View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by idUS. Depésito de Investigacion Universidad de Sevilla

Spiking Neural P Systems:
A Short Introduction and New Normal Forms

Lingiang Pan''?, Gheorghe Pdun??2, Mario J. Pérez-Jiménez?
! Department of Control Science and Engineering

Huazhong University of Science and Technology

Wuhan 430074, Hubei, China

lgpan@mail .hust.edu.cn, lgpan@us.es

Department of Computer Science and Artificial Intelligence
University of Sevilla

Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

Institute of Mathematics of the Romanian Academy

PO Box 1-764, 014700 Bucuresti, Romania
george.paun@imar.ro, gpaun@us.es

Summary. Spiking neural P systems are a class of P systems inspired from the way
the neurons communicate with each other by means of electrical impulses (called
“spikes”). In the few years since this model was introduced, many results related
to the computing power and efficiency of these computing devices were reported.
The present paper quickly surveys the basic ideas of this research area and the basic
results, then, as typical proofs about the universality of spiking neural P systems,
we present some new normal forms for them. Specifically, we consider a natural
restriction in the architecture of a spiking neural P system, to have neurons of a
small number of types (i.e., using a small number of sets of rules). We prove that
three types of neurons are sufficient in order to generate each recursively enumerable
set of numbers as the distance between the first two spikes emitted by the system;
the problem remains open for accepting SN P systems. The paper ends with the
complete bibliography of this domain, at the level of April 2009.

1 Introduction

Spiking neural P systems (SN P systems, for short) were introduced in [32]
in the aim of defining computing models based on ideas specific to spiking
neurons, currently much investigated in neural computing (see, e.g., [21], [42],
[43]). The resulting models are a variant of tissue-like and neural-like P sys-
tems from membrane computing — we refer to [56] for basic information in
membrane computing, [71] for a comprehensive presentation, and to the web
site [81] for the up-to-date information.

In short, an SN P system consists of a set of neurons placed in the nodes
of a directed graph and sending signals (spikes, denoted in what follows by

https://core.ac.uk/display/161813808?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 L. Pan, Gh. Paun, M.L. Pérez-Jiménez

the symbol a) along synapses (arcs of the graph). Thus, the architecture is
that of a tissue-like P system, with only one kind of objects present in the
cells. The objects evolve by means of spiking rules, which are of the form
E/a® — a;d, where E is a regular expression over {a} and ¢,d are natural
numbers, ¢ > 1,d > 0. The meaning is that a neuron containing k spikes
such that a* € L(E),k > ¢, can consume c spikes and produce one spike,
after a delay of d steps. This spike is sent to all neurons to which a synapse
exists outgoing from the neuron where the rule was applied. There also are
forgetting rules, of the form a® — A, with the meaning that s > 1 spikes are
forgotten, provided that the neuron contains exactly s spikes. We say that the
rules “cover” the neuron, all spikes are taken into consideration when using
a rule. The system works in a synchronized manner, i.e., in each time unit,
each neuron which can use a rule should do it, but the work of the system
is sequential in each neuron: only (at most) one rule is used in each neuron.
One of the neurons is considered to be the output neuron, and its spikes are
also sent to the environment. The moments of time when a spike is emitted
by the output neuron are marked with 1, the other moments are marked with
0. This binary sequence is called the spike train of the system — it might be
infinite if the computation does not stop.

The result of a computation is encoded in the distance between consecutive
spikes sent into the environment by the (output neuron of the) system. In [32]
only the distance between the first two spikes of a spike train was considered,
then in [66] several extensions were examined: the distance between the first &
spikes of a spike train, or the distances between all consecutive spikes, taking
into account all intervals or only intervals that alternate, all computations or
only halting computations, etc.

Systems working in the accepting mode were also considered: a neuron
is designated as the input neuron and two spikes are introduced in it, at an
interval of n steps; the number n is accepted if the computation halts.

Both in the generating and the accepting case, SN P systems were proved
to be computationally complete (equivalent with Turing machines; we also
say that SN P systems are “universal”: the equivalence with Turing machines
is constructive, hence starting the proof of equivalence from universal Turing
machines, or from equivalent universal devices, directly lead to universal SN
P systems).

Recently, SN P systems were also used in order to devise (theoretical)
ways to solve computationally hard problems in a feasible (polynomial) time.
This is usually achieved in membrane computing by means of tools which
allow producing an exponential working space in a linear time; the standard
way to do it is membrane division. In the SN P area, a different strategy
was first explored: with inspiration from the fact that the brain consists of
a huge number of neurons out of which only a small part are used, in [9]
one address computationally hard problems by assuming that an arbitrarily
large SN P system is given “for free”, pre-computed, with a structure as
regular as possible, and without spikes inside; solving a problem starts by

Spiking Neural P Systems 3

introducing spikes in certain neurons (in a polynomially bounded number of
neurons a polynomially bounded number of spikes are introduced); then, by
moving spikes along synapses, the system self-activates, and a specific output
provides the answer to the problem. This was illustrated in [9] for SAT. Then,
both ways to produce this “pre-computed” resource during the computation
were considered ([74]), and rules for dividing neurons ([53]), with inspiration
from the observation that there are so called neural stem cells, which divide
repeatedly, producing new neurons ([18]). The research in this last direction
is just started, and further progresses are expected.

The present survey is a brief one, many further directions of research
were explored (asynchronous SN P systems, inhibitory spikes and /or synapses,
using the rules in a parallel way, Hebbian learning for SN P systems, modeling
certain neurophysiological processes, and so on); the bibliography which closes
the paper can be a good source of information for the reader.

In order to have a sort of a case study of research in this area, we end the
paper with some results (obtained during the Seventh Brainstorming Week on
Membrane Computing, Sevilla, February 2-6, 2009), concerning a new normal
form for SN P systems. Details will be given in Section 6.

2 Prerequisites

We assume the reader to have some familiarity with (basic elements of) lan-
guage and automata theory, e.g., from [73], as well as with basics of membrane
computing, e.g., from [56], [71], and [81], and we introduce here only a few
notations, as well as the notion of register machines, used in the proofs from
Section 6 (based on paper [51]).

For an alphabet V', V* denotes the set of all finite strings of symbols from
V', the empty string is denoted by A, and the set of all nonempty strings over
V is denoted by V. When V = {a} is a singleton, then we write simply a*
and a™ instead of {a}*,{a}*. For a regular expression F we denote by L(F)
the regular language identified by F.

By NFIN,NREG, N RE we denote the families of finite, semilinear, and
Turing computable sets of (positive) natural numbers (number 0 is ignored);
they correspond to the length sets of finite, regular, and recursively enumer-
able languages, whose families are denoted by FIN, REG, RE. We also invoke
below the family of recursive languages, REC' (the languages with a decidable
membership).

A register machine (see, e.g., [47]) is a construct M = (m, H,ly,lp,),
where m is the number of registers, H is the set of instruction labels, [is
the start label (labeling an ADD instruction), I, is the halt label (assigned to
instruction HALT), and I is the set of instructions; each label from H labels
only one instruction from I, thus precisely identifying it. The instructions are
of the following forms:

4 L. Pan, Gh. Paun, M.L. Pérez-Jiménez

e [;:(ADD(7),1;,1;) (add 1 to register r and then go to one of the instructions
with labels ;, {x),

e [: (SUB(r),l;,l;) (if register r is non-empty, then subtract 1 from it and
go to the instruction with label [;, otherwise go to the instruction with
label 1),

e [, : HALT (the halt instruction).

A register machine M computes (generates) a number n in the following
way: we start with all registers empty (i.e., storing the number zero), we apply
the instruction with label [y and we proceed to apply instructions as indicated
by the labels (and made possible by the contents of registers); if we reach the
halt instruction, then the number n stored at that time in the first register is
said to be computed by M. The set of all numbers computed by M is denoted
by N(M). It is known that register machines compute all sets of numbers
which are Turing computable, hence they characterize NRE.

Without loss of generality, we may assume that in the halting configura-
tion, all registers different from the first one are empty, and that the output
register is never decremented during the computation, we only add to its
contents.

We can also use a register machine in the accepting mode: a number is
stored in the first register (all other registers are empty); if the computa-
tion starting in this configuration eventually halts, then the number is ac-
cepted. Again, all sets of numbers in NRE can be obtained, even using de-
terministic register machines, i.e., with the ADD instructions of the form
l; : (ADD(r),l;, 1) with ; = I} (in this case, the instruction is written in the
form 1; : (ADD(r),1;)).

Convention: when evaluating or comparing the power of two number
generating /accepting devices, number zero is ignored.

3 Spiking Neural P Systems

We introduce here the SN P systems in the standard form (with non-extended
rules):
An SN P system of degree m > 1 is a construct of the form

I =(0,01,...,0m,syn,in,out), where:

1. O = {a} is the singleton alphabet (a is called spike);
2. 01,...,0, are neurons, of the form

o; = (ni, Ri), 1 < i <m, where:

a) n; > 0 is the initial number of spikes contained in o;;
b) R; is a finite set of rules of the following two forms:

Spiking Neural P Systems 5

(1) E/a® — a;d, where E is a regular expression over a, ¢ > 1, and
d>0;
(2) a® — A, for some s > 1, with the restriction that for each rule
E/a® — a;d of type (1) from R;, we have a® ¢ L(E);
3. syn C {1,2,...,m} x {1,2,...,m} with (¢,i) ¢ syn for 1 < i < m
(synapses between neurons);
4. in,out € {1,2,...,m} indicate the input and output neurons, respectively.

The rules of type (1) are firing (we also say spiking) rules, and they are
applied as follows. If the neuron o; contains k spikes, and a* € L(E),k > c,
then the rule E/a® — a;d can be applied. The application of this rule means
removing ¢ spikes (thus only k — ¢ remain in ¢;), the neuron is fired, and it
produces a spike after d time units (a global clock is assumed, marking the time
for the whole system, hence the functioning of the system is synchronized).
If d = 0, then the spike is emitted immediately, if d = 1, then the spike is
emitted in the next step, etc. If the rule is used in step ¢ and d > 1, then in
steps t,t + 1, +2,...,t+d — 1 the neuron is closed (this corresponds to the
refractory period from neurobiology), so that it cannot receive new spikes (if
a neuron has a synapse to a closed neuron and tries to send a spike along it,
then that particular spike is lost). In the step ¢ 4 d, the neuron spikes and
becomes again open, so that it can receive spikes (which can be used starting
with the step ¢ + d + 1).

The rules of type (2) are forgetting rules and they are applied as follows:
if the neuron o; contains exactly s spikes, then the rule a® — A\ from R; can
be used, meaning that all s spikes are removed from o;.

If a rule E/a® — a;d of type (1) has E = a®, then we will write it in the
simplified form a¢ — a;d.

In each time unit, if a neuron o; can use one of its rules, then a rule
from R; must be used. Since two firing rules, E1/a“* — a;d; and Fy/a®? —
a;dg, can have L(E7) N L(Ey) # 0, it is possible that two or more rules
can be applied in a neuron, and in that case, only one of them is chosen non-
deterministically. Note however that, by definition, if a firing rule is applicable,
then no forgetting rule is applicable, and vice versa.

Thus, the rules are used in the sequential manner in each neuron, but
neurons function in parallel with each other.

The initial configuration of the system is described by the numbers
ni,Na,..., Ny, of spikes present in each neuron. During a computation, the
system is described both by the numbers of spikes present in each neuron and
by the state of each neuron, in the open-closed sense. Specifically, if a neuron
is closed, we have to specify the number of steps until it will become again
open, i.e., the configuration is written in the form (p1/q1,...,Pm/qm); the
neuron o; contains p; > 0 spikes and will be open after ¢; > 0 steps (¢; = 0
means that the neuron is already open).

Using the rules as suggested above, we can define transitions among con-
figurations. Any sequence of transitions starting in the initial configuration is

6 L. Pan, Gh. Paun, M.L. Pérez-Jiménez

called a computation. A computation halts if it reaches a configuration where
all neurons are open and no rule can be used. With any computation, halting
or not, we associate a spike train, the binary sequence with occurrences of 1
indicating time instances when the output neuron sends a spike out of the
system (we also say that the system itself spikes at that time).

In [32], with any spike train containing at least two spikes, the first two
being emitted at steps 1, t2, one associates a result, in the form of the number
to — t1; we say that this number is computed by II. The set of all numbers
computed in this way by IT is denoted by No(IT) (the subscript indicates that
we only consider the distance between the first two spikes of any computation;
note that 0 cannot be computed, that is why we disregard this number when
estimating the computing power of any device).

This idea was extended in [66] to several other sets of numbers which can
be associated with a spike train: taking into account the intervals between the
first k spikes, k > 2 (direct generalization of the previous idea), or between
all intervals; only halting computations can be considered or arbitrary com-
putations; an important difference is between the case when all intervals are
considered and the case when the intervals are taken into account alternately
(take the first interval, ignore the next one, take the third, and so on); the
halting condition can be combined with the alternating style of defining the
output.

The result of a computation can be defined also as usual in membrane
computing, as the number of spikes present in the output neuron in the end
of a computation — we have then to work with halting computations. It is also
possible to consider SN P systems working in the accepting mode: we start
the computation from an initial configuration, and we introduce in the input
neuron two spikes, in steps ¢; and to; the number ¢35 — ¢ is accepted by the
system if the computation eventually halts.

Then, the spike train itself can be considered as the result of a computa-
tion. The halting computations will thus provide finite strings over the binary
alphabet, the non-halting computations will produce infinite sequences of bits.
If also an input neuron is provided, then a transducer is obtained, translating
input binary strings into binary strings.

4 Example

We illustrate the previous definition with only one example; further construc-
tions of SN P systems will be examined in Section 6. The system is given in
a graphical form in Figure 1, following the standard way to pictorially repre-
sent a configuration of an SN P system, in particular, the initial configuration.
Specifically, each neuron is represented by a “membrane” (a circle or an oval),
marked with a label and having inside both the current number of spikes
(written explicitly, in the form a™ for n spikes present in a neuron) and the
evolution rules; the synapses linking the neurons are represented by arrows;

L € FIN, L C B", we have L{1} € LSNP, (rule.,cons., forgo, bound,),
and if L = {x1,22, ..., x,}, then we also have {0 3z; | 1 < i < n} €
LSNPy (rules, consy, forgg, bound,).

(ii) The family of languages generated by finite SN P systems is strictly
included in the family of regular languages over the binary alphabet, but for
any reqular language L C V* there is a finite SN P system II and a morphism
h:V* — B* such that L = h='(L(II)). Spiking Neural P Systems 7

(iii) LSNPy (rule,cons., forg.) C REC, but for every alphabet V. =
besides the fagh thasrtherutmy sgwmbslswillcbesdenbified lay itwtphalmont, 1t
{alsq Buggestive tB drawdasshostcation mhicliexith feqipt it, pointingcho Hhe
govicepintaiguage L C V*, L € RE, there is an SN P system II such that
L Fapiailynia pystem is the following:

These results sHow=tlat} the, mngmseygehpravitly power of SN P systems
is rather eccentric;onthe ¢pg hand, fingte Jangupgsesal (likg, {0,1}) cannot be
generated, on the other ? Ve gan re%esent any R RE uage as the direct
morphic image of aA mvers HlOI‘pth Imhge Bt a} angua ¢ generated in this
way. This eccentricfy T %e{ﬁ%mﬂyjﬁb EhdrebprictEd Wag F generating strings,
with one symbol sytded §(l c2ph (Computhtion §eb), TRiS pstriction does not
appear in the case of extended spiking rules, of the form E/a® — a?;d: this
time, p > 1 spikes can be produced when consuming c spikes of the neuron (we
assume that ¢ > p). In this case, a language can be generated by associating
the symbol b; with a step when the output neuron sends out ¢ spikes, with an
important decision to take in the case ¢ = 0: we can either consider by as a
separate symbol, or we can assume that emitting 0 spikes means inserting A in
the generated string. Thus, we both obtain strings over arbitrary alphabets,
not only over the binary one, and, in the case where we ignore the steps
when no spike is emitted, a considerable freedom is obtained in the way the
computation proceeds. This latter variant (with A associated with steps when
no spike exits the system) is considered below.

We denote by LSN®P,,(ruley, cons,, prod,) the family of languages L(IT),
generated by SN P systems [T using extended rules, with at most m neurons,
each neuron having at most k rules, each rule consuming at most p spikes and
producing at most g spikes. Again, the parameters m, k, p, q are replaced by
% if they are not bounded.

The next counterparts of the results from Theorem 2 were proved in [10].

Theorem 3. (i) FIN = LSN®P;(rule,, cons,,prod,) and this result is sharp
in the sense that LSN®Py(rules, conss, prods) contains infinite languages.
(ii) LSN€¢Py(rules,cons,,prod,) C REG C LSN¢Ps(rules, cons,,
prody); the second inclusion is proper, because LSN€Ps(rules, consy,
prods) contains non-reqular languages; actually, the family LSN€Ps(rules,

consg, prody) contains non-semilinear languages.
(iii) RE = LSN°P,(rule,, cons,,prod,).

6 New Normal Forms

A neuron o; (in the initial configuration of an SN P system) is characterized
by n;, the number of spikes present in it, and by R;, its associated set of rules.
An SN P system is said to be in the kR-normal form, for some k > 1, if there
are at most k different sets Ry, ..., Ri of rules used in the m neurons of the
system. An SN P system is said to be in the knR-normal form, for some k > 1,

8 L. Pan, Gh. Paun, M.L. Pérez-Jiménez

if there are at most k different pairs (ny, R1),..., (ng, Rx) describing the m
neurons of the system.

We denote by N,SN P, (kf) the families of all sets N, (IT) computed by
SN P systems in the kB-normal form, for « € {2, gen, acc}, 5 € {R,nR}, and
k > 1, without forgetting rules, but with the spiking rules using the delay
feature (we do not restrict the number of neurons, that is why SNP has the
subscript *).

6.1 A 3R—N0rlﬁal?'FM ulﬁ AR]?f, simulating [; : (ADD(7), 15, lx)

Wew &g)m;ﬂfi ﬁeof ﬁfg%?n%ngﬁ?}elg glgtw é’ﬂal form result mentioned in the

Introduction: systems with only three different sets of rules are universal

when generating nurq@lerg %(((&(hd /nglﬁ;fg’st 4wa E]‘[’)d&}e:s of the spike train.

Theorem 4. NRE ﬁwgsﬁv@cg};*yéﬁ —a;0, a—a;1},

Ry = aa%) a —> a 0, a—a;l}.
Proof. We show that]\]3 RE C the converse inclusion is straight-

forwend (drDwe cmM@kmﬁéﬂntﬂlesilfﬂﬁmgeChﬁrCHdﬁmmi. Ledtmscensidgr a
tapbtey, anhine Mdieadted bh [Rigurk) 3viNo thediapRitieanseiipglindStetibe
BroVam eorstt Brictevan SR beis e phlkey hieh sipildatert b i hirewiaon somiehy bhé
sbeiatd thlsnadis whenoprsing thiafg atshastenfiniNaly syhiemstife eniversah
neecdfici]yNavacionsbpikesnaodudese 4k rnskitUb Bothimalasa theainbtivg-
tisms,; of dhiels wiel apike omtpiet meedete 1 whishvyovidesspikaesitl {dntthe
frmonf 2, simidables spifecteni) ¢ Heaphcregistar of ebaldtarilt hevere nNewgo:T fin
dlsowsh ifsthespoigistericantaing the, puanler; 11, Neemdihe lassosdat edspelue am il
doatelin YMmidpikedron [;4 can non-deterministically choose either rule to use as
botH'lef thedudes avidlbled Bivehecinxistermelocal doraly spidicatilgs dinjurigitiad
sonfidugationidlie prsmsetondh rthacingteureionthy; assogiated set of rules;
all Meyrons et it aliys elpbil evilda fheaexeepiooT ok theanswien iassheinted
et he inddlelabed dpileds Mhendel el qanéainsconens bkased dSiill wrentson
abarfaw pEherdpumersive showsilia ddehfollewirgHighithem spike. In this way,
01,, receives one spike and oy,, continues having one spike. Neuron /;9 contains
now a number of spikes of the form 3n + 3, for some n > 0 (initially we had
two spikes here, hence n = 0) and no rule is enabled. In the next step, this
neuron receives one further spike, and the first rule is fired (the number of
spikes is now 3(n + 1)+ 1). All neurons l; and l;11, l;12 receive one spike. The
last two neurons send back to oy,, one spike each, hence the number of spikes
in this neuron will be again congruent with 2 modulo 3, as at the beginning.
Thus, the neuron associated with the label I; has been activated.

If neuron l;4 uses the rule a — a;1, then oy,, receives two spikes at the
same (after one time unit) time and this branch remains idle, while neurons
lis, li10, li13, li14 behave like neurons l;7, l;9,li11, l;12, and eventually oy, is ac-
tivated and the number of spikes from oy;,, returns to the form 3s + 2, for
some s > 0.

The simulation of the ADD instruction is correctly completed.

De useallﬁéla?%

I ‘)
i ogﬁ@g b he g @t‘? ?:%% ;?3%
%@%MW P%ie A

%m%%fwo%ﬁm%%@% t%‘%%ﬁﬁﬂﬁ

i o ithout
tm;te, allil sﬁﬁm mt AL this

%og on %éc “é% fi;aélce neural com-

t/also because u’%%he mateile tlcal (computability)

. g S

area,ls w rt tﬁweStlk 1n§
putIfng based on Spil
interest and the poss1ble applications. The reader is advised to watch [81] for

future developments in this area.

Acknowledgements

The work of L. Pan was supported by National Natural Science Founda-
tion of China (Grant Nos. 60674106, 30870826, 60703047, and 60803113),
Program for New Century Excellent Talents in University (NCET-05-0612),
Ph.D. Programs Foundation of Ministry of Education of China (20060487014),
Chenguang Program of Wuhan (200750731262), HUST-SRF (2007Z015A),
and Natural Science Foundation of Hubei Province (2008CDB113 and
2008CDB180). The work of the last two authors was supported by Project
TIN2006-13452 of the Ministerio de Educacién y Ciencia of Spain and by
Project of Excellence with Investigador de Reconocida Valia, from Junta de
Andalucia, grant P08 — TIC 04200.

Note: The bibliography which follows includes several papers on SN P sys-
tems published first in the proceedings volumes of the Brainstorming Week on
Membrane Computing, with indications of the form “BWMC2007” with the
obvious meaning, then specifying the pages. The four brainstorming volumes
cited in this way are:

1. M.A. Gutiérrez-Naranjo, Gh. Paun, A. Riscos-Nunez, F.J. Romero-
Campero, eds.: Fourth Brainstorming Week on Membrane Computing,
Sevilla, January 30-February 3, 2006, vol. I and II, Fenix Editora, Sevilla,
2006.

2. M.A. Gutiérrez-Naranjo, Gh. Paun, A. Romero-Jiménez, A. Riscos-Ntfiez,
eds.: Fifth Brainstorming Week on Membrane Computing, Sevilla, Jan-
uary 29-February 2, 2007, Fenix Editora, Sevilla, 2007.

3. D. Diaz-Pernil, C. Graciani, M.A. Gutiérrez-Naranjo, Gh. Paun, 1. Pérez-
Hurtado, A. Riscos-Nufiez, eds.: Sixth Brainstorming Week on Membrane
Computing, Sevilla, February 4-8, 2008, Fenix Editora, Sevilla, 2008.

4. R Gutérrez-Escudero, M.A. Gutiérrez-Naranjo, Gh. Paun, I. Pérez-
Hurtado, eds.: Seventh Brainstorming Week on Membrane Computing,
Sevilla, February 2-6, 2009, Fenix Editora, Sevilla, 2009.

10

L. Pan, Gh. Paun, M.L. Pérez-Jiménez

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

A. Alhazov, R. Freund, M. Oswald, M. Slavkovik: Extended variants of spik-
ing neural P systems generating strings and vectors of non-negative integers.
WMC7, 2006, 88-101, and Membrane Computing, WMC2006, Leiden, Revised,
Selected and Invited Papers, LNCS 4361, Springer, 2006, 123—-134.

A. Binder, R. Freund, M. Oswald: Extended spiking neural P systems with
astrocytes - variants for modelling the brain. Proc. 13th Intern. Symp. AL and
Robotics, AROB2008, Beppu, Japan, 520-524.

A. Binder, R. Freund, M. Oswald, L. Vock: Extended spiking neural P systems
with excitatory and inhibitory astrocytes. Submitted, 2007.

M. Cavaliere, E. Egecioglu, O.H. Ibarra, M. Ionescu, Gh. Paun, S. Woodworth:
Asynchronous spiking neural P systems; decidability and undecidability. Proc.
DNA13, LNCS 4848, Springer, 2007.

M. Cavaliere, E. Egecioglu, O.H. Ibarra, M. Ionescu, Gh. Paun, S. Woodworth:
Asynchronous spiking neural P systems. Theoretical Computer Sci., 2009.

M. Cavaliere, I. Mura: Experiments on the reliability of stochastic spiking neural
P systems. Natural Computing, 7, 4 (2008), 453-470.

R. Ceterchi, A.I. Tomescu: Spiking neural P systems — a natural model for
sorting networks. BWMC2008, 93-106.

H. Chen, R. Freund, M. Ionescu, Gh. Paun, M.J. Pérez-Jiménez: On string
languages generated by spiking neural P systems. BWMC2006, vol. 1, 169-194,
and Fundamenta Informaticae, 75, 1-4 (2007), 141-162.

H. Chen, M. Tonescu, T.-O. Ishdorj: On the efficiency of spiking neural P sys-
tems. BWMC2006, vol. 1, 195-206, and Proc. 8th Intern. Conf. on Electronics,
Information, and Communication, Ulanbator, Mongolia, June 2006, 49-52.

H. Chen, M. Ionescu, T.-O. Ishdorj, A. Paun, Gh. Paun, M.J. Pérez-Jiménez:
Spiking neural P systems with extended rules: Universality and languages. Nat-
ural Computing, 7, 2 (2008), 147-166.

H. Chen, M. Ionescu, A. Paun, Gh. Paun, B. Popa: On trace languages gen-
erated by spiking neural P systems. BWMC2006, vol. 1, 207-224, and Fighth
International Workshop on Descriptional Complexity of Formal Systems (DCFS
2006), June 21-23, 2006, Las Cruces, New Mexico, USA, 94-105.

H. Chen, T.-O. Ishdorj, Gh. Paun: Computing along the axon. BWMC2006,
vol. I, 225-240, and Pre-proceedings BIC-TA, Wuhan, 2006, 60-70, and Progress
in Natural Science, 17, 4 (2007), 418-423.

H. Chen, T.-O. Ishdorj, Gh. Paun, M.J. Pérez-Jiménez: Spiking neural P systems
with extended rules. BWMC2006, vol. 1, 241-266.

H. Chen, T.-O. Ishdorj, Gh. Paun, M.J. Pérez-Jiménez: Handling languages
with spiking neural P systems with extended rules. Romanian J. Information
Sci. and Technology, 9, 3 (2006), 151-162.

R. Freund, M. Ionescu, M. Oswald: Extended spiking neural P systems with
decaying spikes and/or total spiking. ACMC/FCT 2007 Workshop, Budapest,
Intern. J. Found. Computer Sci., 19 (2008), 1223-1234.

R. Freund, M. Oswald: Spiking neural P systems with inhibitory axons. AROB
Conf., Japan, 2007.

R. Freund, M. Oswald: Regular w-languages defined by extended spiking neural
P systems. Fundamenta Informaticae, 83, 1-2 (2008), 65-73.

R. Galli, A. Gritti, L. Bonfanti, A.L. Vescovi: Neural stem cells: an overview.
Ciirculation Research, 92 (2003), 598-608.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Spiking Neural P Systems 11

M. Garcia-Arnau, D. Pérez, A. Rodriguez-Patén, P. Sosik: On the power of
elementary operations in spiking neural P systems. Submitted, 2008.

M. Garcia-Arnau, A. Rodriguez-Patén, D. Pérez, P. Sosik: Spiking neural P
systems: Stronger normal forms. BWMC2007, 157-178.

W. Gerstner, W Kistler: Spiking Neuron Models. Single Neurons, Populations,
Plasticity. Cambridge Univ. Press, 2002.

M.A. Gutiérrez-Naranjo, A. Leporati: Solving numerical NP-complete problems
by spiking neural P systems with pre-computed resources. BWMC2008, 193—
210.

M.A. Gutiérrez-Naranjo, A. Leporati: Performing arithmetic operations with
spiking neural P systems. BWMC2009.

M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez. A first model for Hebbian learning
with spiking neural P systems. BWMC2008, 211-234.

O.H. Ibarra, A. Paun, Gh. Paun, A. Rodriguez-Patén, P. Sosik, S. Woodworth:
Normal forms for spiking neural P systems. BWMC2006, vol. 11, 105-136, and
Theoretical Computer Sci., 372, 2-3 (2007), 196-217.

O.H. Ibarra, A. Paun, A. Rodriguez-Patén: Sequentiality induced by spike num-
bers in SN P systems. Proc. 14th Intern. Meeting on DNA Computing, Prague,
June 2008, 36-46.

O.H. Ibarra, S. Woodworth: Characterizations of some restricted spiking neural
P systems. and Membrane Computing, WMC2006, Leiden, Revised, Selected and
Invited Papers, LNCS 4361, Springer, 2006, 424-442.

O.H. Ibarra, S. Woodworth: Spiking neural P systems: some characterizations.
Proc. FCT 2007, Budapest, LNCS 4639, 23-37.

O.H. Ibarra, S. Woodworth: Characterizing regular languages by spiking neural
P systems. Intern. J. Found. Computer Sci., 18, 6 (2007), 1247-1256.

O.H. Ibarra, S. Woodworth, F. Yu, A. Paun: On spiking neural P systems and
partially blind counter machines. Proc. UC2006, LNCS 4135, Springer, 2006,
113-129.

M. Ionescu, A. Paun, Gh. Paun, M.J. Pérez-Jiménez: Computing with spiking
neural P systems: Traces and small universal systems. Proc. DNA12 (C. Mao,
Y. Yokomori, B.-T. Zhang, eds.), Seul, June 2006, 32-42, and DNA Computing.
12th Intern. Meeting on DNA Computing, DNA12, Seoul, Korea, June 2006,
Revised Selected Papers (C. Mao, T. Yokomori, eds.), LNCS 4287, Springer,
2007, 1-16.

M. Tonescu, Gh. Paun, T. Yokomori: Spiking neural P systems. Fundamenta
Informaticae, 71, 2-3 (2006), 279-308.

M. Tonescu, Gh. Paun, T. Yokomori: Spiking neural P systems with an exhaus-
tive use of rules. Intern. J. Unconventional Computing, 3, 2 (2007), 135-154.
M. Ionescu, D. Sburlan: Some applications of spiking neural P systems. Proc.
WMCS8, Thessaloniki, June 2007, 383-394, and Computing and Informatics, 27
(2008), 515-528.

M. Ionescu, C.I. Tirnauca, C. Tirnauca: Dreams and spiking neural P systems.
Romanian J. Inform. Sci. and Technology, 12 (2009), in press.

T.-O. Ishdorj, A. Leporati: Uniform solutions to SAT and 3-SAT by spiking
neural P systems with pre-computed resources. Natural Computing, to appear.
T.-O. Ishdorj, A. Leporati, L. Pan, X. Zeng, X. Zhang: Deterministic solutions
to QSAT and Q3SAT by spiking neural P systems with pre-computed resources.
BWMC2009.

12

38

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.
51.
52.
53.
54.
55.
56.
57.
58.

59.

60.

61.

L. Pan, Gh. Paun, M.L. Pérez-Jiménez

. L. Korec: Small universal register machines. Theoretical Computer Science, 168
(1996), 267-301.

A. Leporati, G. Mauri, C. Zandron, Gh. Paun, M.J. Pérez-Jiménez: Uniform
solutions to SAT and Subset-Sum by spiking neural P systems. Submitted, 2007.
A. Leporati, C. Zandron, C. Ferretti, G. Mauri: On the computational power of
spiking neural P systems. BWMC2007, 227-246.

A. Leporati, C. Zandron, C. Ferretti, G. Mauri: Solving numerical NP-complete
problems with spiking neural P systems. Proc. WMCS, Thessaloniki, June 2007,
405-424.

W. Maass: Computing with spikes. Special Issue on Foundations of Information
Processing of TELEMATIK, 8, 1 (2002), 32-36.

W. Maass, C. Bishop, eds.: Pulsed Neural Networks, MIT Press, Cambridge,
1999.

V.P. Metta, K. Krithivasan: Spiking neural P systems and Petri nets. Submitted,
2008.

J.M. Mingo: Una approximacion al control neural del sueno de ondas lentas
mediante spiking neural P systems. Submitted, 2008.

J.M. Mingo: Sleep-awake switch with spiking neural P systems: A basic proposal
and new issues. BWMC20009.

M. Minsky: Computation — Finite and Infinite Machines. Prentice Hall, Engle-
wood Cliffs, NJ, 1967.

T. Neary: A small universal spiking neural P system. Intern. Workshop. Com-
puting with Biomolecules (E. Csuhaj-Varju et al., eds.), Viena, 2008, 65—74.

T. Neary: On the computational complexity of spiking neural P systems. Un-
conventional Computation. 7th Intern. Conf. Vienna, 2008 (C.S. Calude at al.,
eds.), LNCS 5204, 2008, 189-205.

A. Obtulowicz: Spiking neural P systems and modularization of complex net-
works from cortical neural network to social networks. BWMC2009.

L. Pan, Gh. Paun: New normal forms for spiking neural P systems. BWMC2009.
L. Pan, Gh. Paun: Spiking neural P systems with anti-spikes. BWMC2009.

L. Pan, Gh. Paun, M.J. Pérez-Jiménez: Spiking neural P systems with neuron
division and budding. BWMC2009.

L. Pan, J. Wang, H.J. Hoogeboom: Excitatory and inhibitory neural P systems.
Submitted, 2007.

A. Paun, Gh. Paun: Small universal spiking neural P systems. BioSystems, 90,
1 (2007), 48-60.

Gh. Paun: Membrane Computing — An Introduction. Springer, Berlin, 2002.
Gh. Paun: Languages in membrane computing. Some details for spiking neural
P systems. Proc. 10th DLT Conf. (invited talk), Santa Barbara, USA, 2006,
LNCS 4036, Springer, Berlin, 2006, 20-35.

Gh. Paun: Twenty six research topics about spiking neural P systems.
BWMC2007, 263-280.

Gh. Paun: A quick overview of membrane computing with some details about
spiking neural P systems. Frontiers of Computer Science in China, 1,1 (2007),
37-49.

Gh. Paun: Spiking neural P systems. A tutorial. Bulletin of the EATCS, 91
(Febr. 2007), 145-159.

Gh. Paun: Spiking neural P systems. Power and efficiency. Bio-Inspired Model-
ing of Cognitive Tasks, Proc. IWINAC 2007 (J. Mira, J.R. Alvarez, eds.), Mar
Menor, 2007, LNCS 4527, 153-169.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

79.

80.

81.

Spiking Neural P Systems 13

Gh. Paun: Spiking neural P systems used as acceptors and transducers. CIAA
2007, 12th Conf., Prague, July 2007, LNCS 4783 (J. Holub, J. Zdarek, eds.),
Springer, Berlin, 2007, 1-4.

Gh. Paun: Spiking neural P systems with astrocyte-like control. JUCS, 13, 11
(2007), 1707-1721.

Gh. Paun, M.J. Pérez-Jiménez: Spiking neural P systems. Recent results, re-
search topics. Submitted, 2007.

Gh. Paun, M.J. Pérez-Jiménez: Spiking neural P systems. An overview. Advanc-
ing Artificial Intelligence through Biological Process Applications (A.B. Porto,
A. Pazos, W. Buno, eds.), Medical Information Science Reference, Hershey, New
York, 2008, 60-73.

Gh. Paun, M.J. Pérez-Jiménez, G. Rozenberg: Spike trains in spiking neural P
systems. Intern. J. Found. Computer Sci., 17, 4 (2006), 975-1002.

Gh. Paun, M.J. Pérez-Jiménez, G. Rozenberg: Computing morphisms by spiking
neural P systems. Intern. J. Found. Computer Sci., 18, 6 (2007), 1371-1382.
Gh. Paun, M.J. Pérez-Jiménez, G. Rozenberg: Infinite spike trains in spiking
neural P systems. Manuscript, 2005.

Gh. Paun, M.J. Pérez-Jiménez, A. Salomaa: Bounding the indegree of spiking
neural P systems. TUCS Technical Report 773, 2006.

Gh. Paun, M.J. Pérez-Jiménez, A. Salomaa: Spiking neural P systems. An early
survey. Intern. J. Found. Computer Sci., 18 (2007), 435-456.

Gh. Paun, G. Rozenberg, A. Salomaa, eds.: Handbook of Membrane Computing.
Oxford University Preess, 2009 (in press).

D. Ramirez-Martinez, M.A. Gutiérrez-Naranjo: A software tool for dealing with
spiking neural P systems. BWMC2007, 299-314.

G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages, 3 volumes.
Springer-Verlag, Berlin, 1997.

J. Wan, T.-O. Ishdorj: Revisiting the efficiency of spiking neural P systems.
BWMC2009.

X. Zhang, T.-O. Ishdorj, X. Zeng, L. Pan: Solving PSPACE-complete problems
by spiking neural P systems with pre-computed resources. Submitted, 2008.

X. Zhang, Y. Jiang, L. Pan: Small universal spiking neural P systems with
exhaustive use of rules. Proc. Third Intern. Conf. on Bio-Inspired Computing.
Theory and Appl., Adelaide, 2008, 117-127.

X. Zhang, J. Wang, L. Pan: A note on the generative power of axon P systems.
Intern. J. CCC, 4, 1 (2009), 92-98.

X. Zhang, X. Zeng, L. Pan: On string languages generated by SN P systems
with exhaustive use of rules. Natural Computing, 7 (2008), 535-549.

X. Zhang, X. Zeng, L. Pan: Smaller universal spiking neural P systems. Funda-
menta Informaticae, 87 (2008), 117-136.

X. Zhang, X. Zeng, L. Pan: On string languages generated by asyn-
chronous spiking neural P systems. Theoretical Computer Science, DOI:
10.1016/j.t¢s.2008.12.055.

The P Systems Website: http://ppage.psystens.eu.

