn+1, cn+1 and dn+1 in cell with label 1 are traded for f
from the cells with label 2. Due to the maximality of the parallel usage of rules, each
cell with label 2 gets one copy of objects bn+1, cn+1 and dn+1, while the cell with label
1 gets 2n copies of object f . Therefore, Cn+1(1) = {{en+2, f

2n , g, yes, no}}; and for
each subset A ⊆ {s1, s2, · · · , sn} there exists only one cell with label 2 in Cn+1 whose
multiset is {{si,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}} ∪ {bn+1, cn+1, dn+1, ψ(A, 1), · · · , ψ(A,n)}.
By Proposition 3 and the above proof, it is no difficult to see that the multiset
{{ψ(A, 1), · · · , ψ(A,n)}} does not appear in the other cells with label 2.

Proposition 5. Let C be an arbitrary computation of the system. C2n+m+1(1) =
{{e2n+m+2, f

2n , g, yes, no}} holds.

Proof. From step n+2 to step 2n+m+1 of the computation, only rule r5,i is applicable
in cell with label 1, yielding C2n+m+1(1) = {{e2n+m+2, f

2n , g, yes, no}}.

Proposition 6. Let C be an arbitrary computation of the system. For each subset
A ⊆ {s1, s2, · · · , sn}, there exists only one cell with label 2 in C2n+m+1 whose multiset
is {{si,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}} ∪ {{Tj | 1 ≤ j ≤ n, ψ(A, j) = Tj}} ∪ {{Fm+1,j , f

m
j |

1 ≤ j ≤ n, ψ(A, j) = Fj}}∪ {{cn+1, b2n+m+1, d2n+m+1}}, and the multiset {{Tj | 1 ≤
j ≤ n, ψ(A, j) = Tj}} ∪ {{Fm+1,j , f

m
j | 1 ≤ j ≤ n, ψ(A, j) = Fj}} does not appear in

the other cells with label 2.

Proof. Based on Proposition 4, we prove Proposition 6 holds.
For each subset A ⊆ {s1, s2, · · · , sn} there exists only one cell with label 2 in Cn+1

whose multiset is {{si,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}} ∪ {{bn+1, cn+1, dn+1, ψ(A, 1), · · · ,
ψ(A,n)}}, and the multiset {{ψ(A, 1), · · · , ψ(A,n)}} does not appear in the other
cells with label 2.
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From step n+ 2 to step 2n+m+ 1, the objects si,j (1 ≤ i ≤ m, 1 ≤ j ≤ n) keep
unchanged because no rules can be applied to them.

By the rules r9,i and r10,i, the subscripts of objects bn+1 and dn+1 in Cn+1 increase,
until reaching the value 2n +m + 1 at step 2n +m + 1. Clearly, the multiplicity of
object b2n+m+1 is one, and the multiplicity of object d2n+m+1 is also one.

By the rules r7,j , with the object cn+1, the objects Fj introduce the objects F1,j .
It takes n steps to complete this process. By the rules r8,ij , for each F1,j , it takes
m steps to introduce m copies of fj , and the first subscript of F1,j grows to m + 1.
The objects Tj keep unchanged. Therefore, at step 2n+m+1, the corresponding cell
with label 2 has multiset {{si,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}}∪{{Tj | 1 ≤ j ≤ n, ψ(A, j) =
Tj}} ∪ {{Fm+1,j , f

m
j | 1 ≤ j ≤ n, ψ(A, j) = Fj}} ∪ {{cn+1, b2n+m+1, d2n+m+1}}.

By Proposition 4, in Cn+1, the multiset {{ψ(A, 1), . . . , ψ(A,n)}} appears in only
one cell with label 2. By this observation and the above proof, it is not difficult to
see that the multiset {{Tj | 1 ≤ j ≤ n, ψ(A, j) = Tj}} ∪ {{Fm+1,j , f

m
j | 1 ≤ j ≤

n, ψ(A, j) = Fj}} appears in only one cell with label 2. Therefore, Proposition 6
holds.

Proposition 7. Let C be an arbitrary computation of the system. C2n+m+mn+1(1)
= {{e2n+m+mn+2, f

2n , g, yes, no}} holds.

Proof. By the rule r5,i, the subscript of object e2n+m+2 in C2n+m+1(1) grows to the
value 2n +m +mn + 2 at step 2n +m + nm + 1. The objects f2

n

, g, yes, no keep
unchanged. Therefore, Proposition 7 holds.

Proposition 8. Let C be an arbitrary computation of the system. For each subset
A ⊆ {s1, s2, · · · , sn}, there exists only one cell with label 2 in C2n+m+mn+1 whose
multiset is {{Tj | 1 ≤ j ≤ n, ψ(A, j) = Tj}} ∪ {{Fm+1,j | 1 ≤ j ≤ n, ψ(A, j) =
Fj}} ∪ {{ri | sj ∈ Bi, sj /∈ A, 1 ≤ i ≤ m, 1 ≤ j ≤ n}} ∪ {{fαj

j | 1 ≤ j ≤ n}} ∪
{{cn+1, b2n+m+1, d2n+m+mn+1}}, where αj (0 ≤ j ≤ m) is the number of copies of fj
which remained in this cell.

Proof. By Proposition 6, for each subset A ⊆ {s1, s2, · · · , sn}, there exists only
one cell with label 2 in C2n+m+1 whose multiset is {{si,j | 1 ≤ i ≤ m, 1 ≤ j ≤
n}} ∪ {{Tj | 1 ≤ j ≤ n, ψ(A, j) = Tj}} ∪ {{Fm+1,j , f

m
j | 1 ≤ j ≤ n, ψ(A, j) =

Fj}} ∪ {{cn+1, b2n+m+1, d2n+m+1}}. In the following, we consider this unique cell
with label 2.

The objects Tj , cn+1, b2n+m+1 and Fm+1,j keep unchanged. By the rule r10,i, the
subscript of object d2n+m+1 in C2n+m+1 increases, until reaching the value 2n+m+
mn+1 at step 2n+m+mn+1. Clearly, the number of copies of object d2n+m+mn+1

is one.
With the presence of b2n+m+1 in C2n+m+1 (not appearing in Ci (i < 2n+m+1)),

the rule r11,ij can be applied. If object fj (i.e., sj /∈ A) and object si,j (i.e., sj ∈ Bi)
appear, the rule r11,ij is applied and an object ri (which means that Bi is not included
in A) is introduced into the corresponding cell with label 2. Because we have only
one copy of b2n+m+1 in each cell with label 2, each forbidden set contains at most n
objects, and we have m forbidden sets, it takes at most mn steps for these operations.
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Note that at step 2n + m + mn + 1 it is possible to have some copies of fj in the
corresponding cell with label 2 (the m copies of fj are not completely consumed by
the rule r11,ij). Let αj (0 ≤ j ≤ m) be the number of copies of fj which remained in
the corresponding cell with label 2.

Therefore, in C2n+m+mn+1, the corresponding cell with label 2 has multiset {{Tj |
1 ≤ j ≤ n, ψ(A, j) = Tj}}∪{{Fm+1,j | 1 ≤ j ≤ n, ψ(A, j) = Fj}}∪{{ri | sj ∈ Bi, sj /∈
A, 1 ≤ i ≤ m, 1 ≤ j ≤ n}} ∪ {{fαj

j | 1 ≤ j ≤ n}} ∪ {{cn+1, b2n+m+1, d2n+m+mn+1}}.
By Proposition 6 and the above proof, it is not difficult to see that in C2n+m+mn+1

the cell with the multiset described in Proposition 8 is unique.

Proposition 9. If C is an arbitrary computation of the system, then C2n+2m+mn+1(1)
= {{e2n+2m+mn+2, f

2n , g, yes, no}} holds.

Proof. By the rule r5,i, the subscript of object e2n+m+mn+2 in C2n+m+mn+1(1) grows
to the value 2n+ 2m+mn+ 2 at step 2n+ 2m+mn+ 1. The objects f , g, yes and
no keep unchanged. Therefore, Proposition 9 holds.

Proposition 10. If C is an arbitrary computation of the system, then

• there exist exactly 2n cells with label 2 in configuration C2n+2m+mn+1;

• if A ⊆ {s1, s2, · · · , sn} and A includes some of the forbidden sets, then in the
corresponding cell with label 2 in C2n+2m+mn+1 the multiset contains an object
d2n+m+mn+1+α, where 0 ≤ α < m such that all the clauses B1, · · · , Bα are not
included in A, but Bα+1 is included in A;

• if A ⊆ {s1, s2, · · · , sn} and A does not include any forbidden set, then there
exists one cell with label 2 in C2n+2m+mn+1 whose associated multiset contains
an object d2n+2m+mn+1.

Proof. From the configuration C2n+m+mn+1, we start to check whether there exists a
subset A ⊆ {s1, s1, · · · , sn} that does not include any forbidden set. Such checking is
simultaneous in all 2n cells with label 2.

Let us consider a subset A of S. By Proposition 8, the object d2n+m+mn+1 appears,
the rule r12,i can be applied. The forbidden sets are checked in the order from B1

to Bm. For each forbidden set which is not included in A (that is, the corresponding
object ri appears), we increase by one the subscript of di (it is possible to have several
copies of ri, but only one copy of ri is used by the rule r12,i), hence the subscript of di
reaches the value 2n+2m+mn+1 if and only if any forbidden set is not included in
A. If the sets B1, · · · , Bα (0 ≤ α < m) are not included in A, but Bα+1 is included in
A, then the subscript of di can only reach the value 2n+m+mn+1+α. Therefore,
Proposition 10 holds.

Proposition 11. If C is an arbitrary computation of the system, then we have
C2n+2m+mn+k+1(1) = {{e2n+2m+mn+k+2, f

2n , g, yes, no}}.

Proof. By the rule r5,i, the subscript of object e2n+2m+mn+2 in C2n+2m+mn+1(1)
grows to the value 2n+2m+mn+ k+2 at step 2n+2m+mn+ k+1. The objects
f, g, yes, no keep unchanged. Therefore, Proposition 11 holds.
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Proposition 12. If C is an arbitrary computation of the system, then

• there exist exactly 2n cells with label 2 in configuration C2n+2m+mn+k+1;

• if A ⊆ {s1, s2, · · · , sn}, k ∈ N, 0 ≤ |A| < k, and A does not include any
forbidden set, then in the corresponding cell with label 2 in C2n+2m+mn+k+1 the
multiset contains an object d2n+2m+mn+1+α, where α = |A| and 0 ≤ α < k;

• if A ⊆ {s1, s2, · · · , sn}, k ∈ N, |A| ≥ k, and A doesn’t include any forbidden set,
then there exists a cell with label 2 in C2n+2m+mn+k+1 whose associated multiset
contains an object d2n+2m+mn+k+1.

Proof. From the configuration C2n+2m+mn+1, we start to check that, for each A ⊆
{s1, s1, · · · , sn} which does not include any forbidden set, whether the cardinality of
A is not less than k. Such checking is simultaneous in all 2n cells with label 2.

Let us consider a subset A of S. By Proposition 10, the object d2n+2m+mn+1

appears, the rule r13,i can be applied. The cardinality of A is equal to the number of
objects Tj in the corresponding cell. For each Tj (that is, the element sj in the subset
A), we increase by one the subscript of di, hence the subscript of di reaches the value
2n+ 2m+mn+ k + 1 if and only if the number of sj in subset A is not less than k.
If the number of sj in subset A is less than k, then the subscript of di can only reach
the value 2n+2m+mn+1+α, where α = |A|. Therefore, Proposition 12 holds.

Proposition 13. Let C be an arbitrary computation of the system, and suppose that
there exists a subset A of S such that |A| ≥ k and it does not include any forbidden
set from the family F , then

(a) C2n+2m+mn+k+2(1) = {{e2n+2m+mn+k+3, f
2n , no, d2n+2m+mn+k+1}},

(b) C2n+2m+mn+k+3(1) = {{e2n+2m+mn+k+3, f
2n , no, d2n+2m+mn+k+1}},

and the object yes appears in C2n+2m+mn+k+3(0).

Proof. The configuration of item (a) is obtained by the application of rules r5,i
and r14 to the previous configuration C2n+2m+mn+k+1. By the rule r5,i, the object
e2n+2m+mn+k+2 in C2n+2m+mn+k+1(1) grows by one its subscript at step 2n+ 2m+
mn + k + 2. By Proposition 12, there exists a cell with label 2 in C2n+2m+mn+k+1

whose multiset contains an object d2n+2m+mn+k+1. The object d2n+2m+mn+k+1 is
moved to the cell with label 1 by the rule r14, where the objects yes, g are moved to a
cell with label 2 (if there are more than one cells with label 2 whose multisets contain
d2n+2m+mn+k+1, then the target cell for yes, g is non-deterministically chosen among
the cells containing object d2n+2m+mn+k+1).

The configuration of item (b) is obtained by the application of rule r15 to the
previous configuration C2n+2m+mn+k+2. At step 2n + 2m +mn + k + 3, there is no
rule applied in cell with label 1. But with the application of r15 in cell with label 2,
the object yes leaves the system to the environment, signaling there exists a subset
A of S such that |A| ≥ k and it does not include any forbidden set from the family
F . The only one copy of object g is consumed by the rule r14, so the rule r16 cannot
be applied. The object no cannot exit into the environment.
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Proposition 14. If C is an arbitrary computation of the system, there is no subset
A of S such that |A| ≥ k, and it does not include any forbidden set from the family
F , then

(a) C2n+2m+mn+k+2(1) = {{e2n+2m+mn+k+3, f
2n , g, yes, no}},

(b) C2n+2m+mn+k+3(1) = {{f2n , yes}},

(c) C2n+2m+mn+k+4(1) = {{f2n , yes}},

and the object no appears in C2n+2m+mn+k+4(0).

Proof. If there exists no subset A of S such that |A| ≥ k and A does not include
any forbidden set from the family F , by Proposition 12, all cells with label 2 do not
contain object d2n+2m+mn+k+1. Of course, the cell with label 1 cannot get object
d2n+2m+mn+k+1. The configurations of item (a) is obtained by the application of
rule r5,i to the previous configuration C2n+2m+mn+k+1. By the rule r5,i, the object
e2n+2m+mn+k+2 in C2n+2m+mn+k+1(1) grows by one its subscript at step 2n+ 2m+
mn+ k + 3. The objects f , g, yes, no keep unchanged.

At step 2n + 2m + mn + k + 3, the rule r16 can be applied, then the objects
e2n+2m+mn+k+3, g, no are sent to a cell with label 2. So the configuration of item (b) is
obtained by the application of the rule r16 to the previous configuration C2n+2m+mn+k+2.

At last, the configuration of item (c) is obtained by the application of rules r17 to
the previous configuration C2n+2m+mn+k+3. The object no leaves the system to the
environment signaling that there exists no subset A of S such that |A| ≥ k and A
does not include any forbidden set from the family F .

3.3. Main Results

From the discussion in the previous sections and according to the definition of
solvability given in Section 2, we have the following result:

Theorem 1. CADP ∈ PMCTDC .

Corollary 1. NP ∪ co−NP ⊆ PMCTDC .

Proof. It suffices to make the following observations: the CADP is NP–complete, CADP
∈ PMCTDC and this complexity class is closed under polynomial-time reduction and
under complement.

4. Conclusions

In this work, a family of recognizer tissue P system with cell division is designed
to solve the CADP. Although the algorithm proposed here is theoretically proved to be
efficient for CADP, the real implementation of such algorithms is a great challenge.
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A solution to CADP by P systems with active membranes was proposed in [14],
where four types of rules were applied in those systems: object evolution rules, com-
munication rules, dissolving rules and division rules for elementary membranes; more-
over, three charges +,−, 0 are used to control the application of these types of rules.
The solution to the CADP given in this work is based on tissue P system with cell divi-
sion, where two kinds of rules are used: communication and division rules. Moreover,
no electrical charges are associated with the membranes.
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