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SUMMARY

The origin–destination matrix is an important source of information describing transport demand in a
region. Most commonly used methods for matrix estimation use link volumes collected on a subset of
links in order to update an existing matrix. Traditional volume data collection methods have significant
shortcomings because of the high costs involved and the fact that detectors only provide status
information at specified locations in the network. Better matrix estimates can be obtained when informa-
tion is available about the overall distribution of traffic through time and space. Other existing
technologies are not used in matrix estimation methods because they collect volume data aggregated
on groups of links, rather than on single links. That is the case of mobile systems. Mobile phones
sometimes cannot provide location accuracy for estimating flows on single links but do so on groups
of links; in contrast, data can be acquired over a wider coverage without additional costs. This paper
presents a methodology adapted to the concept of volume aggregated on groups of links in order to
use any available volume data source in traditional matrix estimation methodologies. To calculate
volume data, we have used a model that has had promising results in transforming phone call data into
traffic movement data. The proposed methodology using vehicle volumes obtained by such a model
is applied over a large real network as a case study. The experimental results reveal the efficiency
and consistency of the solution proposed, making the alternative attractive for practical applications.
Copyright © 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The origin–destination (O–D) trip matrix is an essential source of information about traffic demand
used by administrative authorities for proper strategic planning and management of road infrastructure
networks. An O–D matrix is difficult and often costly to obtain by direct measurements/interviews
or surveys, although one may obtain a ‘reasonable’ estimate in a short term by using traffic counts
and a prior O–D matrix. The prior O–D matrix is typically assumed to come from a sample
survey and may be an old (probably outdated) matrix. Travel surveys are obtained through costly
and laborious processes, which, from the initial data gathering to the result exploitation, are lengthy
and may take years. Traffic counts are one type of information that can be collected automatically
on a subset of links by fixed sensors embedded in the road (e.g. inductive loop, radio frequency
identification (RFID), infrared, and camera). In most commonly used methods for matrix
estimation, the prior O–D matrix is iteratively ‘adjusted’ or ‘changed’ to reproduce those observed
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link volumes by means of modelling approaches. The reliability of sensor data is therefore
critical for O–D matrix estimation. Combining loop data with other systems that also collect
volume data might be of crucial importance for improving the efficiency and reliability of the
estimated matrix.
Other existing systems based on collecting volume data aggregated for groups of links are not used

in matrix estimation methods. One example of these systems is those providing measures in standard
‘average daily traffic’ format, aggregated in both directions (two links). Other technology that may also
collect aggregate volumes is the mobile system. In most cases, the road network is denser than the cell
distribution, so multiple roads may be covered by the same cell. The location accuracy provided
without terminal and network modifications does not allow detection of movement of a handset along
a particular road; it can only be asserted that it moves along one of the group of roads covered by the
cell. Although mobile systems do not measure volumes as accurately as fixed sensors, volume data can
be acquired on a wider coverage without additional costs arising. Thus, mobile phones can be regarded
as a complementary solution to fixed sensors in order to enhance the available information for mobility
monitoring purposes. The rationale behind it is the importance of the huge amount of data available at
the mobile operators' database to be used as a rich source of information to diminish the uncertainty of
mobility O–D matrices. Evidently, this type of data is complementary to other sources such as link
traffic flow counts, licence plate recognition, audio video interleave data capturing techniques and
RFID systems among others.
The paper presents a methodology for matrix estimation using aggregate volume on groups of links.

Traditional modelling approaches for matrix estimation are formulated to use volume data measured
on single links, so the concept of aggregate volumes may be very useful to include any available vol-
ume data in the estimation process. It is evident that an aggregate scheme may also handle individual
(disaggregate) links as a special group composed of a single link. Therefore, the approach may com-
bine aggregate and disaggregate data from different sources, but for the sake of clearness, the attention
is focused on just the aggregate case using volume inferred from mobile phone data. These systems
have become widespread in collecting traffic data because they provide great advantages over tradi-
tional methods of traffic measurement. Anyway, this approach may also be applied using aggregated
data from any other technology that collects aggregate volumes.
This paper is organized as follows. In Section 2 a short review of matrix estimation approaches

is provided, including related works about utilizing mobile phone data in transportation. Section 3
describes the model formulation and the solution method to estimate O–D matrices by means of
aggregate volumes of groups of links. In Section 4, after introducing the mobility management
strategy used in mobile systems, a method of inferring volume data from mobile phone counts
is presented. A case study on a real network to demonstrate and verify the proposed method is
summarized in Section 5. The last section concludes the paper with major findings and future
extensions.

2. STATE OF THE ART

2.1. Origin–destination matrix estimation using classical modelling approaches

The O–D matrix is important in describing transport demand within a given region. An origin-
destination matrix is difficult to obtain by direct measurements; observation of the population of inter-
est in its entirety within a study area is not economically (or perhaps even technically) feasible. Then,
traditionally O–D matrices have been estimated using different methodologies, such as carrying out
surveys on a representative sample of individuals, applying a trip distribution model, or using traffic
counts as measurements of link flows in a network model in order to update an existing matrix. The
third alternative is the one that has mostly been used over the past 25 years, and a considerable amount
of work has been documented in the literature [1]; a set of traffic counts and a prior O–D matrix are
prerequisites. The prior matrix is typically assumed to come from a survey using a finite data set
(instead of using the whole population). The survey data need to be corrected, expanded, and validated
in order to achieve a representative and reliable prior matrix to be used in matrix estimation methods
[2]. Therefore, this prior matrix can be regarded as an observation (a good approximation) of the ‘true’
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O–D matrix to be estimated. The way a prior matrix is obtained is profusely documented in specialized
survey books and praxis protocols, and it is out of the scope of this paper to focus attention on
this matter. However, the fact that a prior matrix is regarded as a ‘good approximation’ of the ‘true’
O–D matrix does not imply that it can be used directly as a result. Travel surveys are undertaken
every 5–10 years because they are costly and laborious processes; hence, prior O–D matrices are
probably outdated. Furthermore, a few errors may arise during the processes of building, calibrating,
and forecasting the prior matrix with models, such as sampling errors, measurement errors, transfer
errors, or aggregation errors. The prior matrix is therefore updated using traffic flows, which are one
type of information that can be collected automatically on a subset of links in a network, not on all
links (this would be impossible nowadays because of economic budgetary restrictions). In methods
based on this third alternative, the prior O–D matrix is iteratively ‘adjusted’ or ‘changed’ to repro-
duce the observed traffic counts when assigned to the transportation network. The aforementioned
errors can also be mitigated by adjusting the prior O–D matrix to satisfy the traffic counts. In this
manner, one may obtain a ‘reasonable’ estimate of the O–D matrix; hence, this alternative is most
widely used in practical applications.

2.2. Origin–destination matrix estimation using mobile phone data

The incorporation of new technologies plays a key role in improving transportation applications. The
idea of using mobile phones to acquire traffic information is more and more widespread. Various re-
view studies relating to this topic have been published in recent years [3,4]. With the specific goal
of O–D matrix calculations, a few simulation works have been carried out to evaluate the potential
of using mobile data for estimation of travel demand [5,6], with a view to its practical applicability.
Regarding matrices obtained from network operators' data, we can refer to works using call data in or-
der to extract mobility information of individuals [7] and to identify home or work locations [8] or
even studies using information retrieved from turned-on phones for generating trip distribution
tables [9] or time–space trajectories [10,11]. According to the reviewed literature, the major drawback
in the use of phone data for matrix estimation is the composition of the sample, which may be consti-
tuted by active phones only (in communication—call, SMS, MMS, etc.) or by idle phones as well
(turned on and not in communication). Thus, the phone status when samples are collected drastically
changes the size or the location accuracy of the data. A sample from only active phones would
guarantee higher location accuracy because the mobile system always knows the server cell to
which the active phone is connected during a communication. At present, cell identification (cell
ID) is the basic geographic unit provided without terminal or network modifications. However,
the sample size is much smaller than those from idle phones because the size depends on the num-
ber of calls. In contrast, a sample from idle phones offers less accurate location data. Whenever the
phone has idle status, the system does not need to know the cell where a phone is located but
needs to know a set of candidate cells for becoming the serving cell. This set is called the location
area, which consists of a group of adjacent cells.
When cells or location areas are used as home or work zones for building an O–D matrix, mo-

bility patterns may be different from when using traditional traffic zones. The spatial extent of
zones is of crucial importance for the understanding of trips that are generated and attracted
within the zone. In conventional transport studies, a zoning system is defined according to trans-
portation planning criteria, such as homogeneous land uses and/or population composition using
census and socioeconomic data [2]. In mobile networks, generally base stations (cells) are placed
to provide adequate coverage for communication rather than the aforesaid criteria. Moreover, cell size
varies according to urban or rural areas and may cover areas with different land uses (e.g. home and
work zones fit into the same cell); hence, the fitting problem is worse for location areas. However, even
using cells (active phones sample), a typical traffic zone and a cell do not overlap exactly in both the
size and the features of the area. Either poor network representations or too coarse zoning systems may
invalidate the results of even the most theoretically appealing model [2]. Anyway, it is difficult to
exactly detect the starting point and the destination of a trip by means of communication records; some
users only have 1–2 records per day, and the points where users make calls may not coincide with a
trip origin and destination.
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There are other drawbacks to estimating O–D matrices directly from phone data, such as the
uncertainty about the number of phones carried in the vehicles, or the fact that not every
phone is under contract with the network operator that delivers the data. Therefore, phone trips
do not match vehicle trips, and the matrix must be corrected by methods based on other vehi-
cle-monitoring systems. Despite these drawbacks, an O–D matrix generated using phone data
directly must be regarded as valuable prior information about the transport demand, and it
can help to obtain more accurate results in future. Until now, the aforementioned modelling
approaches based on traffic counts and a prior matrix remain the most reliable ones for matrix
estimation.
The preceding arguments provide the rationale for not drawing up O–D matrices directly from

phone data but using the inferred flows between two adjacent/distant cells (inferred from call data)
to update an existing prior matrix by solving an optimization problem.

2.3. Traffic flow estimation using mobile phone data

The most used sensor to collect traffic flow data is the loop detector. Data provided by these sensors
are available with little effort, but they are limited in terms of cost and coverage. Their measure-
ments depend on the existing infrastructure, which tends to be expensive to extend or modify
because of the cost of devices, installation, or maintenance. Although loops generally produce rea-
sonable data all the time, they may occasionally provide missing values or erroneous measurements
due to various malfunctions. There exist two main types of errors [12]: first, the detectors tend to un-
dercount vehicles; second, a large percentage of detectors tend to count vehicles in neighbouring lanes
in addition. By considering these negative aspects, other alternatives for collecting traffic flow data
should be included for use in matrix estimation approaches. According to the literature, a fair
number of works relating to traffic flow estimations using phone data have shown good quality
results in order to be regarded as a feasible alternative for mobility detection purposes. Most of them
use data generated by active phones. As already mentioned, a sample from only active phones guar-
antees higher location accuracy based on cell ID. Certainly, having a sample from idle phones
increases the sample size, but location data are less accurate at the level of the location area, which
consists of a group of adjacent cells. Then, the problem of matching users' movements to roads is
more difficult to solve than using location data at cell level. This is the main reason why most studies
so far have used datasets from active phones to obtain traffic flows, even though the sample size is
smaller.
Regarding active phones, the most common event for detecting the user's movement between

two cells is the handover. A handover record is inserted into the system databases when a phone
with a call changes from one base station/cell to another. The analysis of these records provides a
measurement of the number of active phones moving from one cell to another in a given period,
that is to say a boundary-crossing rate. Two works [13,14] found that the phones' flow from hand-
over calls is closely related to the vehicles' flow measured by loop detectors, having similarities for
most hours of an ordinary day. Typical flow peaks associated with times both in the morning and in
the afternoon appear in both cases. However, those studies concluded that accurate vehicle flows can-
not be obtained directly from phone data because of sample size problems. Flow data derived from ac-
tive phones yield information on only a statistical sample of all the travelling vehicles; some vehicles
may carry more than one mobile phone, either phones of other operators or switched-off phones; even
no calls may occur per vehicle. For these last situations, phones in movement are not detected. These
aspects imply special treatment to correlate phone and vehicle counts. A calibration process is there-
fore required that uses vehicle volume measures obtained, for example, from loop detectors located
spatially in the same monitored section. In this regard, different works using loop detector data gave
accurate results by means of procedures to bring phone counts to vehicle counts based on empiric
transfer functions [15], correction factors [10], or Newtonian relaxation techniques [16]. In other recent
work [17,18], a set of models containing additional information about calling users' behaviour was
proposed to infer vehicle volumes from call data. The models have had promising results in transform-
ing call data into traffic movement data, which makes it possible to calculate accurate traffic flows on
any road in any period.
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Considering the findings in the field of O–D matrices and traffic flows, a methodology for
matrix estimation that combines the traditional modelling approaches with traffic flows inferred
from mobile phones is proposed. A mixed approach makes phone data attractive for matrix
estimation applications because of the fact that they involve relatively low costs and wider cov-
erage. However, the methodology continues to use a matrix derived from a sample survey as a
prior matrix. Survey data offer the possibility of obtaining more useful trip data (trip purpose,
transportation mode, trip length, etc.). At present, these pieces of information cannot be derived
accurately from raw phone data, and they are necessary for the other stages in travel demand
modelling.

3. METHOD FOR UPDATING ORIGIN–DESTINATION MATRICES

3.1. Introduction

As already commented, most methods for matrix estimation use volumes on a subset of links and a
prior O–D matrix so that the prior matrix is iteratively updated to reproduce the observed volumes.
The matrix estimation problem can then be interpreted as pursuing two types of objectives, of which
one is to fit the traffic counts as exactly as possible and the other is to search for a solution that is as
close as possible to the prior matrix. Better matrix estimates can be obtained when information is avail-
able about the overall distribution of traffic through time and space. Other existing technologies are not
used in matrix estimation methods because they collect volume data aggregated for groups of links,
rather than on single links. The new feature of this contribution with respect to the traditional model-
ling approaches is the use of aggregate volumes on groups of links. Some modifications in the model
formulation to use aggregate volumes must therefore be developed. Anyway, it is evident that an
aggregate scheme may handle individual (disaggregate) links as one group composed of a single link.
The proposed methodology does not exclude the use of information coming from either link volume
data or other sources.

3.2. Mathematical formulation

Consider a study area that has been partitioned into traffic zones with trips from any origin to all
destinations. Each traffic zone is represented by a node called a centroid, where trips originate or
terminate. An O–D trip matrix is denoted by T = [Tij], its (i,j) element being the number of trips from
origin i to destination j during a certain period. A road network corresponding to the study area is ab-
stracted into a graph model consisting of a set of regular nodes and a set of directed links. The service
level associated with the links is given by link performance functions sa(va), which relate the travel
time on each link to the flow across the link. Finally, the assignment of the matrix to the net-
work model in order to obtain flow and travel time on each link is considered to be a determin-
istic (or stochastic) user-equilibrium procedure, whose behavioural principles are described by
the two conditions usually attributed to J.G. Wardrop [19]. Regarding the adjustment problem,
we have reformulated it to use aggregate volumes on groups of links. The formulation proposed to ad-
just the prior matrix includes a quadratic term to control deviations with respect to the observed vol-
ume data; the distance between prior and estimated matrices is controlled by a set of variable
bounds and functional constraints, which define admissible ranges for individual O–D pairs, zone pro-
ductions and attractions, and total number of trips. Therefore, it must be noted that we are not really
minimizing the distance between both matrices but limiting the variations involved to certain feasible
intervals. Next, the necessary mathematical conventions to formulate the matrix adjustment bi-level
approach are summarized.

Indices and sets:

i2 I Origin zones (no is the total number of origin zones)
j2 J Destination zones (nd is the total number of destination zones)
a2A Network links
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g2G Groups of links observed
k2Kij Routes or paths from origin i to destination j

Constants:

dak 1 if link a belongs to path k, 0 otherwise
da|g 1 if link a belongs to group g, 0 otherwise
uij, lij Upper and lower bounds for (i,j) O–D pair
ui
O, li

O Upper and lower bounds for trips generated by zone i
uj
D, lj

D Upper and lower bounds for trips attracted by zone j
u, l Upper and lower bounds for total network trips
�v|g Observed travel demand through the group of links g
a|g (Optional) weight factor associated with the volume on group of links g

Functions:

sa(va) Performance (volume delay or cost) function of link a

Variables:

va Volume on link a
hk Flow on path k
pk ¼ hk

Tij
Probability or proportion of path k

Pij;a ¼
P
k2Kij

dakpk Proportion of trips from node i to node j through the link a
v|g Estimated travel demand through the group of links g
Tij Travel demand (trips) from origin i to destination j.

Then, the bi-level approach proposed in this investigation is formulated as follows:

�Upper Level

Minimize
Tij

f Tij
� � ¼ 1

2 �
X
g2Ĝ

ajg ðvjg ��v g

�� �2
s:t: lij≤Tij≤uij 8i 2 I; j 2 J að Þ

lOi ≤
P
j2J

Tij≤uOi 8i 2 I bð Þ

lDj ≤
X
i2I

Tij≤uDj 8j 2 J cð Þ

l≤
P
i2I

P
j2J

Tij≤u dð Þ

�Lower Level

Minimize
va

g vað Þ ¼
X
a2A

Z va

0
sa vð Þdv

s:t: va ¼
X
i2I

X
j2J

X
k2Kij

dak hk; 8a 2 A

X
k2Kij

hk ¼ Tij; 8i 2 I; j 2 J

hk≥0 8k 2 Kij; i 2 I; j 2 J

��������������������������

(1)

The lower-level programme, known as Beckmann's transformation, is the basic model for obtaining
those volumes va on all network links satisfying the user-equilibrium conditions for a given fixed de-
mand Tij [19]. In order to obtain the aggregate volume v|g on every group g2G, it is necessary to carry
out a sub-problem assignment that provides the standard results of the lower level (Equation (1)). The
results can then be expressed in terms of path flows or path proportions as follows:

vjg ¼
X
a2g

va ¼
X
a2A

dajgva ¼
X
a2A

dajgðX
i2I

X
j2J

Tij
X
k2Kij

dakpkÞ
¼

X
a2A

dajgðX
i;j

TijPij;aÞ8group g 2 G

(2)

Expression (2) shows that the aggregate volume on the group of links g is the sum of the volume on
each link belonging to the group. The problem of estimating an O–D matrix from the aggregate
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volume consists in finding the values of no� nd variables (Tij) from as many equations as there are
independent observed volumes in the network. In most cases, the number of unknowns is greater than
the total number of independent equations that can be found for the groups of links having the counts,
so it will not be possible to determine a unique matrix, and the problem is underspecified. Thus, the
objective of the estimation process becomes the estimation of a solution that is considered to be the
best one according to some criteria. For the present approach, the criteria have already been set out
and mathematically modelled in the upper level (Equation (1)) by means of the set of variable bounds
(a) and functional constraints (b–d). Because of the existing uncertainty in the definition of the matrix,
potential errors in the definition of the transportation network model, and noise associated with the
vehicle counts, the rationale behind this makes reasonable that all the matrices in an adequate
range can be considered equally suitable. In the formulation proposed, two different strategies
manage the constraints, according to the type: the bounded constraints (restrictions on each
element of the matrix) and the functional constraints (constraints on origin-row, on destination-
column aggregations, and on total number of trips). For instance, for an outdated 5-year-old matrix
to be brought up-to-date with the actual vehicle counts, one can use the outdated matrix as a prior
matrix, letting the total target matrix trips vary into an interval ranging from the outdated total trips
(it is not usual for mobility to decrease in 5 years) and the predicted percentage increment by the
time series record (lower and upper constraints on total trips). The constraints provide a better
physical perception to pick out the most suitable matrix (for example, constraints might be
imposed restricting the admissible variations to �20% in the trips production of a concrete traffic
analysis zone, or accepting an increase greater than 15% in total mobility). These conditions would
be part of the functional constraints and treated as terms of a new objective function, defined by
the augmented Lagrangian function (ALF). Consequently, this type of constraint can be regarded
as a function of some metrics (distance). The bounded constraints require a different treatment
because of the large number of restrictions, their augmented Lagrangian would impose 2 no nd
additional terms in the objective function; this makes the optimization problem intractable, an
approach to encircle this issue is dealt in the following section.

3.3. Implementation

As mentioned earlier, the formulation using aggregate volume of groups of links is needed in
order to use other available data from systems providing aggregate measurements. According to
the literature, there are a large number of works that have already developed methodologies to
estimate O–D matrices using link volumes. The approach followed in this research has selected
one of these previously developed methods [20] as the starting point for the reformulation using
volumes on groups of links. The reformulation and the validation of the resulting algorithm is a simple
and unproblematic task that has never been used in matrix estimation to our knowledge, but it can be
very useful for combining any available volume data in order to improve efficiency in matrix
estimation.
The selected method addresses the problem of estimating and updating observed O–D matrices

based upon available link-flow information, preserving the prior structure of a survey matrix.
Although the modification could be applied to any approach using observed link volumes, we
have selected the cited method because of the well-behaved results that the method has obtained
in matrix estimation. This approach combines an augmented Lagrangian method, called the
method of multipliers, with the linear approximation method credited to Frank and Wolfe. The
idea of the augmented Lagrangian scheme [21] consists of adding a quadratic loss penalty term
to the classical Lagrangian to form an unconstrained function whose minimum is a Kuhn–Tucker
point of the original problem. However, note that the ALF proposed here will not be completely
unconstrained because variable bounds will not be included. In the model, the Lagrangian function
includes the functional restrictions (corresponding to trips generated, attracted, and total) present in
Equation (1b)–(1d) but bound ones associated with trips between O–D pairs in Equation (1a), which
are those dealt with directly by the Frank–Wolfe method. The use of these functional restrictions
and variable bounds limits the possible changes in the estimated matrix regarding the information
contained in the prior matrix. For the sake of brevity, the details of the mathematical optimization
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scheme are not pursued further and can be found in [20]. Then, the ALF for aggregate volume data
can now be written as follows:

Laug T ; s; tð Þ ¼ 1
2

X
g2Ĝ

X
i2I

X
j2J

ajg
X
a2gðTij Xk2Kij

dakpk

0
@

1
A� �vjgÞ2

þ 1
2

Xno
i¼1

oO
i uOi �

Xnd
j¼1

Tij þ sOi

* +2

� sOi
� �20

@
1
Aþ

Xno
i¼1

oO
i

Xnd
j¼1

Tij � lOi þ tOi

* +2

� tOi
� �20

@
1
A

0
@

1
A

þ 1
2

Xnd
j¼1

oD
j uDj �

Xno
i¼1

Tij þ sDj

* +2

� sDj
� �2

0
@

1
Aþ

Xnd
j¼1

oD
j

Xno
i¼1

Tij � lDj þ tDj

* +2

� tDj
� �2

0
@

1
A

0
@

1
A

þ 1
2
o u�

Xno
i¼1

Xnd
j¼1

Tij þ s

* +2

� s2

0
@

1
Aþ

Xno
i¼1

Xnd
j¼1

Tij � lþ t

* +2

� t2

0
@

1
A

0
@

1
A;

where ah i ¼ a ifa < 0
0 ifa≥0

�
(3)

and (oi
O, oj

D, o) are the weight factors associated with the production constraints of zone i, the attrac-
tion constraints of zone j, and the total number of trips constraint, respectively. Lastly, s= {sO, sD},
t= {tO, tD} stand for vectors of multipliers associated with the mentioned constraints. The updating
rule for s and t takes the following form:

s mþ1ð Þ
i ¼ uOi �

Xnd
j¼1

T mð Þ
ij þ sO mð Þ

i

* +
t mþ1ð Þ
i ¼

Xnd
j¼1

T mð Þ
ij � lOi þ tO mð Þ

i

* +
; for each i 2 I

s mþ1ð Þ
j ¼ uDj �

Xno
i¼1

T mð Þ
ij þ sD mð Þ

j

* +
t mþ1ð Þ
j ¼

Xno
i¼1

T mð Þ
ij � lDj þ tD mð Þ

j

* +
; for each j 2 J

s mþ1ð Þ ¼ u�
Xno
i¼1

Xnd
j¼1

T mð Þ
ij þ s mð Þ

* +
t mþ1ð Þ ¼

Xno
i¼1

Xnd
j¼1

T mð Þ
ij � lþ t mð Þ

* + (4)

Let m be the counter to identify the successive estimates obtained by the algorithm. Then,
the updating rule of the successive estimates of the Frank–Wolfe algorithm can be written
as Tij

(m+1) = Tij
(m)+ l(m) � (yij(m)�Tij

(m)) =Tij
(m)+ l(m) � dij(m) for each i2 I, j2 J, in accordance with

the O–D notation. Note that dij
(m)= yij

(m)�Tij
(m) is the Frank–Wolfe descent direction, yij

(m) is the
auxiliary extreme point, and l(m) is the step length in the mth iteration. This step is subject to lying
within the interval l2 [0,1] because the auxiliary point y is located in a vertex (and/or edge) of the
feasible region defined by the linear problem. To obtain the step length, the ALF (Equation (3)) should
be minimized by expressing it as a function of l at the new m + 1 estimate, that is, evaluating the
function for Tij

(m+1) = Tij
(m)+ l(m) � dij(m) where Tij(m) and dij

(m) are known. Thus, a minimization of this
one-dimensional function, where l2 [0,1], has to be performed. Because of the numerical oscillations
of the objective function values observed in the cited optimization approach, additional novelties for
determining the optimum step have been developed. In this regard, the presence of the bracket operator
h�i has motivated the selection of the Golden Section Search algorithm for minimizing a quasi-convex
function over the interval [a,b]. This algorithm is based on finding the minimum of the unimodal func-
tion by successively narrowing the range of values of l. In our problem, the optimum value of l is
found by applying this algorithm iteratively within the interval l2 [0,1] in the descent direction dij

(m).
The termination criteria of the algorithm designed are based on the following: (i) the maximum num-

ber of sub-problems (or Lagrangian stages) and (ii) the maximum number of iterations per sub-problem.
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Specific rules are used to choose these maximum numbers of steps, and so, as was the case of the upper
and lower bounds in Equation (1), they depend on error analysis and statistical confidence intervals.

4. ESTIMATES OF TRAFFIC VOLUMES FROM MOBILE PHONE DATA

4.1. Introduction

In mobile networks, a service coverage area is divided into smaller areas referred to as cells. A cell is
defined as the area in which a phone can communicate with a certain base station. A set of adjacent
cells is grouped into one location area. The cell radius depends on many parameters, such as antenna
type, power levels, or even topology and buildings around. The cell radius is smaller in urban areas,
where population density is high and more antennae are necessary to provide good communication ser-
vices, than in rural areas, varying from a few hundred metres to several kilometres. One of the main
features of mobile systems is the ability of users to access communication services from any location
within the telecommunications network. To support users' mobility, the mobile phone network has an
inbuilt positioning system based on the cell of origin, which is used to keep track of the position of
phones so as to deliver incoming calls, messages, or data packets to subscribers. When a call occurs,
the system inserts a record into its databases including parameters related to the call such as start/end
time, duration, caller phone number, or identification of the server cell (cell ID). During a call, the mo-
bile system always knows the server cell to which the phone is connected in order to route the call to
the antenna. Because subscribers are free to move within the network's service area, the mobility man-
agement in mobile networks includes processes that keep the databases updated with the user's posi-
tion. When a phone with a call moves from one cell to another (it crosses the boundary of different
cells), the call is routed to the new cell. The transference is executed by the handover process, which
automatically updates the databases with the new cell ID and the time stamp. More details about mo-
bile systems can be found in the literature [22].
The information about phones crossing inter-cell boundaries is related to the estimation of users

moving from one area to another. Therefore, a mobile system can be regarded as a kind of detector
monitoring the movement of phones with calls through inter-cell boundaries. The topology of a road
network is complex, and several roads may connect two cells. By analysing the road network topology
and cell distribution, the routes connecting two cells are identified; in Figure 1a, there are two routes
connecting cell 1 and cell 3, but only one route connects cell 1 and cell 2. By representing the road
network by nodes and links, an inter-cell boundary comprises the group of links whose starting node
is in one cell and whose ending node is in another cell (Figure 1b). The ideal situation is to have a large
set of individual links where the movement of phones can be analysed independently. Unfortunately
(indeed fortunately), in most cases, the road network is denser than the cell distribution, so multiple
links connect two cells. In this case, there is no certainty that a particular handset is moving along a
particular link; it can only be asserted that it is moving along one of the roadways connecting two cells.
In this case, an aggregate data approach is more valuable because it allows the number of observed
links to be increased. If only volume data inferred from mobile networks at the individual link level

cell 1→cell 3 
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cell 3→cell 1

Group 2={ 2, 4}
cell 1→cell 2

Group 3={ 5}
cell 2→ cell1

 Group 4={ 6}

cell 1 
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k 
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2 3
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Figure 1. Groups of (a) roads and (b) links in a transport network.
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were used, a significant number of links would be discarded. The situation in which a unique roadway
connects two cells does not occur frequently in mobile networks. Because the adjustment procedure
will become more efficient when the number of observed links taken into account increases, an ap-
proach using aggregate data on groups of links is essential for incorporating volume data inferred from
mobile networks. An aggregate volume scheme must therefore be formulated in order to use this alter-
native in the field of O–D matrix estimation. Additionally, it is evident that an aggregate scheme may
also handle individual (disaggregate) links, collected by other systems (e.g. loop detectors). Thus, an
additional advantage of the presented approach is that it can combine heterogeneous data sources. Be-
sides the use of aggregate data, not only volume inferred from phones but from other systems such as
traffic count data given in the standard ‘average daily traffic’ format (traffic measures aggregated for
both directions) are pieces of information to be considered.
It is necessary to bear in mind that the cell borders are not static, but are to some extent dynamic.

Each cell coverage area has an effective radius defined by means of signal strength measurements,
where a phone can communicate with the server base station. This radius may vary according to certain
random factors (weather, call load, etc.) although the fluctuation is controlled by control measurements
to ensure the desired cell edge reliability. These issues relating to cell borders do not drastically impact
on traffic flow estimations. The approach estimates the number of vehicles moving from one cell to
another, that is, the vehicles moving along the roads that connect the two cells. These roads will remain
the same even if cell borders change. The only change will be reflected in the road section where the
area of intersection between the inter-cell boundary and the road is located. In addition, the cells over-
lap at the edges to prevent holes in coverage when designing the cell layout for a mobile system. The
cell overlapping area is defined as the overlap between adjacent cells with regard to the primary cov-
erage. To avoid this problem, only roads connecting the effective radius of the cells should be consid-
ered to comprise valid group; that is to say, links whose starting and ending nodes are inside the
effective radius of the corresponding cells.

4.2. Model for estimating vehicle volume using phone call data

The motion of phones while being involved in calls can be regarded as an easily accessible and low-
cost alternative to infer the number of vehicles moving from one cell to another, in particular, vehicles
moving along the roads that connect the two cells. The approach for inferring traffic volume data uses
call data records, available without additional cost, provided by a mobile operator. From these calls,
only those made by phones in motion are of interest so that the collected data must be filtered before
delivery to any estimation volume procedure. In this research, we have used one of the models for es-
timating vehicle volumes developed by the authors [17,18]. The models transform the filtered call
data into traffic movement data to calculate traffic flows in any network link in any given time. The
dataset used in that study consisted of all ‘outgoing calls’ (calls initiated by the user, not received calls)
recorded in the study area, which were provided by the operator Vodafone. For every outgoing call, the
dataset included the exact time of the call, the encrypted ID number of the phone, duration, and the cell
ID to which the phone was connected during the call. All the cell IDs that the phone is connected to at
call time were available. Furthermore, an additional parameter is included in the collected call data,
which is related to the reason for the call drop in a cell, being one of them the handover event. By using
this parameter, the measure of handovers from the data was derived. Because of privacy issues, the
encrypted ID for every phone was a unique and randomized number based on the original phone
ID. The models were defined, calibrated, and evaluated in a field test over cells covering roads with
different traffic backgrounds and characteristics. In this case study, 12 inter-cell boundaries were
analysed. Only a road connected each pair of studied cells. Traffic volumes measured by detectors
located next to boundaries between each pair of cells were also used. These two types of data were
collected for 18 regular working days, composing a historical dataset. This dataset was divided into
two parts: a calibrating set for estimating model parameters and a testing set for model assessment.
The cited work previously performed data filtering in order to detect situations of phones' movement

from call data. According to the literature, the handover is the most used event to identify such situa-
tions. However, that work did not use only handover events. If the call ends before the phone enters the
new cell, the handover is not performed, and the phone movement is not detected. Hence, an additional
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event was considered on the basis of the realization of two consecutive calls in different cells within a
short period. In particular, the model selected for use in the current study is based on the approximation
of the physical phenomenon of ‘in-motion calls’. A phone makes an ‘in-motion call’ either when the user
has an active call and moves from one cell to another, which is the case called the handover (Figure 2a), or
when the user makes a call in each of the two cells composing the boundary within a short period
(Figure 2b). The count of in-motion calls transforms call data into traffic movement data so that the
number of in-motion calls is used as input in the model to calculate traffic flows.
In order to formulate a theoretical model that reliably represents the relation between the number of

in-motion calls and the number of vehicles, an expression is defined to model each of the situations in
which an in-motion call may occur. The fact that the studied cells are away from urban environments
allows us to suppose that practically all of the in-motion calls are made by users on board vehicles trav-
elling along roads that connect pairs of cells. This number of in-motion calls depends on the proportion
of all the moving vehicles whose occupants have made such calls. This proportion is founded on the
probability of making an in-motion call on board a vehicle, using the monitored operator, in an hour
period j and in a pair of cells (or inter-cell boundary) k, P(j,k). The estimation model is defined by
means of the hypothesis nimc(j,k)�P(j,k) � nveh(j,k), considering nimc(j,k) and nveh(j,k) as the number
of in-motion calls counted and the number of vehicles travelling along the road that connects the pair
of cells k in period j, respectively. The expression for the probability of making an in-motion call is
therefore required. Regarding in-motion calls, it is necessary to comment that they are made by only
a sample of all the phones on board vehicles. Some vehicles may carry more than one phone, either
from other operators or switched off, although either various calls or none may be made from the same
vehicle. These features are already included in the calculation of P(j,k) because its expression is based
on the ratio of calls to vehicles, not phones to vehicles; therefore, P(j,k) stands for the probability that a
phone makes an in-motion call (not any call), which may be of type 1 (associated with handover) or
type 2 (associated with consecutive calls in different cells within a short time). After modelling the
situations involving in-motion calls, this probability is estimated by adding the success probability
of each type of in-motion calls, that is, P(j,k) =Pj �Q(j,k)+Pj

2, whose terms are related to the types
of in-motion calls. With regard to the first type (Figure 2a), the probability of making a call on board
a vehicle and this call executing a handover is given in a simplified manner by Pj ∙Q(j,k), where Pj is
the probability of ‘making a call on board a vehicle, using the monitored operator’ in the hour period j,
and Q(j,k) stands for the probability of handover given by

Q j; kð Þ ¼ 1
a j; kð Þ 1� e�a j;kð Þ

h i
; with a j; kð Þ ¼ Lk

Vk�Tj (5)

The expression (5) depends on the hour period j and the boundary k due to the term a(j,k). Through
this last parameter, the dependence on the distance, which a phone must travel within a cell until it
enters another cell (crosses the boundary), is captured. The smaller this distance, the easier is that
the call must execute a handover. This length depends on the road that passes through the origin cell
of the boundary k. The term Q(j,k) introduces characteristics of the roads in the cell because it depends
on the mean velocity at boundary k, Vk; the length travelled in the cell before leaving it, Lk; and the
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B

(a) (b)

call active at the moment of crossing
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Figure 2. In-motion calls: (a) handover and (b) two calls in t1 and t2 such that t2� t1≤ T.

660 N. CACERES ET AL.

Copyright © 2011 John Wiley & Sons, Ltd. J. Adv. Transp. 2013; 47:650–666
DOI: 10.1002/atr



mean call duration in interval j, Tj. The expression is derived from a simple mobility model after intro-
ducing randomness into the trajectories that users describe across the network [23]. With regard to the
second type of in-motion calls (Figure 2b), the success probability is modelled as Pj

2. This simplifica-
tion is founded on the making of two calls during the hour period j taking into account that Pj is defined
as the probability of ‘making a call on board a vehicle, using the monitored operator’ in the period j.
One should bear in mind that the process of making a call is not independent of the fact of having
made a previous call recently. Moreover, the sample does not deal with the whole population of
phone users but with a particular group of users: those travelling on board a vehicle. The calling
activity of this sample of users may be considerably different from those of the entire population.
In order to simplify the modelling of in-motion calls, the hypothesis that the two calls are uncor-
related in spite of a bias may arise with this assumption. The values of Pj are determined using an
empirical approach based on the ratio of successfully knowing the number of in-motion calls and the
number of moving vehicles.
In order to investigate the dependence of the call probability Pj with space (location), the empirical

approach based on the proportion of times in which a favourable or successful event occurs with regard
to the total number of possible results was applied. In this case, the event of interest was ‘making a call
on board a vehicle supported by the operator providing call data’. The successful event considered
takes place when an in-motion call occurs, being the number of in-motion calls directly extracted from
the collected call data. Furthermore, the total number of possible results, which is related to the number
of vehicles moving along each inter-cell boundary, is known by means of counting stations that were
near such a boundary. Then the empirical approach for determining the call probability was computed
separately for each pair of cells in order to consider the possible dependencies on the time and on the
space. The outcome shows that the estimated values of the probability for each location remained
within similar ranges for the same period. This coincidence was attributed to the similarity of calling
activity of users who travel along the associated roadways. The cells mainly support freeway traffic,
away from sites such as residential areas, shopping areas, commuter hubs, and so on. In these last
cases, the behaviour of making a call drastically changes from site to site because each of them serves
users with considerably different call patterns. In contrast, no significant factor influences the calling
activity of users over the studied cells, showing a regular, stable behaviour. In these cells, the calling
behaviour is not affected by the site activity so that it seems reasonable to assume that the locations
may be aggregated. Then, the process was repeated but aggregating all locations into a single sample.
Logically, the aggregate scheme provokes masked errors, but this alternative was selected for the trans-
ferability of findings to other locations with similar traffic features and for increasing the sample size.
Regarding the two types of events generating in-motion calls, it is worth to note that the proportion

of occurrence of each of them varies in the range 45%–55%. This percentage distribution remains
within the same range over time and space so that no significant changes were remarkable to be
showed in the results.
The functional formula of the model is presented in Equation (6), after introducing a set of para-

meters ’= {a, b1, b2, c, d} and substituting the expression of Q(j,k) given in Equation (5). The detailed
model derivation can be found in [17,18]. The model uses the number of in-motion calls counted in
period j and inter-cell boundary k, nimc(j,k), as input data in order to estimate the corresponding number
of moving vehicles, n̂veh j; kð Þ.

nveh j; kð Þ � nimc j; kð Þ
P2
j þ Pj �Q j; kð Þ !a; b1; b2;c; df g

n̂veh j; kð Þ ¼ a�nimc j; kð Þ
P2
j þ Pj� b1

a j;kð Þ 1� e�b2�a j;kð Þ½ � þ c
þ d (6)

The model parameters were estimated using a calibration stage where the criterion is based on the
minimization of the sum of the absolute relative error between the observed and the modelled values.
The evaluation of this proposed model was carried out using criteria such as error measures in absolute
values, percentiles, and linear and rank correlation between the observed volumes and the estimates;
some of the results are showed in Table 1. Figure 3 shows a comparison between vehicle flows
observed and estimated at two inter-cell boundaries. The plot reveals that the estimates follow
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the peaks and valleys of the observed volumes within an admissible error level (MARE< 20%;
MedARE< 16.5%, aggregate for all periods and boundaries). Higher error levels are obtained from
late afternoon/early evening. This result might be explained by several factors, the beginning of
cheaper tariffs being one of them. This factor has a strong effect on calling behaviour—duration
and number of calls—which fluctuates greatly in these periods from day to day; hence, error levels
increase. The vehicle occupancy is another important factor affecting the accuracy of the estimation
model. There are significant differences in vehicle occupancy by time of day; the morning peak
period has lower average vehicle occupancy than the mid-day period and the evening peak period.
The vehicle occupancy for going to work during the morning peak period is regular on a daily
basis. From evening hours, aside from returning home, there are numerous other activities in which
people engage on a less-than-daily basis, such as visiting friends or relatives, shopping, entertain-
ment, fitness, and so on. People may engage in these activities alone or accompanied, and no stable
trends exist in vehicle occupancy for these periods. Because it is difficult to exactly detect the
vehicle occupancy using only call data, the model has been developed using an average vehicle
occupancy rate. The model accuracy may change when vehicle occupancy is drastically different
from this rate. By contrast, these error levels decrease to 6%–8% in periods when the trends in
making calls and vehicle occupancy are more stable (9:00–14:00).
A larger and more comprehensive comparison between different derived models is found in a work

by Caceres [18]. In that work, several models are tested, some of them are based on pure mathematical
inference without inspiration from the physical phenomenon, by combining exponential and polyno-
mial functions with other terms related to the users' calling behaviour due to the existence of a relation-
ship between typical call activity and traffic mobility; others are formulated based on an approximation
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Figure 3. Vehicle volumes observed and estimated at boundaries 2 and 6 in each 1-hour period.

Table I. Error measurements (aggregate for all periods and boundaries).

MAE MARE MedARE Rank correlation Linear correlation

203.5960 0.2000 0.1646 0.5662 0.5333

MAE, mean absolute error; MARE, mean absolute relative error; MedARE, median absolute relative error.
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of the physical phenomenon of in-motion calls. All models are evaluated and compared for selecting
those that produced the best results. This research concluded that the ‘physical’model was one of those
providing better balance between all the error measurements computed.
After comparing volumes estimated by the model with volumes collected by detectors, it seems

reasonable to assert that such estimates can also be utilized as observed data in methodologies to
estimate O–D matrices using traffic counts. Traditionally, these approaches use volume data collected
by loop detectors, in which it is known there are two main types of errors [12]. First, the detectors tend
to count a few less vehicles than there actually are. In most cases, this error is less than 10% of the real
volume. Secondly, detectors tend to count vehicles in neighbouring lanes in addition. In some cases,
the share of the additionally counted vehicles has a 15% of divergence. The standards defined are that
the total traffic volume should not vary from reality by more than 20% [12]. Then, the error levels
obtained using the estimation model are within the limits for fulfilling the standards. Moreover,
demand matrices are studied for periods representing 1 or 2 hours, usually morning peaks, and the
achieved error levels are lower during these morning hours.

5. EMPIRICAL SETTING FOR ORIGIN–DESTINATION MATRIX ESTIMATION

The present paper has presented a methodology for estimating matrices using volume data aggregated
on groups of links and a prior matrix. The approach may combine aggregate and disaggregate data
from different sources, but for the sake of clearness, the attention is focused on just the aggregate case
using volume inferred from phone data.

5.1. Data source

The test network is based on the transport network model corresponding to the region of Madrid
(Spain), whose basic dimensions are 1079 centroids (based on conventional traffic zones defined from
criteria such as land uses and socioeconomic data), 9457 regular nodes, and 21 713 directional links.
The model contains topological information such as connectivity relationships between nodes and
links, directions of links, link costs, and the clustering of nodes into cells in the mobile system covering
the transport network. In order to estimate the final O–D matrix by applying the methodology, a prior
O–D matrix and volume data on a subset of links are required. For this purpose, the prior O–D trip
matrix used is taken from a previous study developed over this network, which had an available morn-
ing peak hour (8:00–9:00) O–D trip matrix corresponding to the Madrid Mobility Survey 2004, con-
taining 1079� 1079 O–D pairs.
With regard to volume data, a large amount of observed links are required; but the field test devel-

oped in [17,18] has estimates available over only 12 roads. In order to validate the methodology, the
volumes on groups of links are obtained according to a distortion procedure. This procedure is based
on the statistical error distribution of the estimation model explained in Section 4. This distribution is
determined by comparing real vehicle volumes and estimates using the model, with the error levels
being around 6%–8% for periods associated with morning peak hours. The aggregate volumes of every
group of links (inter-cell boundary) are therefore derived after applying a random value following the
aforementioned error distribution to available volumes. Previously, the groups of links for every
boundary are identified, according to the cell layout, by clustering links whose starting node and
ending node are in different and adjacent cells (Figure 1b). The cell layout used has been ‘modified’
in accordance with an arbitrary criterion (in order not to reveal proprietary data from the operator)
using 350 cells. The study area has around 900 inter-cell boundaries. However, not all possible
boundaries are ‘valid’ because of their characteristics (e.g. cells near to densely populated areas
where pedestrians highly distort the volume inference). As a first step in the study, a processing
of the initial set of boundaries is executed to filter non-valid links and to get the groups of links
to be used in the adjustment process. In this test network, there are 408 groups of links related to
inter-cell boundaries, involving 1582 links. In a previous study for the adjustment of the same prior
matrix using loop detectors over the same network, 1420 links were observed. The criterion for
selecting observed links based on cell distribution gets a similar number of links as traditional approaches
based on counter stations.
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5.2. Results

For the sake of conciseness, the values of the (optional) weight factors a|g for all groups are set to 1,
but different values can be used in order to give more importance to a group than to others. For the
weight factors (oi

O, oj
D, o) associated with the functional constraints integrated into the augmented

Lagrangian (3), a common weight factorW is used to penalize the whole term corresponding to the func-
tional constraints. A suitable and simple rule used in similar matrix estimation approaches [20] consists of
choosing values of W of the same order of magnitude as the initial value of the objective function. For
the upper level problem (1), the values of the bounds [upper, lower] limiting the range of distortion are,

in the case of each O–D pair, [+25%, �25%] of the prior O–D matrix T 0ð Þ
ij ; for zonal productions,

[+15%, �15%] of O 0ð Þ
i ¼ P

j2J
T 0ð Þ
ij ; for zonal attractions, [+15%, �15%] of D 0ð Þ

j ¼ P
i2I

T 0ð Þ
ij ; and for

the total trips, [+10%, 0%] of T 0ð Þ ¼ P
i2I

P
j2J

T 0ð Þ
ij .

Figure 4a shows aggregate volumes of groups of links that cross every inter-cell boundary, obtained
by assigning the prior O–D matrix to the test network, versus observed volumes on those groups of
links, which would be derived from the model using phone data. Figure 4b is the same comparison
but showing aggregate volumes modelled by assigning the adjusted matrix. An acceptable correlation
between adjusted and observed aggregate volumes is found (R2 = 0.76). In a previous study developed
to update the same prior matrix but using volumes collected by loop detectors, the correlation achieved
was better (R2 = 0.80). No significant differences in correlations are found by comparing the two cases,
but phone data provide a cost-effective source compared with the high costs involved in installation or
maintenance of detectors.
As already commented, the prior matrix contains valuable information about the ‘true’matrix, so the

adjustment method pays careful attention to the distortion of the information contained in it. By
comparing the number of trips of each O–D pair in the prior matrix and the adjusted one using the
proposed methodology, we have an obvious high correlation value (R2 = 0.98) between them because
of the constraints used for limiting the distortion range regarding the prior O–D matrix.

6. CONCLUDING REMARKS

An O–D matrix is crucial for any transport demand modelling. Better matrix estimates can be obtained
when information about the overall distribution of traffic through time and space is available, not only
at specified locations in the network. Mobile systems, without terminal and network modifications,
provide a complementary alternative to detect phones in motion in terms of movements from one cell
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Figure 4. Correlation between observed and modelled aggregate volumes of groups of links crossing inter-cell
boundaries by assigning (a) the prior O–D matrix and (b) the adjusted one.
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to another. Utilizing existing mobile systems has a major advantage compared with other traffic flow
capturing techniques because it avoids cost and coverage limitations associated with infrastructure-
based solutions. The relatively low costs and wider-coverage data make mobile systems attractive
for use as a complementary solution for collecting traffic volumes when detector data are unavail-
able or insufficient. Mobile phones sometimes cannot provide location accuracy for estimating
flows on single links but can do so on groups of roadways (links) connecting two either adjacent
or distant cells.
After reviewing the state of the art, this paper presents a methodology adapted to the concept of

volume aggregated on groups of links in order to use any available volume data source. To calculate
volume data, we have used a model that transforms phone call data into traffic movement data. In
comparison with measurements provided by counting stations, volumes inferred from call data achieve
reasonable accuracy for use in matrix estimation. By applying the methodology for matrix estimation
to vehicle volume obtained by the model, the experimental results reveal the efficiency and consistency
of the solution proposed in comparison with a similar study using loop data. The most important objec-
tives that have been reached are as follows: (i) mobile phone technology is proposed as a feasible
system to infer aggregate volume on groups of links to be used as observed data for O–D matrix
estimation; an aggregate scheme has never been used in matrix estimation to our knowledge, and it
has great potential for combining any available data source and obtaining more accurate matrices;
(ii) reformulation of the objective function taking aggregate volume notation into account; and (iii)
numerical validation of the proposed methodology. Other minor contributions are as follows: (iv)
analytical expressions for the gradient of the new objective function; and (v) methodological changes
to correct oscillations observed in applying the optimization method, using the golden section
algorithm instead of a bisection search.
Future works are oriented towards developing mixed formulations using O–D matrices and

traffic flows derived from phone data, as well as from traditional techniques (e.g. field surveys,
loop detectors, and cameras).
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