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Abstract 

Surface fluorinated TiO2 materials with high {001} facet exposure were prepared by a 

simple and high yield preparation procedure. Faceted/fluorinated samples showed a high 

photocatalytic performance not only in oxidation processes, tested inphenol and Methyl 

Orange degradation, but also in a reduction process as Cr(VI) photoreduction. Reaction 

rates for these materials greatly exceeded the ones obtained for materials prepared 

without Fluorine addition and for commercial TiO2 Degussa (Evonik) P25 used as reference 

photocatalyst. A broad characterisation of the samples allowed us to estimate the 

percentages of different facets and the amount and form in which the fluorine is found on 

the surfaces. Good photocatalytic behavior can be ascribed to both high {001} facet 

exposure and adsorbed fluorine on the photocatalysts surfaces. 

 

Keywords: 001} facet, fluorination, F-TiO2, phenol, Methyl Orange, Cr(VI) 

 

 

Address correspondence to E-mail: carmen.hidalgo@csic.es  

Phone: +34 954489500 

Manuscript Click here to download Manuscript MS_MCH_F.docx 

Click here to view linked References

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

mailto:carmen.hidalgo@csic.es
http://www.editorialmanager.com/jmsc/download.aspx?id=1508505&guid=cb821c5c-71b8-4375-ac23-8bca0143e702&scheme=1
http://www.editorialmanager.com/jmsc/download.aspx?id=1508505&guid=cb821c5c-71b8-4375-ac23-8bca0143e702&scheme=1
http://www.editorialmanager.com/jmsc/viewRCResults.aspx?pdf=1&docID=82574&rev=1&fileID=1508505&msid={4D556F6F-F53D-409B-9463-504C48EFA802}


 

2 

 

1. Introduction 

 Titanium dioxide (TiO2) heterogeneous photocatalysis has been widely studied for 

many environmental applications in water and air pollution control [1-3]. However, even 

though TiO2 has many good features as photocatalyst, such as chemical and 

photochemical stability, non-toxicity and appropriate band positions; it has a major draw-

back that is its high recombination rate of photogenerated electron-hole pairs, which 

reduces considerably the photoefficiency of this oxide in photocatalytic processes [3]. 

 In this context, the development of TiO2 crystals with specific facets, in order to obtain 

surfaces with higher reactivity, has been recently studied as a method for improving its 

efficiency [4-10]. Thus, it has been suggested that the {001} facets of anatase TiO2 have 

higher reactivity compared to the more common {101} facets, due to their higher 

concentration of unsaturated five-coordinated Ti (Ti5c) and high surface energy. It is 

accepted than surfaces with a higher percentage of undercoordinated atoms are usually 

more reactive in heterogeneous reactions [11]. Besides, it is known that adsorption 

properties on a surface depend strongly on surface atomic structures (atomic coordination 

and arrangements); and different exposition of facets in the TiO2 photocatalyst would lead 

to different ability in adsorption of the substrates to be photodegraded. This undoubtedly 

would have also an influence on the final efficiency of the oxide, where the surface 

undercoordinated Ti atoms found in {001} facets would display higher reactivity for the 

dissociative adsorption of reactants; such as water or organic molecules in the reaction 

media [7,11].  Some studies have also pointed out about the different roles of the different 

facets. Thus, it has been reported that high-energy {001} facets would provide the oxidative 

sites and low-energy {101} facets the reductive ones [12,13]. Therefore, even if a high 

percentage of in {001} facet exposition is desirable; a certain amount of other facets to 
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obtain an equilibrium in the redox processes is needed. In this sense, to quantify the 

percentage of exposition of {001} facets seems to be important to understand the activity 

behaviour of TiO2. 

 In this context, many studies have been dedicated to produce TiO2 where the surface 

exposition of {001} facet is high. Thus, faceted TiO2 has been prepared by different 

methods: sol-gel, hidrothermal, solvothermal, topotactic transformation, epitaxial growth, 

etc [5]. It is normally required the addition of a capping agent, where a selective adsorption 

can control growth rates along different orientations [14]. Several compounds have been 

used and reported to drive to preferential growths of different TiO2 facets; such as 

diethanolamine [12-13], carboxylate groups [14], oleic acid or oleylamine [15]. Very often 

this morphological controlling agent is fluorine, due to its ability to stabilise the preferential 

growth of reactive {001} facets of anatase TiO2 [16].  

 On the other hand, addition of fluorine to TiO2 surfaces has been used by itself as a 

method for improving the photocatalytic activity of the oxide. Thus, surface fluorination 

(ΞTi-F groups) has been reported to reduce the recombination of photogenerated electron-

holes by acting as electron-withdrawing centres [17-20]. At the same time, it has also been 

found that surface fluorination improves the generation of mobile (unbound) OH· radicals 

that are known to be stronger oxidants that the surface adsorbed OH· radicals [19]. 

 When preparations of faceted TiO2 using fluorine as capping agent have been reported, 

often the presence of residual fluorine on the TiO2 surface is not considered, focusing the 

studies only in the presence of reactive facets. However, as it has been mention before the 

presence of ΞTi-F groups can have an important influence in the photocatalytic behaviour 

of the TiO2. This has to be borne in mind in those preparations which often do not have a 
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calcination process at high temperature to assure a clean fluorine-free surface that in those 

cases would also lead to an important loss of surface area [21]. 

 In the present work, different TiO2 have been prepared by following a feasible and high 

yield preparation method using fluorine as capping agent with the aim of tailoring crystal 

facets of TiO2. The presence of fluorine on the surface of the final materials has also been 

considered and studied. As a result, TiO2 showing high photocatalytic activities for several 

substrates were obtained, in both photoxidation and photoreduction processes. The good 

performances were explained in base not only of facet composition but also on the 

fluorinated surfaces of the oxides. Aware of the importance of quantifying percentages of 

exposed facets, the study includes two different methods of calculation, based on two very 

different experimental techniques (RAMAN and TEM). Besides, efficiency of the materials is 

discussed for both oxidation and reduction processes as a whole, to be able to obtain an 

overall idea of the photocatlytic behaviour of this faceted TiO2. Those fluorinated TiO2 

with high {001} facet exposition samples highly exceeded the photocatalytic performance 

of commercial TiO2 Degussa (Evonik) P25 used as reference photocatalyst. 

 

2. Material and Methods 

2.1 Synthesis procedure 

Materials were prepared by direct hydrothermal treatment of the titanium precursors, 

i.e. Titanium tetraisopropoxide (Aldrich, 97%) or Titanium Butoxide (Aldrich, 97%) with 

addition of a small amount of acid (HCl or HF), in a volume ratio Ti precursor/acid of 25:4 

v/v. The solutions were transferred into a Teflon recipient inside of a stainless steel 

autoclave and hydrothermal treatment was performed at 200ºC for 24 hours. A precipitate 
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was obtained and was then filtered, repeatedly washed with distilled water and dried 

overnight at 100ºC. 

Thus, four different samples were obtained depending on the titanium precursor and 

acid used, and samples were named ButHF, ButHCl, IsoHF and IsoHCl. 

Commercial TiO2 Degussa (Evonik) P25 used as reference material was used as 

received. 

  

2.2 Characterisation techniques 

Crystalline phase composition and degree of crystallinity of the samples were 

estimated by X-ray diffraction (XRD). XRD patterns were obtained on a Siemens D-501 

diffractometer with Ni filter and graphite monochromator using Cu K radiation.  

RAMAN analyses were performed in a LabRAM Horiba Jobin Yvon confocal Raman 

microscope with three excitation wavelengths (785 cm-1 red, 532 cm-1 green, and 325 cm-1 

UV). 

BET surface area and porosity measurements were carried out by N2 adsorption at 77 K 

using a Micromeritics ASAP 2010 instrument.  

Chemical composition and impurities of the samples were determined by X-ray 

fluorescence spectrometry (XRF) in a Panalytical Axios sequential spectrophotometer.  XRF 

measurements were performed onto pressed pellets (sample included in 10wt% of wax).  

Light absorption properties of the samples were studied by UV-Vis spectroscopy. UV-

Vis spectra were measured on a Varian spectrometer model Cary 100 equipped with an 

integrating sphere and using BaSO4 as reference. Band-gaps values were calculated from 
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the corresponding Kubelka-Munk functions, F(R∞), which are proportional to the 

absorption of radiation, by plotting (F(R∞)h)2 against h. 

Field Emission Scanning Electron Microscopy (FESEM) images were obtained in a 

Hitachi S-4800 microscope used in secondary electron mode with an acceleration voltage of 

2 kV (1-3 nm resolution). Samples were dispersed in ethanol using an ultrasonicator and 

dropped on a carbon grid without any coating of conductive material. 

Transmission Electron Microscopy (TEM) was performed in a Philips CM200 

instrument. Selected samples were also studied by FEG high resolution transmission 

electron microscope (HRTEM) from FEI Company (model TECNAI G2 F30 S-twin) with 

scanning-transmission capabilities (STEM).The measurements were conducted at 300 kV 

(0.2 nm point resolution). The microscope is equipped with a high angle annular dark field 

(HAADF) detector from Fischione Instruments (0.16 nm point resolution), and an INCA X-

Max 80 silicon drift detector (SDD) for the  energy dispersive X-ray analysis (EDX). The HR 

micrograph analysis, lattice spacing, First Fourier Transform (FFT) and phase interpretation, 

were done with the Gatan Digital Micrograph software (Gatan Inc.) and the Java version of 

the Electron Microscope Software (JEM). 

X-ray photoelectron spectroscopy (XPS) study was carried out on a Leybold–Heraeus 

LHS-10 spectrometer, working with constant pass energy of 50 eV. The spectrometer main 

chamber, working at a pressure <2 x 10-9 Torr, is equipped with an EA-200 MCD 

hemispherical electron analyser with a dual X-ray source working with Al Kα (hυ = 1486.6 

eV) at 120 W and 30 mA. C 1s signal (284.6 eV) was used as internal energy reference in all 

the experiments. Samples were outgassed in the pre-chamber of the instrument at 150 ºC 

up to a pressure < 2 x 10-8 Torr to remove chemisorbed water.  
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2.3 Photocatalytic activity tests 

The evaluation of the photocatalytic activity of the samples was performed by mean of 

three model reactions; the photo-oxidation of phenol (aromatic compound) and Methyl 

Orange (MO, dye) and the photo-reduction of Potassium Dichromate (K2Cr2O7).  

Suspensions of the catalysts (1 g/L) in the substrate solution (50 ppm for phenol, 20 

ppm for MO and 100 ppm for K2Cr2O7) were placed in a 400 ml pyrex discontinuous batch 

reactor enveloped by an aluminium foil and illuminated through a UV-transparent 

Plexiglas® top window (threshold absorption at 250 nm) by an Osram Ultra-Vitalux lamp 

(300 W) with sun-like radiation spectrum and a main line in the UVA range at 365 nm. The 

intensity of the incident UVA light on the solution was determined with a PMA 2200 UVA 

photometer (Solar Light Co.), being 80 W/m2. 

Magnetic stirring and a constant oxygen flow were used to produce a homogeneous 

suspension of the catalyst in the solution. Prior illumination, catalyst-substrate equilibration 

was ensured by stirring the suspension 30 minutes in the dark. Photocatalytic tests were run 

for 2 h and samples at different irradiation times were collected and filtered with sterile 

syringe 0.45 µm pore filters. Then, Phenol concentration was followed by HPLC technique 

(Agilent Technologies 1200) equipped with UV-Vis detector using an Elipse XDB-C18 

column (5 µm, 4.6 x 150mm). Mobile phase was water/methanol (65:35) at a flow rate of 0.8 

ml/min. MO and Cr(VI) concentrations were followed by UV-Vis spectroscopy by measuring 

the intensities of 465 nm and 350 nm bands respectively. 

Total mineralisation of phenol and Methyl Orange with the illumination time was 

followed by measuring the total organic content (TOC) in a Shimadzu 5000 TOC analyser. 
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Blank experiments were performed in the dark as well as with illumination and no 

catalyst, without observable change in the initial concentration of phenol, MO and Cr(VI) in 

all cases. 

 

3. Results and Discussion 

 XRD pattern of the different samples are depicted in Fig. 1. As it can be seen, ButHF, 

ButHCl and IsoHF present anatase as only crystalline phase; however, relative intensity of 

the different peaks varies depending on the sample. On the contrary, the only crystalline 

phase in sample IsoHCl is rutile.  

 Anatase TiO2 generally presents a tetragonal bi-pyramidal structure comprised by the 

thermodynamically stable {101} facets, and then a much lower percentage of the 

energetically unfavorable {001} facet [5]. However, (001) surface is considered to be more 

reactive than (101) surface, due to its high density of surface undercoordinated Ti atoms. 

Thus, when TiO2 materials are obtained with a high percentage of exposed {001} facets, a 

higher photocatalytic activity is expected [4]. 

 The different intensities of the XRD peaks for the samples prepared with HF addition 

compared to the sample prepared with HCl, give account of a different preferential growth 

of the TiO2 crystals in the presence of Fluorine [15,22]. Relative peak intensity ratios for the 

different crystallographic planes are shown in Table 1. As it can be seen, for the samples 

prepared with HF, relative intensity of the peaks corresponding to planes 004 decreases 

while relative intensity for 200 increases for these samples, being this fact more 

pronounced in sample IsoHF. Here, it can be inferred the role of Fluorine as capping agent in 

the structure of the obtained TiO2. Thus, as it will be confirmed later with other techniques, 
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materials prepared with HF are obtained in different crystal shape, exposing the facet {001} 

in a higher degree than conventional anatase TiO2.   

 On the other hand, the sample prepared with titanium isopropoxide and HCl (IsoHCl) 

has totally rutilised. Thus, it can be clearly seen the strong influence of the acid used during 

the synthesis in the final structure of the material. 

 Raman spectra for ButHF, ButHCl and IsoHF (the samples with anatase as only 

crystalline phase) are shown in Figure 2. The peaks appearing at 144, 394, 514 and 636 cm-1 

for all these samples are indicative of anatase phase, in agreement with XRD studies [23]. 

However, as it can be seen, relative intensities for the Eg peaks of the samples prepared 

with HF are lower than the ones for the sample prepared with HCl. At the same time, 

intensity of A1g peaks increases for the samples prepared with HF. Some authors have used 

Raman spectroscopy as an approach for measuring the percentage of exposed {001} facets 

in anatase TiO2, as the intensity of the A1g and B1g peaks in the Raman spectra of samples 

with high percentage of {001} facets becomes increased. The percentage of exposed {001} 

facets is then estimated by the ratio of Raman vibrational modes between Eg and A1g [10, 

24]. For ButHF, ButHCl and IsoHF the intensity ratios are depicted in Table 2. The estimated 

percentages of exposed {001} facet for the samples prepared with HF are 69 and 55% for 

ButHF and IsoHF respectively. In contrast, percentage for ButHCl, anatase sample prepared 

with HCl, is only 12%. 

 BET surface area values for the different samples can be found in Table 1. Samples 

which consist in anatase phase have relatively high values of surface areas, ranging from 90 

to 110 m2/g. On the contrary, IsoHCl which is rutile possess a much lower value of 12 m2/g. 

 Fig. 3 shows pore diameter distribution for the different samples. It can be seen that the 

range of pore size is larger for the samples prepared with the addition of HF. Thus, ButHF 
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and IsoHF present a similar pore size distribution with pore diameters between 2 and 100 

nm. In contrast, the sample prepared with HCl, ButHCl, presents a narrower range for pore 

size diameter from 2 to just 20 nm, without larger pores. IsoHCl, rutile sample, presents a 

very low value of pore volume in the whole range of pore diameters, in concordance with its 

low surface area value. 

 UV-Vis light absorption spectra of all the samples were recorded (results not shown for 

the sake of brevity). The typical sharp absorption band edge of the TiO2 semiconductor was 

observed at around of 400 nm for all the samples. From the UV-vis DRS spectra, band gaps 

energies were calculated, being 3.1-3.2 eV for anatase samples and 2.9 eV for IsoHCl 

sample. As expected, band gap energy is slightly lower for the rutile material [25]. All values 

are shown in Table 1.   

 Representative SEM pictures for the samples are shown in Fig. 4. ButHCl presents 

particles very heterogeneous in shape and size, as well as high degree of sinterisation. 

IsoHCl is composed by larger and better defined particles; however, they also present a high 

heterogeneity in shapes and sizes. On the contrary, samples prepared with HF addition, 

IsoHF and ButHF, present a similar morphology, composed by square and rectangular 

platelets with dimensions ranging from around 30 to 80 nm.  

 ButHF and IsoHF samples were microcharacterised with the TEM miscroscope and 

selected representative pictures are shown in Fig 5. Both samples are formed by 

agglomerated nanoparticles in the shape of nanoplatelets ranging in size from 20 to 50 nm, 

with some larger particles up to 70-80 nm, in agreement with SEM observations. Other 

elongated nanoparticles can also be observed; nevertheless, after tilting the sample area, 

the elongated nanoparticles change and transform in platelets, which means that all the 

particles are platelets deposited either flat or on their side. This would agree with the 
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contrast of the displayed images in Fig. 5, where a different contrast is observed between 

platelets and elongated particles. The contrast in a TEM image is directly proportional to 

the thickness of the particle, since the image is a bi-dimensional projection along the 

observation axis; platelets are clearer because their thicknesses are very low (about 5 nm, 

the short measure of the elongated particle); however, the contrast of the elongated 

particles is darker, its thickness corresponds to the side of the platelet square (approx. 30-50 

nm). These results are in good agreement with those observed by SEM (Fig. 4). 

 HRTEM micrographs of the IsoHF sample oriented along two different zone axes of the 

tetragonal structure TiO2-anatase are presented in Figure 6. The planar spacing (Fig. 6b) 

and a lot of stacking faults and point defects (Fig. 6a) are marked in the images. The [1 1 1] 

zone axis shows the flat square platelets projection (Fig. 6a-b), the first Fourier transform 

(FFT) is depicted in the inset of Figure 6b with the corresponding (h k l) planes marked in the 

FFT. Figure 6c shows a projection of a set of four side platelets, nearly oriented along [1 0 0], 

from this micrograph it can be clearly seen that the third dimension of the platelets is 

approx. 5 nm. The corresponding FFT of each side platelet are also inset in the image. 

 From these TEM studies, measuring a large number of platelets from different zones, 

the average size dimensions of the platelets could be estimated. Thus, average length of 

the platelets in IsoHF was 42 nm, while in ButHF was 35 nm. Average platelet width for both 

samples was 5 nm. According to Fang and col. [26], percentage of exposed {001} facet can 

be calculated by equation 1, based in geometric and trigonometric estimations, where l and 

h are the average width and length of the particles, respectively; and 68.3º is  the angle 

between (001) and (101) planes.  
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𝑆001

𝑆𝑡𝑜𝑡𝑎𝑙
=

(𝑙−
ℎ

𝑡𝑔68.3
)
2

⌊(𝑙−
ℎ

𝑡𝑔68.3º
)
2
+ℎ

(4𝑙−
2ℎ

𝑡𝑔68,3º
)

𝑠𝑒𝑛68.3º
⌋

  Eq. 1 

 Applying Eq. 1 to our samples ButHF and IsoHF, percentages of 79% and 76% of {001} 

facet are obtained respectively (Table 2). These values are higher than those obtained by 

RAMAN estimations for the same samples, in agreement with reference [24] where it is 

proven that values obtained by Raman calculations are always a little underestimated. 

Nevertheless, it was confirmed that samples with a large exposition of {001} facet were 

obtained and the percentage of this facet was higher for ButHF than for IsoHF sample.  

 Chemical composition of the samples was studied by XRF. This technique is useful to 

know the nature and amount of impurities in the samples. In our case, no residual chlorine 

was found for samples prepared by HCl addition, while fluorine could be found in ButHF and 

IsoHF samples, in an amount of 5.1 and 3.6 % respectively.  

 As the amount of fluorine in the samples is relatively notable, XPS measurements were 

performed to study whether this element was on the surface and in which chemical form. 

Fig. 7 shows XPS F 1s region spectra for the samples. In both samples, a well-defined single 

peak at binding energy of 683.9 eV can be seen, ascribed to fluoride in Ti-F on the TiO2 

surface, which can be formed by ligand exchange reaction between F- ions and the surface 

hydroxyl groups on the TiO2 surface [27]. In the same way, subtitutional F in solid solution 

TiO2-x Fx (binding energy at 688.9 eV) can be discarded in these samples.  

 The presence of Fluorine itself adsorbed on the samples can have a strong influence on 

the photocatalytic properties of the TiO2, as it has been reported in several studies [17,28]. 

Surface Ti-F groups have a strong electron-withdrawing ability and are capable of 

increasing lifetime of the photogenerated charges; thus, electron-hole recombination rate 
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can be decreased. Besides, it has also been studied that surface fluorination of TiO2 can 

promote the generation of mobile (unbound) OH· radicals, which are more efficient 

oxidants that surface adsorbed ones [29]. In this context, fluorination of TiO2 has been used 

as a strategy to increase its photocatalytic efficiency. 

 Thus, it seems important to keep in mind the probable presence of residual Fluorine 

species coming from the capping agents used during the synthesis of faceted TiO2 when 

the improvement of the photocatalytic activity of these materials is discussed. The 

presence of residual surface Fluorine is not checked in many of these studies; and however, 

its contribution to the improvement of the photocatalytic efficiency cannot be discarded. 

 Fig. 8 and 9 show degradation profiles of phenol and Methyl Orange over the different 

samples. Degradation profiles over TiO2 Degussa P25 have been added as reference. As 

insets in the figures, linear fitting graphs are shown for both substrates. From these graphs, 

apparent rate constants were estimated and the corresponding values are shown in Table 3. 

For both substrates the tendency is the same; i.e. from more to less efficiency 

IsoHF>ButHF>P25>>ButHCl>IsoHCl. As it can be seen, degradation is faster over samples 

prepared with the addition of HF, for both substrates phenol and MO, faster also than over 

P25 the commercial photocatalyst used as reference. The fact that the sample with the 

highest percentage of exposed {001} facet; i.e. ButHF, presents less activity for the two 

evaluated substrates indicates that there is also a limit in the facet exposition above which a 

higher exposure has not longer a positive effect for the activity. This could be related to the 

spatial separation of redox sites in the different facets, oxidation sites in {001} facets and 

reduction sites in {101} facets, as it has been reported [12-13, 30], with the necessity of 

finding an optimal ratio between both facets to optimise the redox processes.  
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 Total Organic Carbon (TOC) values at the end of the reactions give account of the 

degree of mineralisation of the processes. Thus, after the 2 h test for phenol degradation 

with the photocatalyst P25, TOC goes from a value of 38 ppm to 3 ppm, which indicates a 

good degree of total mineralisation of phenol. With IsoHF and ButHF, TOC values decrease 

bellow 2 ppm for both samples after the 2 h illumination tests for phenol degradation. Thus, 

not only the reaction rates for IsoHF and ButHF samples are faster than for P25, but also 

their degrees of total mineralisation are also higher. Same situation can be found in MO 

tests. These results confirm that no resistant intermediates are formed and that phenol and 

MO are totally degraded to CO2. 

 As some studies reported that the enhancement of photoactivity of faceted TiO2 is due 

to an improved oxidation step, where {001} facets provides effective oxidation sites [5,7,30]; 

we wanted to evaluate these materials also in a reduction process, i.e. the photoreduction 

of Cr(VI) to less harmful Cr(III). Fig. 10 shows reduction profiles over the different samples, 

without and with sacrificial agent in Fig.10 (up) and Fig.10 (down), respectively. 

Corresponding linear fitting graphs are shown as insets in both figures. Apparent rate 

constants are depicted in Table 3. The addition of 2-propanol (0.2 M) as sacrificial agent 

provided an organic substance to act as electron donor in the media capturing the 

photogenerated holes. When no sacrificial agent is used, the activity for the samples 

prepared with HF is similar to the activity of the reference P25. Thus, in our case, faceted 

materials do not have a detrimental effect in a reduction process (if compared with P25 

behaviour). In this process, fluorination probably compensates the decrease of reduction 

sites of faceted surfaces. Fluorinated TiO2 surfaces enhance the OH groups formation 

which favour Cr(VI) adsorption and therefore could help its photoreduction. When a 

sacrificial agent is added to the reaction media, the reduction of Cr(VI) is faster over all the 
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samples; specially over the samples prepared with HF.  As a result of the addition of the 

sacrificial agent, holes generated on TiO2 are consumed, supressing electron-hole 

recombination, and more electrons are available to contribute to reductive processes [31]. 

 In order to better visualise the photocatalytic performance of the different samples, 

initial reaction rates for the three substrates over all the samples are depicted in Fig. 11. It 

can be clearly seen the positive effect of the addition of HF during the synthesis; being 

IsoHF the sample with the better photocatalytic behaviour for the three reaction evaluated. 

Samples prepared with HF have an increment between 300 and 700% (depending on the 

substrate) in the reaction rates respect to their HCl counterparts. For the oxidation 

reactions, reaction rates with the faceted samples also exceed the rates with P25, being 

approximately the same for the reduction of Cr(VI). These results show that with a simple 

and high yield preparation method, fluorinated TiO2 with a high exposition of {001} facet 

can be obtained with excellent photocatalytic behaviour for both, oxidation and reduction 

processes.  

 

4. Conclusions 

 By a simple hydrothermal one-pot synthesis, anatase TiO2 samples with high {001} facet 

exposition were obtained. Faceted TiO2 samples showed an excellent photocatalytic 

activity for the three substrates evaluated, in both oxidation and reduction reactions. The 

importance of considering residual fluorine from the addition of the capping agent in the 

preparation of faceted anatase TiO2 could be seen. The good photocatalytic performance 

of these samples can be ascribed to their structural properties of facet composition and to 

the fluorination effect of residual fluorine on their surfaces. 
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Figure captions 

 

Figure 1. XRD pattern of the different samples: ButHF (a), ButHCl (b), IsoHF (c) and IsoHCl 

(d). 

Figure 2. Raman spectra for the indicated samples: ButHF, ButHCl and IsoHF. 

Figure 3. Pore diameter distribution for the different samples: ButHF, ButHCl, IsoHF and 

IsoHCl. 

Figure 4. Representative SEM pictures of the different samples. 

Figure 5. Representative TEM pictures for the fluorinated samples: ButHF (A and B) and 

IsoHF (C and D). 

Figure 6. HRTEM results for ISOHF sample showing a flat nanoplatelet projection oriented 

along the [111] zone axis of anatase TiO2 (a and b) and four side platelets projection 

orientated along the [100] zone axis (c). The FFT of each nanocrystal are depicted on the 

corresponding HR images. 

Figure 7. XPS spectra of the F1s region for the indicated samples: ButHF and IsoHF. 

Figure 8.Phenol degradation profiles over the different samples. Linear fitting graphs as 

inset.  

Figure 9. Methyl Orange degradation profiles over the different samples. Linear fitting 

graphs as inset. 

Figure 10. Cr(VI) reduction profiles over the different samples, without (up) and with (down) 

addition of isopropanol as sacrificial agent. Linear fitting graphs as inset. 
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Figure 11. Initial reaction rates for the different samples in the indicated substrates. 
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Table 1. Characterisation results 

 XRD anatase peaks relative intensities SBET 
(m2/g) 

Band Gap 
(eV) I(004)/I(101) I(200)/I(101) I(211)/I(105) 

ButHF 0.12 0.50 1.80 96 3.1 

ButHCl 0.31 0.30 0.96 113 3.2 

IsoHF 0.13 0.49 1.10 91 3.1 

IsoHCl - - - 12 2.9 

P25 - - - 50 3.1 
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Table 2. RAMAN peak intensities and 001 facet percentages 

Sample Peak intensity 
of Eg 

Peak intensity 
of A1g 

Ratio 
Eg/A1g 

[% 001]* [%001]** 

But HF 3745 2510 1.49 69% 79% 

But HCl 13655 1853 7.37 12% - 

Iso HF 10995 5956 1.85 55% 76% 

*according to Raman as in reference [21] **according to geometric measurements in TEM 
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Table 1. Apparent rate constants for the different substrates. 

 
Kk (min-1) 

Phenol MO Cr(V) Cr(VI)+ 2PrOH 

ButHF 0,0231 0,0889 0,0068 0,0577 

ButHCl 0,0097 0,0109 0,0013 0,0433 

IsoHF 0,0279 0,0892 0,0069 0,0555 

IsoHCl 0,0069 0,0079 0,0018 0,0402 

P25 0,0201 0,0501 0,0078 0,0169 

 

   

Table3 Click here to download Table Table 3_N.docx 

http://www.editorialmanager.com/jmsc/download.aspx?id=1508517&guid=0218c089-89b7-4f6c-9ceb-365a27eb95b8&scheme=1
http://www.editorialmanager.com/jmsc/download.aspx?id=1508517&guid=0218c089-89b7-4f6c-9ceb-365a27eb95b8&scheme=1

