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                                   a b s t r a c t

We continue here the investigation of P automata, in their non-extended case, a class of
devices which characterize non-universal family of languages. First, a recent conjecture is
confirmed: any recursively enumerable language is obtained from a language recognized
by a P automaton, to which an initial (arbitrarily large) string is added. Then, we discuss
possibilities of extending P automata, following suggestions from string finite automata.
For instance, automata with a memory (corresponding to push-down automata) are
considered and their power is briefly investigated, as well as some closure properties of
the family of languages recognized by P automata. In the context, a brief survey of results
about P and dP automata (a distributed version of P automata) is provided, and several
further research topics are formulated.

1. Introduction

P automata are usual symport/antiport P systems used in the accepting mode: the sequence of objects which are input
from the environment during a halting computation is said to be accepted by the automaton and the set of all such strings
forms the language recognized by the automaton. There is an important point here: at the same moment, several objects
can be ‘‘read’’ from the environment. In the simplest case, considered in [9] and in a series of subsequent papers, see the
bibliography, when several objects are taken at the same time, then all their permutations are introduced in the accepted
string. A more general possibility is to proceed as in [5], and consider a function which associates a symbol (or a string)
with any multiset, and then the string accepted during a computation is the concatenation of the images of the considered
mapping for the sequence of the input multisets. Various functions can give various different results—but here we work in
the style of [9] and we leave as a research topic the more general approach of [5].

In the extended case (a terminal alphabet is considered and any object which is not from this alphabet is ignored; thus,
no relation there is between the length of the accepted string and the number of objects taken from the environment), P
automata characterize the family of recursively enumerable languages. In the non-extended case, because theworking space
is limited to the number of input symbols, to which one adds the objects initially present in the system, we only recognize
context-sensitive languages. This is a very important point, asmost of the classes of P systems are computationally universal,
andmany times inmembrane computing the interest was shown for classes of P systemswhich are not universal. In spite of
this interest, not so many papers were devoted so far to non-extended P automata; some results can be found in [8], [14], in
general, in the context of studying the recently introduced dP automata, [13]. For the reader convenience, we also introduce
here this notion, of a dP automaton.

The present paper aims to contribute to filling this gap, on the one hand, investigating basic properties of P automata and
of their languages, such as closure properties, and on the other hand considering extensions of P automata, on the model
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of the extensions of string finite automata. Automata with a memory (reminding the push-down automata) and two-way
automata are considered.

Many other questions remain to be investigated; we formulate a series of open problems and research topics, but the
reader can imagine many other, just following this general idea: extend to P automata ideas investigated in the theory of
classic string finite automata.

2. P and dP automata

The reader is assumed to be familiar with elementary facts about membrane computing, e.g., from [12], [16], and of
formal language theory, e.g., from [17], [18]. (In what follows, V ∗ is the free monoid generated by the alphabet V , λ is the
empty word, V+

= V ∗
− {λ}, and |x| denotes the length of the string x ∈ V ∗. REG, LIN, CF , CS, RE denote the families of

regular, linear, context-free, context-sensitive, and recursively enumerable languages, respectively. As usual in membrane
computing, the multisets over an alphabet V are represented by strings in V ∗.)

For the reader convenience, we start by introducing the more general notion of a dP automaton, which is a construct

∆ = (O, E, Π1, . . . , Πn, R),

where (1) O is an alphabet (of objects), (2) E ⊆ O (the objects available in arbitrarily many copies in the environment),
(3) Πi = (O, µi, wi,1, . . . , wi,ki , E, Ri,1, . . . , Ri,ki) is a symport/antiport P system of degree ki (O is the alphabet of objects,
µi is a membrane structure of degree ki, wi,1, . . . , wi,ki are the multisets of objects present in the membranes of µi in the
beginning of the computation, E is the alphabet of objects present—in arbitrarily many copies—in the environment, and
Ri,1, . . . , Ri,ki are finite sets of symport/antiport rules associated with the membranes of µi; the symport rules are of the
form (u, in), (u, out), where u ∈ O∗, and the antiport rules are of the form (u, out; v, in), where u, v ∈ O∗; note that we do
not have an output membrane), with the skin membrane labeled with (i, 1) = si, for all i = 1, 2, . . . , n, and (4) R is a finite
set of rules of the form (si, u/v, sj), where 1 ≤ i, j ≤ n, i ≠ j, and u, v ∈ O∗, uv ≠ λ.

The systems Π1, . . . , Πn are called components of ∆ and the rules in R are called communication rules. For a rule
(u, out; v, in) or (si, u/v, sj), |uv| is the weight of this rule.

Each component can take an input, work on it, communicatewith other components (bymeans of rules in R), and provide
the answer to the problem in the end of a halting computation. Note that the environment is common, hence the components
can also communicate, in two steps, through the environment.

A halting computation with respect to∆ accepts the string x = x1x2 . . . xn over O if the componentsΠ1, . . . , Πn, starting
from their initial configurations, using the symport/antiport rules as well as the inter-components communication rules,
in the non-deterministically maximally parallel way, bring from the environment the substrings x1, . . . , xn, respectively,
and eventually halts. We denote by L(∆) the language recognized in this way by ∆. (Remember that we work here with
the assumption that, if several objects enter at the same time the system, then any permutation of them is considered as a
substring of the accepted string.)

The dP automaton is synchronized, a universal clock exists for all components, marking the time in the same way for the
whole dP automaton.

Let us denote by LdP the family of all languages recognized by dP automata. A dP automaton of degree 1 (hence with only
one component, with no communication rules) is a usual P automaton. We denote by LP the family of languages recognized
by P automata.

Clearly, a P automaton (with k membranes) is written in the form Π = (O, µ,w1, . . . , wk, E, R1, . . . , Rk).
Note that we ignore here the number of components of dP automata, of membranes in P automata, as well as other

descriptive measures, such as the weight of rules. If necessary, such parameters can be easily taken into consideration (and
many problems appear about them: obtaining results for small systems, finding hierarchies according to such criteria, and
so on).

3. A short survey of results

We recall now some of the results reported in the literature of P and dP automata.
We mentioned that when a terminal alphabet T is considered, as a subset of O, and the symbols from O − T are ignored

when building the accepted string, then for the obtained family of languages, denoted by ELP , we have:

Theorem 3.1. RE = ELP.

In turn, for non-extended P automata, the following inclusion was suggested above:

Lemma 3.1. LP ⊆ CS.

P automata can recognize non-context-free languages, hence [8]:

Lemma 3.2. LP − CF ≠ ∅.

An example of a non-regular language in LP is L1 = {(a2c)s(b2d)s | s ≥ 1}—and it can be easily extended to non-context-free
languages (the equality of three blocks of the form (α2β)s can be checked in terms of P automata).



Two necessary conditions for a language to be in LP were given in [8]:

Lemma 3.3. For every language L ⊆ V ∗, L ∈ LP, which is not regular there is a string w ∈ L which can be written in the form
w = w1abw2, for some w1, w2 ∈ V ∗ and a, b ∈ V (not necessarily distinct) such that w1baw2 ∈ L.

This lemma implies, for instance, that the linear language

L2 = {(ab)n(ac)n | n ≥ 1}

is not in LP . Actually, a more general consequence of Lemma 3.3 is drawn in [8]:

Theorem 3.2. All families of languages which include strictly the family of regular languages and are closed under λ-free
morphisms contain languages which are not in LP.

Another necessary condition for a language to be in LP given in [8] is:

Lemma 3.4. Let V be an alphabet with at least two elements and f : V ∗
−→ V ∗ an injective mapping. The language

Lf = {wf (w) | w ∈ V ∗
} is not in the family LP.

Because this result can be extended to other types of P automata (e.g., to P automata with an internal memory), we recall
the idea of the proof: the number of configurations of a P automaton which has brought inside m symbols is bounded by
a polynomial in m, but there are more than 2m different strings of length m over an alphabet with more than two symbols
(hence exponentially many); this makes impossible the matching between the two halves of the strings.

As a consequence of the previous lemma, for instance, the context-sensitive language, L3 = {wf (w) | w ∈ {a, b}∗} for
f (a) = a′, f (b) = b′, is not in LP .

Based on the idea of the previous proof, in [14] it is also shown that the language L4 = {(ww′)s | w ∈ {a, b}+, s ≥ 2},
where w′ is obtained from w by priming the symbols a and b, is not in the family LdP .

As expected, P automata can recognize all regular languages ([8]; a simpler proof is given in [15]):

Theorem 3.3. REG ⊂ LP.

Also natural is the fact that the distribution increases the power, dP automata are strictlymore powerful than P automata:

Theorem 3.4. LP ⊂ LdP ⊂ CS.

Synthesizing these results,we obtain the diagram in Fig. 1, based on a similar diagram from [8]; the languages L1, L2, L3, L4
are specified above and L5 is only conjectured: L5 = {x mi(x) | x ∈ {a, b}∗}, wheremi(x) is the mirror image of x.

4. A representation theorem for RE languages

We pass now to providing some new results about P automata.
The following theorem is classic in formal language theory—see, e.g., [18]:

Theorem 4.1. For every language L ∈ RE, L ⊆ V ∗, there is a language L′
∈ CS and two symbols a, c /∈ V such that:

(i) L′
⊆ L{c}a∗, (ii) for each w ∈ L there is i ≥ 0 such that wcai ∈ L′.

Otherwise stated, the two languages are ‘‘the same’’ up to a tail of arbitrary length added to strings in L.
The following counterpart of Theorem 4.1 was proved in [8]:

Theorem 4.2. For every language L ∈ RE, L ⊆ V ∗, there is a language L′
∈ LdP and an alphabet U disjoint of V such that:

(i) L′
⊆ LU∗, (ii) for each w ∈ L there is y ∈ U∗ such that wy ∈ L′.

Moreover, it is conjectured in [8] that a similar result is valid also for languages recognized by P automata, but this time
with the ‘‘tail’’ placed in the left hand of the string. We confirm here this conjecture. The result is non-trivial, because LP
(the same for LdP) is strictly included in CS.

Theorem 4.3. For every language L ∈ RE, L ⊆ V ∗, there is a language L′
∈ LP, and an alphabet U disjoint of V such that:

(i) L′
⊆ U∗L, (ii) for each w ∈ L there is y ∈ U∗ such that yw ∈ L′.

Proof. We follow the idea of the proof of Theorem 4.2 from [8], implemented for P automata, but we only give here part of
the technical details of the construction.

Consider a language L ∈ RE over an alphabet V = {a1, a2, . . . , an} for some n ≥ 1. Consider the strings in V+ as numbers
in basis n + 1, hence written with the digits ai = i, 1 ≤ i ≤ n; we omit the digit zero. Let valn+1(w) be the integer which
represents the value of ‘‘number’’ w ∈ V ∗ in this sense. Clearly, valn+1(xai) = (n + 1)valn+1(x) + i, for any x ∈ V ∗ and
ai ∈ V , 1 ≤ i ≤ n. This computation can be done by a register machine Mi = (Hi, l0,i, lh,i, Ii) (set of labels, initial label,
halting label, set of instructions) which starts from instruction with label l0,i with valn+1(x) stored in register 1 and ends
with the number valn+1(xai) in the same register, after reaching the instruction lh,i : halt.

We extend the mapping valn+1 in the natural way to languages, valn+1(L) = {valn+1(w) | w ∈ L}, for L ⊆ V ∗. Obviously,
L ∈ RE if and only if the set valn+1(L) is a recursively enumerable one, hence if and only if there is a register machine
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Fig. 1. The place of the families LP and LdP in Chomsky hierarchy.

M = (H, l0, lh, I) which accepts exactly the numbers in valn+1(L) (starting from the initial label l0, with a number m in its
first register, the machineM halts if and only ifm ∈ valn+1(L); halting means reaching the instruction lh : halt).

The general strategy we follow is the following.
We construct a P automaton Π as schematically indicated in Fig. 2, where we have specified only part of the rules

associatedwithmembranes; instead, insidemembrane 1we have indicated the two ‘‘macro-steps’’ of the computation done
here. These macro-steps are the following: (1) computing valn+1(xai), by means of a register machine Mi = (Hi, l0,i, lh,i, Ii),
1 ≤ i ≤ n, and (2) checking whether valn+1(w) ∈ N(M) for a register machineM as above.

Let us denote

V ′
= {a′

i | ai ∈ V },

V ′′
= {l, l′, l′′, l′′′, liv | l ∈ H ∪ ∪

n
i=1Hi},

V ′′

h = {lh} ∪ {lh,i | 1 ≤ i ≤ n},
B = {b1, b2, b3}.

The computation starts by introducing in the skin region arbitrarily many copies of objects from V ′′
∪ B, as well as copies

of objects in V ′, these last ones paired with copies of f . This is done in the presence of object d, present both in the skin
region and in the environment (the environment is supposed to contain all objects we need, in sufficiently many copies).
Immediately after entering the system, the pairs fa′

i should be moved to membrane 1 (otherwise a′

i will release the trap
object # from membrane 2 and the computation never halts, # will oscillate forever across membrane 1).

In this way, we introduce the prefix y from the theorem statement, whose objects are used as a workspace for the
computations done in membrane 1 (these computations need an environment, but it is not possible to use the system
environment, because the objects we input are considered in the input string, that is why we use the skin region as the
environment of membrane 1).

At any moment, a rule (d, out; ai, in) can be used and we pass now to the second stage of the computation. After
introducing any symbol of V inside the system, the numerical value of the string read so far is calculated in membrane
1 and expressed as the number of occurrences of the symbol b1.

To this aim, ai enters membrane 1 together with l0,i; when the computation is completed, hence lh,i is produced, the
triple aia′

ilh,i exits membrane 1. The pair aia′

i should exit the system, bringing inside another element of V : if ai enters again
membrane 1, a′

i can only release the trap object from membrane 2 (there is no copy of f present in the skin membrane, to
help a′

i to enter membrane 1). If the computation of the register machine is not completed because we do not have enough
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Fig. 2. The P automaton from the proof of Theorem 4.3.

working symbols in the skin region, then the computation never halts, cycling rules of the form (l, out; l, in) are provided
for all labels which are not halting labels.

At some moment, non-deterministically, we stop introducing objects from the environment and pass to checking
whether the string read up to now belongs to the language L. The pair aia′

i enters membrane 2, object e is released, and
it enters membrane 1 together with object l0. This means activating the simulation of the register machineM . If w ∈ L, then
the label lh is reached, if not, the computation continues forever.

Now, what remains to be done is to implement the register machinesMi, 1 ≤ i ≤ n, andM , and this can be done exactly
as in [8], making use of the objects from V ′′

∪ B from the skin region. We omit the details, we just mention that, without
loss of the generality, we assume that all register machines we use have at most three registers, and that in the end of the
computations all registers are empty except the first one.

With the notation U = V ′
∪ V ′′

∪ B ∪ {f }, the proof is complete. �

This theorem has a series of consequences:

Corrolary 4.1. (i) The family LP is not closed under arbitrary morphisms and under left quotients with regular languages. (ii) If
a family FL of languages is closed under arbitrary morphisms or under left quotients by regular languages, and FL ⊂ RE, then
LP − FL ≠ ∅. (iii) LP is incomparable with all families of languages FL such that REG ⊂ FL ⊂ RE and FL is closed under arbitrary
morphisms.

Proof. Point (i) is a direct consequence of the previous theorem and of the fact that LP ⊂ CS ⊂ RE. If LP ⊆ FL ⊂ RE and FL
is closed under the mentioned operations, then, from the theorem above we get FL = RE, which is a contradiction, hence
point (ii) follows. Finally, combining point (ii) with Theorem 3.2, we obtain the assertion (iii). �

5. A non-closure property

We were not able to find too much about the closure properties of the family LP , in particular, we found no positive
closure property. We conjecture that LP is neither an AFL nor an anti-AFL. We only give here the following further negative
result:

Theorem 5.1. The family LP is not closed under inverse morphisms.
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Fig. 3. The P automaton from the proof of Theorem 5.1.

Proof. Let us consider the following two non-regular languages:

L = {(ab)mad(ab)na | m ≥ n ≥ 0},
L′

= {(aab)maad(aab)na | m ≥ n ≥ 0}.

The first language is not in LP because it does not have the property in Lemma 3.3. For the morphism h : {a, b, d}∗ −→

{a, b, d}∗ defined by h(a) = aa, h(b) = b, h(d) = d we have L = h−1(L′). In order to prove the non-closure under inverse
morphisms is then enough to show that L′

∈ LP . To this aim, we construct the P automaton Π whose initial configuration is
shown in Fig. 3.

The automaton works as follows. In the first step, the rule (b, out; aa, in) brings inside two copies of a, and at the same
time object e1 exist membrane 1. If in the next step both objects a exit in exchange of b, then e1 will release the trap object #
frommembrane 5 and the computationnever halts (# oscillates forever acrossmembrane 2). Thus, one copy of a should enter
membrane 1 together with e1, while the second copy should go to the environment (another possibility is to get changed
with the trap object from membrane 5). This process can be iterated form ≥ 1 steps, and then the rule (e′

2e
′′

2, out; aae1, in)
can be used. The membrane 1 contains m copies of a, e1 gets ‘‘hidden’’ in membrane 2, and we pass now to reading objects
in the second ‘‘half’’ of the string. First, e′

2, e
′′

2 are released frommembrane 2, e′

2 brings d in the system, while e′′

2 is exchanged
with e2 from membrane 2. Now, strings aab are again introduced in the skin membrane, but e2 moves one a from each pair
aa intomembrane 3. In this way, n ≥ 1 copies of a are stored here. This process is stopped by using the rule (g, out; aae2, in),
which releases the object g from membrane 2, to start checking whether or notm ≥ n.

Object g helps fa to exit membrane 2 and remains there; fa enters membrane 3 and exits with a further a. If this happens
once again, then one a remains unused and it releases # from membrane 5, or it can bring one b from the environment,
and again the computation never halts, because of the rules (b, out; aa, in), (a, out; b, in), which can be used forever, the
number of copies of as present in the skin region will continuously increase. Thus, we have to use immediately the rule
(faa, in) from R4. Object f exits membrane 4 together with h; h cannot return immediately, because f alone can only release
the trap object. Therefore, fh enters membrane 1, gh exits, fa is again exchanged for g , now h enters membrane 4, and the
process is iterated. One by one, copies of a from membranes 1 and 3 are paired and moved to membrane 4.

If, at some moment, f takes one a from membrane 1 and no a exists in membrane 3, then the computation halts, as
f remains blocked in membrane 3. If no copy of a exists in membrane 1, f remains blocked here, gh exits, h returns to
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Fig. 4. The P automaton from the proof of Theorem 6.1.

membrane 4, but g checks whether membrane 3 contains any copy of a. In the affirmative case, the rule (a#, out; g, in) can
be used, and the computation never stops. If no a exists here, then the computation halts.

Therefore, the computation halts if and only if the input string is of the form (aab)maad(aab)naa, for some m ≥ n ≥ 1,
hence L′ is a language in LP . �

6. P automata with an internal memory

Another natural extension of a P automaton, suggested by the difference between a finite automaton and a push-down
one (the latter has amemory tape,which controls themovements along the input tape) is to consider an internalmemory also
for P automata, used for controlling the input of multisets from the environment. To have a simple definition, we use here as
memory one (and only one) elementary membrane, which has objects inside and rules associated as any usual membrane,
but the rules of the skin membrane are paired with rules associated with the memory membrane. More specifically, besides
symport or antiport rules associated with the memory membrane m—let us denote their set with Rm, as usual—all rules
associated with the skin membrane are pairs of the form (r1, r2), where r1 is a symport/antiport rule which passes objects
across the skinmembrane and r2 is a symport/antiport rulewhich passes objects across themembranem; there is no relation
between such rules r2 and the set Rm.

The work of such an automaton is as usual. Let us denote by LmP the family of languages recognized by P automata with
an internal memory.

Clearly, LP ⊆ LmP: to a usual P automaton, a ‘‘dummy’’ memory membrane can be added, with an object f inside and an
object f outside, and a rule (f , out; f , in) is coupled with each rule in Rs; the accepted strings remain the same.

As expected, using a memory as above helps, it strictly increases the power of P automata:

Theorem 6.1. LmP − LP ≠ ∅.

Proof. We consider the automaton from Fig. 4, which works as follows.
While c1 and c2 oscillate across membrane m, objects a and b are brought into the skin region. Immediately, they are

moved to membranem, assisted by the objects h present both in membranem and in the skin region. At anymoment, when
c2 is outside membrane m, the rule (c1d2h, out) from Rm can be used. The reading of objects a, b stops and objects d, e are
introduced, with d1, d2 playing now the role of c1, c2, and oscillating across membrane m. Objects d, e remain in the skin
region.

At some moment, when a string (ab)n, n ≥ 0, was read (and moved into the memory membrane), followed by a string
(de)m,m ≥ 0 (which remains in the skin membrane), we can use the coupled rule ((d2, out), (f , out)) of Rs. No further
objects can be brought from the environment, we start checking whether n = m. The coupled rule ((d, out), (fa, out; f , in))
is used to this aim: simultaneously, one d is sent to the environment and one a is taken from membrane m. If the multisets
of a and d are exhausted at the same time, then the computation stops. If we have more copies of d than of a, then the rule
(#, out; fd, in) will take the trap object # frommembrane 1 and the computation never halts, the object # oscillates forever



across membrane m. If this rules is used while still objects a are present, the computation is ‘‘lost’’, because it continues
forever.

Similarly, if we finish the objects d and still copies of a are present in membranem, then the rule (a, out; f , in) should be
used, and now the object a brings # outside membrane 1, and the computation never stops. Consequently, the computation
halts if and only if n = m, therefore L(Π) = {(ab)n(de)n | n ≥ 0}. This language does not have the property from Lemma 3.3,
hence it is not in the family LP , that is, LP ⊂ LmP is a strict inclusion, and this completes the proof. �

It is easy to see that Lemma 3.4 holds true also for the family LmP , with the same proof as for usual P automata, hence
languages of the form {ww′

| w ∈ {a, b}∗}, with w′ being the primed version of w, are not in LmP . Moreover, the workspace
of a P automaton with memory is equal with the length of the input string, plus the finite number of objects present in the
initial configuration, hence LmP ⊆ CS. Thus, the following strict inclusions hold:

Corrolary 6.1. LP ⊂ LmP ⊂ CS.

7. Further research topics

As pointed out several times above, there aremany open problems and topics to be investigated for P automata.We have
settled only two closure properties involved in the definition of AFLs: LP is not closed under arbitrary morphisms and under
inverse morphisms (the same with the quotient with respect of regular languages). What about other operations? We have
said nothing about other properties, such as the decidability of basic questions (except membership, which is decidable
because of the inclusion LP ⊂ CS).

Other ‘‘classic’’ issues about automata remains to be considered. For instance, the proof of Theorem 4.3 suggests the idea
of a two-way automaton: the prefix appended to the string in the RE languagewewant to represent ismeant to create inside
the system a large enough workspace, to be used when introducing the relevant part of the input. If we imagine that the
symbols to read are written on a tape, as in the case of usual automata, and we read them by means of symport/antiport
rules, then we can imagine that the tape remains always at the disposal of the automaton, hence we canmove both to right,
as usual, and to left along this tape (just add left-right indications to the symport/antiport rules). Then, we can place in
the left hand of the tape one copy of each symbol necessary during the computation; by reading this part of the tape in a
repeated way, we input as many copies of these symbols as we need, while reading a fixed amount of the tape. In this way,
the representation from Theorem 4.3 can be obtained with a prefix of a bounded length. As a consequence, the non-closure
of the family of languages recognized by two-way P automata under left derivatives is obtained. The details are left to the
reader—starting with the formalization of two-way P automata and two-way computations. Similar formalizations can be
found in [6], where also the idea of multi-head automata is considered.

Another idea is that of considering still more restrictive classes of P automata, thus obtaining ‘‘sub-regular’’ classes
of languages, as it is possible for finite automata and regular grammars. Restrictions on the form of rules, number of
membranes, number of rules can be useful.

A possible extension is to also associate an output with a computation, thus obtaining a transducer. Actually, neither the
simple idea of a language generating P systemwas considered so far. There are cases when the generative and the accepting
versions of the same device from classic automata and language theory behave differently, hence the questionmight be non-
trivial also for P automata. The same occurs with the description of transductions which can be obtained in this framework.
Find examples and counterexamples, maybe characterizations (as there are for finite states transductions). Note that we
work here in the non-extended and in a different set-up than the one from [1].

We give only a simple example of a transducer (it seems that even the identity function requests a P transducer with two
membranes). Indeed, consider an alphabet V = {a1, . . . , an} and construct:

Π = (V , [ [ ]2 ]1, c, a1a2 . . . an,
{(ai, out; ai, in) | 1 ≤ i ≤ n},
{(ai, out; c, in) | 1 ≤ i ≤ n} ∪ {(c, out)}

∪ {(ai, out; caj, in) | 1 ≤ i, j ≤ n}
∪ {(cai, in) | 1 ≤ i ≤ n}.

The rule (ai, out; ai, in) ensures the equality of the input with the output, and the change of the symbol ai is done with the
help of c (and the object present in the inner membrane); the same object c determines the end of the computation.

Some ideas can also come from the membrane computing itself: what about minimal parallelism, sequential or
asynchronous P automata, introducing rules for handling also membranes, controls about using the rules (promoters,
inhibitors, etc.)?

A wealth of research topics, hence an area of investigation which is worth considering, in spite (or, better, because) of
the simple definitions and the ‘‘eccentric’’ computing power.

For further reading

[2–4,7,10,11,19].
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