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The standard definition of tissue P systems includes a special alphabet whose elements are assumed to appear 
in the initial configuration of the system in an arbitrarily large number of copies. These objects reside in a 
distinguished place of the system, called the environment. Such potentially infinite supply of objects seems 
an unfair tool when designing efficient solutions to computationally hard problems in the framework of 
membrane computing, by performing a space–time trade-off. This paper deals with computational aspects 
of tissue P systems with cell division where there is no environment having the property mentioned above. 
Specifically, we prove that the polynomial complexity classes associated with tissue P systems with cell 
division and with or without environment are actually identical. As a consequence, we conclude that it is 
not necessary to have infinitely many copies of some objects in the initial configuration in order to solve 
NP–complete problems in an efficient way.
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1. Introduction

Membrane computing is a branch of Natural Computing initiated by Gh. Păun at the end of
1998 [8]. It is inspired by the structure and functioning of the living cells, in the following
sense: the foundational paper introduces a special kind of distributed parallel devices, called
transition P systems, based on the notion of a membrane structure containing objects (chemicals)
inside. Formally, such a structure consists of a rooted tree whose nodes are an abstraction of
biological membranes (the hierarchy induced by the parent–child relation of nodes in the tree
captures in a natural way the situation of a membrane being nested into another one). The root
of the tree corresponds to the skin membrane that delimits the inner part of the cell separating it
from the outside region. The leaves of the tree are called elementary membranes. In transition P
systems, there is a distinguished region called environment which plays a passive role. Initially,
the environment is empty and along any computation, some objects can be released into the
environment moving out of the skin membrane of the system. However, in this model, it is not
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allowed to send an object from the environment into any membrane, since the environment has
no associated rules.

A computational complexity theory in membrane computing has been developed and polyno-
mial complexity classes have been introduced trying to capture the tractability concept for decision
problems. An interesting variant of P systems, called P systems with active membranes, inspired
by membrane division processes (mitosis) [9], is able to produce an exponential workspace in
terms of the number of membranes and objects in linear time. In that framework, efficient solutions
to computationally hard problems have been provided.

In this paper, we deal with another type of devices in membrane computing, called tissue P sys-
tems, inspired by intercellular communication in tissues and cooperation between neurons. Instead
of considering a hierarchical arrangement of membranes structured by a rooted tree, membranes
(called cells in this new framework) are placed in the nodes of a directed graph. From the seminal
definitions of tissue P systems [5,6], several research lines have been developed and other variants
have arisen. For example, it is worth recalling here the solution of SAT presented in [1] using
cell-like symport/antiport P systems with membrane division, indicating the possibility to adapt
the solution for the case of having an empty environment.

One of the most interesting variants of tissue P systems was presented in [11]. In that paper,
the definition of tissue P systems is combined with the one of P systems with active membranes,
yielding tissue P systems with cell division. In this kind of tissue P systems, there exists replication,
that is, the two new cells generated by a division rule have exactly the same objects except for at
most a pair of different objects. Another relevant ingredient of these models consists of a special
alphabet of objects initially contained in a distinguished region of the system: the environment. In
tissue P systems, the environment plays an active role in the sense that not only can it receive objects
from different cells of the system but some cells can also receive objects from the environment
along a computation of the system. Besides, the objects initially placed in the environment are
assumed to appear in an arbitrarily large amount of copies. In this paper, the mentioned property
above is analysed from the computational complexity point of view. That is, we study the efficiency
of tissue P systems with cell division such that their alphabet of the environment is empty.

The paper is organized as follows. In the next section, some preliminary concepts and defini-
tions are given. Section 3 is devoted to tissue P systems with cell division, and tissue P systems
without environment are introduced. Recognizer tissue P systems with cell division and polyno-
mial complexity classes associated with this kind of P systems are also defined in this section. A
technical result is given concerning recognizer tissue P systems where only communication rules
are allowed. In Section 4, the concept of efficient simulation of a recognizer tissue P system is
given, and a tissue P system with cell division and without environment simulating in an efficient
way a tissue P system with cell division, is provided. Section 5 is devoted to the main result of the
paper: the polynomial complexity classes of recognizer tissue P systems with cell division with
or without environment are the same. Finally, conclusions and ideas for further work are given in
Section 6.

2. Preliminaries

An alphabet, �, is a non-empty set whose elements are called symbols. An ordered finite sequence
of symbols is a string or word. If u and v are strings over �, then so is their concatenation uv,
obtained by juxtaposition, that is, writing u and v one after the other. The number of symbols in a
string u is the length of the string and it is denoted by |u|. As usual, the empty string (with length
0) will be denoted by λ. The set of all strings over an alphabet � is denoted by �∗. In algebraic
terms, �∗ is the free monoid generated by � under the operation of concatenation. Subsets, finite
or infinite, of �∗ are referred to as languages over �.



The set of symbols occurring in a string u ∈ �∗ is denoted by alph(u).
The Parikh vector associated with a string u ∈ �∗ with respect to the alphabet � =

{a1, . . . , ar} ⊆ � is ��(u) = (|u|a1 , . . . , |u|ar ), where |u|ai denotes the number of occurrences
of symbol ai in string u. This is called the Parikh mapping associated with �. Notice that, in this
definition, the ordering of the symbols from � is relevant. If �1 = {ai1 , . . . , air } ⊆ �, then we
define ��1(u) = (|u|ai1

, . . . , |u|air
), for each u ∈ �∗.

A multiset m over a set A is a pair (A, f ), where f : A → N is a mapping. If m = (A, f ) is a
multiset, then its support is defined as supp(m) = {x ∈ A : f (x) > 0}. A multiset is empty (resp.
finite) if its support is the empty set (resp. a finite set). If m = (A, f ) is a finite multiset over A and
supp(m) = {a1, . . . , ak}, then it will be denoted as m = {af (a1)

1 , . . . , af (ak)

k }. That is, superscripts
indicate the multiplicity of each element, and if f (x) = 0 for x ∈ A, then element x is omitted.
A finite multiset m = {af (a1)

1 , . . . , af (ak)

k } can also be represented by the string af (a1)

1 · · · af (ak)

k over
the alphabet {a1, . . . , ak}. Nevertheless, all permutations of this string identify the same multiset
m precisely. Throughout this paper, we speak about ‘the finite multiset m’, where m is a string,
meaning ‘the finite multiset represented by the string m’. If m1 = (A, f1), m2 = (A, f2) are multisets
over A, then we define the union of m1 and m2 as m1 + m2 = (A, g), where g = f1 + f2, that is,
g(a) = f1(a) + f2(a), for each a ∈ A.

For any sets A and B, the relative complement A \ B of B in A is defined as follows: A \ B =
{x ∈ A : x /∈ B}.

Finally, for any set A, we denote |A| the cardinal (number of elements) of A, as usual.
In what follows, we give a brief overview on the basic notions and terminology of tissue P

systems. For further details, see for example, [10] or [12].

3. Tissue P systems with cell division

Definition 3.1 A tissue P system with cell division of degree q ≥ 1 is a tuple � =
(�, E , M1, . . . , Mq, R, iout), where:

• � is a finite alphabet.
• E ⊆ �.
• M1, . . . , Mq are strings over �.
• R is a finite set of rules of the following forms:

(i) Communication rules: (i, u/v, j), for i, j ∈ {0, 1, . . . , q}, i �= j, u, v ∈ �∗, |u| + |v| > 0;
(ii) Division rules: [a]i → [b]i[c]i, where i ∈ {1, . . . , q}, i �= iout and a, b, c ∈ �.

• iout ∈ {0, 1, . . . , q}.

A tissue P system with cell division � = (�, E , M1, . . . , Mq, R, iout), of degree q, can be
viewed as a set of q cells, labelled by 1, . . . , q such that: (a) M1, . . . , Mq represent the finite
multisets of objects initially placed into the q cells of the system; (b) E is the set of objects
initially located in the environment of the system, all of them available in an arbitrary number of
copies; and (c) iout represents a distinguished region which will encode the output of the system.
We use the term region i (0 ≤ i ≤ q) to refer to cell i in the case 1 ≤ i ≤ q and to refer to the
environment in the case i = 0.

A communication rule (i, u/v, j) is called a symport rule if u = λ or v = λ. A symport rule
(i, u/λ, j), with i �= 0, j �= 0, provides a virtual arc from cell i to cell j. A communication rule
(i, u/v, j) is called an antiport rule if u �= λ and v �= λ.An antiport rule (i, u/v, j), with i �= 0, j �= 0,
provides two arcs: one from cell i to cell j and the other from cell j to cell i. Thus, every tissue
P system has an underlying directed graph whose nodes are the cells of the system and the arcs
are obtained from communication rules. In this context, the environment can be considered as



a virtual node of the graph such that its connections are defined by communication rules of the
form (i, u/v, j), with i = 0 or j = 0.

When applying a rule (i, u/v, j), the objects of the multiset represented by u are sent from region
i to region j and, simultaneously, the objects of multiset v are sent from region j to region i. The
length of communication rule (i, u/v, j) is defined as |u| + |v|.

When applying a division rule [a]i → [b]i[c]i, under the influence of object a, the cell with
label i is divided into two cells with the same label; in the first copy, object a is replaced by
object b, in the second one, object a is replaced by object c; all the other objects residing in cell
i are replicated and copies of them are placed in the two new cells. The output region iout cannot
be divided.

The rules of a tissue P system with cell division are applied in a non-deterministic maximally
parallel manner. At each step, rules to be applied are selected non-deterministically (some of them
may be applied more than once), in such a way that no further applicable rule can be added to
the selection, with the following important remark: if a cell divides, then the division rule is the
only one which is applied for that cell at that step; the objects inside that cell cannot participate in
any communication rule. In other words, before division a cell interrupts all its communication
channels with the other cells and with the environment. The new cells resulting from division
will interact with other cells or with the environment only at the next step – providing that
they do not divide once again. The label of a cell precisely identifies the rules which can be
applied to it.

An instantaneous description or a configuration at any instant of a tissue P system is described
by all multisets of objects over � associated with all the cells present in the system, and the
multiset of objects over � \ E associated with the environment at that moment. Recall that there
are infinitely many copies of objects from E in the environment, and hence this set is not actually
changed along the computation. The initial configuration is (M1, . . . , Mq; ∅). A configuration is
a halting configuration if no rule of the system is applicable to it.

Consider a tissue P system �. We say that configuration C1 yields configuration C2 in one
transition step, denoted by C1 ⇒� C2, if we can pass from C1 to C2 by applying a maximal
multiset of rules from R, following the previous remarks. A computation of � is a (finite or
infinite) sequence of configurations such that:

(1) the first term of the sequence is the initial configuration of the system;
(2) each non-initial configuration of the sequence is obtained from the previous configuration by

applying rules of the system in a maximally parallel manner as explained above; and
(3) if the sequence is finite (called halting computation), then the last term of the sequence is a

halting configuration.

All computations start from an initial configuration and proceed as stated above; only halting
computations give a result, which is encoded by the objects present in the output cell iout in the
halting configuration.

If C = {Ct}t<r+1 (r ∈ N) is a halting computation of �, starting from the initial configuration
C0 and having Cr as a halting configuration, then the length of C, denoted by |C|, is r. That is,
|C| measures the number of steps of the computation, or equivalently the number of non-initial
configurations (C1, . . . , Cr).

We denote by Ct(i) the multiset obtained as the union of the multisets of objects over � contained
in all cells labelled by i (by applying division rules, different cells with the same label can be
created) at configuration Ct , and Ct(0) denotes the multiset of objects over � \ E contained in the
environment at configuration Ct . Finally, we denote by C∗

t the multiset Ct(0) + Ct(1) + · · · + Ct(q).

Definition 3.2 A tissue P system with cell division and without environment is a tissue P system
with cell division such that the alphabet of the environment is an empty set.



Usually, we omit the alphabet of the environment in the tuple describing a tissue P system with
cell division and without environment.

3.1 Recognizer tissue P systems

Let us recall that a decision problem is a pair (IX , θX), where IX is a language over a finite alphabet
(whose elements are called instances) and θX is a total Boolean function over IX . Many abstract
problems are not decision problems. For example, in combinatorial optimization problems, some
value must be optimized (minimized or maximized). In order to deal with such problems, they
can be transformed into roughly equivalent decision problems by supplying a target/threshold
value for the quantity to be optimized, and then asking whether this value can be attained.

A natural correspondence between decision problems and languages can be established as fol-
lows. Given a decision problem X = (IX , θX), its associated language is LX = {w ∈ IX : θX(w) =
1}. Conversely, given a language L, over an alphabet �, its associated decision problem is
XL = (IXL , θXL ), where IXL = �∗, and θXL = {(x, 1) : x ∈ L} ∪ {(x, 0) : x /∈ L}. The solvability of
decision problems is defined through the recognition of the languages associated with them.

In order to study the computing efficiency, the notions from classical computational complexity
theory are adapted for membrane computing, and a special class of cell-like P systems is introduced
in [14]: recognizer P systems (called accepting P systems in a previous paper [13]). For tissue
P systems, with the same idea as recognizer cell-like P systems, recognizer tissue P systems are
introduced in [11].

Definition 3.3 A recognizer tissue P system with cell division of degree q ≥ 1 is a tuple � =
(�, E , �, M1, . . . , Mq, R, iin, iout), where:

• (�, E , M1, . . . , Mq, R, iout) is a tissue P system with cell division of degree q ≥ 1, as defined
in the previous section.

• The working alphabet � has two distinguished objects yes and no, at least one copy of them
is present in some initial multisets M1,…, Mq, but none of them is present in E .

• � is an (input) alphabet strictly contained in � such that E ∩ � = ∅.
• M1, . . . , Mq are strings over � \ �.
• iin ∈ {1, . . . , q} is the input cell.
• The output region iout is the environment.
• All computations halt.
• If C is a computation of �, then either object yes or object no (but not both) must have been

released into the environment, and only at the last step of the computation.

Definition 3.4 A recognizer tissue P system with cell division and without environment of degree
q ≥ 1 is a tuple � = (�, E , �, M1, . . . , Mq, R, iin, iout), where:

• (�, E , �, M1, . . . , Mq, R, iin, iout) is a recognizer tissue P system with cell division, according
to Definition 3.3.

• E = ∅.
• iout ∈ {1, . . . , q}, that is, the output region iout is a distinguished cell.

For each multiset m ∈ �∗, the computation of the system � with input m ∈ �∗ starts from the
configuration of the form (M1, . . . , Miin + m, . . . , Mq; ∅), that is, the input multiset m has been
added to the contents of the input cell iin, and we denote it by � + m. Therefore, we have an
initial configuration associated with each input multiset m (over the input alphabet �) in this kind
of systems.



Given a recognizer tissue P system (with or without environment) and a halting computation
C = {Ct}t<r+1 of � (r ∈ N), we define the result of C as follows:

Output(C) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
yes if �{yes,no}(Mr,iout ) = (1, 0) and

�{yes,no}(Mt,iout ) = (0, 0) for t = 0, . . . , r − 1,

no if �{yes,no}(Mr,iout ) = (0, 1) and

�{yes,no}(Mt,iout ) = (0, 0) for t = 0, . . . , r − 1,

where � is the Parikh mapping, and Mt,iout is the multiset over � \ E associated with the output
region at the configuration Ct , in particular, Mr,iout is the multiset over � \ E associated with the
output region at the halting configuration Cr .

We say that a computation C is an accepting computation (respectively, rejecting computation)
if Output(C) = yes (respectively, Output(C) = no), that is, if object yes (respectively, object
no) appears in the output region associated with the corresponding halting configuration of C,
and neither object yes nor no appears in the output region associated with any non-halting
configuration of C.

Let us notice that if a recognizer tissue P system

� = (�, E , �, M1, . . . , Mq, R, iin, iout)

has a symport rule of the type (i, λ/u, 0), then alph(u) ∩ (� \ E) �= ∅, that is, the multiset u
must contain some object from � \ E because on the contrary, all computations of � would be
non-halting.

For each natural number k ≥ 1, we denote by TDC(k) (respectively, TDS(k) or TDA(k)) the
class of recognizer tissue P systems with cell division and with communication rules (respectively,
allowing only symport or antiport rules) of length at most k. In the case of tissue P systems without
environment, we denote by T̂DC(k) the class of recognizer tissue P systems with cell division
and with communication rules of length at most k.

3.2 Polynomial complexity classes of recognizer tissue P systems

Next, we define what solving a decision problem in the framework of tissue P systems in a uniform
and an efficient way means. Bearing in mind that they provide devices with a finite description,
a numerable family of tissue P systems will be necessary in order to solve a decision problem.

Definition 3.5 We say that a decision problem X = (IX , θX) is solvable in a uniform way and
polynomial time by a family Π = {�(n) : n ∈ N} of recognizer tissue P systems with cell division
(with or without environment) if the following holds:

• The family Π is polynomially uniform by Turing machines, that is, there exists a deterministic
Turing machine working in polynomial time which constructs the system �(n) from n ∈ N.

• There exists a pair (cod, s) of polynomial-time computable functions over IX such that:
(i) for each instance u ∈ IX , s(u) is a natural number, and cod(u) is an input multiset of the

system �(s(u));
(ii) for each n ∈ N, s−1(n) is a finite set;

(iii) the family Π is polynomially bounded with regard to (X, cod, s), that is, there exists a
polynomial function p, such that for each u ∈ IX , every computation of �(s(u)) with input
cod(u) is halting and it performs at most p(|u|) steps;

(iv) the family Π is sound with regard to (X , cod, s), that is, for each u ∈ IX , if there exists an
accepting computation of �(s(u)) with input cod(u), then θX(u) = 1;



(v) the family Π is complete with regard to (X , cod, s), that is, for each u ∈ IX , if θX(u) = 1,
then every computation of �(s(u)) with input cod(u) is an accepting one.

From the above soundness and completeness conditions, we deduce that every P system �(n)

is confluent, in the following sense: every computation of a system with the same input multiset
must always give the same answer.

Let R be a class of recognizer tissue P systems. We denote by PMCR the set of all decision prob-
lems which can be solved in a uniform way and polynomial time by means of families of systems
from R. The class PMCR is closed under complement and polynomial-time reductions [13].

Next, we prove two technical results concerning recognizer tissue P systems.

Proposition 3.6 Let � = (�, E , �, M1, . . . , Mq, R, iin, iout) be a recognizer tissue P system
with communication rules with length at most k, k ≥ 2, and without cell division. Let M =
|M1 + · · · + Mq| and let C = (C0, C1, . . . , Cm) be a computation of �. The following holds:

(a) |C∗
0 | = M and for each t, 0 ≤ t < m, we have

|C∗
t+1| ≤ (|C∗

t | + M) · (k − 1).

(b) For each t, 1 ≤ t ≤ m, we have

|C∗
t | ≤ 2M(k − 1)t + M(k − 1)t−1 + · · · + M(k − 1).

Proof (a) Obviously, |C∗
0 | = |C0(0) + C0(1) + · · · + C0(q)| = |M1 + · · · + Mq| = M. Let us

compute C∗
t+1 = Ct+1(0) + Ct+1(1) + · · · + Ct+1(q).

First, let us see what is the contribution to C∗
t+1 of multiset Ct(1) + · · · + Ct(q).

• Multiset (Ct(1) + · · · + Ct(q))a: some objects from Ct(1) + · · · + Ct(q), generically denoted by
a′s, that either do not evolve or they evolve by the application of communication rules between
different cells of the system. These objects will pass to Ct+1(1) + · · · + Ct+1(q), directly in the
first case, and after an interchange process, in the second case.

• Multiset (Ct(1) + · · · + Ct(q))b: some objects from Ct(1) + · · · + Ct(q), generically denoted
by b′s, evolve by the application of rules of the type (i, u/v, 0), where u is a multiset of b′s
objects. These objects b′s allow to bring objects from the environment into cells i. Each such
object b can bring in a cell at most k − 1 objects from the environment. Besides, any object
b ∈ � \ E acting in these rules must be considered in the multiset Ct+1(0).

Now, let us see what is the contribution to C∗
t+1 of multiset Ct(0).

• Some objects from Ct(0) do not evolve and they directly pass to Ct+1(0).
• The remaining objects from Ct(0) will evolve by means of rules of the type (i, b′s/v, 0) or rules

of the type (i, λ/v, 0). In this last case, the string v must contain some objects from � \ E (at
least, some objects from Ct(0) that evolve). Then, the number of objects that can arrive into
cells by the application of these rules is, at most, M · (k − 1).

Hence,

|C∗
t+1| ≤ |Ct(0)| + |(Ct(1) + · · · + Ct(q))a| + |(Ct(1) + · · · + Ct(q))b| · (k − 1)M · (k − 1)

≤ |C∗
t | · (k − 1) + M · (k − 1) = (|C∗

t | + M) · (k − 1).

(b) We will prove the second part of the theorem by induction on t.
For t = 1, the result is trivial because of |C∗

1 | ≤ (|C∗
0 | + M) · (k − 1) = 2M · (k − 1).



Let t be such that 1 < t < r and the result holds for t. Then,

|C∗
t+1| ≤ (|C∗

t | + M) · (k − 1)

i.h.≤ (2M(k − 1)t + M(k − 1)t−1 + · · · + M(k − 1) + M) · (k − 1)

≤ 2M(k − 1)t+1 + M(k − 1)t + · · · + M(k − 1)2 + M(k − 1). �

Proposition 3.7 Let Π = {�(n) : n ∈ N} be a family of recognizer tissue P systems from
TDC(k), where k ≥ 2, solving a decision problem X = (IX , θX) in polynomial time. Let (cod, s)
be a polynomial encoding associated with that solution. There exists a polynomial function r(n)

such that for each instance, u ∈ IX , 2r(|u|) is an upper bound of the number of objects in all cells
of the system �(s(u)) + cod(u) along any computation.

Proof Let p(n) be a polynomial function such that for each u ∈ IX , every computation of
�(s(u)) + cod(u) is halting and it performs at most p(|u|) steps.

Let u ∈ IX be an instance of X and

�(s(u)) + cod(u) = (�, E , �, M1, . . . , Mq, R, iin, iout).

Let M = |M1 + · · · + Mq|. Let C = (C0, C1, . . . , Cm), 0 ≤ m ≤ p(|u|), be a computation of �.
First, let us suppose that we apply only communication rules at m consecutive transition steps.

From Proposition 3.6, we deduce that

(a) |C∗
0 | = M and |C∗

t+1| ≤ (|C∗
t | + M) · (k − 1), for each t, 0 ≤ t < m.

(b) |C∗
t | ≤ 2M(k − 1)t + M(k − 1)t−1 + · · · + M(k − 1), for each t, 1 ≤ t ≤ m.

Thus, if we apply in a consecutive way the maximum possible number of communication rules
(without applying any division rules) to the system �(s(u)) + cod(u), at any instant of any
computation of the system, 2M · (k − 1)p(|u|) is an upper bound of the number of objects in the
whole system.

Now, let us consider the effect of applying in a consecutive way the maximum possible number
of division rules (without applying any communication rules) to the system �(s(u)) + cod(u)

when the initial configuration has 2M · (k − 1)p(|u|) objects. After that an upper bound of the
number of objects in the whole system by any computation is 2M · (k − 1)p(|u|) · 2p(|u|) · p(|u|).
Hence, for each instance u ∈ IX , the number of objects in all cells of the system �(s(u)) + cod(u)

is, at most, M · (k − 1)p(|u|) · 2p(|u|)+1 · p(|u|).
Then, we consider a polynomial function r(n) such that

r(|u|) ≥ log(M) + p(|u|) · log(k − 1) + p(|u|) + 1 + log(p(|u|))
for each instance u ∈ IX . The polynomial function r(n) fulfils the property required. �

Corollary 3.8 Let Π = {�(n) : n ∈ N} be a family of recognizer tissue P systems with cell
division solving a decision problem X = (IX , θX) in polynomial time. Let (cod, s) be a polynomial
encoding associated with that solution. Then, there exists a polynomial function r(n) such that for
each instance u ∈ IX , 2r(|u|) is an upper bound of the number of objects from E which are moved
from the environment to all cells of the system �(s(u)) + cod(u) along any computation.

Proof It suffices to note that from Proposition 3.7, there exists a polynomial function r(n) such
that for each instance u ∈ IX , 2r(|u|) is an upper bound of the number of objects in all cells of the
system �(s(u)) + cod(u). �



4. Simulating tissue P systems with cell division by means of tissue P systems with cell
division and without environment

The goal of this section is to show that any recognizer tissue P system with cell division can be
simulated by a tissue P system with cell division and without environment in an efficient way.

First of all, we define the meaning of efficient simulations in the framework of recognizer tissue
P systems.

Definition 4.1 Let � and �′ be recognizer tissue P systems. We say that �′ simulates � in an
efficient way if the following holds:

(1) �′ can be constructed from � by a deterministic Turing machine working in polynomial time.
(2) There exists an injective function, f , from the set Compz(�) of computations of � onto the

set Comp(�′) of computations of �′ such that:
• There exists a deterministic Turing machine that constructs computation f (C) from

computation C in polynomial time.
• A computation C ∈ Comp(�) is an accepting computation if and only if f (C) ∈ Comp(�′)

is an accepting one.
• There exists a polynomial function p(n) such that for each C ∈ Comp(�), we have |f (C)| ≤

p(|C|).

Now, for every family of recognizer tissue P system with cell division solving a decision prob-
lem, we design a family of recognizer tissue P systems with cell division and without environment
efficiently simulating it, according to Definition 4.1.

Definition 4.2 Let Π = {�(n) : n ∈ N} be a family of recognizer tissue P systems solving a
decision problem X = (IX , θX) in polynomial time according to Definition 3.5, and let r(n) be a
polynomial function such that for each instance u ∈ IX , 2r(|u|) is an upper bound of the number of
objects from E which are moved from the environment to all cells of the system by any computation
of �(s(u)) + cod(u).

For each n ∈ N, let �(n) = (�, E , �, M1, . . . , Mq, R, iin, iout) be an element of the previous
family of degree q, and for the sake of simplicity, we write r instead of r(n). Let us consider the
recognizer tissue P system of degree q1 = 1 + q · (r + 2) + |E | with cell division and without
environment

S(�(n)) = (�′, �′, M′
0, M′

1, . . . , M′
q1

, R′, i′in, i′out)

defined as follows:

• �′ = � ∪ {αi : 0 ≤ i ≤ r − 1}.
• �′ = �.
• For each cell i ∈ {1, . . . , q} of �(n), there is a cell in S(�(n)) with the same label. In addition,

S(�(n)) has:
(i) r + 1 new cells, labelled by (i, 0), (i, 1), . . . , (i, r), respectively, for each i ∈ {1, . . . , q}.

(ii) A distinguished cell labelled by 0.
(iii) A new cell, labelled by lb, for each b ∈ E .



• Initial multisets: M′
lb

= {α0}, for each b ∈ E , and

M′
(i,0) = Mi

M′
(i,1) = ∅
...

...

M′
(i,r) = ∅

M′
i = ∅

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(1 ≤ i ≤ q)

• Set of rules:

R′ = R ∪ {[αj]lb → [αj+1]lb [αj+1]lb : b ∈ E ∧ 0 ≤ j ≤ r − 2}
∪ {[αp−1]lb → [b]lb [b]lb : b ∈ E}

∪
{(

lb,
b

λ
0

)
: b ∈ E

}
∪

{
g

(
(i, j),

a

λ
, (i, j + 1)

)
: a ∈ � ∧ 1 ≤ i ≤ q ∧ 0 ≤ j ≤ p − 1

}
∪ {((i, r), a/λ, i) : a ∈ � ∧ 1 ≤ i ≤ q}

• i′in = (iin, 0) and i′out = 0.

Let us notice that S(�(n)) can be considered as an extension of �(n) without environment, in the
following sense:

• � ⊆ �′, � ⊆ �′ and E = ∅.
• Each cell in �(n) is also a cell in S(�(n)).
• There is a distinguished cell in S(�(n)) labelled by 0 which plays the role of environment of

�(n).
• R ⊆ R′, and now 0 is the label of a ‘normal cell’ in S(�(n)).

In what follows throughout this section, we use �(n), r and S(�(n)) in the same context as in
the Definition 4.2.

Next, we analyse the structure of the computations of system S(�(n)) and we compare them
with the computations of �(n).

Lemma 4.3 Let C ′ = (C ′
0, C ′

1, . . .) be a computation of S(�(n)). For each t (1 ≤ t ≤ r), the
following holds:

• C′
t(i) = ∅, for 0 ≤ i ≤ q.

• For each 1 ≤ i ≤ q and 0 ≤ j ≤ r, we have

C′
t(i, j) =

{
Mi if j = t,

∅ if j �= t,

• For each b ∈ E , there exist 2t cells labelled by lb whose contents are

C ′
t(lb) =

{
αt if 1 ≤ t ≤ r − 1,

b if t = r,



Proof By induction on t.
Let us start with the basic case t = 1. In the initial configuration of system S(�(n)), C ′

0, the
following holds:

• C ′
0(i) = ∅, for 0 ≤ i ≤ q.

• For each 1 ≤ i ≤ q, we have C′
0(i, 0) = Mi, and C ′

0(i, j) = ∅, for 1 ≤ j ≤ r.
• For each b ∈ E , there exists only one cell labelled by lb whose contents is {α0}.
In configuration C ′

0, only the following rules are applicable:

• [α0]lb → [α1]lb [α1]lb , for each b ∈ E .
• ((i, 0), a/λ, (i, 1)), for each a ∈ supp(Mi).

Thus,

• For each i (1 ≤ i ≤ q), we have

C′
1(i) = ∅,

C ′
1(0) = ∅,

C ′
1(i, 0) = ∅,

C ′
1(i, 1) = Mi,

C ′
1(i, j) = ∅ for 2 ≤ j ≤ r.

• For each b ∈ E , there are two cells labelled by lb whose contents is {α1}.
Hence, the result holds for t = 1.

Let t be such that 1 ≤ t < r, and let us assume, by induction hypothesis, the result holds for t,
that is,

• C ′
t(i) = ∅, for 0 ≤ i ≤ q.

• For each 1 ≤ i ≤ q, and 0 ≤ j ≤ r, we have

C′
t(i, j) =

{
Mi if j = t,

∅ if j �= t,

• For each b ∈ E , there exist 2t cells labelled by lb whose contents is C ′
t(lb) = {αt} (because

t ≤ r − 1).

Then, in configuration C ′
t only the following rules are applicable:

(1) If t ≤ r − 2, the rules [αt]lb → [αt+1]lb [αt+1]lb , for each b ∈ E .
(2) If t = r − 1, the rules [αt]lb → [b]lb [b]lb , for each b ∈ E .
(3) ((i, t), a/λ, (i, t + 1)), for each a ∈ �.

From the application of rules of types (1) or (2) on the configuration C ′
t , we deduce that there are

2t+1 cells labelled by lb in C ′
t+1, for each b ∈ E , whose contents is {αt+1}, if t ≤ r − 2, or {b}, if

t = r − 1.
From the application of rules of type (3) on the configuration C ′

t , we deduce that

C ′
t+1(i, j) =

{
Mi if j = t + 1,

∅ if 0 ≤ j ≤ r ∧ j �= t + 1.



Bearing in mind that no other rule of system S(�(n)) is applicable, we deduce that C ′
t+1(i) = ∅,

for 0 ≤ i ≤ q.
This completes the proof of this Lemma. �

Lemma 4.4 Let C′ = (C ′
0, C ′

1, . . . ) be a computation of the tissue P system S(�(n)). In
configuration C ′

r+1 the following holds:

• C ′
r+1(0) = b2r

1 . . . b2r

α , where E = {b1, . . . , bα}.
• C ′

r+1(i) = Mi = C0(i), for 1 ≤ i ≤ q.
• C ′

r+1(i, j) = ∅, for 1 ≤ i ≤ q, 0 ≤ j ≤ r.
• There exist 2r empty cells labelled by lb, for each b ∈ E .

Proof From Lemma 4.3, in the configuration C ′
r the following holds:

• C ′
r(i) = ∅, for 0 ≤ i ≤ q.

• For each i (1 ≤ i ≤ q) we have

C′
r(i, j) =

{
Mi if j = r,

∅ if j �= r.

• For each b ∈ E , there exist 2r cells labelled by lb whose contents is {b}.
In configuration C ′

r , only the following rules are applicable:

• ((i, r), a/λ, i), for each a ∈ � ∩ supp(Mi).
• (lb, b/λ, 0), for each b ∈ E .

Thus,

• C ′
r+1(0) = b2r

1 . . . b2r

α , where E = {b1, . . . , bα}.
• C ′

r+1(i) = Mi = C0(i), for 1 ≤ i ≤ q.
• C ′

r+1(i, j) = ∅ , for 1 ≤ i ≤ q and 0 ≤ j ≤ r.
• There exist 2r empty cells labelled by lb, for each b ∈ E . �

Definition 4.5 Let C = (C0, C1, . . . , Cm) be a halting computation of �(n). Then, we define the
computation S(C) = (C ′

0, C ′
1, . . . , C ′

r , C ′
r+1, . . . , C ′

r+1+m) of S(�(n)) as follows:

• The initial configuration is:

C ′
0(i) = ∅ for 0 ≤ i ≤ q,

C′
0(i, 0) = C0(i) for 1 ≤ i ≤ q,

C ′
0(i, j) = ∅ for 1 ≤ i ≤ q and 1 ≤ j ≤ r,

C′
0(lb) = α0 for each b ∈ E .

• The configuration C ′
t , for 1 ≤ t ≤ r, is described by Lemma 4.3.

• The configuration C ′
r+1 is described by Lemma 4.4.

• The configuration C ′
r+1+s, for 0 ≤ s ≤ m, coincides with the configuration Cs of �, that is,

Cs(i) = C ′
r+1+s(i), for 1 ≤ i ≤ q. The contents of the remaining cells (excluding cell 0) at con-

figuration C′
r+1+s are equal to the contents of that cell at configuration C ′

r+1, that is, these cells
do not evolve after step r + 1.



That is, every computation C of �(n) can be ‘reproduced’ by a computation S(C) of S(�(n)) with
a delay: the evolution of the contents of cells 1, . . . , q in the computation of S(C) from step r + 1
to step r + 1 + m is a replica of the computation C of �(n).

From Lemmas 4.3 and 4.4, we deduce the following:

(a) S(C) is a computation of S(�(n)).
(b) S is an injective function from Comp(�(n)) onto Comp(S(�(n))).

Moreover, if r is a polynomial function on the size of �(n), then we have the following result.

Proposition 4.6 The tissue P system S(�(n)) defined in 4.2 simulates �(n) in an efficient way.

Proof In order to show that S(�(n)) can be constructed from �(n) by a deterministic Turing
machine working in polynomial time, it is enough to note that the amount of resources needed to
construct S(�(n)) from �(n) is polynomial in the size of the initial resources of �(n). Indeed,

(1) The size of the alphabet of S(�(n)) is |�′| = |�| + r.
(2) The initial number of cells of S(�(n)) is 1 + q · (r + 2) + |E |.
(3) The initial number of objects of S(�(n)) is the initial number of objects of �(n) plus |E |.
(4) The number of rules of S(�(n)) is |R′| = |R| + (r + 1) · |E | + |�| · q · (r + 1).
(5) The maximal length of a communication rule of S(�(n)) is equal to that of �(n).

From Lemmas 4.3 and 4.4, we deduce that:

(a) Every computation C ′ of S(�(n)) has associated a computation C of �(n) such that S(C) = C ′.
(b) The function S is injective.
(c) A computation C of � is an accepting computation if and only if S(C) is an accepting

computation of S(�(n)).

Finally, let us notice that if C is a computation of �(n) with length m, then S(C) is a computation
of S(�(n)) with length r + 1 + m. �

5. Computational complexity classes of tissue P systems with cell division and without
environment

In this section, we analyse the role of the environment in the efficiency of tissue P systems with
cell division. That is, we study the power of these P systems with respect to the computational
efficiency when the alphabet of the environment is an empty set.

Theorem 5.1 For each k ∈ N, we have PMCTDC(k+1) = PMC
̂TDC(k + 1).

Proof Let us recall that PMCTDC(1) = P (see [3] for details). Then,

P ⊆ PMC
̂TDC(1)

⊆ PMCTDC(1) = P.

Thus, the result holds for k = 0.
Let us show the result for k ≥ 1. Since T̂DC(k + 1) ⊆ TDC(k + 1), it suffices to prove that

PMCTDC(k+1) ⊆ PMC
̂TDC(k+1)

. For that, let X ∈ PMCTDC(k+1).
Let {�(n) : n ∈ N} be a family of tissue P systems from TDC(k + 1) solving X according to

Definition 3.5. Let (cod, s) be a polynomial encoding associated with that solution. Let u ∈ IX be
an instance of the problem X that will be processed by the system �(s(u)) + cod(u). According
to Proposition 3.7, let r(n) be a polynomial function such that 2r(|u|) is an upper bound of the



number of objects from E which are moved from the environment to all cells of the system by any
computation of �(s(u)) + cod(u) = (�, E , �, M1, . . . , Miin + cod(u), . . . , Mq1 , R, iin, iout).

Then, we consider the tissue P system without environment

S(�(s(u))) + cod(u) = (�′, �′, M′
0, M′

1, . . . , M′
iin + cod(u), . . . , M′

q1
, R′, i′in, i′out)

according to Definition 4.2, where q1 = 1 + q · (r(|u|) + 2) + |E |.
Therefore, S(�(s(u))) + cod(u) is a tissue P system from T̂DC(k + 1) such that it verifies the

following:

• A distinguished cell labelled by 0 has been considered, which will play the role of the
environment at the system �(s(u)) + cod(u).

• At the initial configuration, it has enough objects in cell 0 in order to simulate the behaviour of
the environment of the system �(s(u)) + cod(u).

• After r(n) + 1 steps, the computations of S(�(s(u))) + cod(u) replicate the computations of
�(s(u)) + cod(u), as far as cells 1, . . . , q are concerned.

In order to simulate any computation C of �(s(u)) + cod(u) by a tissue P system without envi-
ronment in an efficient way, we need to have enough objects from E available (2r(n) copies of
each) in the cell of S(�(s(u))) + cod(u) labelled by 0. For this purpose,

• For each b ∈ E , we consider a cell in S(�(s(u))) + cod(u) labelled by lb which only contains
object α0 initially. We also consider the following rules:
– [αj]lb → [αj+1]lb [αj+1]lb , for 0 ≤ j ≤ r(|u|) − 2.
– [αp(n)−1]lb → [b]lb [b]lb .
– (lb, b/λ, 0).

• By applying the previous rules, after r(|u|) transition steps we get 2r(|u|) cells labelled by lb, for
each b ∈ E in such a way that each of them contains only an object b. Finally, by applying the
third rule, we get 2r(|u|) copies of objects b in cell 0, for each b ∈ E .

Therefore, after the execution of r(|u|) + 1 transition steps in each computation of S(�(s(u))) +
cod(u) in cell 0 of the corresponding configuration, we have 2r(|u|) copies of each object b ∈ E .
This number of copies is enough to simulate any computation C of �(s(u)) + cod(u) with the
system S(�(s(u))) + cod(u).

From Proposition 4.6, we deduce that the family {S(�(n)) : n ∈ N} solves X in polynomial
time according to Definition 3.5. Hence, X ∈ PMC

̂TDC(k+1)
. �

5.1 Borderlines of efficiency

Let us highlight two consequences of Theorem 5.1, in the context of existing results in the
literature about computational complexity classes associated with tissue P systems. On the
one hand, in [4] it has been shown that P = PMCT̂SC. In particular, P = PMCT̂SC(3). On
the other hand, Vertex-Cover∈ PMCTDC(3) [2], and from Theorem 5.1, we deduce that
PMCTDC(3) = PMC

̂TDC(3)
. Thus, in the framework of tissue P systems without environment

and with communication rules with length at most 3, the kind of rules (separation versus division)
provides a new borderline between the efficiency and non-efficiency.

On the one hand, it is well known that P = PMCTDC(1) [3]. On the other hand, in [15], a
uniform and polynomial time solution of theHAM-CYCLE problem by a family of tissue P systems
from TDC(2). Thus, NP ∪ co − NP ⊆ PMCTDC(2) = PMC

̂TDC(2)
. Hence, from Theorem 5.1 we

deduce that in the framework of tissue P systems with cell division and without environment,
the length of communication rules provides a new borderline of the tractability, assuming that
P �= NP: passing from one to two amounts to passing from non-efficiency to efficiency.



6. Conclusions and further work

Initial configurations of ordinary tissue P systems have an arbitrarily large amount of copies of
some kind of objects belonging to a distinguished alphabet which specifies the environment of
the system.

The previous condition seems completely unfair from the computational complexity point of
view. In this paper, we study tissue P systems with cell division where there are no objects that
verify the above property. Specifically, we show that in tissue P systems with cell division, the
environment can be ‘removed’ without loss of efficiency.

Let us recall that by applying division rules, the two new cells generated by a division rule have
exactly the same objects except for at most a pair of different objects, that is, the replication of
objects takes place [11]. However, in the biological phenomenon of separation, the contents of
the two new cells evolved from a cell can be significantly different. More precisely, separation
rules in tissue P systems, as presented in [7], produce two new cells keeping the former label. The
object triggering the rule is consumed and the remaining objects are distributed between the new
cells, according to a fixed partition of the alphabet.

Recently, it has been proved that the environment plays a significant role in the framework of
tissue P systems with cell separation: only tractable problems can be solved in an efficient way
by these kinds of P systems without environment [4]. Hence, the environment matters in tissue P
systems with cell separation, but does not matter in tissue P systems with cell division.

As future work, we plan to do further research about the relevance of direction in the appli-
cation of communication rules joint with cell division. In [2], a polynomial time solution of the
Vertex-Cover problem by a family of tissue P systems from TDC(3) is shown. Besides,
the symport rules that are used in that solution have length at most 2. Then, we can rearrange
the rules by adding a new object # to the alphabet E of the environment, and by replacing
rules (i, u/λ, 0) by rules (i, u/#, 0). This proves that Vertex-Cover ∈ PMCTDA(3). Thus,
NP ∪ co − NP ⊆ PMCTDA(3). In the case of tissue P systems from TDC(2), it remains to
be investigated whether allowing only symport rules or only antiport rules constitutes a new
borderline.
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[9] Gh. Păun, Computing with membranes (P systems): Attacking NP-complete problems, in Unconventional Models of

Computation, UMC’2K, Proceedings of the Second International Conference, Brussel, Belgium, 13–16 December
2000, I. Antoniou, C. Calude, and M.J. Dinneen, eds., Springer-Verlag, London, 2001, pp. 94–115.
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[12] Gh. Păun, G. Rozenberg, and A. Salomaa (eds.), The Oxford Handbook of Membrane Computing, Oxford University

Press, New York, 2009.
[13] M.J. Pérez-Jiménez, A. Romero-Jiménez, and F. Sancho-Caparrini, Complexity classes in models of cellular

computing with membranes, Nat. Comput. 2(3) (2003), pp. 265–285.
[14] M.J. Pérez-Jiménez,A. Romero-Jiménez, and F. Sancho-Caparrini, A polynomial complexity class in P systems using

membrane division, J. Autom. Lang. Comb. 11(4) (2006), pp. 423–434.
[15] A.E. Porreca, N. Murphy, and M.J. Pérez-Jiménez, An efficient solution of Ham Cycle problem in tissue P systems

with cell division and communication rules with length at most 2, in Proceedings of the Tenth Brainstorming
Week on Membrane Computing, Seville, Spain, 30 January–3 February 2012, Vol. II, M. García-Quismondo, L.F.
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