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a b s t r a c t

In this paper, a low-speed wind tunnel was used for experimental analysis of water volume retained,
pressure drop, saturation efficiency and water consumption for three types of synthetic substrates used
in active living walls: polyester (PR), polyurethane (PU) and polyamideepolypropylene (PAePP) The
substrates were of a similar thickness and were tested for different water and air flows. The water
retained increases with higher water flow. The pressure drop increases with the presence of vegetation
and when air speed and water flow is higher. Cooling efficiency is enhanced with vegetation and low air
speed. Specific consumption of water is greater with vegetation at higher air speeds. Therefore, low air
(between 0.25 and 0.5 m s�1) and water flows are recommended to ensure a homogeneous wetting of
the substrate surface. PAePP has the greatest pressure drop of the three, but also presents the best
saturation efficiency, with an average water retention capacity and less specific consumption. PU offers
the least resistance to air flow, with an intermediate efficiency level and high water consumption and
water retention capacity. PR presents the worst saturation efficiency, a medium level of pressure drop
and high water consumption.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Given the current energy crisis and emphasis on issues such as
sustainability, efficiency and environmental concerns, govern-
ments and businesses alike are striving to reduce energy
consumption in buildings and to use their facilities more efficiently.

In Spain the residential and services sectors represent 67.5% of
the total consumption of electricity, 42.1% of which is consumed in
buildings [1]. Cooling and heating systems are responsible for 59%
of this demand [2], mainly as a result of the high energy require-
ments of air-conditioning equipment used to maintain a comfort-
able living/working environment and to guarantee indoor air
quality. Indeed, these sectors have greater opportunities to
moderate energy consumption without reducing the level of
comfort and well-being of people [3]. In addition, current high
levels of energy consumption are not sustainable because of the
high costs and foreseeable exhaustion of energy sources. In addi-
tion, they also imply major environmental consequences for the
planet, increasing emissions of greenhouse gases to the atmo-
sphere, which contributes to global warming.
þ34 950015491.
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In the future, average temperatures are expected to increase, so
cooling is becoming a primary and energy demanding problem. For
example, probabilistic projections on climate change for the United
Kingdom [4] suggest an expected increase in demand for cooling in
buildings. Hence, the employment of additional evaporative cool-
ing systemswill be evenmore necessary to reduce the thermal load
of the building.

In this context, the use of urban greening systems alone or in
combination with conventional air-conditioning systems in build-
ings may, in addition to providing a high ornamental and envi-
ronmental value, contribute to reduce energy consumption.

The urban greening movement is a response to the loss of green
spaces in cities and buildings through the use of many technologies
contributing to the goal of urban sustainability. It aims to transform
buildings and urban spaces into biotopes, providing many energy
and environmental benefits [5]. Living walls on facades and inside
buildings and the installation of green roofs are themost innovative
urban greening techniques. They provide powerful tools for
bioclimatic design and sustainable architecture.

Vertical greening can be defined as the design and construction
of gardens on vertical surfaces. Pérez et al. [6] recently classified the
many systems currently available, indicating their different levels of
complexity and technification. The simplest are based on the use of
climbing plants for the landscaping of facades, but more complex
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systems, known as living walls or green walls, have recently
appeared. In these the plants grow directly on the vertical surface
rather than from the base [7]. Some are based on hydroponic
cropping systems, such as the living walls designed by the French
botanist Patrick Blanc [8]. They use a support structure providing an
inorganic substrate into which the plants are inserted, and they can
be classified as passive or active systems (Fig. 1). Active systems are
designed with ventilators which force an air flow through the
substrate and plant rooting system. Therefore the air is filtered and
purified in a process known as biofiltration [9] which also acts as
a natural cooling system. These systems can be completed with
a closed circuit irrigation installation, thus improving water use
efficiency.

These facilities are undoubtedly of great beauty, they can be
installed both inside and outside of the buildings, and they have
numerous energy benefits, such as the increase in the thermal
insulation of the building envelope [10,11], energy savings for
ventilation requirements (ventilation needs are reduced due to the
improvement of biofiltrated air) and temperature reduction
[12e14]. Other environmental benefits include the improvement of
air quality, with the fixation of CO2 and VOCs [15], oxygen
production, improvement of the working environment, reduction
of stress and absenteeism [16] and enhancing acoustic comfort [17].
They also increase biodiversity in the urban environment [18] and
contribute to the reduction of the urban heat island effect [19,20].

When these systems are installed in the interior of buildings the
effects on the conditions of indoor temperature and humidity are
more remarkable [21,22].

A new system of active living wall has been developed and
patented in the Higher Technical School of Agronomic Engineering
in Seville (Spain). As well as maintaining all the benefits of passive
living walls, it also enhances their role as an ecological system for
climate conditioning and air biofiltration. This living wall can
operate independently (as in the present work) or combined with
the building’s system of air-conditioning and ventilation of (Fig. 2).

The system operates based on the evaporation of water from the
substrate of the active living wall, producing a significant decrease
in temperature and an increase in the humidity of the air. The
change of phase from liquid to vapor requires energy extracted
from the hot air from the outside or from warmer indoor air. The
Fig. 1. Vertical gree
result is a cooling effect and an increase in the air moisture content.
In thermodynamics the process is termed adiabatic, and the
enthalpy remains virtually constant [23].

The cooling capacity of these systems may be affected in high
humidity locations, such as the Mediterranean coastal areas; but
bearing inmind the great variation in humidity throughout the day,
these devices prove effective in the central hours, when the
ambient temperature is high and the relative humidity lower. In
addition, due to their capacity as biofilters [24,25], the rate of
renewal of air is lower and therefore less energy consumption is
required due to ventilation.

Given that the evaporation of the water occurs in the substrate
of the living wall, it is interesting to evaluate the performance of
different growing media or substrates. They allow air and water to
flow through them, favoring the growth of vegetation and root
development. In addition, they act as an interchange of energy and
mass for air-conditioning.

The present work, therefore, aims to assess the suitability of
three different substrates for use in active living walls. Operating
equations will be obtained using a low-speed wind tunnel in
laboratory conditions. Different air and water flows and presence of
vegetation are tested in order to assess their influence on pressure
drop, air saturation efficiency and the volume of water evaporated
and retained.

2. Material and methods

2.1. Low-speed wind tunnel

To determine the performance of different substrates for active
living walls, a low-speed open-circuit wind tunnel with a circular
cross-section has been used (Fig. 3). The wind tunnel was designed
and constructed in the Department of Rural Engineering of the
University of Almería [26], where it was modified and adapted to
test evaporative pads [27]. A uniform and stable air flow was ach-
ieved (just as reported by Fang et al. [28]) under controlled
conditions of temperature and humidity. By applying a regulated
water flow an optimal distribution is achieved in the porous media.

For the purposes of this study, measurements of air speed and
flow of water through the porous medium (substrate) are required.
ning systems.



Fig. 3. Diagram of the wind tunnel with controlled water and air flow rate (not
to scale).

Fig. 2. Operation of active living walls: (a) Indoors; (b) Outdoors.
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Other required data include the temperature and humidity of the
air flow before and after crossing the substrate to determine the
saturation efficiency of the substrate and the volume of evaporated
water. Liao and Chiu [29] performed a similar analysis for evapo-
rative pads made of alternative materials of PVC sponge. It is also
necessary to measure the air pressure drop through the substrate
using a pressure transducer connected to two pitot tubes placed
before and after the pad. The volume of water retained by the
substrate is measured as the difference in weight between the dry
and wetted pads.

In order to carry out tests in the wind tunnel, a specific test
framewas designed to incorporate the pads. This frame consisted of
a galvanized metal structure with a water distribution system
incorporated in the upper part. The water distribution system
consisted of a 20 mm diameter PVC pipe with 1.5 mm holes 25 mm
apart. In the lower part of the frame, there was a water collection
system allowing water to drain by gravity into a tank, before being
recycled by a 12 V axial pump. Water flow at the entrance was
controlled by varying the voltage of the continuous current
hydraulic pump and readings from the rotameter (flow meter),
with an average range of 3e22 L per minute and an error of �4%.

The volume of water retained by the substrate depending on the
applied flow was averaged taking into account the variation of the
weight of water in the recirculation tank using a scale system with
analog outputs consisting of a load cell of 50 N capacity and a VMA-
10 signal conditioner.

Airflow was supplied by a centrifugal fan HCT-45-2T-3/AL
(Sodeca S.A., Sant Quirze de Besora, Spain) with a capacity of
12,800 m3 h�1 and a rotational speed of 2865 rpm. A Micromaster
420 AC Inverter (Siemens España S.A., Madrid, Spain) was used to
regulate the air speed in the test section, with an output frequency
of 0e50 Hz and a set point resolution of 0e1 Hz. The real time
readings were stored on the hard disc of a personal computer via
the data acquisition unit. EE70-VT32C5 (Elektronik, Engerwitzdort,
Austria) air velocity and temperature transmitters were placed
950 mm upstream from the measurement section, equipped with
a directional hot-film anemometer with a working range of
0e10 m s�1 and accuracy of �0.1 m s�1, for air velocity
measurements.

The temperature and humidity of the air current weremeasured
using six digital relative humidity/temperature sensors of the
SHT75 series (Sensirion, Zurich, Switzerland) with a 9-bit digital
outlet that does not require calibration and with an accuracy of
�1.8% for relative humidity and of �0.3 �C for temperature. These
sensors were located in groups of three, 700 mm upstream and
downstream from the sample to be tested. They were mounted on
two rods placed across the width of the test section.

The static pressure drop through the test section was measured
by a differential pressure transducer SI 727 (SI-Special Instruments,
Nörlingen, Germany) connected to two 4 mm diameter Pitot tubes
(Airflow Developments Ltd., Buckinghamshire, England) located
450 mm upstream and downstream from the middle of the test
section. The transducer measurement range was 0e200 Pa with an
accuracy of �0.25% full scale (f.s.), hysteresis and reproducibility of
�0.1% f.s., and temperature error of �0.025%/�C, and a 0e10 V
signal output.

The signals that the sensors emitted were recorded by means of
an electric circuit designed ad hoc with eight analogical inputs with
a resolution of 10 bits, six digital inputs for humidity/temperature
sensors and an input for three temperature probes controlled by
a bus. The flow of control and data was managed by an RS232C
connection to a PC.

2.2. Substrate characterization and test procedure

Three different synthetic and inorganic substrates (Fig. 4) have
been analyzed regarding their capacity for climate conditioning.
Each is made up of several layers of synthetic textile fibers sewn
together forming a grid of 100 by 100 mm. The plants are inserted
through a horizontal opening into a kind of pocket formed between



Fig. 4. Tested substrates: (a) Polyester (PR); (b) Polyurethane (PU); (c) PolyamideePolypropylene (PAePP).
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the layers of fiber. These substrates are a porous medium that must
allow plant development and enhance epiphyte growth, while also
allowing air and water to flow through them.

The following substrates were tested:

- PR: Comprising three layers, the external and internal ones
made of an insect mesh and a 15 mm polyester fiber between
them.

- PU: Comprising three 5 mm layers of polyurethane.
- PAePP: Comprising a 6 mm external layer of polyamide and
a 10 mm interior layer of polypropylene.

Three samples of each substrate were tested (0.6 m wide by
0.65 m high). The total thickness of all three substrates is approx-
imately 15 mm. The influence of vegetation in the operating
parameters of the substrates was analyzed by planting Pothos
(Scindapsus aureus Engl.) in 50% of the grid of the wind tunnel test
section. The leaf area index was maintained constant in the
different samples and substrates. Wang and Zhang [30] also used
this type of vegetation in the evaluation of an air filtration system.

The 20 mm PVC pipe used for wetting had 1.5 mm holes sepa-
rated by 25 mm, leaving four holes each grid of the substrate to
obtain a homogeneous wet pattern. It was inserted between the
layers of each substrate sample with the holes directed vertically
downwards.

The flows of water employed expressed as volume per unit area
were: 0 (dry), 615, 770, 925, 1075 and 1230 L h�1 m�2. Franco et al.
[31] found a direct influence of water flow in the operation
parameters of corrugated cellulose evaporative pads. The flow was
regulated by varying the tension of the hydraulic pump with
a power source and adjusting it with a rotameter, and three repli-
cations were made for each flow and substrate sample. Initially
these flows were used to determine the volume of water retained
by substrates without vegetation, as it is more interesting to know
the substrates’ water retention capacity before it is altered by the
volume of peat when plants are transplanted (approximately
300 cm3/plant). On analyzing the other operating parameters in the
wind tunnel, the air stream passing through the substrate was
observed to cause an undesirable drip out of water at flows of over
770 L h�1 m�2. Consequently, only three flow variables were tested:
dry (only for the pressure drop), 615 and 770 L h�1 m�2.

The range of speeds of the air inlet was set between 0.05 and
1 m s�1. Higher speeds are not recommended due to problems of
mechanical damage to vegetation.

The test procedure began by determining the volume of water
retained by the substrate depending on the flow applied. Average
values were obtained of the variation of weight in the recirculation
water tank for the substrate without vegetation. As no air flow was
applied and the measurement time was 10 min for each water
flow, the water evaporated during the test was considered
negligible.

Subsequently, in order to determine the remaining operating
parameters, a water flow was set. After 10 min the fan was started
at an initial velocity close to 0.05 m s�1, gradually incremented by
0.15 m s�1 up to 1 m s�1. After each increment, the substrate was
allowed to adapt to the new conditions for a period of 5 min. At
each speed, 50 data values were takenwith each sensor, with a data
acquisition interval of 3 s. Tests were repeated with vegetation in
the substrates in order to compare their performance.

2.3. Mathematical model

Saturation efficiency (h) is the key index used to evaluate the
benefits of substrates. This is determined as the ratio between the
drop in air temperature after passing through the pad and the
maximum possible drop under conditions of air saturation [23]:

h ¼ T1 � T2
T1 � Twb

(1)

where T1 is the dry temperature of the incoming air (�C); T2 is the
dry temperature of the outgoing air (�C), and Twb is the thermo-
dynamic temperature of the wet-bulb at the entrance.

The value of saturation efficiency depends on the air speed
through the pad, the specific surface of the pad (wet surface) and
the water/air ratio.

The specific water consumption (Cw) of the pads
(kg h�1 m�2 �C�1) is expressed as the mass flow of evaporated
water (me) per unit of exposed surface (A) and the maximum
thermal difference possible given the conditions of air entering the
pad [27]

Cw ¼ me

ðT1 � T2Þ$A
(2)

where the mass flow of evaporated water (me) is obtained by
applying the water vapor balance:

me ¼ mv2 �mv1 (3)

mv1 andmv2 are the flows of vapor at the entrance and exit of the
pad, respectively (kg h�1).

Dividing equation (3) by the flow of dry air (ma) in kg h�1 which
is constant between the entrance and exit of the pad:



Fig. 5. Volume of water retained by surface and error based on flow unit.
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me ¼ maðW2 �W1Þ (4)

where W1 and W2 are the absolute humidity of the air at the
entrance and exit of the pad, respectively ðkgw kg�1

a Þ and
ma ¼ ra$Qa, in which ra is the air density (kg m�3) and Qa is the air
flow through the pad (m3 h�1).

Substituting expression (2) in equation (1), the pad’s evaporated
water depends on the air speed through it, the saturation efficiency
of the pad and the air conditions on entering the pad:

Cw ¼ me

hðT1 � TwbÞA
(5)

The pressure loss produced by substrates for the different
speeds of the air and water flow applied, both with and without
vegetation, is directly obtained by the pressure difference between
the input and output registered by the pressure transducer and
pitot tubes.
Fig. 6. Pressure drop vs. air speed: (a) Polyester (PR); (b) Po
3. Results and discussion

3.1. Volume of water retained by the substrates

The results show that the volume of water retained by
substrates per unit area is directly related to the flow of water
applied at the top (Fig. 5). PU retains most water, 0.77 to 2.05 L m�2

(average of 1.42 L m�2, average error of 6.37%), followed by PAePP,
0.66 to 1.60 L m�2 (average of 1.15 L m�2, average error of 5.98%),
while PR retained between 0.34 and 0.75 L m�2 (average of
0.55 L m�2, average error of 5.60%). These results are reasonable as
PR is a more hydrophobe material so a higher flow of water was
observed running by the surface of the substrate. PU presents more
porosity which increments its ability to retain water.
3.2. Pressure drop

The pressure drop data of the three substrates samples, obtained
in the wind tunnel at different air speeds and water flows, both
with and without vegetation, are shown in Fig. 6.

As expected, increasing the speed of air passing through the pad
also increments the pressure drop. For the range of speeds between
0.25 and 1 m s�1, PAdPP presents the highest pressure drop,
between 3.57 Pa (dry without vegetation) and 71.11 Pa
(770 L h�1 m�2 with vegetation), followed by PR, between 3.10 Pa
(dry without vegetation) and 26.65 Pa (770 L h�1 m�2 with vege-
tation). For PU this value varied between 1.78 Pa (dry without
vegetation) and 9.23 Pa (770 L h�1 m�2 with vegetation). The lower
pressure drop in all substrates occurs without vegetation and in dry
conditions and it increases with vegetation and a higher water flow.
PU shows lower pressure drop due to its higher porosity.

The presence of vegetation increased the pressure drop, as both
the root system and the leaf mass offer greater resistance to the air
lyurethane (PU); (c) PolyamideePolypropylene (PAePP).



Fig. 8. Saturation efficiency vs. air speed: (a) Polyester (PR); (b)

Fig. 7. Pressure drop vs. air speed: (a) without vegetation; (b) with vegetation.
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flow. This is true for all substrates under all experimental condi-
tions. Average increases of pressure loss are 47.88% for PR, 42.59%
for PU and 58.34% for PAePP.

For all three substrates, the higherwaterflowapplied, the greater
the pressure drop for a given air velocity. In the case of PR the pres-
sure drop increases from 63.77% to 81.55% at 0 and 615 L h�1 m�2,
respectively, and from 6.02% to 20.22% at 615 and 770 L h�1 m�2,
respectively. For PU, these increases are 30.27e35.57% and
1.75e4.73% respectively. The highest pressure drop increases were
with PAePP, 127.94e266.99% and 14.62e46.43% respectively. This
may be due to the reduction of the panel porosity (m3 m�3) as the
water layer that moves over the internal surface is higher and
reduces the volume of air per unit volume.

Comparing the three types of substrates with and without the
presence of vegetation for different tested flows (Fig. 7), PU offers
least resistance to the air flow, followed by PR, with increases of
101.54e164.23% without vegetation and 113.24e198.96% with
vegetation. PAePP produces the highest pressure drop with
increases of 150.00e536.56% without vegetation and
136.32e539.87% with vegetation compared to PU.

3.3. Air saturation efficiency

Generally speaking, at higher air speeds, the contact time
between the air and water is lower, decreasing the degree of satu-
ration of the air, and therefore lowering the saturation efficiency
(Fig. 8). The same applies to the specific surface of the substrate;
when it is reduced, the surface of contact between water and air is
also reduced, and therefore air saturation efficiency is lower.

For the range of speeds between 0.25 and 1 m s�1, PAePP
presents the highest efficiency: between 45.45% (770 L h�1 m�2

with vegetation) and 26.66% (615 L h�1 m�2 without vegetation),
Polyurethane (PU); (c) PolyamideePolypropylene (PAePP).



Fig. 10. Water consumption vs. air speed: (a) Polyester (PR); (b)

Fig. 9. Saturation efficiency vs. air speed: (a) without vegetation; (b) with vegetation.
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followed by PU which varies between 40.89% (770 L h�1 m�2 with
vegetation) and 7.39% (770 L h�1m�2 without vegetation). PR is less
efficient: between 25.18% (770 L h�1 m�2 with vegetation) and
11.59% (615 L h�1 m�2 without vegetation). For air speeds over
0.5 m s�1, PR is slightly superior to PU.

The high saturation efficiency for PAePP is related to its high
resistance to air flow showed previously. PR retains less water
which affects to the contact surface between air and water.
Therefore, less water evaporates and the efficiency is lower.

Taking into account the water flows, the results obtained show
no differences in air saturation efficiency for PR and PAePP when
the flow of water increases. On the other hand, again due to its
higher porosity, the efficiency of PU with vegetation increases by
around 17.84% if the water flow is higher.

The presence of vegetation increases air saturation efficiency in
the three substrates because it creates greater resistance to the air
flow, resulting in longer contact with water and an increase in
evaporation (Fig. 9). The average rise in efficiency due to the
presence of vegetationwas highest for PU (132.97%), followed by PR
and PAePP (53.57% and 26.64%, respectively).

3.4. Specific water consumption

Water consumption is an important parameter due to the
shortage of this resource. This value is used to design the irrigation
system of the living wall and to choose a suitable pump for water
recirculation. The amount of water evaporated by the substrate is
related to the air temperature and humidity, the speed of the air
flow and the substrate characteristics (thickness, transfer surface,
presence of vegetation, etc.).

Fig. 10 shows the specific water consumption for the three types
of substrates studied at different air and water flows. It is expressed
Polyurethane (PU); (c) PolyamideePolypropylene (PAePP).



Fig. 11. Water consumption vs. air speed: (a) without vegetation; (b) with vegetation.
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as liters of water evaporated per hour per square meter and �C
reduction in temperature (Eq. (5)). As the speed of the air flow
increases, so does water consumption. For a range of speeds
between 0.25 and 1 m s�1, average specific water consumption of
the three types of substrate without vegetation are 0.45 and
1.45 L h�1 m�2 �C�1, respectively. With vegetation, the averages are
between 0.55 and 1.79 L h�1 m�2 �C�1. This means that water
consumption is on average 22.83% higher due to the presence of
vegetation.

Comparison of the substrates reflects minor differences (Fig. 11).
PR presents the highest specific water consumption, between 14.4%
and 23% (without vegetation) and 22.48% and 51.82% (with vege-
tation) greater than PAePP. Compared to PU, this increase is
between 22% and 42.5% without vegetation and from 39.6% to
52.3% with vegetation.

These results show the relation between specific water
consumption and saturation efficiency. In order to evaporate the
same amount of water (me), the specific water consumption is
lower when the saturation efficiency increases.
4. Conclusions

Active living walls are a potent new tool to improve the indoor
environment by incorporating nature and vegetation into interiors.
However, the design process of these systems is complex and
involves a prior study of some of the main elements such as the
substrate used for plant development. In this work, three different
substrates were tested in order to obtain their operational param-
eters and their suitability for use in active living walls.

The equipment designed for measurement and data logging and
the frame to accommodate the substrates in the wind tunnel, have
proved to be suitable for carrying out the tests due to their versa-
tility and ease of use.

A substrate with high water retention foments vegetative
growth. The water retained by the substrate without vegetation
increases when the water flow is higher. PU retains more water
than the others (between 0.77 and 2.05 L m�2), though the
performance of PAePP is also good. PR presents the worst water
retention values (0.34e0.75 L m�2).

The resistance to air flow (pressure drop) through the three
substrates increases at high air speeds and water flows. High air
speeds are not recommended, as they lead to high resistance,
damage to vegetation and substrate desiccation and low saturation
efficiencies. The recommended range of air speed is between 0.25
and 0.5 m s�1. In this range, PAePP shows the largest pressure drop
followed by PR. An air flow of over 770 L h�1 m�2 produces
undesirable leaking of water from the substrate, and so ventilators
should be chosen carefully in order to provide a correct speed and
flow. As for the water flow, it should be enough to saturate the
substrate but without increasing the pressure drop in excess.

The air saturation efficiency drops as the speed of the air passing
through the substrate increases, and it is slightly affected by the
increase in the flow of water. For the correct interval of speeds,
PAePP proved to be themost efficient while PRwas the least. Water
consumption is also higher when air speed increases.

The presence of vegetation produces greater resistance to the air
flow and increases air saturation, though it obviously leads to
increased water consumption (22.6% on average). The average
increase in the pressure drop due to the presence of vegetationwas
highest for PAePP (58.3%) and lowest for PU. The average increase
in efficiency due to the presence of vegetation was high for PU but
lower for PR and PAePP.

Taking into account all the parameters, PAePP performs best
(high saturation efficiency, average water retention capacity and
low water consumption), even though it presents higher drops in
pressure. PU offers least resistance and has an average level of
efficiency, but its water consumption and water retention capacity
are high. PR showed the worst saturation efficiency, average pres-
sure drop and high water consumption.

Acknowledgments

This work was funded by projects AGL2010-22284-C03-01 of
the Ministerio de Ciencia e Innovación of Spain and P09-AGR-4593
of the Junta de Andalucía, and is based upon work supported by
OTRI (University of Seville) under the Program for Technology
Transfer Activities 2010.

References

[1] AAE. Estructura del consumo de energía eléctrica por sectores de actividad en
2007. Sevilla, Spain: Agencia Andaluza de la Energía. Consejería de Innova-
ción, Ciencia y Empresa de la Junta de Andalucía; 2007.

[2] IDAE. El Plan de acción de ahorro y eficiencia energética y la rehabilitación
energética. Spain: Ministerio de Industria, Turismo y Comercio de España;
2008.

[3] IEA. Energy technology perspectives 2010, scenarios & strategies to 2050.
France: International Energy Agency; 2010.

[4] Smith STh, Hanby VI, Harpham C. A probabilistic analysis of the future
potential of evaporative cooling systems in a temperate climate. Energ Build
2011;43:507e16.

[5] Briz J. Naturación Urbana: cubiertas ecológicas y mejora medioambiental.
Madrid, Spain: Mundi-Prensa; 2003.

[6] Pérez G, Rincón L, Vila A, González JM, Cabeza LF. Green vertical systems for
buildings as passive systems for energy savings. Appl Energy 2011;88(12):
4854e9.

[7] Kontoleon KJ, Eumorfopoulou EA. The effect of the orientation and proportion
of a plant-covered wall layer on the thermal performance of a building zone.
Build Environ 2010;45:1287e303.

[8] Blanc P. The vertical garden: from nature to the City. W. W. Norton & Co.;
2008.

[9] Darlington A, Dixon M, Pilger C. The use of biofilters to improve indoor air
quality: the removal of toluene, TCE and formaldehyde. Life Support
Biosphere Sci 1998;5:63e9.

[10] Perini K, Ottelé M, Fraaij ALA, Haas EM, Raiteri R. Vertical greening systems
and the effect on air flow and temperature on the building envelope. Build
Environ 2011;46:2287e94.



A. Franco et al. / Building and Environment 51 (2012) 370e378378
[11] Institute of Physics in Berlin-Adlershof. Urban ecological model projects,
Berlin Senate for Urban Development. Available in: http://www.a.tu-berlin.
de/gte/forschung/Adlershof/%0afaltblatt_institut_physik_engl.pdf; 2002.

[12] Fernandez-Cañero R, Pérez-Urrestarazu L, Franco A. Assessment of the cooling
potential of an indoor living wall using different substrates in a warm climate.
Indoor and Built Environ. doi:10.1177/1420326X11420457, in press.

[13] Cheng CY, Cheung K, Chu LM. Thermal performance of a vegetated cladding
system on facade walls. Build Environ 2010;45:1779e87.

[14] SchmidtM.Theevapotranspirationofgreenedroofsand façades. In: Fourthannual
greening rooftops for sustainable communities, Conference, Boston, USA; 2006.

[15] Currie BA, Bass B. Estimates of air pollution mitigation with green plants and
green roofs using the UFORE model. In: Proc. of 3rd north American green roof
conference greening rooftops for sustainable communities, Washington, 4e6
May 2005: pp. 495e511.

[16] Tuomainen M, Smolander J, Kurnitski J, Palonen J, Seppanen O. Modelling the
cost effects of the indoor environment. In: Proceedings of indoor air, Mon-
terey, California; 2002, pp. 814e819.

[17] Ottelé M, van Bohemen HH, Fraaij AL. Quantifying the deposition of particulate
matter on climber vegetation on living walls. Ecol Eng 2010;36(2):154e62.

[18] Dunnett NP, Kingsbury N. Planting green roofs and living walls. Portland:
Timber Press; 2004.

[19] Ushada M, Murase H. Design of customisable greening material using swarm
modelling. Biosystems Eng 2009;104(2):169e83.

[20] Ip K, Lam M, Miller A. Shading performance of a vertical deciduous climbing
plant canopy. Build Environ 2010;45(1):81e8.

[21] Darlington A, ChanM,Malloch D, Pilger C, DixonMA. The biofiltration of indoor
air quality: implications for air indoor air. Indoor Air 2000;10(1):39e46.

[22] Meier K. Strategic landscaping and air-conditioning savings: a literature
review. Energ Build 2010;15e16:479e86.

[23] ASHRAE. ASHRAE Handbook-Fundamentals. Atlanta, GA (EEUU): American
Society of Heating, Refrigerating and Air-Conditioning; 2009.

[24] Darlington A, Dat JF, Dixon MA. The biofiltration of indoor air: air flux and
temperature influences the removal of toluene, ethylbenzene, and xylene.
Environ Sci Technol 2001;35:240e6.

[25] Birkeland J. Eco-retrofitting with building integrated living systems. In:
Proceedings of the 3rd CIB international conference on smart and sustainable
built environment, SASBE09, Delft, Netherlands. 2009.
[26] Valera DL, Álvarez AJ, Molina FD. Aerodynamic analysis of several insect-proof
screens used in greenhouses. Span J of Agric Res 2006;4(4):273e9.

[27] Franco A, Valera DL, Madueño A, Peña A. Influence of water and air flow on
the performance of cellulose evaporative cooling pads used in mediterranean
greenhouses. Trans ASABE 2010;53(2):565e76.

[28] Fang FM, Chen JC, Hong YT. Experimental and analytical evaluation of flow in
a square-to-square wind tunnel contraction. J Wind Eng Ind Aerodyn 2001;
89:247e62.

[29] Liao CM, Chiu KH. Wind tunnel modeling the system performance of alter-
native evaporative cooling pads in Taiwan region. Build Environ 2002;37:
177e87.

[30] Wang Z, Zhang JS. Characterization and performance evaluation of a full-scale
activated carbon-based dynamic botanical air filtration system for improving
indoor air quality. Build Environ 2011;46:758e68.

[31] Franco A, Valera DL, Peña A, Pérez AM. Aerodynamic analysis and CFD
simulation of several cellulose evaporative cooling pads used in Mediterra-
nean greenhouses. Comput Electron Agr 2011;76:218e30.

Nomenclature

A: surface area of substrate media (m2)
Cpa: specific heat of dry air (kJ kg�1 K�1)
Cw: specific water consumption (kg h�1 m�2 �C�1)
ma: air mass flow rate (kg h�1)
me: water evaporation rate (kg h�1)
mv1, mv2: inlet and outlet water vapor flow rate, respectively (kg h�1)
Qa: volumetric air flow rate (m3 h�1)
T1, T2: inlet and outlet dry-bulb temperature (�C)
Twb: thermodynamic wet-bulb temperature of the inlet air
v: air velocity (m s�1)
VOC: volatile organic compounds
W1, W2: inlet and outlet humidity ratio, respectively ðkgw kg�1

a Þ

Greek letters
h: air saturation efficiency (%)
ra: mass density of air (kg m�3)
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