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Abstract: Nowadays, the building sector is one of the main sources emitting pollutant gases to the
atmosphere due to its deficient energy behaviour. Among the elements of the envelope, the thermal
bridges are where the heat losses and gains mainly occur, depending on the season of the year.
To reduce the effect of the thermal bridges, there are different patented technologies which give
provide solutions. In this paper, the thermal behaviour of five patented slab front (slab-façade)
thermal bridges are analysed in a case study located in the south of Spain. Moreover, the influence
of the thermal bridge on the energy demand from the building analysed was evaluated, both in the
current scenario and future ones (2020, 2050 and 2080). The results reveal that the use of the patents
in slab fronts can mean reductions by up to 95.74% in the linear thermal transmittance. Likewise,
due to the improvement of the thermal bridge of slab fronts by using the patented designs which
offered the best features, a savings in the global energy demand for heating higher than 18% as well
as a savings in the global energy demand for cooling higher than 2.80% could be achieved in all the
time scenarios considered.
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1. Introduction

The energy consumption of buildings is causing serious consequences for the environment.
In 2014, the building sector was responsible for 24.79% of the energy consumption in the European
Union [1]. Furthermore, this sector tends to produce a higher energy consumption per year (it has
been causing an annual increase of 1% since 1990) [2]. In order to reduce the energy consumption
from the existing building stock, the European Union has developed the roadmap for a low-carbon
economy [3]. The objective pursued by this research is to reduce the pollutant gas emissions by 80%
by 2050. For this purpose, the building sector should reduce the pollutant gas emissions by 90% by
cutting down its energy consumption. Thus, one of the main challenges of today´s society is the energy
modernization of the existing building stock as well as the design of new efficient buildings, mainly to
guarantee an adequate behaviour of the buildings in future climate scenarios [4,5].

Among the different elements which compose the building, the envelope is among those which
has a more significant effect on energy behaviour [6–8]. Highly efficient thermophysical properties for
the envelope allow one to significantly reduce the energy demand of buildings [9]. This envelope is
normally constituted by a series of layers of different thicknesses and thermal conductivities which
determine its thermal transmittance. However, there are areas of the envelope where the junction of
different elements causes a thermal bridge. Thermal bridge is understood as the part of the envelope
which shows variations in the thermal resistance due to factors such as the presence of materials with a
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high thermal conductivity and geometrical variations, as occurs in the junctions between walls, floors,
ceilings or windows [10].

These thermal bridges are responsible for causing heat losses in winter and heat gains in
summer [11,12]. In this sense, thermal bridges can lead to variations up to 30% in the heating
demand, even in those buildings with envelopes having high insulation thickness [13]. This occurs
because the thermal bridge can increase the thermal transmittance value of a wall up to 35% [14]. Thus,
due to the low thermal resistance and the energy losses associated, the analysis of thermal bridges will
influence significantly the energy demand of the building as well as the determination of the energy
conservation measures (ECMs) to be carried out [15,16]. In addition, thermal bridges are responsible
for certain pathologies which can appear in buildings, such as the appearance of areas with mould
and condensation due to the reduction of the internal surface temperature [17], as well as the material
degradation because of these damages [18].

The detection and quantification of thermal bridges are among those most important activities
to be carried out in energy audits. The use of tests such as the infrared thermography or the blower
door allow one to find certain thermal bridges [19]. Regarding their quantification, the ISO standard
10211 [10] establishes a calculation procedure for two-dimensional and three-dimensional evaluations
yielding adequate results [20]. In spite of the existence of software which calculates the linear thermal
transmittance with a high accuracy (for example, THERM), the characterization of thermal bridges
constitutes one of the main study gaps in the last years: (i) Asdrubali et al. [21,22], Bianchi et al. [23],
Garrido et al. [24], and O’Grady et al. [25,26] presented different methodologies to detect automatically
and quantify thermal bridges through thermographies; (ii) Zalewski et al. [27] developed a methodology
of characterization of thermal bridges by means of three-dimensional modelling, and compared
the results with measurements using temperature probes and thermographies; (iii) Tadeu et al. [28]
proposed a special methodology of quantification of thermal bridges through a boundary element
model; and (iv) Dilmac et al. [29] suggested a particular method of two-dimensional evaluation of the
thermal bridge slab, beam and wall.

Moreover, the quantification of thermal bridges in real case studies and their influence on
the energy behaviour of buildings constitutes one of the main lines of research in the last years.
In the scientific literature, there are several studies conducted on different thermal bridge typologies.
Theodosiou and Papadopoulos [30] studied the impact of the thermal bridges of Greece´s representative
wall construction configurations on the energy demand, and determined that including thermal bridges
in the calculation methodology of the energy demand is fundamental to determine it accurately.
In a later study, Theodosiou et al. [31] studied thermal bridges in metal cladding systems, determining
how the building design influences heat losses. Ramalho de Freitas and Grala da Cunha [32] evaluated
the impact of the thermal bridges of reinforced concrete structures on the energy behaviour of a
building in Brazil, proving that the energy demand can vary by up to 20%. In a study by Ge et al. [33],
the influence of thermal bridges caused through the balconies was analysed in residential building
in Canada. Results showed an influence between 5 and 13% on the heating energy demand, and
of 1% in cooling energy demand. Zedan et al. [34] studied the effect of thermal bridges generated
by mortar joints, capable of causing even an increase of 15% in the internal loads of the building.
Song et al. [35] studied thermal bridges in metal panel curtain wall systems, proposing different
options that achieved a 68% reduction in the heat loss by 68%. Ascione et al. [20] studied thermal
bridges of flat heterogeneous roofs in a typical office building located in four different climate regions
in Italy. These thermal bridges were obtained by means of simplified 1-D models and 2-D models.
The use of the 2-D model allowed the authors to determine a more accurate estimation of the energy
behaviour of the building. Evola et al. [36] carried out another study in Italy where the effect of thermal
bridges on two different semi-detached houses located in a mild Mediterranean climate was studied,
determining that the improvement of the thermal bridges led to a decrease of the heating load by 25%,
and of the cooling load by 8.5%.
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Recent studies [37–39] have analysed thermal bridges generated by lightweight steel-framed (LSF)
walls due to the high thermal conductivity of the steel studs. Santos et al. [37] studied the importance
of the flaking heat loss in LSF walls, determining that the thermal transmittance can vary from −22%
for the external surface to +50% for the internal surface, and the metal fixation elements are one of
the most important elements. The use of mitigation techniques, such as thermal break strips and
slotted steel profiles, could lead to reduce the thermal transmittance by 8.3% [38]. In a later study [39],
the authors evaluated the effectiveness of the position of thermal insulation in LSF walls by analysing
three different types of construction (cold, warm, and hybrid construction). The results determined
that the warm construction (insulation from the exterior) is the typology of LSF walls less affected by
the thermal bridge.

Levinskyte, Banionis and Geleziunas [40] analysed the importance of thermal bridges in highly
efficient buildings in Lithuania, and the heat losses between the walls and the slab were among the
most important joints. The junction between the slabs and the façades are one of the most complicated
junctions in order to decrease the thermal bridge, since these junctions are consolidated building
elements that should be studied during the design phase to be able to cause efficient constructive
solutions. To do this, there are nowadays different patents proposing construction solutions to reduce
the heat losses of thermal bridges in slab fronts. However, there are no studies where the efficiency of
such patents is analysed.

The previous review reveals the importance of decreasing scientifically the heat losses through
thermal bridges due to their influence on the energy behaviour of the building. However, there are
no studies where the existing patents to reduce heat losses or gains through thermal bridges have
been profoundy analysed. Thus, the objective of this work was to analyse the thermal behaviour of
some existing patents describing construction solutions for slab fronts, focusing on these junctions due
to their significant influence on heat losses through the façade [40]. For this purpose, five different
solutions were chosen and applied on a real case study. The heat transfer for the five patented
designs was analysed by two-dimensional calculation using the THERM software, and both the value
of linear thermal transmittance and the temperature factor for the interior surface were obtained,
thus identifying the patent with the best behaviour. Likewise, the effect that the best patent had on
the energy behaviour of a building was studied, both in current and future scenarios with the effect
of the climate change (2020, 2050, 2080). To do this, energy simulations were carried out using the
Design Builder software (which includes the Energy Plus calculation engine) by introducing the value
of linear thermal transmittance obtained by the patent with the best thermal behaviour.

2. Patents Studied

To analyse the thermal bridges, five patents of constructive solutions of thermal bridges different
in design, materials and work execution were chosen. The patents considered are listed below and
ordered by year of publication (see Figure 1):

• Patent 1, by Société Générale d’Entreprises Construction [41] and published in 1984.
• Patent 2, by Egger [42] and published in 1985.
• Patent 3, by François [43] and published in 2003.
• Patent 4, by López Muñoz [44] and published in 2012.
• Patent 5, by Ortega López et al. [45] and published in 2015.

Patent 1 consists of the creation of a formwork lost for the slab by creating a box made by metal
panels where an insulating material is placed. Unlike other patents described below, the external
masonry leaf does not present discontinuities along the surface, so the thickness of the insulating
material is limited by this design condition.

Patent 2 proposes a constructive solution similar to that from Patent 1, but metal panels are not
used in this case. This patent consists of a thermal insulation panel joined to the slab by a metal
bar frame.
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Patent 3 consists of introducing an insulating material membrane of multiple reflector type in
both all the slab front and inferior and superior overlapping, as well as a plaster panel.

Patent 4 is similar to Patent 3. The design consists of putting a covering membrane in both slab
front and some part of its inferior and superior sides. This covering membrane is constituted by
two layers of polyethylene and an aluminium membrane.

Finally, the last patent studied (Patent 5) is an evolution of Patent 2. This construction solution
consists of a metal structure of bars with thermal insulation fixed to the perimeter beams before
concreting, using an insulating material: extruded polystyrene (XPS) or polyurethane (PUR), with a
thickness between 20 and 60 mm.
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3. Case Study

3.1. Analysed Building

The building chosen is a typical building from the south of Spain, built in 2008. The building
has a height of three floors over the building line and the bulkhead. There are six dwellings: two on
the ground floor, two on the first floor, and two on the second floor (see Figure 2). The northern and
southern side walls have no windows and are the dividing walls with respect to the adjacent buildings.
The main façade faces West. There are also two courtyards: an interior courtyard allowing the opening
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of windows in the most internal areas, and an exterior courtyard in the eastern façade, which is only
available for the dwellings on the ground floor.
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Figure 2. Graphical representation of floors and elevations of the building analysed.

The building was chosen because it was a typical building of the area and had thermal bridge
problems (see Figure 3). Moreover, technical documentation was available to characterize it correctly.
Thus, the composition of the façade was determined following the methodology established by
Ficco et al. [46] of using reliable technical documentation. Table 1 indicates the relationship of layers
that constitute the façade as well as their thermophysical properties.
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Table 1. Layer thickness and thermophysical properties of the building façade.
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2 Perforated brick 110 0.59 -
3 Cement mortar 10 1.30 -
4 PUR insulation 20 0.03 -
5 Air gap 40 - 0.18
6 Hollow brick 50 0.44 -
7 Gypsum plaster 10 0.40 -

Rs,in = 0.13 (m2K)/W a Rs,out = 0.04 (m2K)/W a -
a Thermal resistance obtained from ISO 6946 [48].
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3.2. Climate Zone

The building is situated in Seville, in the south of Spain. The city is located in the Csa climate
zone [49], characterized by dry and hot summers as well as mild winters, where the maximum
temperature during the heating season can reach 36 ◦C, and the average temperature in winter is 10 ◦C
(see Table 2).

Table 2. Average temperatures in EnergyPlus Weather (EPW) file from the city of Seville.

Month Average
Temperature (◦C)

Average Maximum
Temperature (◦C)

Average Minimum
Temperature (◦C)

January 10.35 15.79 5.57
February 11.74 17.96 6.92

March 15.11 22.23 8.94
April 16.07 23.15 9.64
May 19.78 26.77 12.56
June 24.09 31.84 16.65
July 27.42 36.43 19.24

August 26.52 34.99 18.76
September 24.47 32.60 16.95

October 19.55 25.63 14.34
November 13.72 19.87 9.18
December 11.53 17.06 7.30

3.3. Virtual Modelling

As mentioned previously, the modelling of the thermal bridges was carried out by using
the THERM software. Six configurations were modelled as follows: (i) construction section that
the building currently has; (ii) construction section with Patent 1; (iii) construction section with
Patent 2; (iv) construction section with Patent 3; (v) construction section with Patent 4; and
(vi) construction section with Patent 5. The thermophysical properties indicated in the project were
used as thermophysical properties of the materials of the constructive solution. Internal and external
conditions were defined from the long-term monitoring of the building (see Figure 4). Measurements
were performed in the living room on the first floor. Based on the monitoring, it was determined that
the maximum temperature differences obtained were of 10 ◦C. For this reason, an indoor temperature
of 20 ◦C and an outdoor temperature of 10 ◦C were defined in the simulations made by THERM.
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the building.

As the THERM software has been validated according to the standard EN ISO 10211 in several
studies [39,50,51], the aim of verifying the models developed using THERM was the determination
of the possible differences in the inputs from the model as well as the thermophysical properties of
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the materials. To do this, two-dimensional simulations of the same thermal bridges were carried out
by the HTFlux software, using the same boundary conditions and material properties (see Figure 5),
and the average values of thermal transmittance obtained were compared.Energies 2018, 11, 2222 7 of 18 

 

 

Figure 5. (a) Modelling of the thermal bridge of the slab front carried out using THERM and  

(b) Modelling of verification carried out using HTFlux. 

The modelling of the building was performed by using the EPW file from the Design Builder 

software for the city of Seville. To obtain the climate scenarios for the years 2020, 2050 and 2080, a 

morphing process was carried out [52–54]. The CCWorldWeatherGen software was used to perform 

the morphing process [54]. This morphing process [52–54] uses the meteorological data of the EPW 

files with United Kingdom Met Office Hadley Centre general circulation model (GCM) predictions 

for the A2 scenario (intermediate-high) of greenhouse gas emissions effects [55], generating time 

series for 2020, 2050, and 2080. For this, the morphing process uses three different algorithms 

depending on the variable to be modified. These algorithms are widely described by Belcher et al. 

[52]. 

There are studies where the importance of using the morphing process to obtain future scenarios 

is shown [4,5,52,54], since these scenarios are generated by using a current meteorological dataset, 

although extraordinary natural phenomena associated with the climate change (hurricanes or storms) 

are not considered [4]. 

Thus, when the morphing process was finished, three EPW files from the city of Seville were 

generated with the modified climate variables under A2 emissions scenario for the years 2020, 2050, 

and 2080.  

By using these four climate scenarios (current, 2020, 2050, and 2080), eight different cases of 

energy simulation (see Table 3) could be established on the model of the building carried out using 

Design Builder (see Figure 6). 

Table 3. Configuration of the energy simulation cases analysed. 

Cases 
EPW File of 

Seville 
Type of Thermal Bridge 

Case 1 Current 

Not patented 
Case 2 2020 

Case 3 2050 

Case 4 2080 

Case 5 Current 

With the thermal bridge patent that the best linear thermal transmittance obtained 
Case 6 2020 

Case 7 2050 

Case 8 2080 

Figure 5. (a) Modelling of the thermal bridge of the slab front carried out using THERM and
(b) Modelling of verification carried out using HTFlux.

The modelling of the building was performed by using the EPW file from the Design Builder
software for the city of Seville. To obtain the climate scenarios for the years 2020, 2050 and 2080,
a morphing process was carried out [52–54]. The CCWorldWeatherGen software was used to perform
the morphing process [54]. This morphing process [52–54] uses the meteorological data of the EPW
files with United Kingdom Met Office Hadley Centre general circulation model (GCM) predictions for
the A2 scenario (intermediate-high) of greenhouse gas emissions effects [55], generating time series for
2020, 2050, and 2080. For this, the morphing process uses three different algorithms depending on the
variable to be modified. These algorithms are widely described by Belcher et al. [52].

There are studies where the importance of using the morphing process to obtain future scenarios
is shown [4,5,52,54], since these scenarios are generated by using a current meteorological dataset,
although extraordinary natural phenomena associated with the climate change (hurricanes or storms)
are not considered [4].

Thus, when the morphing process was finished, three EPW files from the city of Seville were
generated with the modified climate variables under A2 emissions scenario for the years 2020, 2050,
and 2080.

By using these four climate scenarios (current, 2020, 2050, and 2080), eight different cases of
energy simulation (see Table 3) could be established on the model of the building carried out using
Design Builder (see Figure 6).

Table 3. Configuration of the energy simulation cases analysed.

Cases EPW File of Seville Type of Thermal Bridge

Case 1 Current

Not patentedCase 2 2020
Case 3 2050
Case 4 2080

Case 5 Current
With the thermal bridge patent

that the best linear thermal
transmittance obtained

Case 6 2020
Case 7 2050
Case 8 2080
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Figure 6. Modelling of the building performed using Design Builder.

In all simulated cases, the rest of the building model parameters, such as use profiles or HVAC
systems, were not modified. In this sense, it is important to highlight the configured parameters
regarding the use profiles, the efficiency of cooling and heating systems, air turnovers, and internal
heat gains.

The use profile was defined with a percentage between 50% and 100%, except during working
hours (from 7:00 a.m. to 3:00 p.m.) in which a use of 10% was established. Due to the climate conditions
of the area, heating and cooling systems were considered to be used in atypical months (e.g., using
cooling in cold months if the set point temperatures are exceeded). For the cooling, the set point
temperature was of 25 ◦C and the setback temperature of 27 ◦C, whereas for the heating, the set point
temperature was of 20 ◦C and the setback temperature of 17 ◦C. The heating system had a Coefficient
of Performance (CoP) of 0.85, and the cooling system had a CoP of 1.80.

With respect to the ventilation rate, the use profiles used where those established by the technical
standard in Spain [56]. The number of air changes per hour for all the year was 0.63 ac/h by means
of mechanical ventilation. The only exception corresponded to summer, between 1:00 and 8:00 a.m.,
since the technical standard established that ventilation should be natural (due to the opening of
the windows) and the rate to be used should be of 4.00 ac/h in that period.

For the internal heat gains, the use profile of lightning systems was established, as well as the
equipment in the house established by the technical standard in Spain, with a density of maximum
power of 4.4 W/m2. The metabolic rate of the occupants was defined according to what it is indicated
in Table 5 of chapter 8 in the ASHRAE Handbook of Fundamentals [57].

4. Results and Discussion

4.1. Patent Analysis of Thermal Bridges of Slab Fronts

The simulation of the patents using THERM allowed us to prove the improvements produced by
the different constructive solutions. Firstly, the representation of the models generated by THERM was
determined. To do this, the existing differences between the thermal transmittance values obtained
by both software for each construction solution were analysed. As can be appreciated in Table 4,
the thermal transmittance results obtained for each construction solution presented deviations of less
than 4.5%, and these differences were due to the possibility of configuration of the materials that both
software allowed. Thus, as big differences between both simulations were not obtained, the models of
the construction solutions carried out using THERM were representative.
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Table 4. Results of thermal transmittance obtained for each constructive solution analysed using
THERM and HTFlux software, and the existing difference.

Models UTHERM
(W/(m2·K))

UHTFlux
(W/(m2·K))

Percentage Deviation
(%)

Without patent 1.101 1.075 2.37
Patent 1 1.044 0.999 4.33
Patent 2 0.876 0.877 −0.16
Patent 3 1.002 1.019 −1.66
Patent 4 1.110 1.088 1.96
Patent 5 0.836 0.838 −0.24

After validating the representation of the models generated by THERM, linear thermal
transmittance results of the different patents were obtained. To obtain the linear thermal transmittance
(Equation (1)), the software provides the factor of thermal coupling (Equation (2)), which is fundamental
to calculate the linear thermal transmittance:

ψ = L2D −
n

∑
j=1

ljUj (1)

L2D =
q

Tin − Tout
(2)

where ψ is the linear thermal transmittance (W/(m·K)); L2D is the factor of two-dimensional coupling
(W/(m·K)); lj is the length of the two-dimensional geometric model (m); Uj is the thermal transmittance
of the one-dimensional component j (W/(m2·K)); Tin is the indoor air temperature (K); and Tout is the
outdoor air temperature (K).

In Figure 7, the values of linear thermal transmittance obtained for each simulated building
configuration are represented. As can be proved, the results showed how the linear thermal
transmittance decreased using almost all the patents considered. In this sense, Patent 5 was the
one which obtained the lowest linear thermal transmittance, a decrease by 95.74% with respect to
the construction solution without slab front. The other solutions obtained lower improvements than
Patent 5: Patent 1 achieved a decrease by 20.06% with respect to the case study without patent; Patent 2
achieved a decrease by 80.40%, being the patent with the second best results; Patent 3 obtained a
decrease by 36.32%. Only Patent 4 obtained a higher linear thermal transmittance than the case study
without patent, with an increase by 3.50%. This is because this patent did not use an insulating material,
since it only included polyethylene (with a thermal conductivity of 0.33 W/(m·K)) and aluminium
(with a thermal conductivity of 230 W/(m·K)). Thus, the combination of both materials made the linear
thermal transmittance obtainedhigher than that from the study assumption without modification.
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Furthermore, the surface temperature factor ( fR,si) (Equation (3)) was determined by the
simulation carried out by THERM to analyse the possibility of condensation generated inside the
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building. For this purpose, the internal surface temperature (Ts,in) of each construction solution was
measured in the point with the lowest temperature thanks to the isotherm profiles generated in each
simulation (see Figure 8).Energies 2018, 11, 2222 10 of 18 
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Figure 8 shows that the point with the lowest temperature (the joint between the inferior side of the
slab and the façade) was the same for all the building configurations considered. The results reflected
slight variations in the factor fR,si for the different construction solutions. The construction solution
without patent obtained a temperature factor of 0.865, which exceeded the minimum value required
by the technical standard in Spain for the climate region of Seville (0.52) [56]. The remaining patents
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obtained the same or higher values of factor fR,si, so all the analysed building configurations did not
cause condensations (see Figure 9). The patent with the best factor fR,si was Patent 5 with a value of
0.925, followed by Patents 2 and 3 with factors of 0.905 and 0.915, respectively. As similarly occurred
for the linear thermal transmittance, Patent 4 obtained the same factor fR,si as for the constructive
solution without patent, so its design did not influence the decrease of condensation risk. Therefore,
among the different patents analysed, Patent 5 had best features in the case study analysed, since this
patent achieved the lowest linear thermal transmittance as well as the best temperature factor for the
interior surface:

fR,si =
Ts,in − Tout

Tin − Tout
(3)
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4.2. Influence of Thermal Bridge of the Slab Front on Energy Demand

After determining the patent with best results in the building analysed, its influence on the energy
demand was studied. For this purpose, and as mentioned in Section 3.3, eight different simulations
were carried out: four corresponding to the building without patent, and four to the building with the
best patent, aiming at assessing the effects of climate change on the energy demand of the building.
In Figure 10, the values of heating and cooling demand obtained for each simulation (building with
and without patent) are represented. Regarding the analysis generated by using the EPW files for the
different time scenarios (current, 2020, 2015, and 2018), the increase of external temperatures in the
different time scenarios caused the decrease of the heating energy demand, reaching decreases higher
than 1000 kWh, and even removing the heating demand in future scenarios (June and September
of 2050 and 2080) with respect to the current scenario. On the other hand, the increase of external
temperatures led to increasing the cooling energy demand in the different simulations, with an
increase by 82.03% in July, and by 74.54% in August of 2080 with respect to the values obtained in the
current scenario.

The use of the building patent allowed to reduce the energy demand of the building in all the
scenarios considered (see Figure 10). In Tables 5–8, the values obtained of energy demand for the
different periods considered as well as the percentage deviations are indicated. As can be appreciated,
the effect generated by the building patent on the monthly energy demand depends on the type of
demand: the heating energy demand was more influenced by the effect of the thermal bridge than the
cooling energy demand. In this sense, the energy demand for heating in the current scenario could be
reduced up to 15.44% during the months characterized by lower temperatures in the region (January,
February and December), with a maximum decrease of 325.25 kWh for January, whereas the energy
demand for cooling had a maximum difference of 227.14 kWh. Moreover, the percentage deviation on
the heating demand could be quite significant in the less cold months, since the deviation obtained
was higher because the energy demand was lower, even achieving the full removal of the heating
demand. Likewise, the energy demand for cooling presented a percentage deviation which oscillated
around 3% in each of the months.
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Figure 10. Monthly energy demand of the building for the different scenarios considered. The heating
energy demand is represented by the red line, and the cooling energy demand by the blue line.

Table 5. Differential of energy demand between the case study without patent and the one with patent
for the current period.

Month

Energy Demand for Heating Energy Demand for Cooling

Without Patent
(kWh)

With Patent
(kWh) Deviation Without Patent

(kWh)
With Patent

(kWh) Deviation

January 2358.80 2033.55 −13.79% 30.25 29.18 −3.54%
February 1605.04 1357.29 −15.44% 147.06 141.84 −3.55%

March 931.27 749.19 −19.55% 548.20 533.80 −2.63%
April 619.49 487.62 −21.29% 948.03 923.14 −2.63%
May 74.29 41.88 −43.62% 2285.62 2231.70 −2.36%
June 0.076 0.00 −100.00% 4291.06 4176.70 −2.67%
July 0.00 0.00 - 7316.86 7092.80 −3.06%

August 0.00 0.00 - 7501.44 7274.30 −3.03%
September 0.054 0.00 −97.67% 5317.10 5174.70 −2.68%

October 204.08 155.19 −23.96% 2464.60 2406.80 −2.34%
November 974.41 799.22 −17.98% 499.21 486.65 −2.52%
December 2111.37 1828.40 −13.40% 54.12 52.29 −3.39%
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Table 6. Differential of energy demand between the case study without patent and the one with patent
for the period of 2020.

Month

Energy Demand for Heating Energy Demand for Cooling

Without Patent
(kWh)

With Patent
(kWh) Deviation Without Patent

(kWh)
With Patent

(kWh) Deviation

January 1815.44 1529.57 −15.75% 24.46 23.57 −3.61%
February 1178.02 958.94 −18.60% 253.19 245.35 −3.10%

March 755.62 597.61 −20.91% 1170.50 1145.60 −2.13%
April 430.12 327.83 −23.78% 1216.95 1188.30 −2.36%
May 70.64 48.00 −32.05% 2983.77 2909.90 −2.48%
June 0.60 0.15 −75.10% 6076.84 5898.70 −2.93%
July 0.00 0.00 - 9458.50 9143.20 −3.33%

August 0.00 0.00 - 9178.80 8917.90 −2.84%
September 3.10 0.96 −68.95% 6693.96 6512.10 −2.72%

October 34.36 19.29 −43.87% 3400.38 3338.90 −1.81%
November 861.69 692.38 −19.65% 550.80 538.04 −2.32%
December 1130.68 923.19 −18.35% 84.87 81.80 −3.62%

Table 7. Differential of energy demand between the case study without patent and the one with patent
for the period of 2050.

Month

Energy Demand for Heating Energy Demand for Cooling

Without Patent
(kWh)

With Patent
(kWh) Deviation Without Patent

(kWh)
With Patent

(kWh) Deviation

January 1462.32 1221.28 −16.48% 126.04 121.69 −3.45%
February 854.57 679.25 −20.52% 406.84 396.93 −2.44%

March 588.29 458.80 −22.01% 1422.66 1393.00 −2.08%
April 283.27 210.83 −25.58% 1537.58 1500.40 −2.42%
May 28.98 20.80 −28.24% 3766.21 3668.40 −2.60%
June 0.00 0.00 −100.00% 7664.74 7422.00 −3.17%
July 0.00 0.00 - 11,410.26 10,996.00 −3.63%

August 0.00 0.00 - 11,092.09 10,741.00 −3.17%
September 0.21 0.00 −99.04% 8245.97 8008.70 −2.88%

October 9.04 4.15 −54.11% 4772.79 4683.50 −1.87%
November 634.55 500.38 −21.14% 995.39 973.23 −2.23%
December 829.98 667.73 −19.55% 192.27 186.18 −3.17%

Table 8. Differential of energy demand between the case study without patent and the one with patent
for the period of 2080.

Month

Energy Demand for Heating Energy Demand for Cooling

Without Patent
(kWh)

With Patent
(kWh) Deviation Without Patent

(kWh)
With Patent

(kWh) Deviation

January 1127.26 929.58 −17.54% 313.54 303.67 −3.15%
February 613.16 472.73 −22.90% 616.55 603.16 −2.17%

March 387.42 293.10 −24.35% 2014.46 1972.20 −2.10%
April 141.69 98.39 −30.56% 2226.95 2170.40 −2.54%
May 5.67 4.11 −27.48% 5440.69 5284.60 −2.87%
June 0.00 0.00 - 9509.69 9168.50 −3.59%
July 0.00 0.00 - 13,318.91 12,805.00 −3.86%

August 0.00 0.00 - 13,093.10 12,631.00 −3.53%
September 0.00 0.00 - 10,049.26 9728.40 −3.19%

October 0.58 0.16 −72.68% 6689.45 6560.10 −1.93%
November 390.52 296.36 −24.11% 1811.96 1774.20 −2.08%
December 575.59 452.65 −21.36% 448.87 437.20 −2.60%

Regarding the future scenarios, the effect generated by the patented building solution on the
heating demand was decreasing, with values of monthly maximum differential of 285.87 kWh for
2020, 241.04 kWh for 2050, and 197.68 kWh for 2080. This was due to the decrease of heating demand
caused by the increase of the external temperatures. However, the use of the building patent in the
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simulation allowed reductions up to 21.36% for the coldest months, so although its influence is lower
in future scenarios, the energy demand for heating is being reduced considerably. On the other hand,
the maximum decrease in cooling demand that generated the improvement of the thermal bridge
allowed one to achieve monthly maximum reductions of 315.33 kWh for 2020, 414.72 kWh for 2050,
and 513.77 kWh for 2080.

Therefore, the effect of the patent for improving the thermal bridge of the slab front on the
global energy demand of the building was quite significant. Figure 11 represents the global energy
demands for heating and cooling, as well as the total demand for each assumption studied. As it can
be seen, the decrease obtained in the heating demand was very significant, even in future scenarios
characterized by less heating demand. In this sense, the decrease achieved by year was of 18.83%
in 2020, 19.78% in 2050, and 21.43% in 2080. On the other hand, the global decrease in cooling demand
had the same rate of percentage decrease for all the scenarios considered, varying between 2.80%
for the current scenario and 3.20% for the scenario in 2080. Thus, the improvement of the thermal
bridge of the slab front allowed to reduce the energy demand of the building in the different scenarios
considered, with a saving on the heating energy demand higher than 18%, and on the cooling energy
demand higher than 2.80%.
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5. Conclusions

This article studies the effect of the thermal bridge of slab front on the energy demand of a
building. Firstly, five patented construction solutions for thermal bridges in slab fronts in a certain case
study were analysed by means of two-dimensional simulation, determining the best patent solution
for the building. Then, energy simulations of the case study in different time scenarios (current, 2020,
2050 and 2080) were carried out by analysing the effect of improving the thermal bridge in the slab
front on the energy demand of the building. Based on the results obtained, the following conclusions
can be drawn:

• From the five patents analysed, the one which obtained the lowest linear thermal transmittance
(ψ) was Patent 5, with a reduction of 95.74% with respect to the linear thermal transmittance that
the slab front of the analysed building presents. The rest of the patents obtained lower decreases,
and even a higher linear thermal transmittance was obtained by Patent 4.
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• The temperature factor for the interior surface ( fR,si) for both constructive solution of the case
study and the different patents analysed exceeded the value required by the estate rules which
guaranteed that condensations were not generated. Thus, the climate conditions typical of the
analysis region (Csa classification according to Köppen-Geiger) allowed to guarantee a low
condensation risk due to the thermal bridges of the slab fronts.

• The improvement of the thermal bridge in the slab front allowed to achieve important decreases
on the heating demand in the current scenario, with differences up to 325.25 kWh during the
month of the highest demand. Regarding the cooling energy demand, the change generated
by the improvement of the thermal bridge was lower, although reductions by 227.14 kWh were
obtained in the summer months.

• For future scenarios, the effect generated by the increase of the outdoor temperatures with a lower
heating demand and a higher cooling demand affected the incidence of the improvement of the
thermal bridge on the energy behaviour of the building. In this sense, the monthly reduction
of the heating energy demand generated by the improvement of the thermal bridge presented
a decreasing behaviour, with the following values of maximum decrease: 285.87 kWh (2020),
241.04 kWh (2050), and 197.68 (2080). Despite of this, the percentage decrease on the global energy
demand for heating had a growing behaviour, with deviations of 18.83% (2020), 19.78% (2050),
and 21.43% (2080).

On the other hand, the cooling demand presented a growing tendency in the monthly maximum
decreases in the different scenarios analysed, with maximum decreases of 315.33 kWh in 2020,
414.72 kWh in 2050, and 513.77 kWh in 2080.

Therefore, the improvement of the thermal bridge of the slab front by using the best patent
analysed led to global reductions on the energy demand for heating higher than 18%, whereas on the
energy demand for cooling were higher than 2.80% in all the time scenarios considered.

To conclude, it is important to highlight that there are no studies where the thermal behaviour
of different patented designs for thermal bridges in slab fronts is studied, as well as the effect that
these solutions havee on the energy demand of the building, both in current and future scenarios.
In this sense, despite the progressive reduction of heating demand and the increase of cooling demand,
the improvement of the thermal bridge of the slab front allows one to reduce significantly the energy
demand of the building. Thus, this is an aspect that should be considered in both design phase and
energy audits of the existing buildings, with the aim of guaranteeing an adequate energy behaviour of
the building.
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