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Abstract. The research within the field of Spiking Neural P systems
(SN P systems, for short) is focusing mainly in the study of the
computational completeness (they are equivalent in power to Turing
machines) and computational efficiency of this kind of systems. These
devices have been shown capable of providing polynomial time solutions
to computationally hard problems by making use of an exponential
workspace constructed in a natural way. In order to experimentally
explore this computational power, it is necessary to develop software
that provides simulation tools (simulators) for the existing variety of
SN P systems. Such simulators allow us to carry out computations of
solutions to NP-complete problems on certain instances. Within this
trend, P-Lingua provides a standard language for the definition of P
systems. As part of the same project, pLinguaCore library provides
particular implementations of parsers and simulators for the models
specified in P-Lingua. In this paper, an extension of the P-Lingua
language to define SN P systems is presented, along with an upgrade
of pLinguaCore including a parser and a new simulator for the variants
of these systems included in the language.

1 Introduction

Spiking neural P systems were introduced in [9] in the framework of membrane
computing [13] as a new class of computing devices which are inspired by
the neurophysiological behaviour of neurons sending electrical impulses (spikes)
along axons to other neurons. Since then, many computational properties of SN
P systems have been studied; for example, it has been proven that they are
Turing-complete when considered as number computing devices [9], when used
as language generators [4,2] and also when computing functions [15].

Investigations related to the possibility of solving computationally hard
problems by using SN P systems were first proposed in [3]. The idea was to
encode the instances of decision problems in a number of spikes which are
placed in an arbitrarily large pre-computed system at the beginning of the
computation. It was shown that SN P systems are able to solve the NP-complete
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problem SAT (the satisfiability of propositional formulas expressed in conjunctive
normal form) in a constant time. Slightly different solutions to SAT and 3-SAT

by using SN P systems with pre-computed resources were considered in [10];
here the encoding of an instance of the given problem is introduced into the
pre-computed resources in a polynomial number of steps, while the truth values
are assigned to the Boolean variables of the formula and the satisfiability of the
clauses is checked. The answer associated with the instance of the problem is thus
computed in a polynomial time. Finally, very simple semi-uniform and uniform
solutions to the numerical NP-complete problem Subset Sum – by using SN P
systems with exponential size pre-computed resources – have been presented in
[11]. All the systems constructed above work in a deterministic way.

In [12], neuron division and budding were introduced into the framework of
SN P systems in order to enhance the efficiency of these systems. The biological
motivation of these features was founded on recent discoveries in neurobiology
related to neural stem cells [6]. Neural stem cells persist throughout life within
central nervous system in the adult mammalian brain, and this ensures a life-
long contribution of new neurons to self-renewing nervous system with about
30000 new neurons being produced every day.

In this paper, a simulator of SN P systems with neuron division and budding
is presented based on P-Lingua. P-Lingua is a programming language to define
P systems [5,7,22], that comes together with a Java library providing several
services; (e.g., parsers for input files and built–in simulators). In this paper we
present a new release of P-Lingua. One of the innovations is an extension of
the previous syntax in order to define SN P systems with neuron division and
budding. Furthermore, the library has been updated to handle P-Lingua input
files defining SN P systems. Finally, a new built–in simulator has been added to
the library in order to simulate computations of such new models.

The paper is structured as follows. In Section 2 we introduce some definitions
about SN P systems with neuron division and budding. Section 3 describes the
extensions for P–Lingua programming language in order to support that kind
of SN P systems. In Section 4, we introduce the simulator for these P systems
presented in this paper, including the simulation algorithm. Section 5 illustrates
the use of the simulator through a case study, the SAT problem, including some
performance considerations. Finally, conclusions and future work are discussed
in Section 6.

2 Preliminaries

This section is based on an extract from [12]. In that article, a formal description
of SN P systems with neuron division and budding is outlined. Our simulator is
modelled after that article, rather than the one [9] that introduced this variety
of P systems, as our simulator supports extended rules.

SN P systems can be considered a variant of P systems, corresponding to a
shift from cell-like to neural-like architectures. In these systems the cells (also
called neurons) are placed in the nodes of a directed graph, called the synapse



graph. The contents of each neuron consist of a number of copies of a single
object type, called the spike. Every cell may also contain a number of firing and
forgetting rules. Firing rules allow a neuron to send information to other neurons
in the form of electrical impulses (also called spikes) which are accumulated at
the target cell. The applicability of each rule is determined by checking the
contents of the neuron against a regular set associated with the rule. In each
time unit, if a neuron can use one of its rules, then one of such rules must
be used. If two or more rules could be applied, then only one of them is non-
deterministically chosen. Thus, the rules are used in a sequential way in each
neuron, but neurons function in parallel with each other. Note that, as it usually
happens in membrane computing, a global clock is assumed, marking the time
for the whole system, and hence the functioning of the system is synchronized.
When a cell sends out spikes it becomes “closed” (inactive) for a specified period
of time. During this period, the neuron does not accept new inputs and cannot
“fire” (that is, cannot emit spikes). Furthermore, SN P systems associate a delay
parameter to each rule which occurs in the system. If no firing rule can be applied
in a neuron, then there may be the possibility to apply a forgetting rule, that
removes from the neuron a predefined number of spikes.

The structure of SN P systems (that is, the synapse graph) introduced in
[9] is static. Nevertheless, our simulator supports dynamical neural structures.
These structures may evolve throughout computations by means of division and
budding rules [12].

Formally, a spiking neural P system with neuron division and budding of
degree m ≥ 1 is a construct of the form:

Π = (O,H, syn, n1, . . . , nm, R, in, out),

where:

1. m ≥ 1 (the initial degree of the system);
2. O = {a} is the singleton alphabet (a is called spike);
3. H is a finite set of labels for neurons;
4. syn ⊆ H ×H is a synapse dictionary, with (i, i) �∈ syn for i ∈ H ;
5. ni ≥ 0 is the initial number of spikes contained in neuron i, i ∈ {1, 2, . . . ,m};
6. R is a finite set of developmental rules, of the following forms:

(1) extended firing (also called spiking) rule [E/ac → ap; d]i, where i ∈ H ,
E is a regular expression over a, and c ≥ 1, p ≥ 0, d ≥ 0, with the
restriction c ≥ p;

(2) neuron division rule [E]i → []j ‖ []k, where E is a regular expression and
i, j, k ∈ H ;

(3) neuron budding rule [E]i → []i/[]j , where E is a regular expression and
i, j ∈ H ;

7. in, out ∈ H indicate the input and the output neurons of Π .

Note that the above definition is slightly different from the usual one found in
the literature, where the neurons initially present in the system are explicitly
listed as σi = (ni, Ri), where 1 ≤ i ≤ m and Ri is the set of the rules associated



with neuron with label i. In what follows we will refer to neuron with label i ∈ H
also denoting it with σi.

If an extended firing rule [E/ac → ap; d]i has E = ac, then we will write it in
the simplified form [ac → ap; d]i; similarly, if a rule [E/ac → ap; d]i has d = 0,
then we can simply write it as [E/ac → ap]i; hence, if a rule [E/ac → ap; d]i has
E = ac and d = 0, then we can write [ac → ap]i. A rule [E/ac → ap]i with p = 0
is written in the form [E/ac → λ]i and is called extended forgetting rule. Rules
of the types [E/ac → a; d]i and [ac → λ]i are said to be standard.

In addition to spiking rules, our simulator supports neuron division and
neuron budding rules. Basically, division rules create a pair of new membranes
out of a previously existing one (that disappears). These membranes are placed in
parallel. Membranes created by means of division rules inherit the synapses going
into and out of the original membrane. On the other hand, budding rules create
a new membrane while preserving the original one. This new membrane is placed
serially following the original one. Furthermore, the new membrane created by
means of budding rules inherits the outgoing synapses of the parent membrane.
These synapses are transferred from the parent to the child membrane. In
addition, a synapse from the original membrane to the newly created membrane
is established. Thus, after the application of division rules two new membranes
with (potentially) new labels are created. The original one disappears. On
the other hand, after the application of budding rules only a new membrane
with a new (potentially) label is created, preserving the original membrane.
In both cases additional synapses are added connecting the child membranes
with pre-existent membranes according to the rules dictated by the synapse
dictionary. As a result of the simulator supporting both division and budding
rules, the membrane structure of the system is able to evolve dynamically along
the computation steps. A more thorough description of the semantics of SN P
systems can be found in [12] and in [18].

The configuration of the system is described by the topological structure of
the system, the number of spikes associated with each neuron, and the state
of each neuron (open or closed). Using the rules as described above, one can
define transitions among configurations. Any (maximal) sequence of transitions
starting in the initial configuration is called a computation. A computation
halts if it reaches a configuration where all neurons are open and no rule can
be used.

Traditionally, the input of an SN P system used in the accepting mode is
provided in the form of a spike train, a sequence of steps when one spike or
no spike enters the input neuron. Thus, we need several spikes at a time to
come into the system via the input neuron, i. e., we consider “generalized spike
trains” instead, written in the form ai1 ·ai2 · . . . ·air , where r ≥ 1, ij ≥ 0 for each
1 ≤ j ≤ r. The meaning is that ij spikes are introduced in neuron σin in step j
(all these ij spikes are provided at the same time).



3 P-Lingua Syntax for SN P Systems

This section is devoted to show the extended P-Lingua syntax that covers
the SN P systems considered in the proposed P-Lingua language revision.
The following paragraphs describe the new features incorporated in order to
support SN P systems. These features include different simulation modes, an
initial membrane structure (which consists of the initial set of membranes and
a collection of synapses), a simulation input spike train and the explicit (and
optional) specification of input and output membranes. These features also
include language-related items, such as regular expressions and new reserved
words.

3.1 Regular Expressions

Regular expressions have been introduced. These regular expressions are a subset
of those defined according to the Java package java.util.regex formally specified
at [20]. This subset is defined by combining the following symbols as established
in the syntax just mentioned:

’a’, ’(’, ’)’, ’[’, ’]’, ’{’, ’}’, ’,’, ’^’, ’*’, ’+’, ’?’, ’|’

The purpose of the inclusion of regular expression in this version of P-Lingua is
to specify the regular expressions associated to the rules of SN P systems.

Additional information related to the Java language can be found at [21]. We
remark that these regular expressions are not checked by the parser. Instead,
they are piped directly into the simulator. Then, the simulator performs the
parsing. Regular expressions E are written double-quoted: ”E”. Also, in this
version the membrane labels can accept parameters built on integer expressions.
In addition, no new arithmetic operator has been introduced in this revision.

3.2 Model Specification

In this version of P-Lingua, a SN P system specification must define an initial
membrane structure and a set of rules. The membrane structure is composed
of a set of membranes joined by synapses. These synapses are specified as a set
of connections. If the SN P system considers division and budding rules, then a
synapse dictionary must be also specified.

Apart from the initial configuration and the set of rules, in this version of
P-Lingua the user can also define an input membrane and a set of output
membranes. In addition, the user can also define simulation parameters. These
parameters include simulation modes and spike trains.

P-Lingua files defining SN P systems must begin with the following sentence:

@model<spiking_psystems>



Additionally, @model<spiking psystems> can be followed by a pair of sentences
in order to specify the simulation modes to be used. These modes determine the
semantics in which the simulation is performed as described in [8]. The sentences
are:

– @masynch = v1;

where v1 ∈ {0, 1, 2}. If this sentence is not present, then v1 defaults to 0.
These values denote the following modes:

0: Synchronous (standard) mode.
1: Asynchronous unbounded mode.
2: Asynchronous bounded mode.

Let us consider a membrane structure with N membranes. If @masynch is
set to 2 then the next sentence can be used to express the valid halting
configuration:

@mvalid = (m1,n1), (m2,n2),..., (mN,nN);

where, for each integer i ∈ [1, . . . , N ]:
• mi is a membrane label in the SN P system.
• ni is an integer expression which specifies the number of spikes contained

in mi at the end of the computation.
If the sentence is not used then every halting configuration is considered
valid. Also if the sentence is used when @masynch is not set to 2, it would
be ignored.

– @mseq = v2;

where v2 ∈ {0, . . . , 5}. If this sentence is not present, then v2 defaults to 0.
These values denote the following modes:

0: parallel (standard) mode.
1: standard sequential mode.
2: max pseudo-sequential mode.
3: max sequential mode.
4: min pseudo-sequential mode.
5: min sequential mode.

Let us consider an initial membrane structure of a SN P system with N
membranes and M synapses. In this version of P-Lingua, in order to define
that initial membrane structure, the following sentence must be written:

@mu = m1, m2, ..., mN;

where, for each integer i ∈ [1, . . . , N ], mi is the label of membrane i. The label
environment cannot be used. Given an initial membrane structure, in order to
define the connections between the membranes, the following sentence must be
written:



@marcs = arc1, arc2,..., arcM;

where, for each integer i ∈ [1, . . . ,M ], arci = (mk,ml), mk and ml being two
membrane labels of an SN P system configuration and mk �=ml.

Let us consider a dictionary. In this version of P-Lingua, in order to specify
that synapse dictionary the following optional sentence must be written:

@mdict = e1, e2, ..., eD;

where D is the number of entries of the dictionary and, for each integer
p ∈ [1, . . . , D], ep = (li, lj), li and lj are two different labels and li �=lj .

If the SN P system specification contains division or budding rules the
dictionary is mandatory. Besides, an implicit dictionary is built from the
parameter @marcs. This dictionary is extended by the “explicit” dictionary
defined by the sentence @mdict.
In order to specify the (optional) input membrane of the SN P system, the
following sentence may be written:

@min = m;

wherem is the label of a membrane existing in the initial SN P system membrane
structure. SN P systems without input membrane can also be specified in P-
Lingua, by just omitting this sentence.

Let us consider an input spike train consisting of S steps for a SN P system
with an input membrane. In this version of P-Lingua, in order to specify this
input spike train, the following sentence must be written:

@minst = r1, r2, ..., rS;

where, for each integer i ∈ [1, . . . , S], ri = (i, ai), i and ai being two integer
expressions, i>1 and ai≥0. The parameter i denotes the step of the computation
calculated by the simulator while the parameter ai denotes the number of spikes
that are introduced in the input membrane at step i. When the pair rj = (j, aj)
is undefined for some step j then the simulator assumes that zero spikes are
introduced in the system at that step.

In order to specify the (optional) output membranes of the SN P system, the
following sentence may be written:

@mout = o1, o2, ..., oL;

where, for each integer i ∈ [1, . . . , L], oi denotes a membrane label of the SN
P system. SN P systems without output membranes can also be specified in
P-Lingua, by just omitting this sentence.

3.3 Sample of the First Few Lines of a P-Lingua SN P System
Definition File

The following paragraph shows the first few lines of a P-Lingua SN P system
definition file. These lines cover examples of the previously defined syntax.



@model<spiking_psystems>

@masynch = 2;

@mvalid = (1, 3), (2, 6), (3, 4);

@mseq = 2;

@mu = 1,2,3;

@marcs = (1,2), (1,3);

@mdict = (1,d),(2,f);

@min = 1;

@minst = (1,3), (5,4), (8,2);

@mout = 1,2;

3.4 Definition of Multisets

Initial multisets of objects for neurons can be defined in the same way as initial
multisets of objects for cell-like membranes, with the restriction that only the
object a may be used.

For instance:

@ms(0) = a*15;

3.5 Definition of Rules

If a P-Lingua file begins with the @model<spiking psystems> sentence, then
four types of rules can be defined:

(1) Firing rules, that can be specified in the following ways:
– [a*c]’h --> [a*p]’h "e" :: d;

– [a*c --> a*p]’h "e" :: d;

(2) Forgetting rules, that can be specified in the following ways:
– [a*c]’h --> [#]’h "e" :: d;

– [a*c --> #]’h "e" :: d;

(3) Neuron division rules, that can be specified in the following way:

[]’i --> [#]’j || [#]’k "e";

(4) Neuron budding rules, that can be specified in the following way:

[]’i --> [#]’i / [#]’j "e";

where h, i, j and k are membrane labels of the SN P system described, c, p and
d are integer expressions which satisfy c≥1, c≥p and d≥0, and e is a regular
expression over {a}.



For firing and forgetting rules, both d and ”e” are optional with d defaulting
to 0. In forgetting rules d is always set to 0. When e is not present in the rule,
then e defaults to the left hand side of the rule.

Division and budding rules have no delays, so d is not used, but the regular
expression e is mandatory.

For instance, the following rules are valid spiking rules in P-Lingua:

– [a*3]’1 --> [a*2]’1 "a^3" :: 3;

– [a*3 --> a*2]’1 "a?" :: 6;

– [a*3 --> #]’1 "a+a^3" :: 3;

– [a*3 --> #]’1 "a*" :: 5;

Also, the following rules are valid division and budding rules in P-Lingua:

– []’1 --> []’2 || []’3 "a*";

– []’1 --> []’1 / []’2 "(a^3)|a";

Recall that in P-Lingua, the symbol # is optional (it can be omitted), for
instance the following rules:

– []’1 --> [#]’2 || [#]’3 "a*";

– []’1 --> [#]’1 / [#]’2 "(a^3)|a";

– [a*3 --> #]’1 "a+a^3" :: 3;

– [a*3 --> #]’1 "a*" :: 5;

can be written equivalently as:

– []’1 --> []’2 || []’3 "a*";

– []’1 --> []’1 / []’2 "(a^3)|a";

– [a*3 --> ]’1 "a+a^3" :: 3;

– [a*3 --> ]’1 "a*" :: 5;

3.6 Definition of the Output

In order to specify additional output results to be shown to the user after the
computation halts (when it halts), the following sentences may be included:

@moutres_binary;

@moutres_natural(k,strong,alternate);

@moutres_summatories;

where all of them are optional.
When parameter @moutres binary is specified then the output is shown as a

binary spike train. If more than one output membrane was defined then a binary
output spike train is shown for each one of them. The binary spike train for a given
output membrane oj is a binary sequence b1, b2, ..., bN with bi = 0 if and only if
oj sends no spikes to the environment at computation step i, and 1 otherwise.

When parameter @moutres natural is specified then a natural output spike
train is shown to the user. If more than one output membrane was defined then a



train is shown for each output membrane. For a thorough explanation please refer
to [14]. If natural(k,strong,alternate) is specified, then k is an integer expression
with k≥2 and strong and alternate take boolean values (false or true).

When parameter @moutres summatories is specified then the sum of the
spikes sent to the environment for each output membrane, (i.e., the contents
of the environment) is shown as output.

3.7 Reserved Words

The set of reserved words has been updated in the current syntax of the P-Lingua
language by adding the following text strings:

@masynch, @mseq, @mvalid, @marcs, @mdict, @min, @minst,

@mout, |, @moutres_binary, @moutres_natural, @moutres_summatories

The inclusion of these reserved words is necessary in order to include the new
features of this version of P-Lingua. These new features are explained above.

4 A Simulator Software for SN P Systems

In [7], a Java library called pLinguaCore was presented under GPL license.
It includes parsers to handle input files and built–in simulators to generate
P system computations. It can export several output file formats to represent
P systems. It is not a closed product because developers with knowledge of Java
can add new components to the library. In this paper, pLinguaCore has been
upgraded to support SN P systems. Now, the library is able to handle input P–
Lingua files which define SN P systems and it includes a new built–in simulator
in order to simulate SN P system computations. The current version of the
library can be downloaded from http://www.p-lingua.org.

The simulation algorithm described below generates one possible computa-
tion for a SN P system with an initial configuration C0 containing n membranes
m1, . . . ,mn. Recall that when working with recognizer P systems all computa-
tions yield the same answer (confluence).

The simulation algorithm is structured in six steps:

I. Initialization
In this step the data structures needed to conduct the simulation are initialized.

II. Selection of rules
In this step the set of rules to be executed in the current step is calculated.

III. Build execution sets
In this step the rules to be executed are split into different sets, according to
their kind.

IV. Execute division and budding rules
In this step division and budding rules are executed. The execution is performed
in two phases: In the first one, new neurons are calculated out of existing



neurons by applying budding and division rules. In the second one additional
synapses are introduced according to the synapse dictionary.

V. Execute spiking rules
In this step execution of spiking rules is performed.

VI. Ending
In this step the current configuration is updated with the configuration newly
calculated and the halting condition is checked (no rules are applicable).

In what follows, the simulation algorithm is described.

I. Initialization

1. Let Ct be the current configuration
2. Let Msel ≡ ∅ be a set of membranes who are susceptible of executing a rule in

the current computation step
3. Let m0 be a virtual membrane (with label 0) representing the environment

II. Selection of rules

1. Each membrane mi stores the following elements:
- last rule ri selected to be executed in a previous step for that membrane
(initially none)
- an integer decreasing-only counter di, that stores the number of steps left for
the membrane to open and fire in case ri is a firing rule (initially zero).
For each membrane mi, do
(a) If mi is closed as a result of being involved in the execution of a budding or

division rule, then open mi (let di = 0) and clear its rule ri
(b) If mi is closed as a result of being involved in the execution of a firing rule

(thus ri is a firing rule) then
i. Decrease the counter di
ii. Add mi to Msel

iii. Go to process the next membrane
(c) Let Si ≡ ∅ be the set of possible rules to be executed over mi

(d) For each rule rj with label j do
i. If rj is active and can be executed over mi then add rj to Si

(e) If Si is empty then go to process the next membrane
(f) Select non deterministically a rule rk from Si

(g) Set rk as the new selected rule for mi

(h) If rk is a firing rule, update the counter d accordingly
(i) Add mi to Msel

(j) Clear Si

2. If Msel is not empty and the simulator operates in sequential mode then
(a) Select a membrane ms from Msel according to the sequential mode
(b) Clear Msel

(c) Add ms to Msel



III. Build execution sets

1. Let Division ≡ ∅ be the set that stores the membranes having a division rule
selected to be executed in the current step

2. Let Budding ≡ ∅ be the set that stores the membranes having a budding rule
selected to be executed in the current step

3. Let Spiking ≡ ∅ be the set that stores the membranes having a spiking rule
selected to be executed in the current step (or susceptible to be executed in the
case of firing rules with delays)

4. For each membrane mi from Msel do
(a) Let ri be the selected rule for mi

(b) If ri is a division rule then add mi to Division
(c) If ri is a budding rule then add mi to Budding
(d) If ri is a spiking rule then add mi to Spiking

IV. Execute division and budding rules

1. Let Div ≡ ∅ be the set that stores the membranes that are generated as a result
of applying a division rule in the current step

2. Let Bud ≡ ∅ be the set that stores the membranes that are generated as a
result of applying a budding rule in the current step

3. For each membrane mi from Division do
(a) If the simulator operates in asynchronous mode then

i. Determine non deterministically if the rule has to be executed
ii. If the rule does not have to be executed then go to process the next

membrane
(b) Let ri be the selected rule for mi: [E]i → []j ||[]k
(c) Relabel mi with the j label, thus from now on we refer to mj

(d) Create a new membrane mk and close it
(e) For each incoming edge from some membrane mp to mj create a new edge

from mp to mk

(f) For each outgoing edge from mj to some membrane mp create a new edge
from mk to mp

(g) Add mj and mk to Div
4. For each membrane mi from Budding do

(a) If the simulator operates in asynchronous mode then
i. Determine non deterministically if the rule has to be executed
ii. If the rule has not to be executed then go to process the next membrane

(b) Let ri the selected rule for mi: [E]i → []i/[]j
(c) Create a new membrane mj and close it
(d) For each outgoing edge from mi to some membrane mp do

i. Create a new edge from mj to mp

ii. Remove the edge from mi to mp

(e) Create a new edge from mi to mj

(f) Add mj to Bud
5. For each membrane mi from Div create new edges involving mi according to

the synapse dictionary if necessary



6. For each membrane mi from Bud create new edges involving mi according to
the synapse dictionary if necessary

V. Execute spiking rules

1. For each membrane mi from Spiking do
(a) If mi is closed then go to process the next membrane
(b) If the simulator operates in asynchronous mode then

i. Determine non deterministically if the rule has to be executed
ii. If the rule does not have to be executed then go to process the next

membrane
(c) Let ri be the selected rule for mi

(d) If ri is a firing rule of the form [E/ac → ap; d]i then
i. Remove c spikes from the multiset of mi

ii. For each membrane mj connected to mi by an edge going from mi to
mj , add p spikes to the multiset of mj if and only if mj is open

(e) If ri is a forgetting rule of the form [E/ac → λ]i then remove c spikes from
the multiset of mi

VI. Ending

1. Let Ct+1 = Ct

2. If Msel is not empty then goto I

Before going on, it is important to note that we assume the defined P system to
be free of syntax errors that could lead to an incorrect computation, since the
P–Lingua parser checks for any possible programming errors.

5 An Example: A Family of SN P Systems Solving SAT

In order to illustrate the operation of the simulator, a uniform and efficient
solution to SAT by means of a family of SN P systems with spiking, neuron
division and budding rules is described in this section.

We will start considering the description of the family in terms of its
theoretical definition. Then a P–Lingua source code describing the SN P
system for a particular instance of the problem will be shown. Subsequently,
a generalized version of the P–Lingua previous code for any given instance of
the SAT problem will be presented. This is achieved by means of the inclusion of
parameters in the P–Lingua code and the integration with MeCoSim [16].

Finally the simulation results will be presented.

5.1 Description of the Family

As mentioned above, a uniform and efficient solution to SAT by means of a family
of SN P systems with spiking, neuron division and budding rules is described in
what follows. This solution has already been presented in [12].



Let us consider a propositional formula SAT (n,m) = C1 ∧ . . . ∧ Cm over n
variables x1 . . . xn, consisting of m clauses Cj = yj,1 ∨ . . . ∨ yj,kj , 1 ≤ j ≤ m,
where yj,i ∈ {xl,¬xl | 1 ≤ l ≤ n}, 1 ≤ i ≤ kj . Without loss of generality, we may
assume that no clause contains two occurrences of some xi or two occurrences
of some ¬xi (the formula is not redundant at the level of clauses), or both xi

and ¬xi (otherwise such a clause is trivially satisfiable, hence can be removed).
Because the construction is uniform, we need a way to encode any given

instance γn,m of C. Each clause Ci of γn,m can be seen as a disjunction of at
most n literals, and thus for each j ∈ {1, 2, . . . , n} either xj occurs in Ci, or ¬xj

occurs, or none of them occurs. In order to distinguish these three situations we
define the spike variables αi,j , for 1 ≤ i ≤ m and 1 ≤ j ≤ n, as variables whose
values are amounts of spikes; we assign to them the following values:

αi,j =

⎧
⎨

⎩

a, if xj occurs in Ci;
a2, if ¬xj occurs in Ci;
a0, otherwise.

In this way, clause Ci will be represented by the sequence αi,1 · αi,2 · . . . · αi,n of
spike variables; in order to represent the entire formula γn,m we just concatenate
the representations of the single clauses, thus obtaining the generalized spike
train α1,1 · α1,2 · . . . · α1,n.α2,1 · α2,2 · . . . · α2,n · . . . · αm,1 · αm,2 · . . . · αm,n.
As an example, the representation of γ3,2 = (x1 ∨ ¬x2) ∧ (x1 ∨ x3) is the
sequence a · a2 · a0 · a · a0 · a. In order to let the systems have enough time
to generate necessary workspace before computing the instances of SAT (n,m),
a spiking train (a0)2n is added at the beginning of the input. In general, for
any given instance γn,m of SAT (n,m), the encoding sequence is cod(γn,m) =
(a0)2n · α1,1 · α1,2 · . . . · α1,n · α2,1 · α2,2 · . . . · α2,n · . . . · αm,1 · αm,2 · . . . · αm,n.

For each n,m ∈ N, we construct

Π(〈n,m〉) = (O,H, syn, n1, . . . , nq, R, in, out),

with the following components:

The initial degree of the system is q = 4n+ 7;

O = {a};
H = {in, out, cl} ∪ {di | i = 0, 1, . . . , n}

∪ {Cxi | i = 1, 2, . . . , n} ∪ {Cxi0 | i = 1, 2, . . . , n}
∪ {Cxi1 | i = 1, 2, . . . , n} ∪ {ti | i = 1, 2, . . . , n}
∪ {fi | i = 1, 2, . . . , n} ∪ {0, 1, 2, 3};

syn = {(di, di+1) | i = 0, 1, . . . , n− 1} ∪ {(dn, d1)}
∪ {(in, Cxi) | i = 1, 2, . . . , n} ∪ {(di, Cxi) | i = 1, 2, . . . , n}
∪ {(Cxi, Cxi0) | i = 1, 2, . . . , n} ∪ {(Cxi, Cxi1) | i = 1, 2, . . . , n}
∪ {(i+ 1, i) | i = 0, 1, 2} ∪ {(1, 2), (0, out)}
∪ {(Cxi1, ti) | i = 1, 2, . . . , n} ∪ {(Cxi0, fi) | i = 1, 2, . . . , n};

nd0 = n0 = n2 = n3 = 1, nd1 = 6, and there is no spike in the other neurons;



R is the following set of rules:
(1) spiking rules:

[a → a] in,
[a2 → a2] in,
[a → a; 2n+ nm]d0

,

[a4 → a4] i, i = d1, . . . , dn,
[a5 → λ]

d1
,

[a6 → a4; 2n+ 1]d1
,

[a → λ]Cxi
, i = 1, 2, . . . , n,

[a2 → λ]Cxi
, i = 1, 2, . . . , n,

[a4 → λ]Cxi
, i = 1, 2, . . . , n,

[a5 → a5;n− i]Cxi
, i = 1, 2, . . . , n,

[a6 → a6;n− i]Cxi
, i = 1, 2, . . . , n,

[a5 → a4]Cxi1
, i = 1, 2, . . . , n,

[a6 → λ]Cxi1
, i = 1, 2, . . . , n,

[a5 → λ]Cxi0
, i = 1, 2, . . . , n,

[a6 → a4]Cxi0
, i = 1, 2, . . . , n,

[(a4)+ → a]
ti
, i = 1, 2, . . . , n,

[(a4)+ → a]fi , i = 1, 2, . . . , n,

[a4k−1 → λ] ti , k = 1, 2, . . . , n, i = 1, 2, . . . , n,

[a4k−1 → λ]fi , k = 1, 2, . . . , n, i = 1, 2, . . . , n,

[am → a2] cl,
[(a2)+/a → a]out,
[a → a] i, i = 1, 2,
[a2 → λ]2,
[a → a; 2n− 1]3;

(2) neuron division rules:
[a]

0 → [] t1 ‖ [ ]f1 ,

[a]
ti
→ []

ti+1
‖ [ ]

fi+1
, i = 1, 2, . . . , n− 1,

[a]fi → [] ti+1
‖ [ ]fi+1

, i = 1, 2, . . . , n− 1;

(3) neuron budding rules:
[a] tn → [ ]tn/[ ]cl,
[a]fn → [ ]fn/[ ]cl.

5.2 A P-Lingua Source Code. Particular Instance Solution of SAT
Problem

Code description. This section is devoted to the P–Lingua source code that
defines a SN P system belonging to the family specified above. In particular, we
consider the following formula as the instance of SAT that we try to solve:

ϕ = (x1 ∨ x2 ∨ ¬x3 ∨ x4) ∧ (x1 ∨ x2) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ ¬x3 ∨ x4) ∧
∧(¬x1 ∨ x2 ∨ x4) ∧ (x2 ∨ ¬x3 ∨ x4) ∧ (x1 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3 ∨ x4)



Thus we are resolving SAT(n,m) with n = 4 and m = 8. Of course, the main

module can be easily modified in order to define any other P system of the
family.

The source code is structured as follows:

1. Module main() that defines a SN P system solving the SAT problem for
the formula described above with 4 variables and 8 clauses. Firstly, it calls
the module spiking init conf(n) for n ≡ 4. Secondly, it calls the module
spiking rules(n,m) for (n,m) ≡ (4, 8).

2. Module spiking init conf(n) that defines the initial configuration of a
SN P system solving the SAT problem for any instance with n variables.
Furthermore, this module defines the train of spikes which encode the ϕ
formula. This train is defined according to what we stated above.

3. Module spiking rules(n,m) that defines the spiking rules of the SN P
system for any instance with n variables and m clauses.

4. Module neuron division rules(n) that defines the division rules of the SN
P system for any instance with n variables.

5. Module neuron budding rules(n) that defines the budding rules of the SN
P system for any instance with n variables.

The source code for the SN P system defined above can be found in the URL:
http://www.p-lingua.org/examples/sat SNPSystem.pli. In what follows
we will show its most significant part.

@model<spiking_psystems>

// Encoding module main()

def main()

{

call spiking_init_conf(4);

call spiking_rules(4,8);

call neuron_division_rules(4);

call neuron_budding_rules(4);

}

// Encoding module spiking_init_conf()

def spiking_init_conf(n)

{

// Encoding initial membranes

@mu = in, out;

@mu += 0,1,2,3;

@mu += d{i} : 0<=i<=n;

@mu += Cx{i} : 1<=i<=n;



@mu += Cx{i,0} : 1<=i<=n;

@mu += Cx{i,1} : 1<=i<=n;

// Encoding initial membrane spikes

@ms(d{0}) = a;

@ms(0) = a;

@ms(2) = a;

@ms(3) = a;

@ms(d{1}) = a*6;

// Encoding initial synapse graph (also updating synapse dictionary)

@marcs = (d{i},d{i+1}):0<=i<=n-1;

@marcs += (d{n},d{1});

@marcs += (in,Cx{i}):1<=i<=n;

@marcs += (d{i},Cx{i}):1<=i<=n;

@marcs += (Cx{i},Cx{i,0}):1<=i<=n;

@marcs += (Cx{i},Cx{i,1}):1<=i<=n;

@marcs += ({i+1},{i}):0<=i<=2;

@marcs += (1,2);

@marcs += (0,out);

// Encoding additional synapse dictionary updating

@mdict = (Cx{i,1},t{i}):1<=i<=n;

@mdict+= (Cx{i,0},f{i}):1<=i<=n;

// Encoding input neuron

@min = in;

// Encoding input formula spike train

// Encoding first clause

@minst = (9,1);

@minst+= (10,1);

@minst+= (11,2);

@minst+= (12,1);

...

// Encoding last clause

@minst+= (37,2);



@minst+= (38,1);

@minst+= (39,1);

@minst+= (40,1);

// Encoding output neuron

@mout = out;

}

// Encoding module spiking_rules()

def spiking_rules(n,m)

{

[a --> a]’in;

[a*2 --> a*2]’in;

[a --> a]’d{0} :: 2*n+n*m;

[a*4 --> a*4]’d{i} : 1<=i<=n;

[a*5 --> #]’d{1};

[a*6 --> a*4]’d{1} :: 2*n+1;

[a --> #]’Cx{i} : 1<=i<=n;

[a*2 --> #]’Cx{i} : 1<=i<=n;

[a*4 --> #]’Cx{i} : 1<=i<=n;

[a*5 --> a*5]’Cx{i} :: n-i : 1<=i<=n;

[a*6 --> a*6]’Cx{i} :: n-i : 1<=i<=n;

[a*5 --> a*4]’Cx{i,1} : 1<=i<=n;

[a*6 --> #]’Cx{i,1} : 1<=i<=n;

[a*5 --> #]’Cx{i,0} : 1<=i<=n;

[a*6 --> a*4]’Cx{i,0} : 1<=i<=n;

[a --> a]’t{i} "(a{4})+" : 1<=i<=n;

[a --> a]’f{i} "(a{4})+" : 1<=i<=n;

[a*(4*k-1) --> #]’t{i} : 1<=k<=n,1<=i<=n;

[a*(4*k-1) --> #]’f{i} : 1<=k<=n,1<=i<=n;

[a*m --> a*2]’cl;

[a --> a]’out "(a{2})+";

[a --> a]’{i} : 1<=i<=2;

[a*2 --> #]’2;

[a --> a]’3 :: 2*n-1;

}

// Encoding module neuron_division_rules()

def neuron_division_rules(n)

{

[]’0 --> []’t{1} || []’f{1} "a";

[]’t{i} --> []’t{i+1} || []’f{i+1} "a" : 1<=i<=n-1;

[]’f{i} --> []’t{i+1} || []’f{i+1} "a" : 1<=i<=n-1;

}



// Encoding module neuron_budding_rules()

def neuron_budding_rules(n)

{

[]’t{n} --> []’t{n} / []’cl "a";

[]’f{n} --> []’f{n} / []’cl "a";

}

5.3 Generalized P-Lingua Source Code for the Family of SN P
Systems Solving SAT

Code description. This section describes and shows the P–Lingua source code
that defines a family of SN P systems including parameters to allow the definition
of different particular scenarios, problems, initial conditions without changing
the code. Unlike the previous example, we define the SAT problem for any CNF

formula ϕ.
Thus we are resolving SAT(n,m) with n and m depending on the values

introduced by the user in MeCoSim. We can now define any SN P system of
the family without changing the P-Lingua code, only by entering different initial
data in the graphical user interface of MeCoSim.

The structure of the source code does not change from the previous
version. The main difference is the presence of parameters instead of par-
ticular values for introducing the number of variables (n), the number
of clauses (m) and the description of the formula in the form of an in-
put spike train (given by the values of the parameters val(i,j). The
source code for the SN P system defined above can be found in the URL:
http://www.p-lingua.org/examples/sat SNPSystem 2.pli. In what follows
we will show the changes introduced respect to the ad-hoc versions.

def main()

{

call spiking_init_conf(n,m);

call spiking_rules(n,m);

call neuron_division_rules(n);

call neuron_budding_rules(n);

}

def spiking_init_conf(n,m)

{

...

// Encoding input formula spike train.

// It depends on the parameter values of m, n and val{i,j}

@minst+= ((2*n+j)+(n*(i-1)),val{i,j}):1<=i<=m, 1<=j<=n;

...

}



Integration with MeCoSim. This section enumerates the main aspects of
the integration of the previous P-Lingua code with MeCoSim by means of a set
of captures.

1. Configuration file
First of all, the MeCoSim configuration file to build the visual simulator
adapted to the family of SN P systems solving SAT is filled. The simulation
parameters tab to generate the parameters used in the P-Lingua code is
shown below.

Fig. 1. MeCoSim Config File. Simulation Params

2. Input data
The end user is provided with an interface to enter the needed input data
to instantiate the initial SN P system to compute the satisfiability for a
given formula.

– General parameters (number of variables and clauses)

Fig. 2. MeCoSim GUI. General parameters tab

– Input clauses

When the user starts the simulation, the configured parameters for P-Lingua
are instantiated from the input tables of MeCoSim. Then the computation
runs until a halting configuration is reached. Then the output tables and
charts are shown.

3. Input spikes train
A graphical output has been defined to visualize the input spikes train. As
mentioned before, these spikes comes into the system in certain steps and
quantities as we see in the chart.



Fig. 3. MeCoSim GUI. Input clauses tab.

Fig. 4. MeCoSim GUI. Input spikes train chart.

4. Output Results
Once the simulation halts, the result is shown in the form of an output table
and a chart, denoting “Yes” if the formula is satisfiable and “No” otherwise.

– Satisfiability result table
– Satisfiability chart



Fig. 5. MeCoSim GUI. Satisfiability table.

Fig. 6. MeCoSim GUI. Satisfiability chart.

5.4 Simulation Results

The pLinguaCore Java library includes a command–line interface in order to
parse P–Lingua input files and simulate the defined P systems. The SN P system
defined above can be simulated by writing the next command1 in a system
console:

java -jar plinguacore.jar plingua sim -pli sat SNPSystem.pli -o

output.txt

A complete explanation of commands for pLinguaCore can be found in [7]. In
this case, the P–Lingua input file is called sat SNPSystem.pli and it contains

1 A Java runtime environment 1.6.0 or better must be installed. It can be downloaded
from http://www.java.com



the source code referenced before. The file output.txt is a text file where
information about the parser process and the generated computation is stored:

1. Initial cells
2. Initial multisets
3. Rules set
4. For each configuration:

(a) Multiset of objects in the environment
(b) Multiset of objects for each cell
(c) Rules selected to be executed in the next step.

The simulator runs until reaching a halting configuration, where no rule can be
selected to be executed in the next step. At this stage, the environment contains
either a single object a or no object at all.

For the P system defined in the file sat SNPSystem.pli, an object a is sent
to the environment after 46 steps of computation and it halts. That is, it is an
accepting computation.

5.5 Performance

In order to exemplify the simulation algorithm performance, a few execution
examples are presented. All of them are referred to the family of SN P
System solving SAT shown above, concretely 3-SAT instances. The execution
environment is a Dual Core AMD Athlon II X2 250 3 GHz Speed 3 GB RAM
computer running Windows XP Service Pack 3.

Table 1. Performance results

variables (n) clauses (m) execution time

3 3 0.734 s.

3 4 0.938 s.

3 5 0.969 s.

4 4 1.578 s.

4 5 1.937 s.

5 5 4.016 s.

6 Conclusions and Future Work

In this paper we have presented a new release of P-Lingua, that significantly
extends the previous version by incorporating the ability to work with Spiking
Neural P systems (SN P systems). Besides, a new simulation algorithm has
been designed and implemented, taking into account features of SN P systems
such as neuron division and budding. This new simulator has been included into
the library pLinguaCore, and it has been checked by simulating a family of SN



P systems taken from the literature, for solving the well-known NP-complete
problem SAT. A brief description of the solution to this problem using SN P
systems has been included in the paper, along with the corresponding P-Lingua
source code.

In addition, an adaptation of the P-Lingua code to integrate with MeCoSim,
providing the end user of the new simulator the capability for entering different
input formula and visualizing the results of the computation in a graphical and
structured way.

A possible course of future work is to include weights and thresholds, as
described in Wang et al. [19], in P-Lingua and pLinguaCore simulator for SN
P systems. The referred paper propose using weighted synapses, potentials in
neurons, and rules which handle these potentials under the control of given firing
thresholds.

Finally, we are working along with other research groups to join forces to
combine the expressive richness and flexibility of P-Lingua and MeCoSim with
the efficiency of parallel simulators based on CUDA [1].
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