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Abstract. In this work we present further extensions and improvements
of a Spiking Neural P system (for short, SNP systems) simulator on graphics
processing units (for short, GPUs). Using previous results on representing SNP
system computations using linear algebra, we analyze and implement a compu-
tation simulation algorithm on the GPU. A two-level parallelism is introduced
for the computation simulations. We also present a set of benchmark SNP sys-
tems to stress test the simulation and show the increased performance obtained
using GPUs over conventional CPUs. For a 16 neuron benchmark SNP system
with 65536 nondeterministic rule selection choices, we report a 2.31 speedup of
the GPU-based simulations over CPU-based simulations.
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1. Introduction

Membrane Computing uses P systems (named after their inventor, Gheorghe
Păun) as computing models and was introduced in 1998 [18]. The objective, as with
other disciplines of Natural Computing (e.g. DNA/Molecular Computing, Quantum
Computing, etc.) is to obtain inspiration and abstraction from the way nature (in
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this case cells) computes. By “compute” we mean to say the system (whether math-
ematical in the case of SNP systems, or biological as in real living cells) processes
information: data is read from memory, gets processed and is acted on accordingly by
some rules and environmental stimuli, and is written back to memory for use in future
processes [10]. Another objective is to be able to solve presumably computationally
hard problems (e.g. NP-complete) in an efficient way and perhaps even go beyond
classical models of computation e.g. Turing machine. A loftier goal is to lay the
theoretical foundations for future computations with cells (or specifically, neurons, in
the case of SNP systems) as the medium of computation. We obtain ideas from the
way nature computes, since nature has been efficiently doing so for billions of years
(as current researches point out nature itself can solve lots of our hard problems),
and thus we introduce unconventional models of computation from the area of Nat-
ural Computing [13, 20]. Membrane Computing has been inspired by the work on
DNA computing or molecular computing, zooming out from the individual molecules
of the DNA and including other parts and sections of the cell in the computation,
introducing the concept of distributed computing [18].

P systems (most variants at least) compute in a nondeterministic and maximally
parallel manner, oftentimes requiring exponential space as trade off to solve hard
problems in polynomial, often linear, time [18, 21, 26]. However, due to this nature
and trade off, P systems are yet to be fully implemented in vivo, in vitro, or even in
silico. We thus refer to their simulations using parallel devices such as GPUs as one of
the ways to further study them. Since P systems were introduced, many simulators
using different parallel devices have been produced [8], including CPU clusters [6],
reconfigurable hardware as in FPGAs [17], as well as GPUs [3,4]. These efforts show
that parallel devices are very suitable in simulating P systems, at least for the first
few P system variants to have been introduced. Efficiently simulating SNP systems
would thus require new attempts in parallel devices. GPUs are currently one of the
foremost candidates for simulating P systems due to several significant reasons. One
is that because of GPGPU computing (general purpose computations on the GPU),
their architecture which is specifically designed for massively parallel computations,
are laid bare to programmers [11]. Programmers aren’t limited to graphics processing
alone, as was done in the early days of GPUs. Instead, general purpose computations
such as trigonometric and linear algebra operations can now be performed on GPUs.
Another reason is that GPUs offer large speedups versus CPU only implementations
(including clustered CPUs), by consuming less energy at the fraction of the cost of
setting up and maintaining CPU clusters [14, 25]. Parallel computing concepts such
as hardware abstraction, scaling, and so on are also handled efficiently by current
GPUs [14,25].

Given that SNP systems have already been represented as matrices [24], simulat-
ing them in parallel devices such as GPUs is the next natural step. Matrix algorithms
are well known in parallel computing literature, including GPUs [9, 23], due to the
highly parallelizable nature of linear algebra computations mapping directly to the
data-parallel architecture of GPUs. Previously, SNP systems have been faithfully im-
plemented in GPUs using their matrix representation [1, 2]. In this work we further
extend and improve the performance of the previous simulators. We give definitions
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and notations for the detailed analysis of the algorithms and simulations. We also
create bechmarks to further emphasize the performance increase with GPUs. Limita-
tions of the implementation on GPUs will be pointed out, as well as work for further
research.

This paper is organized as follows: Section 2 provides the preliminaries needed
for the simulation algorithm and implementation. SNP systems and their matrix
representations are formally defined, together with some notions and notations from
formal language theory used throughout the paper. Section 3 presents the simulation
algorithm and the algorithm analysis. Section 4 presents the benchmark SNP systems
used to stress test the simulation. The test hardware setup are also presented in
Section 4, together with the results of simulating the benchmark SNP systems. Lastly,
we provide conclusions and our future work.

2. Preliminaries

It is assumed that the readers are familiar with the basics of Membrane Computing
(a good introduction can be found in [18,21] while recent online results and informa-
tion can be found in [26]) and formal language theory (widely available in print and
online, e.g. [22]). We only briefly mention notions and notations which will be useful
throughout the paper, as was done in the seminal paper for SNP systems [12].

Let V be an alphabet, V ∗ is the free monoid over V with respect to concatenation
and the identity element λ (the empty string). The set of all non-empty strings over
V is denoted as V + so V + = V ∗ −{λ}. We call V a singleton if V = {a} and simply
write a∗ and a+ instead of {a∗} and {a+}. The length of a string w ∈ V ∗ is denoted
by |w|.

Regular languages can be defined (among others) by regular expressions. A regular
expression over an alphabet V is constructed starting from λ and the symbols of V
using the operations union, concatenation, and Kleene +, using parentheses when
necessary to specify the order of operations. Specifically, (i) λ and each a ∈ V are
regular expressions, (ii) if E1 and E2 are regular expressions over V then E1 ∪ E2,
E1E2, and E+

1 are regular expressions over V , and (iii) nothing else is a regular
expression over V . With each expression E we associate a language L(E) defined
in the following way: (i) L(λ) = {λ} and L(a) = {a} for all a ∈ V , (ii) L(E1 ∪
E2) = L(E1) ∪L(E2), L(E1E2) = L(E1)L(E2), and L(E+

1 ) = L(E1)
+, for all regular

expressions E1, E2 over V . Unnecessary parentheses are omitted when writing regular
expressions, and E+ ∪ {λ} is written as E∗. A language L ⊆ V ∗ is regular if there is
a regular expression E over V such that L(E) = L.

Next we provide the definition of a SNP system from [12,19].

Definition 1. A SNP system without delay of degree m ≥ 1 is a tuple of the form

Π = (O, σ1, . . . , σm, syn, in, out),

where:

1. O = {a} is the alphabet made up of only one object a, called spike.
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2. σ1, . . . , σm are neurons of the form

σj = (αj , Rj), 1 ≤ j ≤ m,

where:

(a) αj ≥ 0 gives the initial number of spikes contained in neuron σj

(b) Rj is a finite set of rules of the following forms:

(b-1) E/ac → ap, are known as spiking rules, where E is a regular expression
over a, and c ≥ p ≥ 1;

(b-2) as → λ, are known as forgetting rules, for s ≥ 1, such that for each
rule E/ac → ap of the previous type from Rj , a

s /∈ L(E).

3. syn ⊆ {1, 2, . . . ,m}× {1, 2, . . . ,m}, (i, i) /∈ syn for 1 ≤ i ≤ m (synapses among
neurons).

4. in, out ∈ {1, 2, . . . ,m} are the indices of the input and output neurons, respec-
tively.

Rules of type (b-1) are applied if σi contains k spikes, ak ∈ L(E) and k ≥ c. The
regular expression E therefore covers exactly the number of spikes in σi. Using this
type of rule consumes c spikes from the neuron, producing p spikes which are sent to
each of the neuron/s connected to σi via a synapse in syn. In this manner, for rules
of type (b-2) if σi contains s spikes, then s spikes are ‘forgotten’ or removed from
the neuron once the rule is applied. Whenever E = ac we write (b-1) in shorthand
notation as ac → ap.

An instantaneous description or a configuration at any instant t of a SN P system
is described by the number of spikes in each neuron at t. The initial configuration is
described by the number of spikes initially placed in each neuron, α1, α2, . . . , αm. A
configuration is a halting configuration if no rule of the system can be applied anymore.
Using the rules described above, one can define transitions among configurations. We
say that configuration C1 yields configuration C2 in one transition step, denoted by
C1 ⇒Π C2, if we can pass from C1 to C2 by applying the rules from the system
following the previous remarks.

A computation of Π is a (finite or infinite) sequence of configurations such that:

1. The first term of the sequence is the initial configuration of the system;

2. Each non-initial configuration of the sequence is obtained from the previous
configuration by a transition step; and

3. If the sequence is finite (called halting computation) then the last term of the
sequence is a halting configuration.

A computation in a system as above starts at the initial configuration. For ac-
cepting SNP systems one way to interpret a computation is as follows: In order
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to compute a function f : Nk → N we introduce k natural numbers q1, . . . , qk in
the system using σin, by “reading” from the environment a binary sequence z =
10q1−110q2−11 . . . 10qk−11. This means that the input neuron of Π receives a spike in
each step corresponding to a digit 1 from the string z and no spike otherwise. Note
that we input exactly k+1 spikes, i.e., after the last spike we assume that no further
spike is coming to the input neuron.

One way to interpret a result of a computation for a generative SNP system (i.e.
one that produces spikes to the environment: if σout spikes, the spike is sent to the
environment) is to check the time difference between the first spike at time t and the
second one at time t+ k. In this sense we say that the system computes the value k.
Another way is to treat, with respect to the output neuron, a time when a spike is
produced as ‘1’ and a time when no spike is produced as ‘0’, effectively producing a
binary spike train of spikes.

The neurons in an SNP system operate in parallel and synchronously, under a
global clock [12]. However, only one rule can be applied at a given time in each
neuron [12, 24]. The nondeterminism of SNP systems comes with this fact: if two
spiking (or forgetting) rules exist in σi, each with regular expressions E1 and E2 and
that both rules are applicable as well as L(E1) ∩ L(E2) ̸= ∅ then the neuron has to
nondeterministically choose one rule to apply.

Fig. 1. An SNP system Π1, generating

all numbers in the set N – {1}, from [24].

The SNP system shown in Fig. 1 generates all numbers in the set N – {1}. The
output of the computation of the system is the time difference between the first spike
produced by the output neuron (to the environment) and the succeeding spikes the
output neuron produces. A total system ordering is given to neurons (from (1) to
(3)) and rules (from (1) to (5)) of the system in Fig. 1. This SNP system works in a
generative way, and it is formally defined as Π1 = ({a}, σ1, σ2, σ3, syn, out), where:

σ1 = (2, R1), α1 = 2, R1 = {a2/a → a, a2 → a},
σ2 = (1, R2), α2 = 1, R2 = {a → a},
σ3 = (1, R3), α3 = 1, R3 = {a → a, a2 → λ},
syn = {(1, 2), (1, 3), (2, 1), (2, 3)},
out = 3,
The system has no input neuron.
Now we proceed to represent SNP systems and their computations using matrices.

In [24], a matrix representation of SNP systems without delays was introduced. Let
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us assume a total order on the rules of the system R1 = {r1,1, . . . , r1,t1}; R2 =
{r2,1, . . . , r2,t2}; . . . Rm = {rm,1, . . . , rm,tm}. We have the following definitions.

Definition 2. A configuration vector Ck =< α1, ..., αm >, αj ∈ N for 1 ≤ j ≤ m,
is a vector containing the number of spikes in every neuron corresponding to the
kth computation step. C0 is an initial configuration vector containing the number of
spikes in the system at the beginning of the computation.

Definition 3. Given a configuration vector Ck, a spiking vector associated with
Ck is Sk =< Sk(1)

, ..., Sk(n)
>, such that

1. for each i (1 ≤ i ≤ n), Sk(i)
= 1 whenever rule ri is applicable to Ck, otherwise

Sk(i)
= 0;

2. if {i1, . . . , it} verifies Sk(ij)
= 1 (1 ≤ j ≤ t) and Sk(p)

= 0 for p /∈ {i1, . . . , it},
then rules ri1 , . . . , rit are simultaneously applicable to Ck.

For the SNP system in Fig. 1 we have C0 =< 2, 1, 1 >. The initial number of
spikes of σi is the ith value of the initial configuration vector C0. With respect to C0

we have the spiking vector S0 =< 1, 0, 1, 1, 0 > (if we choose to apply rule (1) and
not rule (2)) or S′

0 =< 0, 1, 1, 1, 0 > (we choose to apply rule (2) and not rule (1)).
Note that we can have more than one applicable rule in a neuron with respect to a
given configuration Ck at the kth step but we choose only one rule to apply. Hence
for the SNP system in Fig. 1, S′′

0 =< 1, 1, 1, 1, 0 > is an invalid spiking vector with
respect to C0.

Definition 4. Spiking transition matrix MΠ is an n × m matrix consisting of
elements aij given as

aij =


−c, rule ri is in σj and consumes c spikes;
p, rule ri is in σs ((s, j) ∈ syn)

producing p spikes in total;
0, rule ri is in σs ((s, j) /∈ syn).

From Definition 4, rows represent rules (1 ≤ i ≤ n) and columns represent neurons
(1 ≤ j ≤ m). For Π1 in Fig. 1 the matrix representation MΠ1 is as follows:

MΠ1 =


−1 1 1
−2 1 1
1 −1 1
0 0 −1
0 0 −2

 (1)

Finally, the following equation provides the configuration vector at the (k + 1)th
step, given the configuration vector (Ck), the spiking vector (Sk) at the kth step, and
the matrix representation (MΠ):

Ck+1 = Ck + Sk ·MΠ (2)
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3. SNP systems simulation algorithm

Now we provide additional notations and definitions for the simulation algorithm.
The algorithm is then presented and described. We will take into consideration the
parallel implementation of the algorithm in the succeeding section.

Let Π be an SNP system with m neurons and n rules. Recall from Definition 1
that Rj is the set of rules for neuron σj , 1 ≤ j ≤ m. Recall also that for the matrix
representation we define a total ordering of all n rules from r1, ..., rn so that we can
write Rj = {r(j,1), ..., r(j,βj)} for (j, 1) < (j, 2) < . . . < (j, βj), and βj = |Rj |. We
can label the union of all Rj sets as R =

∪m
j=1 Rj . The general expression for a rule

(whether spiking or forgetting) is E/ac → ap a rule ri ∈ Rj can be split into three
parts: the regular expression E, the consumed number of spikes c, and the produced
spikes p. Note that for a forgetting rule (Definition 1), E = ac, c = s, and ap for
p = 0 (a0 = λ). Hence a rule ri can be written as ri =< E, c, p > where ri1 = E,
ri2 = c, and ri3 = p.

Also note that the n number of rules in an SNP system of degree m can be
expressed as n =

∑m
j=1 |Rj |.

In order to simulate the computation of an SNP system Π the simulation algo-
rithm must be initially provided with C0, MΠ and R as the three initial inputs to
the simulation algorithm. We now provide additional definitions for SNP system
computations:

Definition 5. We say that C ′ = Ck is a reachable configuration from C0 af-
ter k computational steps if there is a sequence of configuration vectors C0, C1, ...,
Ck−2, Ck−1 and spiking vectors S0, S1, ..., Sk−2, Sk−1 leading to Ck. We simply write

C0
k⇒ Ck.

Definition 6. The set S(Ck) is the set of all spiking vectors for a given Ck. The
set S =

∪
C0

k⇒Ck
S(Ck), k ≥ 0, is the set of all spiking vectors for every reachable Ck

from C0.

Definition 7. The set C(Ck+1) is the set of all Ck+1 given Ck and S(Ck). The
set C =

∪
C0

k⇒Ck
C(Ck+1), k ≥ 0, is the set of all reachable configuration vector Ck

from C0.

From the first three inputs (i.e. C0, M , R) we can obtain the sets S and C.
Using Equation (2) we can determine the next configuration vector Ck+1 and so the
simulation of Π must be able to produce all reachable Ck+1 given a C0.

Given a set of rules R and a Ck at the kth step, recall that we only choose one
among several applicable (due to nondeterminism) spiking or forgetting rules in a
neuron. We can compute q, the maximum number of nondeterministic choices, and
hence the maximum number of spiking vectors for any computational step of an SNP
system using Lemma 1. The number q will be used in the succeeding section for the
computation of qk+1 ≤ q number of Ck+1 configurations in parallel.
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Lemma 1. The maximum number of nondeterministic choices at any step for SNP
system Π is given by

q =
m∏
j=1

max(#spik(Rj),#forg(Rj)) (3)

where #spik(Rj) and #forg(Rj) denote the number of spiking and forgetting rules,
respectively, in the set Ri of neuron σj.

Proof. Recall that whenever a spiking rule is applicable a forgetting rule cannot be
applicable, and vice versa (Definition 1). Additionally, it is possible to have more
than one applicable spiking (or forgetting) rule for a given Ck. In order to obtain
q we need to obtain the larger value between #spik(Rj) and #forg(Rj) of Rj since
we are interested in the maximum number of nondeterministic choices that could be
made between rules of Π assuming all spiking (or forgetting) rules are applicable at
step k. For a neuron σj what determines the maximum number of rules σj has to
nondeterministically choose from is whether Rj has more spiking or forgetting rules.
We denote as qk the nondeterministic rule choices at step k. We denote by qjk the
number of nondeterministic choices for σj at step k, and we multiply each qjk for all
m neurons to obtain qk so that for any step k, qk ≤ q.

Observation 1. For any Ck such that C0
k⇒ Ck, |C(Ck+1)| = |S(Ck)| ≤ q.

Now we present and describe Algorithm 1 to simulate an SNP system Π’s com-
putations. First we define two stopping criteria in the simulation of an SNP system’s
computation. We halt the simulation once one of the two stopping criteria are satis-
fied: (1) all unique configuration vectors have been produced, or (2) a counter variable
#Ck

to count the number of Ck’s to produce for a given run of the simulation to set
the simulation limit.

Algorithm 1 Overview of SNP system simulation algorithm. SEQ and PAR indi-
cate which step is done sequentially or in parallel, respectively.

Require: Inputs: C0, MΠ, R, #Ck
of SNP system Π for 1 ≤ i ≤ n, 1 ≤ j ≤ m.

0. (SEQ) Load inputs: M , R, and C0 are loaded once only;
I. (SEQ) Load every Ck+1 afterwards for k ≥ 0;
II. (SEQ) With respect to current Ck, determine if a rule ri ∈ Rj is applicable by
checking if aαj ∈ L(E) for E associated with the rule ri1 , αj ∈ Ck, Rj ∈ σj . Then
generate all possible Sk from all applicable rules;
III. (PAR) Produce all Ck+1 from all possible Sk with respect to current Ck;
IV. (SEQ) Repeat steps I to IV, till all unique Ck are produced (stopping criterion
(1)) or the number of computed Ck is equal to #Ck

(stopping criterion (2));

Algorithm 1 starts by loading the initial inputs C0, MΠ, R, and a desired #Ck

(step I). In step II, the number of spikes in a neuron σj are checked if they satisfy
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the regular expression Ei of a rule ri ∈ Rj . The simulation ‘implements’ the nonde-
terminism by producing all Sk’s for a given Ck, and proceeds to compute each of the
Ck+1 from these. The simulation essentially does a breadth-first search in producing
all Ck from a C0. The set C(Ck+1) is the union of all the configuration vectors at the
(k + 1)th level of the Ck tree. The set C is the union of all the configuration vectors
of the configuration tree where C0 is the root node.

The process by which all possible and applicable Sk’s are produced is as follows:
Once all the rules in the system are identified, given the current αj ’s (number of
spikes present in each of the σj ’s), the {1,0} strings (at the moment they are treated
as strings, and then as integral values later on during the computation of Equation
(2)) are produced on a per neuron level. As an example, given C0 for Π1 and α1 = 2
in Figure ??, and σ1 has two rules r1 and r2, we have the neuron-level strings ‘10’
(we choose to use r1 instead of r2) and ‘01’ (use r2 instead of r1). For σ2 we only
have α2 = 1 (r3 of σ2 has the needed single spike in σ2, and it has only one rule) while
σ3 gives us ‘10’ since its single spike enables r4 only and not r5. After producing the
neuron-level {1,0} strings, the strings are exhaustively paired up and concatenated
with each other, from left (first neuron) to right (the last neuron, since there is a need
for ordering), until finally all the applicable Sk’s (i.e. (1, 0, 1, 1, 0) and (0, 1, 1, 1, 0))
from the current Ck are produced.

Step III performs Equation (2) in parallel. The strings (for the purposes of con-
catenation, regular expression checking, among others) are now treated as integral
values. Step IV then checks whether to proceed or to stop based on 2 stopping crite-
ria for the simulation given the produced Ck+1.

Lemma 2. Algorithm 1, for an SNP system Π with m neurons and n rules, computes
the sets C and S.

Proof. We have as input an SNP system Π with finitely many neurons and rules.
Step II checks all |R| = n rules for applicability. At a computational step k, rule
ri ∈ R, 1 ≤ i ≤ n, is applicable if aαj ∈ L(E) and αj ≥ c, where c = ri2, E = ri1
and αj is the number of spikes for neuron j in each Ck. Once all applicable rules are
known, step II is performed, which from Lemma 1 produces qk ≤ q applicable spiking
vectors. Step II then produces the set S(Ck). Step III performs Equation (2) over
the qk elements of S(Ck) producing qk number of configuration vectors added to the
set C(Ck+1). In step II we add the elements of S(Ck) to S (S is initially set to ∅)
and the elements of C(Ck+1) to C (C is initially set to ∅) by the union operation. We
then check if one of the stopping criteria is satisfied to make sure that Algorithm 1
halts. If not one of the stopping criteria is satisfied, we repeat from step I. Once one
of the stopping criteria is satisfied Algorithm 1 halts, in effect we have traversed each
computation branch of the Ck tree of Π starting from C0 as root of the tree (where
the branches are due to nondeterminism) and we produce the sets S and C.

Theorem 1. Algorithm 1 simulates the computation of an SNP system Π.

Proof. The proof follows directly from Lemma 2.
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4. SNP system simulations in GPUs

NVIDIA, a manufacturer of graphics processors, introduced the Compute Unified
Device Architecture (CUDA) in 2007 [14]. CUDA is a programming model and hard-
ware architecture for general purpose computations in NVIDIA’s GPUs (G80 and
newer family of GPUs) [14]. CUDA, by extending popular languages such as C, al-
lows programmers to easily create software that will be executed in parallel, avoiding
low-level graphics and hardware primitives [25]. Among the other benefits of CUDA
include abstracted and automated scaling: more cores will make the parallelized code
run faster than GPUs with fewer cores [25].

GPUs introduce increased performance speedups over CPU only implementations
with linear algebra computations (among other types of computations) because of
the GPU architecture. The common CPU architectures are composed of transistors
which are divided into different blocks to perform the basic tasks of CPUs (general
computation): control, caching, DRAM, and ALU (arithmetic and logic). In contrast,
only a fraction of the CPU’s transistors allocated for control and caching are used by
GPUs, since far more transistors are used for ALU [14] (see Fig. 2 for an illustration).
This architectural difference is a very distinct and significant reason why GPUs offer
larger performance increase over CPU only implementation of parallel code working
on large amounts of input data. However if the problem to be solved cannot be
organized in a data parallel form (a task performing computations on data need not
depend heavily on other task’s results) then the performance of GPUs over CPUs will
not be fully utilized.

A CUDA program is often divided into two parts: the host (CPU side) and the
device (GPU side). The host/CPU part of the code is generally responsible for con-
trolling the program execution flow, allocating memory in the host or device/GPU,
and obtaining the results from the device. The device (or devices if there are several
GPUs in the setup) acts as co-processor to the host. The host outsources the parallel
part of the program as well as the data to the device since it is more suited to parallel
computations than the host. Code written for CUDA can be split up into multi-
ple threads within multiple thread blocks, each contained within a grid of (thread)
blocks. These grids belong to a single device/GPU. Each device has multiple cores,
each capable of running its own threads. Each core in the device is able to run a
set of threads (8 blocks/core × 4 threads/block equal to 32 threads per core which is
known as the warp size). A thread block is assigned to each multiprocessor, where
each processor is made up of several cores [14, 25]. A function known as a kernel
function is one that is called from the host but executed in the device. Using kernel
functions, the programmer can specify the GPU resources: the layout of the threads
(from one to three dimensions) in a thread block, and the thread blocks (from one
to two dimensions) in a grid. Table 1 shows the resources of current CUDA enabled
NVIDIA GPUs.

From Algorithm 1, step III is executed in the device and done in parallel. At step
III there are two levels of parallelism. The first level is where Ck+1 is computed in
parallel using Equation (2). The second level of parallelism comes from computing
all qk number of Ck+1i (ith configuration at (k + 1)th step) given M , Ck, and Ski
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(ith spiking vector at kth step), for 1 ≤ i ≤ qk. The parallel implementation is shown
graphically in Fig. 3. From Fig. 3 the length of the linear array containing all possible
spiking vectors Sk is q ·n because each spiking vector is of length |R| = n (the number
of rules in the system). Note that at this point we use q and qk interchangeably, since
we are testing for the maximum limit of the algorithm and the GPUs. Similarly, from
the q · n number of spiking vectors we will obtain q · m (we have m neurons in the
system) number of Ck+1, which is the length of the linear array of all Ck+1 in Fig. 3.
We then launch q ·m number of threads, distributed in q thread blocks each having
m threads.

Table 1. Typical resources for CUDA enabled GPUs (from [14,25])

GPU resources Values

Global memory Depends on GPU model

Max number of threads per dimension (x, y, z) (512, 512, 64)

Max number of thread blocks per grid (x, y, z) (65535, 65535, 1)

Fig. 2. (a) Common transistor allocation of CPUs and GPUs;

(b) Computing unit hierarchy of GPUs, from [25] and [7].

Observation 2. For an SNP system Π with m neurons and n rules, if n < m then
Π has neurons without rules and hence can be ignored without affecting the system
since these neurons only act as spike repositories.

Observation 3. For an SNP system Π with m neurons and n rules, if m = n, then
Π is a deterministic system.
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From Observations 3 and 2 we base the reason for launching m · q number of
threads since n will be at least m in value. A thread block therefore in Fig. 3 is a
linear arrangement of threads. Similarly, the grid is a linear arrangement of thread
blocks.

Fig. 3. Parallel computation of next configuration Ck+1 given q number of non-

deterministic choices: Blocks with thicker borders represent memory allocation

in the GPU. The figure shows a single instance of the parallel memory access

and computation of Equation (2). A curvy arrow represents a thread (ranging

from 0 to m−1) in a thread block (ranging from 0 to q−1). Here |M | = m×n,

|Skl| = |R|, |Ck| = |Ck+1l| = m for 1 ≤ l ≤ q, and q is from Equation (3).

Based on Algorithm 1 and the implementation using PyCUDA (a Python wrapper
for CUDA, see [15]) and CUDA C, the amount of device global memory (simply, G)
used is calculated (in terms of m, n, and qk) to be :

G ≥ qk(n+ 2m) +m(n+ 1) (4)

Equation (4) was derived by expressing the computation of Equation (2) (per-
formed qk times) in terms of m, and n, including another qk ·m linear array SkM to
temporarily hold the products of all the spiking vectors to M . M is only loaded onto
the device once. At step III, qk number of thread blocks are launched, each containing
m threads. A thread block computes Equation (2) in parallel with respect to the q−1
other thread blocks. A thread in a thread block computes a single element of Ck+1i

in parallel with respect to the m− 1 other threads in the same thread block.
In order to “stress test” the parallel implementation of Algorithm 1 we produce

complete graphs with neurons as nodes and directed edges as synapses. We refer to
these SNP systems as benchmark SNP systems or simply Bmx having 2x neurons. The
number of neurons will be a power of 2 so that for Bm4 will have 24 = 16 neurons,
where each neuron (or node) has an outdegree of 15. Figure 4 shows a Bm2 where
each neuron has two spiking rules (no forgetting rules) of the form (a2)∗/a → a and
(a2)∗/a2 → a2 so that whenever the number of spikes in a neuron is a multiple of 2
then each neuron has to nondeterministically choose between the two rules. In Fig. 4
we see that Bm2 has a constant rule per neuron density dr/m = 2 so that for Bm2

we can calculate q to be equal to 24 = 16. For a benchmark SNP system Bmx with
dr/m = 2, q = qk = (dr/m)2

x

.
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Fig. 4. A benchmark SNP system Bm2 with 22 = 4 neurons,
where neurons are placed on a complete graph

with the outdegree of each neuron (node) equal to 3.

Table 2 shows the setup used to run Bm1 to Bm4. From Table 2 we can see that
although the GPU has 4GB of memory, its memory is still far less than the CPU.
Current GPUs have far more computational units than CPUs but they usually have
smaller amount of memory compared to CPUs. For the simulation, once all qk number
of spiking vectors have been produced in the host, we move all the spiking vectors to
the device, compute Equation (2) producing qk number of Ck+1, and then moving all
the Ck+1 back to the host from the device. Note that, as with GPU (and oftentimes
in parallel computing as well) before moving all qk number of spiking vectors, qk ·m
space has to be allocated at the receiving end (the device, from the host) for the
expected qk number of Ck+1.

Table 2. Setup used to run the parallel implementation
of Algorithm 1 for Bm1 to Bm4

System specifications Values

Processors 2 × Intel Xeon E554 @ 2GHz

Cores/processor 4

Host RAM 12GB

GPUs 2 × Tesla C1060 @ 1.3GHz

CUDA Cores/GPU 30 (multiprocessors) × 8 (cores/processor) = 240

Device global memory 4GB

Operating system Ubuntu 10.04 server edition (64bit)

CUDA version 3.2

Table 3. Table showing the number of neurons
and values of q = qk for Bm1 to Bm4

Benchmark SNP system (dr/m = 2) neurons q = qk
Bm1 2 4

Bm2 4 16

Bm3 8 256

Bm4 16 65536

A CPU only version of Algorithm 1 is created so that step III of the algorithm is
done sequentially and we designate this as snpcpu-sim while the CPU-GPU simulator
is designated as snpgpu-sim.
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(a) (b)

Fig. 5. (a) The running time of snpcpu versus snpgpu for Bm1 to Bm4;

(b) The speedup (snpcpuruntime/snpgpuruntime) is up to 2.31 .

Figure 5 shows the running times for both snpcpu-sim and snpgpu-sim simulators
regarding the parameter m (number of neurons). As shown in Table 3, q and m are
exponentially increased, and so are the number of threads (q ·m) and amount of device
global memory (Equation 4). The larger the number of neurons, the resources in the
GPU are better fulfilled. Therefore, we report the maximum value of speedup for 16
neurons in our benchmark, which is 2.31x.

5. Conclusions and future work

We’ve presented the simulation (theoretical and practical) details of an SNP sys-
tem simulator. The simulation algorithm was shown to simulate the computation of
an SNP system given initial configurations and inputs. The algorithm was imple-
mented on a CPU-GPU setup and was tested using “stress test” benchmarking SNP
systems which are complete graphs where a node is a neuron. The neurons in the
benchmark SNP systems had a fixed rule per neuron density dr/m and were simulated
from 2 (q = 4) neurons up to 16 neurons (q = 216 = 65536). The sequential imple-
mentation of Algorithm 1 (snpcpu) as well as the parallelized CPU-GPU version of
Algorithm 1 (snpgpu) were run on a test setup. The speedup for snpgpu given the
benchmark SNP systems as inputs was found to be up to 2.31 times (over snpcpu).
The running time for snpgpu-sim is increased (thus lowering the speedup) because of
the continuous transfer of data (between host and device) for each Ck in step III from
Algorithm 1.

For our future work, further tests for snpgpu will be performed for stress testing,
such as benchmark SNP systems with a fixed m (number of neurons) but where
the dr/m increases, thus effectively increasing the number of rules as well as the
nondeterministic rule choices (q). We plan to include other steps of Algorithm 1 in
the GPU, avoiding host-device data transfers as much as possible in order to increase
performance. Running the simulator for a multi-GPU setup is also one of the future
works. Additionally, combining the GPU simulator for SNP systems with P-Lingua,
a CPU-based framework for simulating P systems written in Java by the Natural
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Computing research group from Sevilla is also a future work [16].
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[18] Păun Gh., Ciobanu G., Pérez-Jiménez M. (eds.), Applications of Membrane Com-
puting, Natural Computing Series, Springer, 2006.
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