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Abstract. Incremental sheet forming is a novel technology that has signi�cant bene�ts
compared to conventional forming. However, it is a time-consuming process that is usually
carried out in several forming stages to homogenize deformation and avoid material failure.
In hole-�anging operations by SPIF, a single-stage strategy might provide functional �anges
in considerably less time, however a non-uniform thickness is obtained along the �ange. This
work proposes a two-stage process as the best strategy to increase production rate, and an
optimization methodology to produce a homogeneous thickness distribution of the �ange. The
procedure is used to automate the design process of parts and tool trajectories by CAD/CAM,
and validate the optimal forming strategy by FEA.

1. Introduction

Hole-�anging is a forming process mainly used to manufacture circular �anges. There are many
industrial applications of this process such as strengthening the edge of a hole, improving its
appearance or providing additional support for joining sheet parts to tubes. Given its practical
interest, recent research focuses on carrying out this process through single-point incremental
forming (SPIF) [1�5]. SPIF is a novel technology that has been used for the last few years to
obtain a variety of industrial parts due to its bene�ts compared with conventional sheet forming
processes [6,7]. In circular hole-�anging by SPIF, a sheet with a pre-cut hole is deformed
progressively and locally using a spherical forming tool controlled by a CNC machine-tool to
produce a smooth round �ange.

A drawback of incremental sheet forming processes is that part geometry and sheet thickness
distribution are highly in�uenced by the tool path. Some authors have investigated di�erent
multi-stage strategies by programming simple part shapes for the intermediate stages [1�4,8,9].
In a recent paper, present authors presented an experimental study on the maximum �ange that
can be successfully formed by SPIF in a single stage [5]. This single-stage process leads to a
great reduction of time, however it produces a non-homogeneous pro�le along the �ange height.
Subsequent studies of this process have addressed the sheet failure by performing a numerical
analysis [10] and a preliminary study of the ideas developed in this paper [11].

The aim of this work is to propose an optimized hole-�anging process by SPIF in two stages, in
order to homogenize the thickness distribution of the formed �ange and reduce the manufacturing
time. A simple optimization procedure is used to automate the workpiece design between stages,
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the CNC code generation for the forming tool path, the analysis by FEM of resulting strains
along the �ange and the validation of the optimal forming strategy.

2. Background

Incremental sheet forming usually aims to homogenize deformation of the sheet part and avoid
material failure by performing several forming stages. Di�erent multi-stage forming strategies
for SPIF have been investigated by some authors to achieve successful hole-�anging operations.
Cui and Gao [1] experimentally analysed the thickness distribution along the sheet �ange by
developing three multi-stage strategies based on intermediate cylindrical and conical sheet pieces.
Similar strategies were selected by Bambach et al. [3] for evaluating the maximum hole expansion
ratio and geometrical accuracy of a mild steel sheets.

A drawback of multi-stage SPIF processes is that they are time-consuming. One way to
reduce manufacturing time considerably is performing the forming process in a single stage. In
a recent work, present authors investigated this idea and carried out an experimental study
about hole-�anging process by SPIF in a single stage [5, 12]. Figure 1 presents the experimental
setup, a schema of the helical tool trajectory and two tested specimens. The successful specimen
corresponds to the limiting diameter (d0) of the circular pre-cut hole of the blank sheet. The
second specimen, with a smaller value of d0, failed by fracture in the wall before �nishing the
piece, as can be seen in Figure 1(c).
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Figure 1. Hole-�anging by SPIF process in a single stage: (a) experimental setup; (b) cylindrical
helical trajectory; (c) experimental specimens.

A single-stage process is the fastest strategy to produce hole �anges by SPIF, however it
produces a non-homogeneous pro�le along the �ange as reported in [5]. The idea proposed in
this paper is to homogenize the �ange deformation by designing a customized two-stages process
based on previous studies.

3. Methodology

The proposed methodology aims to design and optimize a two-stage SPIF process for hole-
�anging based on the deformation analysis of the same process but in a single stage.

The �rst step of the methodology is to analyse the �ange thickness of specimens tested by the
single-stage SPIF process [5]. As experimentally observed, there are three di�erentiated zones
along the �nal �ange: (1) a zone near the �at undeformed sheet; (2) an intermediate zone, where
the thickness is smaller and the sheet tends to fail, as can be seen in the fractured specimen
in Figure 1(c); and (3) the edge zone. Thus, the main objective is to control the deformation
process of the intermediate zone or critical zone.
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The proposed solution consists of applying a lower pressure with the forming tool in the
critical zone. In the single-stage process, when the tool is near the critical zone, the edge zone is
being radially expanded and performs a signi�cant resistance to deformation. In this situation,
the �rst stage of the two-stage SPIF process has been designed to modify the �at shape of the
edge zone in order to reduce its resistance. This can be carried out by decreasing the diameter of
the helical path of the tool, as illustrated in Figure 2. As can be seen, the proposed intermediate
piece at the end of the �rst stage consists of an initial cylindrical surface followed by a conical
surface to relax the pressure over the critical zone and a cylinder with a smaller diameter for the
edge zone. In the second stage, the helical path follows a simple cylinder of �nal diameter df to
form the preformed piece.

df ‒ 2W
A

H

W

Forming
tool

df
df ‒ 2W

df

Figure 2. Geometrical
parameters for the �rst stage
of the proposed hole-�anging
process by SPIF in two
stages.

Three parameters have been used to characterize the tool trajectory for the �rst stage, as
represented in Figure 2: a height H for the �rst cylindrical helical path, a slope A for the
intermediate conical helical trajectory, and a gap W between the �nal cylindrical helical path
and the �rst one. The section pro�le of the deformed sheet is obtained by compensating the tool
geometry of radius R, represented as a circumference in Figure 2.

A numerical study of the proposed hole-�anging process by SPIF in two stages has been
developed to �nd the optimal values of parameters H, A andW in order to homogenize the sheet
thickness. The model for the proposed two-stages process has been developed using the same
sheet geometry, forming tool and setup parameters of a successful experimental hole-�anging test
by SPIF in a single stage developed in previous studies [5, 12]. The selected experimental test
was carried out using a tool radius R = 6 mm to deform a 7075-O aluminium alloy of 1.6-mm
thickness and initial hole diameter d0 = 64.5 mm to a �nal hole diameter df = 95.8 mm.

The parametrized geometry for both intermediate and �nal sheet pieces, as well as the tool
trajectories, were modelled in CATIA V5. For the selected con�guration of hole-�anged part,
a series of 18 sets of consistent parameter values of A, H and W were chosen to perform the
numerical study (see Table 1). To ensure the integrity of the proposed shape for the intermediate
deformed sheet and avoid inconsistent situations in the generation of tool trajectories, the CAD
model included some dimensional constraints for parameters, as reported in [11]. Thus, the
following values were set for parameters: A = 30◦ (steep slope), 45◦ (medium slope) and 80◦

(soft slope); 3 representative values for H (mild, medium and deep height) which depend on the
A value; and up to 3 values for W (large, medium and small gap) depending of the values of the
above parameters.

A series of CATIA scripts were programmed to automate the whole process of CAD modelling,
trajectories calculation and CNC programs generation for every set of parameters A, H and W .
The generated CNC code aimed to simulate the movements of the forming tool in a FE model in
Abaqus. This FE model was also automated by a series of Python scripts in order to calculate
the process variables as sheet thickness of the �nal �ange, and extract data and some model
snapshots from the results data �le.
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Table 1. Set of values for parameters A, H and W .

A H W
◦ mm mm

30 7 1
30 7 3
30 7 6
30 12 1
30 12 3
30 18 1

A H W
◦ mm mm

45 7 2
45 7 5
45 7 8
45 11 2
45 11 5
45 16 2

A H W
◦ mm mm

80 7 6
80 7 8
80 7 11
80 10 6
80 10 8
80 12 6

Table 2. Mechanical properties for AA7075-O sheets.

E (GPa) ν Y S (MPa) K (MPa) n

65.7 0.3 109.7 314 0.13

As said before, the parametrized FE model was calibrated using the experimental results on
previous studies [5, 12]. A Hollomon type law was used to characterise the hardening of the
material. The mechanical properties of the AA7075-O are summarized in Table 2. The metal
sheet was modelled with 2D shell elements as a circular ring partitioned by three concentric
sectors. The exterior sector is clamped (by the backing plate and the blank holder) and the
central sector is vertically hold (on the backing plate). The size of the mesh was de�ned �ner
near the pre-cut hole. It has approximately 12000 elements, 360 around the circumference and
about 0.8 mm in size on the inner edge. As can be seen in Figure 3, a duplicate tool was
modelled to save calculation time of the transition movement between both forming stages. A
friction coe�cient of 0.1 was used.

Z

Y
X

RP

RP

Forming tool
for stage 1

Forming tool
for stage 2

Figure 3. Detail of the �nite element mesh and boundary conditions.

The main drawback of a previously developed FE model was their computing time that
exceeded one month on a 64-bit PC with an Intel Core i7 processor and 32 GB of RAM. To
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overcome this problem, the forming time was reduced by setting a stepdown of 0.5 mm/rev for
simulated helical trajectories instead of 0.2 mm/rev used in the experiments. Furthermore, the
tool feedrate (1 m/min) and the aluminium density (2.81 kg/cm3) were scaled up by 102 and 104,
respectively. These scale factors, which are typical in explicit solvers for quasi-static simulations,
were found by trial and error until reaching a balance between computing time and simulation
process stability.

4. Results

For each set of parameters in Table 1, the automated procedure by scripts produced a CNC
program (APT code) for the �rst stage of the two-stages process by SPIF. Whereas a unique
CNC program for the second stage was used in all simulations. APT code was automatically
translated to the data entry format of Abaqus and the parametrized FE model was executed
in batch mode. Figure 4 presents a sample of tool trajectories simulation and snapshots of the
calculated sheet thickness distribution, for parameters A = 80◦, H = 7 mm and W = 6 mm.

(a) (b)

Stage 1 Stage 2

Stage 1

Stage 2

Figure 4. Simulations of a two-stages SPIF process for parameters A = 80◦, H = 7 mm and
W = 6 mm: (a) tool paths in CATIA V5; and (b) graphical representation for sheet thickness
in Abaqus.

(a) (b) (c)
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Critical
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Critical
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Edge
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Figure 5. Thickness distribution of the SPIF process in one and two stages.

To analyse the process deformation along the sheet �ange, a radial path following a node set
was de�ned in Abaqus. Figure 5 presents three graphs with the thickness distribution of the �nal
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�ange along the radial path, for slope values A = 30◦, 45◦ and 80◦. These graphs also include
the thickness distribution for the simulated single-stage process by SPIF, referred to as '1 stage'
in legends. It should be highlighted that this thickness pro�le reproduces well the tendency of
experimental results, as can be consulted in [5]. Indeed, the higher thickness reduction occurs in
the intermediate zone or critical zone, as described below.

As seen in Figure 5, all simulations of the proposed two-stages process improve the thickness
distribution compared to the SPIF process in a single stage. That is, the material deformation
is more homogeneous and the thickness reduction is diminished, especially in the critical zone.
Figure 5(a-b) reveals that all thickness predictions are similar for steep and medium slopes.
However, using a soft slope (A = 80◦), the other parameters have a great in�uence on thickness
reduction so that the most homogeneous sheet thickness distribution was found from the smaller
values of both height (H = 7 mm) and gap (W = 6 mm).

5. Conclusions

This work presents a numerical study on the homogenization of sheet thickness in a hole-
�anging process by SPIF. A customized two stages process has been proposed based on previous
experimental studies. The main conclusions of this work can be summarised as follows:

• An automated optimization procedure based on CAD/CAM and FEA software tools has
been successfully applied to evaluate the viability of the proposed process by SPIF.

• The proposed hole-�anging process by SPIF in two stages reduces considerably the
fabrication time compared to the multi-stage processes proposed in the literature.

• The proposed two-stages process appreciably improves the homogenization of the thickness
distribution along the �ange in comparison with a single-stage process.

• In the authors opinion, above conclusions are valid for a general hole-�anging operation
by SPIF. For geometries and materials other than those analysed in this study, the same
automated procedure would allow the A, H, W parameters to be optimized again.
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