
Institute of Software Technology
University of Stuttgart
Universitätstraße 38
D-70569 Stuttgart

Comparing Service Orientation and
Object Orientation: A Case Study on

Structural Benefits and Maintainability

Author: Bhupendra Choudhary
Course of Study: Computer Science

Date of work begin: 01.12.2017
Date of submission: 01.06.2018

Supervisor: M.Sc. Justus Bogner

Examiner: Prof. Dr. rer. nat. Stefan Wagner

¨

Service Orientation (SO) is a dominating technique evolving around the use of Object Orien-
tation (OO). The conceptual comparison of both the approaches have been broadly explained
in the literature, but the generalizable comparison of the maintainability of two paradigms
is still a topic under research. This thesis tries to provide a generalized comparison of the
maintainability using two functionally equivalent Online BookStore systems developed with
Service Orientation and Object Orientation. This thesis presents a brief explanation of the
software metrics used for the comparison. The quantitative comparison revealed that the
Service-Oriented version of the system has a lower coupling and higher cohesion between
software modules compared to an Object-Oriented approach. Through survey results, it was
found that Service Orientation has a better degree of modifiability, encapsulation and abstrac-
tion while Object-Orientation provides a reduced degree of testing and system complexity
comparatively. Also in expert interviews, participants believe that systems based on ser-
vice orientation possess a better degree of stability, analyzability and modifiability whereas
Object-Oriented System tends to provide a lower degree of structural complexity. Further-
more, experimental results suggest that a Service-Based System has a better degree of exten-
sibility and changeability compared to Object-Oriented System.
Keywords: Service-Oriented Architecture(SOA), Object-Oriented Architecture, Internal
Software Quality Attributes, Software Maintainability, Software Quality Metrics.

b

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis outline . 3

2 Key Concepts 5
2.1 Service-Oriented Architecture . 5

2.1.1 Principles of Service Orientation . 7
2.1.2 Characteristics of Service Orientation 12

2.2 Software Quality . 13
2.3 Software Maintainability . 15

2.3.1 Factors Affecting Maintainability 16
2.3.2 Measuring Maintainability . 18

3 Related Work 21
3.1 Exploring Maintainability . 21

3.1.1 Employing software metrics . 22
3.1.1.1 Coupling metrics . 23
3.1.1.2 Cohesion metrics . 23

3.2 Comparing Service Orientation and Object Orientation Paradigm 24

4 Research Approach 27
4.1 Research Methodology . 27

4.1.1 Research Strategy . 29
4.1.2 Research Design . 30
4.1.3 Research Category . 31

4.2 Research Approach for Data Collection . 31
4.3 Case Study Design . 33

5 Results and Discussion 37
5.1 Quantitative Results . 37

5.1.1 Metrics Collection . 37
5.1.1.1 Coupling in Service-Based System 38
5.1.1.2 Cohesion in Service-Based System 40
5.1.1.3 Coupling in a Object-Oriented System 42
5.1.1.4 Discussion . 44

5.1.2 Questionnaire Survey . 46
5.2 Qualitative Results . 59

5.2.1 Results from Expert Interviews . 59
5.2.2 Discussion of key findings arising from the expert interviews 60

5.3 Experimental Results . 62

ii Contents

6 Limitations 65

7 Conclusion 67
7.0.1 Summary . 67
7.0.2 Future Research . 67

List of Figures 69

List of Tables 71

Bibliography 73

1 Introduction

1.1 Motivation

You can’t manage what you can’t control, and you can’t control what you don’t measure. To
be effective software engineers or software managers, we must be able to control software
development practice. If we don’t measure it, however, we will never have that control.

- Tom DeMarco, Controlling Software Projects[1]

In the area of software engineering, developing a software system to satisfy its func-
tional specification is important. Minimizing the cost and efforts that are required to develop
a software system also takes similar importance. For this reason, software maintainability
has been a challenging factor for every organization.
Many publications describe the significance of this factor and address the necessity of
good maintainability in software systems. The majority of this researches is based on the
principle that software systems with improved maintainability are prone to fewer defects[2]
and result in cost savings. As acknowledged by Bass et al.[3], re-configuration of software
systems is often not initiated because of insufficient functionality but due to significant
maintainability-related problems.

Object Orientation (OO) has been a primary approach for developing software. It brought
significant improvement in software quality by exploiting various structural properties. These
properties are predominantly coupling, cohesion, size and complexity. In the past, numerous
studies have realized their profound effect on maintainability[4, 5, 6]. Thus, quantification
has played a major role in predicting software systems maintainability.

The plethora of business requirements has led to the adoption of Service Orientation (SO)
as a paradigm for developing highly distributed software systems. Service Orientation has
increased the level of abstraction again and promised even greater benefits such as reusability,
loose coupling, encapsulation and composability.

The motivation behind this thesis is to investigate if there is a way of generalizing maintain-
ability of Service Orientation on the one hand and object orientation on the other hand. By
comparing the two paradigms in this regard, valuable insights for their application can be
generated.

Especially, since Service Orientation (SO) promised an enhanced degree of maintain-
ability by fine abstraction, encapsulation, reusability, loose coupling etc. So the question is,
if this is really quantifiable then what guideline have to be adhered in order to leverage these
effects in Service Orientation (SO).

2 Introduction

Some studies exist that try to provide empirical evidence for this, but it is very hard to
compare systems based on Object-Orientation and Service Orientation. Moreover, there are
a lot of metrics available for measuring coupling, cohesion and maintainability, but not all
Object-Oriented or Service-Oriented metrics are applicable.

As a result, research has been centered on providing a set of mutually consistent met-
rics for quantifying the extent of maintainability, gaining empirical insights into Service
Orientation benefits, investigating existing limitations from the studies that compare Service-
Based Systems and Object-Oriented-systems. Furthermore survey, expert interviews and
experimental work have been performed to gain insights into the software maintainability of
two alternatives.

1.2 Thesis outline 3

1.2 Thesis outline

The whole outline of the thesis can be seen in figure 1.1. The thesis begins with the chapter
Introduction which highlights how a comparative analysis of maintainability of Service Ori-
entation and Object Orientation can result in insights how these paradigms are best applied.

Figure 1.1: An outline describing the organisation of the thesis

The next chapter presents the fundamental concepts of Service-Oriented Systems. It
begins with the questions behind the evolution of Service Orientation approach. Next,
the potential benefits of Service-Oriented Architecture are introduced. Furthermore, we
present communication within a Service-Oriented environment. The next section explains
the various Service Orientation principles and characteristics.

4 Introduction

Following this, software quality concepts are explored and we present various quality
characteristics and approaches. The next section explains software maintainability where
we mention the maintenance types and the factors that influence software maintainability.
Also, we introduce various traditional metrics that are used to quantify the factors affecting
maintainability.

The section thereafter describes the various maintainability affecting factors that are
addressed in the literature. This chapter also explores the software metrics that are employed
to quantify the factors that help to predict software maintainability. This section further
presents the similarities and differences between Service Orientation and Object Orientation.
This section ends with the investigation of the studies that compare Service Orientation and
Object Orientation based on structural quality attributes.

The subsequent section explains the overall research methodology that has been exe-
cuted in the thesis. It also includes the various approaches that have been applied to gain the
insights into software maintainability.

The next chapter works around the design of the case study which is based on the de-
sign of quantitative, qualitative and experimental approach.

The results describes the data collected from quantitative, qualitative and experimental
measures that are presented to satisfy our research objective.

In the end, a summary and future work are presented to concludes the thesis.

In a nutshell, different studies are explored that compares Service Orientation with
Object Orientation. Also several metrics are investigated to measure the degree of coupling,
cohesion and maintainability.

2 Key Concepts

2.1 Service-Oriented Architecture

While the IT industry has been continuously dealing with the challenges of minimizing costs
and maximizing the exploitation of existing technologies, simultaneously they have to strive
to cater clients effectively continually.

Thus business demands and growth has led to the broad acceptance of Service Orientation in
the IT industry. It is continuously increasing company’s agility over time. Service Orientation
has been widely adoption in the software industry. It has increased company’s agility[7] over
time.

The Figure 2.1 represents the evolution of SOA.

There are two major factors behind all these exigencies: Heterogenity and change[8]. Today
several organizations comprise heterogeneous architectures, applications, and systems which
are too metaphorical and can be very complex and time-consuming. Integrating products
from different suppliers were almost an agony. But the single-supplier approach to IT cannot
be considered since supporting infrastructures and suite of applications are less resilient.

Figure 2.1: Evolution of Service-Oriented Architecture

Change is the second concern underlying the questions that IT-industries encounter. Con-
tinuously changing customer demands and requirements are driven by competitive markets
readily available over the internet. In response, refinements in products and services expedite.

6 Key Concepts

Technology continue to advance, nourishing increased client needs. Business must consol-
idate to stay in the competition, and IT infrastructure must empower businesses ability to
customize.
Service Orientation is more of a characterization of IT evolution thus has a foundation in the
past technologies and approaches.

Figure 2.2: Primary influence of Service-Oriented Architecture [9]

As a result, some organizations are still moving towards service orientation, but a large per-
centage is arguably already using it. Based on Service-Oriented Architecture, service con-
sumers do not have to worry about the services they are involved with because a service bus
will select the right option acting on behalf of a service consumer. Underlying infrastructure
tries to hide as many technical details as possible from the service requestor.

The below figure shows how the industry has benefitted from SOA.

Figure 2.3: Potential benefits of Service-Oriented Architecture

The following figure depicts the basic Service-Oriented Architecture. It represents a service
consumer sending service request to the service provider and in return service provider replies
with a response message. Communication is established in such a way that is apparent to both
the service consumer and service provider.

2.1 Service-Oriented Architecture 7

Figure 2.4: A basic Service-Oriented architecture[10]

Collaborations in SOA is based on publish, find, bind and invoke operations. Service and its
description are the two artifacts that are contained by Service-Oriented architecture.

The diagram below shows the overall collaboration among the participants.

Figure 2.5: Collaborations in service-Oriented Architecture[11]

2.1.1 Principles of Service Orientation

The following section introduces you to the basic principles and characteristics that are at-
tached to Service Orientation.
The figure below shows various design principles offered by Service Orientation.

8 Key Concepts

Figure 2.6: Principles of Service-Oriented Architecture[12]

Abstraction is considered as a core principle for any software development approach. Service
Orientation has taken the concept of abstraction on a higher level. It has continued to evolve
the higher-level abstraction to isolate change and to increase the granularity of reuse.
This principles enables the hiding of implementation level details for service consumers.

The figure 2.7 illustrates the need of abstraction in service environment.

It has been a challenge developing a system where consumers requests can be fulfilled over
different channels without making any changes to the business logic each time when new
channel support is expected.

This is where Service Orientation has played a significant role in dealing with such scenarios.
Service abstraction layer employs an additional layer on the business level consisting all the
necessary logic for devolving and receiving requests.

2.1 Service-Oriented Architecture 9

Figure 2.7: Why service abstraction needed [13]

Loose coupling is another essential aspect of Service Orientation. It has played a vital role in
modernizing the legacy software. It has been improving business agility and making software
systems to be easily scalable and guiding them towards an overall high-quality software.

The goal of decreasing/loosening coupling is to minimize the number and degree of depen-
dencies in order to prevent ripple effects of changes. It has affected software quality directly.
Tight coupling leads to the higher complexity in software systems which in turn makes the
software difficult to understand, analyze and maintain. Loose coupling employs reusability
so that software modules are developed once and can be used again and again. Also, it further
increases the independence of software modules and enabled better flexibility.

Figure 2.8: Coupling [14]

10 Key Concepts

Reusability is a crucial factor in the maintainability of software systems and enhancing
reusability is one of the fundamental objectives of Service Orientation; therefore, it is one
of the highly advantages of SOA. Resultantly companies that have a restricted amount of
success with reusability are considering SOA as an alternative solution.

The driving force behind service is that the logic at the back of service should not be restricted
to a particular concern in an activity; it should cover multiple concerns in an activity related
to the business processes. Thereby providing repeated values to the business.

Client application interacts with various services via a standard medium primarily internet.
The same can be seen in the figure 2.9.
Well-designed SOA application permits infrastructure that promotes reusability in heteroge-
neous environments.

Figure 2.9: Reusability in Service Orientation [15]

"Services contain and express agnostic logic and can be positioned as reusable enterprise
resources."[16] Thereby providing repeated values to the business.
Reuse is an advantageous part while inquiring SOA, but it is not the only primary advan-
tage. Empowering organizations by bringing earlier detached systems can be highly effective.

Service reusability is correlated with the other design principles of SOA. The inter-
relation among them can be seen in the figure 2.10.

2.1 Service-Oriented Architecture 11

Service reusability plays a key role in the composition of services. Service loose coupling
minimizes the dependency among the services and enhances their reusability. Statelessness
property of the services maximizes the reusability opportunities for services.
Service discovery provides a medium for the promotion of the reusability in services while
service autonomy offers an execution environment for the service reuse.

Figure 2.10: Inter relation of service reusability with other design principles [17]

Service orientation is benefitted with another key principle that is known as service compos-
ability. This principle allows services to be designed in such a way that they can be reused
extensively and enable organizations to offer rapid solutions to their customers.
A composite service is an extensive service made of several small services.

It directly impacts business agility by leveraging existing services. Implementation on
consumer side become complex when services are consumed simultaneously by several
service consumers. Buiding composite service makes the invocation simpler from the
consumer perspective.

A service can be connected to several composite services; therefore, a single place of
change enables them to manage comfortably and thus eventually provides a better degree of
modifiability.

Also, impromptu solutions can be availed easily by utilizing the existing services. Al-
ready designed services can be merged to provide quick solutions. Thus new solutions can
be employed cheaply by exploiting comparatively few services.

Furthermore unmasking few interfaces to the external consumers permits them to gov-
ern visibility.

12 Key Concepts

Figure 2.11: Service composition in Service Orientation [18]

2.1.2 Characteristics of Service Orientation

The figure 2.12 shows the primary characteristics offered by Service Orientation. Vendor-
neutral solutions allow the underlying infrastructure readily adaptable to the frequently
changing requirements. Not relying on a specific vendor makes an infrastructure effortlessly
replaceable and gives them a chance to choose the best possible technology suited to their
needs.

2.2 Software Quality 13

Business-driven characteristics of SOA need that the technology layer remains adapt-
able always. It means that the design of the underlying architecture continues to be flexible
and scalable over a period.

Figure 2.12: Characteristics of SOA[19]

Enterprise-centric property of SOA enforces that underlying technical layer foster services
that are sparsed over traditional application silos. It is mainly concerned with shared services
that be reused as a need for larger solutions [20].

As advocated in the service design principles, services are required to be composable
so that they can repeatedly be used in the different solutions.

2.2 Software Quality

Quality defines software’s success or failure in the competitive modern era. Therefore the
task of maintaining quality is considered to be of great importance throughout the software
development lifecycle.

Due to high importance, it has become the most looked after assets in the organiza-
tions. Industries have been continuously working on delivering better quality software.

Philip B. Crosby’s “Quality is free: the art of making quality certain”[21] states:

The first erroneous assumption is that quality means goodness, or luxury or shininess.

14 Key Concepts

The word “quality” is often used to signify the relative worth of something in such phrases
as “good quality”, “bad quality” and “quality of life” - which means different things to each
and every person. As follows quality must be defined as “conformance to requirements” if
we are to manage it. Consequently, the nonconformance detected is the absence of quality,
quality problems become nonconformance problems, and quality becomes definable.

Quality attributes are dispersed among various layers of an application. Few of them
contribute to the overall system design while some of them are limited to particular areas.

It is also essential to assess the effect of quality on the requirements while designing
an application. The significance of the quality attributes varies from system to system.

ISO/IEC 1998 presented all the quality characteristics into further sub-characteristics. These
sub-characteristics are shown in the figure below:

Figure 2.13: Software Quality Sub-characteristics [22]

In ISO 9126:1, three approaches have been defined for software quality: Internal quality,
external quality and quality in use. These approaches affect each other as shown in the figure
below.

2.3 Software Maintainability 15

Figure 2.14: Various approaches to Quality [23]

Quality characteristics are used as a pillar to the internal and external quality of the software.
These characteristics are refined until attributes are obtained. Then the software metrics are
applied to measure these quality attributes. A relation between the elements is shown in the
following figure.

Figure 2.15: Relations among elements [22]

2.3 Software Maintainability

Software maintainability is defined[24] as the ease with which a software system or compo-
nent can be modified to correct faults, improve performance or other attributes, or adapt to
a changed environment.

Software maintainability consists of four types mentioned in the figure below.

Corrective maintenance is an action performed to rectify any bugs or errors occurred
in a software system. It comes into place after a failure detection and aims at fixing a
software system so that it can perform its desired functionality.

16 Key Concepts

Figure 2.16: Types of software maintainability

While adaptive maintenance is focused on the modifications that are required to fulfill new
user requirements. It can be initiated due to the variation in software, hardware, operating
systems or in the business policies.

Perfective maintenance is triggered by the new or changed customer-requirements. It
consists of making functional changes as well as the actions executed to improve systems
performance. It also includes discarding the features that are no longer beneficial.

Preventive maintenance is also known as proactive maintenance. It focuses on en-
hancing software understandability and maintainability. Reorganization, code optimization,
and system review are common activities in preventive maintenance.
Next section introduces to the factors that affect software maintainability.

2.3.1 Factors Affecting Maintainability

It is essential for the customers to measure the software maintainability. This section gives
an overview of the factors that affect the maintenance of software systems.

As per ISO9126, maintainability is a key quality attribute in software systems. It

2.3 Software Maintainability 17

includes four important attributes that influence maintainability. It consists of Analysabil-
ity,modifiability, stability and testability represented in the table of figure below.

factors Description
Analyzability It involves the need to recognize errors are

failure causes and to recognize the
modifications of the parts of the software.

Modifiability The steps taken to make changes in the
system to make the implementation

simpler.
Stability It involves with the risk that come out of

the results of unexpected modifications.
Testability It validates the changes. It is the

measurement of how the test criteria and
the test components are done.

Table 2.1: Factors affecting code, documentation and tools [25]

David E. Peercy proposed a methodology for the evaluation of software maintainability. Ac-
cording to this methodology, software maintainability is majorly influenced by six key fac-
tors: descriptiveness, simplicity, instrumentation, modularity , consistency and expandability.

factors Description
Modularity It gives the description of the logical

division of the software into numerous
modules, parts and components. It is easy

to understand and make changes in the
software if it is composed of independent

components.
Descriptiveness It describes the explanations of the design.

It gives the information about assumptions,
components, objectives etc.

Consistency It indicates the association of the products
and the terminology, symbology and

notations that are common.
Simplicity There should be no complexity in the

implementation techniques, languages used
and the organization. It uses the concepts

of the similarity.
Expandability It describes that the changes in the physical

information such as data storage, time of
executions, computational procedures can

be achieved easily.
Instrumentation It helps in the improvement of testing.

Table 2.2: Factors affecting maintainability, based on methodology [26]

18 Key Concepts

Researchers proposed a software maintainability model to enhance software quality. This
model identifies several other factors that affect software maintainability.
These factors are described in the following table.

factors Description
Readability The extent of the code to which the user

can understand.
Standardisation The standards or guidelines which are

available while writing a code.
Modularity Decomposition of the system into

numerous modules according to their
functionalities to implement the

abstractions of the data.
Programming Language The code developed by a programmer in a

language which can be reused.
Level of validation and testing More time spending on validation and

testing gives less errors and reduces the
cost of maintenance.

Complexity The difficulty in maintaining the code of
the system should be put to a certain level.

Traceability It traces the components to the
requirements.

Table 2.3: Factors affecting maintainability, based on maintainability model [25]

2.3.2 Measuring Maintainability

The assessment of maintainability can help us to analyze the health of software systems.
To assess maintainability, software metrics are applied. Therefore, software metrics play an
important role in the evaluation of the maintainability.

There are many software metrics focused on quantifying software maintainability, but
Chidamber and Kemerer metrics [27] are the most referenced in the literature. These metrics
were designed explicitly for Object-Oriented Systems, but they are also used to measure the
quality attributes affecting maintainability of Service-Oriented Systems.

The higher the count of Number of Children (NOC), the higher the level of reuse
since inheritance is a form of reuse. Hence increasing the number of children improves the
degree of reusability but it can also increase the testing complexities. Weighted Methods
Per Class (WMC) count indicates the amount of time and efforts required to develop and
maintain the class.
The increased size of the Response For a Class (RFC) count suggests a higher degree of
testing complexities for a class since a class becomes more complicated and require more
understanding on tester’s side.

2.3 Software Maintainability 19

A higher Coupling Between Objects (CBO) count denotes a higher degree of dependencies
between classes and affects the reusability and modifiability of the modules.

Ck metrics Concept Purpose
NOC Services are the key

elements
It provides the measures by

counting the number of
direct descendants

DIT Reusability, Testability,
Understandability

It provides measures for the
degree of inheritence.

CBO Design, Reusability It determines the degree of
dependency among classess

and services
LCOM Design, Reusability It provides the degree of

togetherness of the
elements in a class or

service
RFC Design, Testability It provides measures for the

complexity of the class or a
service

WMC Complexity, Reusability It allows the prediction of
maintainability and

resuability

Table 2.4: Metrics suite by Keremer [28]

Traditional software metrics like line of code[29] , McCabe’s cyclometric complexity[30],
Halstead complexity measures[31], Maintainability index[32] and unit test coverage has been
widely used to measure the various factors influencing software maintainability.

Metric Description
LOC Lines of code in a file

Cyclomatic Complexity Amount of independent execution paths
thoughout the code

Halstead Complexity Measures It comutes the program volume, difficult to
understand.

Maintainability Index It is a single compound value containing
Halstead Volume metric, cyclomatic
complexity, average lines of code per

module and percentage of comment lines
per module as elective

Unit test coverage It shows what portion of the code is
covered with automated unit tests

Table 2.5: Traditional metrics [33]

3 Related Work

In this chapter, the existing studies based on coupling, cohesion and maintainability are
researched in the form of literature work. Attempting to generalize the software maintain-
ability by comparing two functionally equivalent systems is a challenging task. Therefore
no single right solution exists, but various approaches have been proposed. In this chapter
first we will introduce the factors influencing maintainability. Then we will go through the
different kinds of metrics suggested by the literature to quantify the degree of maintain-
ability, coupling and cohesion. During the literature review, Critiques related to cohesion
metric and maintainability are also identified. In the last section of the chapter, existing
studies are investigated that compares Service-Based Systemss and Object-Oriented Systems.

In this thesis, the selected metrics are classified into two categories: coupling and
cohesion. In the following chapter, maintainability affecting factors are discussed in detail.

3.1 Exploring Maintainability

Reaching the required level of quality is crucial in the software development. Both
internal and external quality has played a massive role in the software quality. Software
maintainability has been one of the major quality attributes among all the external quality
attributes. There is a large body of research that has presented the impact of internal
quality attributes on the software maintainability. Internal quality attributes have enabled
researchers to predict[34][35] the software maintainability by applying various software
metrics to measure the degree of the respective attributes. A large number of metrics have
been proposed for the internal quality attributes like size, coupling, cohesion and complexity.

Coupling is defined as the degree of inter dependencies between the software modules
while cohesion is the measure of togetherness of the elements that are committed to one and
only one task. It has been widely recognized that better quality software should demonstrate
higher cohesion and lower degree of coupling[36][37][27].
Internal quality attributes permit software quality to be predicted at an early stage of the
software development[36]. Empirical results from various studies have demonstrated
that internal attributes coupling and cohesion can have a causal effect on the software
maintainability[38][37].

Coupling an cohesion both are contrasting factors since a lower degree of coupling is
likely to reduce cohesion in the software modules. Some empirical research evaluated that
coupling and cohesion together can influence software maintainability significantly[39].

Analysability, changeability, stability, and testability are the primary sub-characteristics

22 Related Work

of maintainability that is widely referenced in the literature[40]. Research has stated how
cohesion[41] can affect the sub-characteristics of maintainability. Also an Empirical analysis
from Mikhail Perepletchikov and Caspar Ryan suggests that highly coupled elements have
a negative impact on the analyzability and changeability as compared to loosely coupled
elements[34].

3.1.1 Employing software metrics

Structural attributes play a vital role in software’s maintainability. They have a profound
effect on maintainability. Size, complexity, coupling, and cohesion are widely discussed
structural attributes in the literature. Coupling and cohesion attributes are majorly analyzed
during the course of this thesis.

Since coupling and cohesion has an impact on software maintainability, therefore,
measuring these attribute can help us to evaluate the degree of software maintainability.

The metrics are required to have specific characteristics before they can be success-
fully applied to the developed systems. These characteristics are comprehensibility, mutual
consistency and simplified calculations.

Characteristics Purpose
Comprehensibility To apply and use accurately, metrics need

to be easily interpretable
Simplified calculation Metrics definitions should be simple in

order to perform easy calculations
Mutually consistent Metrics should be system independent

Table 3.1: Characteristics of metrics

Now we describe the various metrics which were explored from the existing research works
but could not be employed due to certain criticism attached with them.
Maintainability index is a metric for predicting software systems maintainability. It is a
combination of four distinct metrics which includes Halstead volume metric, the Cyclomatic
Complexity, the average count of lines of code per module and optionally the percentage of
comment lines per module. The Maintainability index is computed as:

MI = 171 - 3.42ln(aveE) - 0.23aveV(g’) - 16.2ln(aveLOC) +(50*sin(sqrt(2.46*aveCM))

It is one of the heavily criticized metrics since MI variations are not clear and there is
no substantial evidence regarding the causal relations between the metrics used in the
formulation.

Chidamber and Keremer proposed a lack of cohesion in methods(LCOM) metric for
the evaluation of cohesion in Object-Oriented Systems[27]. LCOM is powerful at finding

3.1 Exploring Maintainability 23

non-cohesive classes but its not powerful at classifying between moderate cohesive classes.

Now we define the various coupling and cohesion metrics that are identified for eval-
uating the degree of coupling and cohesion in service-based and Object-Oriented System.

3.1.1.1 Coupling metrics

Absolute importance of service is determined as the number of other services depending on
a given service or calling it’s operations.

While Absolute dependence of service is calculated as the dependency of a given ser-
vice on the number of other services[42].

Degree of coupling is calculated as the proportion of messages received by a class
over the count of messages sent by the class.

Degree of coupling(DC) = MRC/MPC

Where MRC is the count of messages received by a class from other classes and MPC is the
number of messages a given class passing to other classes[43].

3.1.1.2 Cohesion metrics

Degree of cohesion is calculated as the count of attributes being used in a class to the total
attributes for a given class. In Degree of cohesion, the functional strength of the attributes is
assessed[44]. It indicates, how powerfully the methods of a class or operations in a service
are dependent on the attributes in a class or service.

Degree of cohesion(DCH) = NAU/TNA

where NAU = Number of Attributes Used and TNA = Total Number of Attributes[43].

Tight class cohesion is computed as the ratio of directly connected methods to the
maximum number of directly and indirectly connected methods in a given class.

Tight class cohesion(TCC) = NDC/ NP

Where NDC is the no. of directly connected methods and NP is the maximum possible
number of methods in a class.

Loose class cohesion is determined by the proportion of directly and indirectly connected
methods in a class to the maximum possible number of methods in a class.

24 Related Work

Loose class cohesion(LCC) = NDC + NIC/ NP

Where NDC and NIC are the no. of directly and indirectly connected methods and NP is the
maximum possible number of methods [45].

3.2 Comparing Service Orientation and Object Orientation
Paradigm

Service Orientation is often viewed as an evolution of Object-Orientation as it represents
inherited concepts like encapsulation and abstraction. Even if both approaches comply with
a different models are adapted to develop semantic models.

Service Orientation is evolved to face the new challenges of growing business requirements
nevertheless they balance each other regardless of their dissimilarities Service Orientation
still leverages several benefits of Object-Orientation.

This section explores the fundamental similarities and differences between Service
Orientation and Object-Orientation followed by further investigation into the existing studies
that provide a quantitative comparison based on mature software metrics. These studies
mainly assess structural quality attributes and present the effect of Service-Oriented and
Object-Oriented paradigms on the coupling, cohesion, size and complexity attributes.

The table 3.2 exhibits the fundamental differences between Service Orientation and
Object-Orientation. Basically, objects in Object-Orientation are glued together and work
collectively to accomplish business tasks. As a consequence, Object-Orientation is usu-
ally practiced for designing inner features of an application whereas Service Orientation
promotes the conjunction of several external services where they are loosely coupled.

Contrast Object-Orientation Service Orientation
Concepts Modelling, Architectural

Design, Programming
Modelling, Architectural

Design
Focus Component level Business level

Communications Primarily internal Internal and external
Standards Extensive standards with

high maturity
No standards for specific

design patterns
Complexity Medium to high with a

more controlled
environment

High, specifically where
there is little control over

technology

Table 3.2: A contrast between Service Orientation and Object-Orientation paradigms [46]

3.2 Comparing Service Orientation and Object Orientation Paradigm 25

Service Orientation and Object-Orientation paradigms have different notions about the
principles. These paradigms are dependent on different underlying building blocks. Service
Orientation relies on services while Object-Oriented is based upon the concepts of objects
for the construction of an architectural model.

For a better degree of loose coupling, Service Orientation leans on the service inter-
faces which separates the services from consumers while Object-Orientation principle of
inheritance enforces objects to be tightly coupled for a better degree of reusability.

To impose abstraction in the systems, Service Orientation hides the implementing
logic via service interfaces where Object-Orientation aims at separating the object-behavior
through the class interface.

Notion Service Orientation Object-Orientation
Underlying block Services are the key

elements
Objects are the key

elements
Abstraction A service hiding the

underlying implementation
and logic through service

interface.

Class hides the state and
behaviour of the objects
and separates the objects
behavior via an interface.

Loose coupling Service interfaces facilitates
loosely coupled

environment which
separates services from

service consumers.

Inheritance enforces objects
to be tightly coupled.

provides Metrics should be
system independent

Statelessness Services encapsulates
business logic and they are
stateless since they do not

depend on the states of
other services.

Objects encapsulates data
and behavior. Object’s state

can be changed by other
object’s behavior.

Table 3.3: Dissimilarities between Service Orientation and Object-Orientation paradigms
[47]

Perepletchikov et. al.[48] presented a study that compares Service Orientation and Object-
Orientation based on structural quality attributes of size, complexity, coupling and cohesion.
They prepared two systems with both the approaches. They designed coarse-grained services
based on the principles of Object Orientation (OO) while the Service Oriented System was
developed using fine-grained services. Java was used as a primary language for developing
both the systems. The results show that Service Orientation presents a lower degree of
coupling and permits a better degree of modifiability compared with an Object-Oriented
approach. On the contrary, the Object-Oriented approach demonstrates less complexity as
compared to a Service-Oriented approach.

26 Related Work

Mansour et. al. [46] also exhibited a comparative study by assessing the internal software
quality attributes of the Service Orientation and Object-Orientation approaches. Size, com-
plexity, cohesion and coupling were the structural attributes under investigation during this
case study. The author designed two systems using SO and OO approaches. Both the systems
were implemented using C#.NET. The Service-Oriented version was also supported by Web
Service Software Factory. The following figure consists of the set of software engineering
metrics that have been used for evaluation of the both Service-Oriented and Object-Oriented
system.

Figure 3.1: Taxonomy of metrics [46]

The case study results show that Service Orientation approach provides higher reusability
and lower degree of coupling compared to the Object-Oriented approach. On the other
hand, Object-oriented approach indicates lower complexity among modules than Service
Orientation approach. Furthermore, this study also reveals that not all the Object-Oriented
metrics can be applied to the Service Orientation approach.

Limitations of Existing Case Studies

There are several metrics available for predicting software maintainability but not all
Object Oriented or Service Oriented metrics are applicable to the other paradigm. An
exploration into a mutually consistent set of metrics can give significant insights into how
these paradigms are best applied. Furthermore, there are metrics like Maintainability Index
which does not justify the values used for the prediction of software maintainability.

4 Research Approach

This segment prefaces the research approach for the case study. It includes an introduction
to the research methodology and the data collection approach.

4.1 Research Methodology

The methodology for this thesis is organized into three phases. The first phase contains the
metrics collected by measuring designs/implementation of two functionally equivalent online
Book Store systems. Further,

Figure 4.1: Structure of the case study

Experience-based evaluation is the second phase , where expert interviews were conducted
in a semi-structured form. It comprised various questions on maintainability of two

28 Research Approach

alternatives, i.e., Service-Oriented and Object-Oriented. Follow-up questions were also
included in response to their viewpoints. This phase is also equipped with a survey hosted to
gain insights into developers’ view on service orientation in comparison to object orientation
w.r.t. maintainability.

Third phase is the Experiment-based evaluation where a group of developers were
presented with an exercise and requested to perform development on a service-based and
Object-Oriented System. Work and efforts of the developers were recorded and investigated
for further analysis.

Phase Task Reason of selection
Metrics-based evaluation Applying software metrics

on functionally equivalent
SO and OO systems

Comparing degree of
maintainability in SO and

OO
Experience-based

evaluation
Experts

interviews(qualitative)
survey (quantitative)

Survey based on developers
view

To gain industry insights
into SO and OO

Experiment-based
evaluation

A set of developers
performing development on
two functionally equivalent

systems

Work and effort analysis on
SO and OO

Table 4.1: Distribution of the phases

4.1 Research Methodology 29

4.1.1 Research Strategy

Maintainability has been researched thoroughly but there has been a limited amount of
research exists that compares the degree of maintainability into Service Orientation and
Object-Orientation.

This case study begins with the factors that impact maintainability of software sys-
tems. Later, the software metrics are examined that have been employed to quantify
maintainability of service-based and Object-Oriented Systems. Hypotheses and viewpoints
would be very significant for further research.

There exist several strategies for this case study, an exploratory form of research strat-
egy is relevant and hence exercised.

Figure 4.2: An Exploratory strategy

In this process, several research works are explored which provided valuable insights into the
topic and helped to generate formal hypotheses for future research work.

30 Research Approach

4.1.2 Research Design

This case study is of type flexible because not all the parameters were available beforehand.
They continued to appear during the course of study.
A fixed design requires a predefined set of elements before data collection can be initiated.

Figure 4.3: Flexible type of research design[49]

4.2 Research Approach for Data Collection 31

4.1.3 Research Category

This case study is a deductive approach where we start with the collection of hypotheses from
existing theories and then we test these hypotheses against our observations.

Figure 4.4: Deductive approach[50]

4.2 Research Approach for Data Collection

In this case study, three types of data are collected:
1) Quantitative
2) Qualitative
3) Experimental

Quantitative data is obtained from software metrics measures and the survey question-
naire. These metrics were applied to both service-based and Object-Oriented System.
Whereas, the data collected from expert interviews fall under qualitative data.

32 Research Approach

Expert interviews were conducted in a semi-structured format. These interviews mainly
revolve around a set of four questions based on maintainability of two alternatives. It also
involved several followup questions.

In the experimental data collection process, A group of developers is invited to per-
form development on both the systems. Work and efforts on both of the systems were
recorded and further analyzed.

Research strategy Explorative
Research design Flexible

Research category Inductive Research
Methods Metric measures, Experts interviews,

Survey, Developmental
Type of data collected Quantitative, Qualitative, Experimental

Questions types Open and Close
Type of experts interview Semi-structured

Arrangement type of experts interview Personal, Audio and video calling

Table 4.2: Summary of the Research Approach

4.3 Case Study Design 33

4.3 Case Study Design

This case study is executed with the mixture of quantitative, qualitative and experimental
approaches. Quantitative measures are obtained from coupling and cohesion metrics and a
survey questionnaire. Before the implementation of this case study, various literature works
were analyzed extensively. The literature study has allowed selecting mutually compatible
metrics.

Figure 4.5: A service-based online bookstore

These metrics are basically a collection of coupling and cohesion metrics and applicable to
both functionally equivalent systems uniformly. These metrics are applied to both service
based and Object-Oriented Systems, and their results are observed in the later section.

34 Research Approach

Figure 4.6: An Object-Oriented online bookstore

An online bookstore(OBS) is designed using a service-based and Object-Oriented approach.
It allows registered users to purchase books. These systems have limited functionalities of
selecting books and adding them to the shopping carts.

The survey questionnaire is hosted to gain developer’s view on Service Orientation in
comparison to Object-Orientation w.r.t. maintainability. It is divided into three parts.

First part contains the general questions based on maintainability of software systems.
Second part tries to gain the developer’s view on the Service-Based Systems and Object-
Oriented System.
Last part is aimed at collecting developers opinion on the three different paradigms. It is
achieved by obtaining a suitable rank to the paradigms.

4.3 Case Study Design 35

Type Survey questions
General analysis of maintainability in

software systems
1. Maintainability is an important quality

aspect in software systems.
2. Coupling has substantial impact on

maintainability.
3. Cohesion has substantial impact on

maintainability.
4. Measuring internal software quality
brings valuable insights(e.g. coupling,

cohesion, size etc).
Comparative analysis of maintainability on

Service-based and Object-Oriented
Systems

5. In my experience, software based on
<paradigm> has a comparatively low

degree of coupling.
6. In my opinion, software based on

<paradigm> facilitates a comparatively
high degree of cohesion.

7. In my experience, software based on
<paradigm> promises a significant extent

of reusability.
8. In my opinion, software based on

<paradigm> possesses a comparatively
high level of analyzability.

9. In my experience, software based on
<paradigm> reduces the complexity of

testing.
Ranking-based analysis of maintainability

on software paradigms
10. In your experience, which of the three

paradigms provides on average the best
degree of modifiability?

11. In your experience, which of the three
paradigms provides on average the best

degree of encapsulation and abstraction?
12. In your experience, which of the three

paradigms provides on average the best
manageable size and complexity?

Table 4.3: Survey questionnaire

36 Research Approach

Qualitative method is implemented in the form of expert interviews.The expert interview
mainly revolves around four quality aspects pertained to software maintainability.
These attributes are depicted below:

Quality attributes Questions
Modifiability(Extensibility and

changeability)
In your opinion, What do you think about
modifiability in Service-Based Systemss

and Object-Oriented Systems?
In your experience, which of these systems

are best modifiable?
Size and complexity In your experience, How do you see the

size and complexities of Service-Based
Systems and Object-Oriented Systems?

In your opinion, which of the two
alternatives provides best manageable size

and complexity?
Analyzability In your opinion, How do you see the

analyzability of two alternatives, i.e.
Service-Based Systems and

Object-Oriented Systems?
Do you think one of them provides a better

degree of analyzability?
Stability In your experience, How do you observe

the stability of Service-Based Systems and
Object-Oriented Systems?

Do you find one of them as a
comparatively stable system?

Table 4.4: Scope of experts interviews

Experimental methodology is executed by allowing set of developers performing develop-
ment work on both service based and Object-Oriented Systems.

They are presented with an exercise of adding new functionality into Service-Based
System and object oriented system.

5 Results and Discussion

This section presents the results and findings of the quantitative, qualitative and experimental
approach mentioned in the above case study section.

5.1 Quantitative Results

Quantitative results are collected in three phases as stated in the figure . In the first phase,
metrics results and data from survey questionnaire are gathered. These metrics results and
survey data are transformed into graphs for comparative analysis.

Last phase represents the findings obtained from various charts and results.

Figure 5.1: Phases in the collection of quantitative results and findings

5.1.1 Metrics Collection

Several metrics such as maintainability, coupling, cohesion are analyzed through the
literature study. As a result, a set of coupling and cohesion metrics are selected. They are
chosen by their mutual consistency towards service based and Object-Oriented System.

These metrics are applied to the functionally equivalent designed systems.

38 Results and Discussion

Figure 5.2: coupling and cohesion metrics

The metric measures are collected from the designed online bookstore(OBS) system dis-
played in the figure 4.5 and 4.6.
Since the software metrics are primarily designed for Object-Oriented Systems, they are not
all exercisable for Service-Based Systems. So, following supposition is made to measure
services using software metrics.

Service = Class

It is worth taking a note that neither node libraries from Service Oriented version nor java
libraries from Object Oriented were taken into account during measurements. Only direct
implementation artifacts were quantified.

5.1.1.1 Coupling in Service-Based System

Figure 5.3: Coupling in a Service-Based System

5.1 Quantitative Results 39

The degree of coupling [51] for a service based system is calculated as follows:
BookService has four operations. It is sending a message to CartService and receiving mes-
sages from AdminService. Therefore, message passing service (MPS) for this service is 1
and message receiving service(MRS) is 3. Hence, the degree of coupling can be calculated
as:

Degree of coupling(DC) = MRS/MPS

DC(BookService)= 3/1 = 3

CartService has two operations and it has sent messages to AdminService therefore MPS for
this service is 2. Further, this service is receiving a message from BookService, so MRS for
this service is 1. Therefore the degree of coupling can be given as:

DC(CartService) = 1/2 = 0.5

AdminService contains three operations. It is passing messages to the BookService, so MPS
for AdminService is 3. Furthermore, it is receiving messages from CartService, so MRS is
2. Therefore the degree of coupling can be determined as:

DC(AdminService) = 2/3 = 0.66

Absolute dependence of service(ADS) is calculated as the count of other services, a given
service depend on.
Absolute dependence of service(ADS) in a Service-Based System is computed as:

BookService(ADS) = 1
CartService(ADS) = 1
AdminService(ADS) = 1

Absolute importance of service(AIS) is determined as the count of other services
which depends on a giver service or which invokes its operations.

Absolute importance of service(AIS) in a Service-Based System can be calculated as:

BookService(AIS) = 1
CartService(AIS) = 1
AdminService(AIS) = 1

The following table provides the summary of coupling metrics for a Service-Based
Systems:

Service DC AIS ADS
BookService 3 1 1
CartService 0.5 1 1

AdminService 0.66 1 1

Table 5.1: Summary of coupling metrics for Service-Based System

40 Results and Discussion

5.1.1.2 Cohesion in Service-Based System

Figure 5.4: Attributes Calling Graph for a Service-Based System

The degree of cohesion metric takes in account of the functional strength of the associated
attributes within a given class or service.

Here the Number of attributes used are the ones that contribute to the functional behavior of
a service while the total no. of attributes shows the available attributes for a given service or
class.
For calculating DCH, attribute calling graph(ACG) is designed as demonstrated in the figure.
This graph shows the connectivity between the services and the number of attributes that are
used by the operations of a service.

While in case of an Object Oriented system the same applies on a class level where
we have classes and methods in place of services and operations.

Hence, The degree of cohesion(DCH) of a Service-Based System is calculated in the
following table:

5.1 Quantitative Results 41

Service No. of attributes
used

Total no. of
attributes

Degree of cohesion

Book 5 7 5/7
Cart 5 5 1

Admin 2 2 1

Table 5.2: Degree of cohesion in Service-Oriented System

42 Results and Discussion

Tight service cohesion for Service-Based System is computed as follows:
BookService(TSC) = 2/6 = 0.33
CartService(TSC) = 2/2 = 1
AdminService(TSC) = 2/3 = 0.66

Loose service cohesion
BookService(LSC) = 3/6 = 0.50
CartService(LSC) = 2/2 = 1
AdminService(LSC) = 2/3 = 0.66

5.1.1.3 Coupling in a Object-Oriented System

Figure 5.5: Coupling in a Object-Oriented System

Degree of coupling for a Object-Oriented System can be calculated as following:
RegisterClass contains four methods. It sends messages to the both of the classes, admin-
istration and shoppingcart.Furthermore, It receives messages by AdministrationClass only.
Therefore, message passing class (MPC) for this class is 6 and message receiving class(MRC)
is 1. Hence, the degree of coupling can be calculated as:

5.1 Quantitative Results 43

Degree of coupling(DC) = MRC/MPC

DC(RegisterClass)= 1/6 = 0.16

Administration class has six methods. It is passing messages to both Register and Shopping-
Cart Classes but receiving messages from RegisterClass only. Therefore, MPC for this class
is 2 and MRC is 5. Thus the degree of coupling can be given as:

DC(AdminClass) = 5/2 = 2.5

ShoppingCart class consists of three methods and it receives messages from both the other
classes but doesn’t send any messages. Hence MPC for this class is 0 and MRC is 2.
Thus the degree of coupling can be calculated as:

DC(ShoppingCart) = 2/0 =∞

Absolute dependence of class(ADC) in a Object-Oriented System is computed as:
RegisterClass(ADC) = 2
AdministrationClass(ADC) = 2
ShoppingCartClass(ADC) = 0

Absolute importance of class(AIC) in a Object-Oriented System can be calculated
as:
RegisterClass(AIC) = 1
AdministrationClass(AIC) = 1
ShoppingCartClass(AIC) = 2

Figure 5.6: Attribute Calling Graph for a Object-Oriented System

44 Results and Discussion

The degree of cohesion of a Object-Oriented System is calculated in the following table:

Class No. of attributes
used

Total no. of
attributes

Degree of cohesion

Register 2 2 1
Cart 2 4 1/2

Admin 5 7 5/7

Table 5.3: Degree of cohesion in Object-Oriented System

Tight class cohesion in Object-Oriented is computed as:
RegisterClass(TCC) = 1/6 = 0.16
AdministrationClass(TCC) = 0/15 = 0
ShoppingCartClass(TCC) = 1/3 = 0.33

Loose class cohesion in Object-Oriented is calculated as:
RegisterClass(LCC) = 3/6 = 0.50
AdministrationClass(LCC) = 6/15 = 0.40
ShoppingCartClass(LCC) = 1/3 = 0.33

5.1.1.4 Discussion

Before applying software metrics to the service based and Object-Oriented Systems, an
informal hypothesis and analysis were drawn from literature research. This hypothesis
and the analysis were assessed against the measures collected from a set of coupling and
cohesion metrics.

Metric measures collected from OBS are presented in the table 5.4. These measures
were obtained by applying a set of coupling and cohesion metrics on the designed service-
based and Object-Oriented Online BookStore. Values for The degree of coupling(DC)
metrics are not used since they are not suitable for comparison purpose.

System type AIS AVG ADS AVG DCHAVG TCCAVG LCCAVG

OO 1.33 1.33 0.73 0.16 0.41
SO 1 1 0.90 0.76 0.72

Table 5.4: Metrics values collected by measuring Service-Oriented and Object-Oriented OBS

5.1 Quantitative Results 45

0,5

0,6

0,7

0,8

0,9

1

0

0,1

0,2

0,3

0,4

DCH (Degree of cohesion) TCC (Tight class cohesion) LCC (Loose class cohesion)

Service orientation Object-orientation

Figure 5.7: Comparing cohesion between Service-Based and Object-Oriented Online Book-
Store(OBS)

1

1,2

1,4

0

0,2

0,4

0,6

0,8

AIS(Absolute Importance of service) ADS(Absolute dependence of service)

Service orientation Object-orientation

Figure 5.8: Comparing coupling between Service-based and Object-Oriented Online Book-
Store(OBS)

H1: Systems developed using Service Orientation approach indicates lower degree of
coupling as compared to the systems developed using Object-Orientation approach since
there is no strong connection between the services in a system developed using Service
Oriented approach [46, 48].

Mansour and Mustafa [46] analyzed that Systems developed using Service Orientation
approach exhibit higher degree of cohesion compared to the systems developed using
Object-Oriented approach since the business logic is encapsulated in the business con-
stituents itself.

Some general observations can be formed regarding the metrics results concerning the
above mentioned informal hypothesis and analysis.

46 Results and Discussion

Firstly, The AIS and ADS metrics show a bit high values for OO than a Service-
Based System. The Service-Based System presents a bit lower degree of coupling compared
to an Object-Oriented System and hence favoring hypotheses 1.

Secondly, The DCH, TCC and LCC counts are higher for a Service-Based System
compared to OO approach. Hence an observation can be made that Service-Based System
indicates a higher degree of cohesion compared to the traditional methods like OO as
anticipated by the analysis.

5.1.2 Questionnaire Survey

Online survey tool SmartSurvey [52] provided a platform to host survey questionnaire. The
survey consists of twelve questions divided into three parts. Survey link is shared among
the people having relevant development experience with service-based and Object-Oriented
Systems. It includes personal contacts and was openly distributed within industry.
The survey is summarized in the table below:

Total no. of questions 12
Start date of the survey 19.04.2018
End date of the survey 06.05.2018

Total participants 33
Participants type Developers with relevant expertise

Table 5.5: Summary of the survey questionnaire

Total 32 participants were able to finish the survey questionnaire. Based on various aspects
of software maintainability, Three different sets of questions were prepared. It enabled us to
interpret the notion of maintainability in service-based and Object-Oriented Systems.

Survey results are divided into three parts. The first part consists of four questions.
Their results are displayed one by one below.

1. Importance of maintainability

As can be seen from figure 5.9 , over 90% of the respondents reported software main-
tainability as an important quality aspect.

2. Impact of coupling on maintainability

As per results from figure 5.10, 29 out of 32 respondents believe that coupling in
software system impacts software maintainability substantially.

3. Impact of cohesion on maintainability

Around half of the respondents reported cohesion as an influencing factor on software
maintainability. This can be seen in figure 5.11.

5.1 Quantitative Results 47

4. Importance of software quality measurements

Majority of the respondents(29) considered internal quality measures as an important
aspect of software systems. Figure 5.12 depicts the same results.

6,3%

43,8%

Maintainability is an important quality aspect in

software systems.

Strongly Disagree

Disagree

50,0%

Disagree

Neutral

Agree

Strongly Agree

Figure 5.9: Importance of software maintainability

48 Results and Discussion

6,3%

37,5%

Coupling has substantial impact on maintainability.

Strongly Disagree

Disagree

Neutral

53,1%

Neutral

Agree

Strongly Agree

Figure 5.10: Impact of coupling on maintainability

5.1 Quantitative Results 49

9,4%

31,3%

6,3%

Cohesion has substantial impact on maintainability.

Strongly Disagree

Disagree

Neutral31,3%

53,1%

Neutral

Agree

Strongly Agree

Figure 5.11: Impact of cohesion on maintainability

50 Results and Discussion

9,4%

18,8%

Measuring internal software quality brings

valuable insights(e.g. coupling, cohesion, size etc).

Strongly Disagree

Disagree

71,9%

Disagree

Neutral

Agree

Strongly Agree

Figure 5.12: Importance of software quality measurements

The second part of the survey results provides the notion of maintainability of a Service-
Based System and an Object-Oriented System. It consists of five questions, which are
presented below:

5. Notion of coupling in SBS and OO

As visible from the figure ??, Over 90% of the respondents observed Service-Based
Systems as comparatively loosely coupled systems while only half of the respondents
considered Object-Oriented as loosely coupled systems compared to SBS.

5.1 Quantitative Results 51

6. Notion of cohesion in SBS and OO

Around 63% of the participants informed Service-Based Systems as comparatively
highly cohesive systems while up to 50% of the participants viewed Object-Oriented System
facilitating a higher degree of cohesion.

7. Reusability in SBS and OO

25 participants identified that a Service-Based System promises comparatively a better
degree of reusability where in case of Object-Orientation 19 participants reported better
reusability.

8. Analyzability level in SBS and OO

In this maintainability aspect, Respondents reported Service-Based Systems as better
analyzable compared with Object-Oriented Systems..

9. Testing complexity in SBS and OO

Above 70% of the respondents observed that Object-Oriented Systems possess a com-
paratively reduced testing complexity.

20

25

30

35

In my opinion, software based on facilitates a

comparatively high degree of cohesion.

Strongly Agree

Agree

0

5

10

15

Service-based systems Object-oriented systems

Agree

Neutral

Disagree

Strongly Disagree

Figure 5.13: Notion of cohesion in SBS and OO

52 Results and Discussion

20

25

30

35

In my experience, software based on promises a

significant extent of reusability.

Strongly Agree

Agree

0

5

10

15

Service-based systems Object-oriented systems

Agree

Neutral

Disagree

Strongly Disagree

Figure 5.14: Reusability in SBS and OO

5.1 Quantitative Results 53

20

25

30

35

In my opinion, software based on possesses a

comparatively high level of analyzability.

Strongly Agree

Agree

0

5

10

15

Service-based systems Object-oriented systems

Agree

Neutral

Disagree

Strongly Disagree

Figure 5.15: Analyzability level in SBS and OO

54 Results and Discussion

20

25

30

35

In my experience, software based on reduces the

complexity of testing.

Strongly Agree

Agree

0

5

10

15

Service-based systems Object-oriented systems

Agree

Neutral

Disagree

Strongly Disagree

Figure 5.16: Testing complexity in SBS and OO

The last part provides the ranking based analysis for the Service-Based, Object-Oriented,
Component-Based paradigms. It contains three questions and their results are outlined below:

10. Modifiability

Majority of the respondents ranked Service-Based Systems as better modifiable sys-
tems while Object-Oriented Systems secured the second position in this ranking based
analysis. The figure 5.17 shows the results collected from the analysis.

11. Encapsulation and abstraction

Most of the participants identified service based system with a better degree of encap-
sulation and abstraction where Object-Orientation appeared to be the second best option in
the process. The same can be observed from the figure 5.18.

12. Size and complexity

5.1 Quantitative Results 55

As noticeable from the figure 5.19, Participants observed that Object-Oriented Paradigm
provides best manageable size and complexity where Service Orientation appeared to be the
next best option in the process. However their differences were observed in a small extent.

43

In your experience, which of the three paradigms

provides on average the best degree of

modifiability?

Service orientation86

63

Service orientation

Objected orientation

Component-based

Figure 5.17: Notion of modifiability in the paradigms

56 Results and Discussion

43

In your experience, which of the three paradigms

provides on average the best degree of

encapsulation and abstraction?

Service orientation85

58

Service orientation

Objected orientation

Component-based

Figure 5.18: Encapsulation and abstraction of the paradigms

5.1 Quantitative Results 57

74

39

In your experience, which of the three paradigms

provides on average the best manageable size and

complexity?

Objected orientation
74

73

Objected orientation

Service orientation

Component-based

Figure 5.19: Size and complexity of the paradigms

Discussion

In the survey, above 90% of the respondents feel that maintainability is an essential
aspect for keeping software quality intact. They believe that coupling has a substantial
impact on the software maintainability while cohesion has a comparatively lower impact.

From the figure 5.12, participants believe that measuring internal quality such as size,
complexity and coupling can provide valuable insights on software maintainability.

Comparative analysis of maintainability between SBS and OO
Developers assume that Service-Based Systems promise a relatively lower degree of
coupling and a higher degree of cohesion. Moreover, It is observed that SBS indicates a
higher degree of reusability than Object-Oriented Systems.

58 Results and Discussion

In the view of developers, Service-Based System exhibits a high level of analyzability
as compared to the Object-Oriented System.

The majority of the respondents believe that Object-Oriented Systems reduce the de-
gree of testing complexities as compared with Service-Based Systems.

Rank based analysis
Developers believe that Service-Based Systems are better at modifiability, encapsulation
and abstraction while Object-Oriented Systems demonstrate relatively a bit lower degree of
complexity.

5.2 Qualitative Results 59

5.2 Qualitative Results

Eight experts are interviewed to gather insights into Service Orientation and Object Orienta-
tion w.r.t. maintainability.

One departmental head, one technical lead, four senior software engineers and two
software engineers were interviewed in a semi-structured format. The experts were asked
some general questions regarding work and knowledge in their respective disciplines.
It was followed by showing them two functionally equivalent systems developed with
two alternatives and discussing that in details. Afterward, they were asked about their
experiences and opinions on various aspects of maintainability mainly revolving around a
set of four essential elements modifiability, system complexity, analyzability, and stability.
It is aided by some follow-up questions as well.

The expert interview ended with a discussion about the impact of quality attributes on
software maintainability.

Demographic data of the experts is depicted in the following table.

Type of organization Number
Product 4
Service 2

Research 2
Original background of interviewees

Engineering 2
Machine learning 2

Information systems 1
Computer science 3

Age of interviewees
Range of ages

20-30 years old 1
30-40 years old 5
31-40 years old 2

5.2.1 Results from Expert Interviews

Question 1: In your opinion, What do you think about modifiability in Service-Based
Systems and Object-Oriented Systems?
This question explores experts experiences with extensibility and changeability into Service-
Based Systems and Object-Oriented Systems.

Responses from experts
In response to this question, Majority of the experts stated modifiability as highly essential
quality attributes. Five out of eight experts admitted that Service-Based Systems are

60 Results and Discussion

better when it comes to extending already developed systems. Experts emphasized on the
modularity of the services which allows creating an independent set of services and It further
helps to reduce the cost of service implementation. Few of the experts highlighted that
Service Orientation approach is much convenient when business requirements are frequently
changing.

Question 2: In your experience, How do you see the size and complexities of Service-Based
Systems and Object-Oriented Systems?
This question looks at exploring system size and complexities of the Service-Based Systems
and Object-Oriented Systems.

Responses from experts
75% of the experts reported that Service-Based Systems are relatively complex as compared
to Object-Oriented Systems. Experts considered Object-Orientation approach as broadly
experienced and stressed mature tool support that exists for Object-Oriented Systems.
Majorely, they raised their concerns over the structure and mechanism for implementing
services and due to this reason stated Service Orientation as relatively complex.

Question 3: In your opinion, How do you see the analyzability of two alternatives,
i.e. Service-Based Systems and Object-Oriented Systems?
This question tries to investigate the readability aspect of both the alternatives.

Responses from experts
Most of the experts expressed that service based system provides a better degree of analyz-
ability. The primary reason for the preference was due to the independent service creation in
a Service-Oriented approach. Experts addressed that independent service creation allows a
greater extent of reusability which in turn improves the overall readability in the system.

Question 4: In your experience, How do you observe the stability of Service-Based
Systems and Object-Oriented Systems?
This question explores the degree of stability concerning the Service-Based Systems and
Object-Oriented Systems.

Majority of the experts indicate that Service-Based Systems promise a better degree
of stability. Experts state that since services are independent it brings a lot of stability into
the system. As per experts when there is a failure in service, it can be easily retrieved while
in case of Object Orientation sometimes it may require cloning the whole system which
leads to the memory overhead.

5.2.2 Discussion of key findings arising from the expert interviews

In this section, we will discuss the key interpretations and issues which are derived
from the expert’s interviews. In this process, Experts opinions are analyzed thoroughly and
interpretations are made manually. These interpretations and issues are discussed one-by one.

Modifiability

5.2 Qualitative Results 61

As per experts, Service-Oriented System provides a better degree of modifiability since the
amount of change in the code is comparatively less and straightforward as compared to
Object-Oriented Systems.

Size and complexity
Experts opinions indicate that Object-Oriented Systems are less complex as compared to
Service-Oriented Systems since Object-Orientation is equipped with a mature tool supports
while on the other hand experts feel that services are comparatively complex to implement.

Analyzability
Experts suggest that Service-Oriented Systems posses a better degree of analyzability due
to a lower degree of dependency among the modules while experts felt that Object-Oriented
Systems have greater dependencies among modules.

Stability
Experts hints that Service-Oriented Systems provide better stability as compared to Object-
Oriented Systems since they are better recoverable from system failures.

From experts interviews, three key issues were identified concerning the Service-Oriented
approach.

Lack of tool support
Traditional technologies are willing to migrate in service orientation but they are facing a
challenge with migration since Service Orientation lacks mature tool support for migrating
the legacy applications.

Change in services
If a service is to be modified, then it impacts a large number of composite services.
Generally, services are constrained to service level agreements and it affects profoundly to
the service providers.

Grouping services
Another issue with Service Orientation is the grouping of services in a logical domain.
Suitable grouping can allow a service provider to simplify the overall architecture. In this
process number of components to be addressed are reduced.

62 Results and Discussion

5.3 Experimental Results

A group of eight developers contributes to the implementation of the experimental approach.
Each of them is requested to perform development on a Service-Based System or Object-
Oriented System. It consists of an exercise requiring a book search functionality in the
already designed systems in respective approaches. This functionality allows the registered
users to search for a book by its name.

Their work and efforts are tracked for the analysis of both paradigms.

Type of system No. of developers Exercise Location
Service-Based

System
4 Adding book search

function into
already developed

systems

Germany

Object-Oriented
System

4

Table 5.6: Experiment information

The following figure shows the time taken by the developers in modifying a Service-Based
System and Object-Oriented System. The modification consists of adding a search function
in the existing SBS and Object-Oriented System.

1

1,2

1,4

P3 P4
P5

P6

P8

P2

0

0,2

0,4

0,6

0,8

SO OO

P3
P5

P6

P7

P1

P=participant

Figure 5.20: Development duration of the participants in SO and OO

Development efforts were measured from the lines of code written by the developers. Below
figure displays the lines of code distribution in both of the systems.

5.3 Experimental Results 63

6

8

10

12

14

16

P3

P4

P5

P6

P7

P8

P1

P2

0

2

4

6

SO OO

P3

P=participant

Figure 5.21: Development efforts of the participants in SO and OO

The figure 5.22 depicts the average development time devoted by the developers for the
modifications in a Service-Based System and Object-Oriented System.
Experimental results indicate that Service-Based Systems are easier to extend as compared to
Object-Oriented Systems and this provides another interpretation that they are less complex
to modifications.

0,8

1

1,2

0

0,2

0,4

0,6

0,8

SO OO

Figure 5.22: Comparative analysis of development time in SO and OO

64 Results and Discussion

10

12

14

0

2

4

6

8

SO OO

Figure 5.23: Comparative analysis of development efforts in SO and OO

Furthermore, development efforts analysis suggests that Service-Based Systems require com-
paratively fewer efforts than Object-Oriented Systems.

6 Limitations

While interpreting the results of this thesis, a number of limitations have to be considered in
pursuance of applied research methodologies:

The literature review only covers coupling and cohesion quality attributes as affecting
factors on maintainability. Other quality attributes can also have a significant impact on the
overall maintainability of the software.

There are some limitations related to the software metrics. Firstly, the design and im-
plementations are limited to the selection of the book and adding it to the shopping cart.
Secondly, the implementation lacks data persistence. Such aspects can affect the structural
attributes under evaluation.

Furthermore, Online BookStore(OBS) can be implemented in several ways using both
Service Orientation and Object Orientation and different implementation may present
different measures. A further limitation is that non-functional requirements were not taken
into account while developing SO and OO system. As a consequence, non-functional
requirements may have unknown effects on the systems.

Since software metric results are obtained by comparing a comparatively small service-based
and Object-Oriented System, they may vary for significantly large systems. Moreover, the
metrics are only evaluated for the design/implementation artifacts; Node libraries, Java
libraries, etc. were not included.

Another limitation is that the Service-Based System is dependent on Object-Orientation
approach where each service is implemented using OO development.

Like most-survey based studies and expert interviews, survey results and qualitative
results from experts interviews may be subject to participants bias. Exclusively surveying
the insights of developers and interviewing IT experts, who supposedly have useful informa-
tion regarding the maintainability of Service-Based Systems and Object-Oriented Systems.
We can build software of arbitrary quality with all three paradigms mentioned in the survey
questionnaire. Therefore, the experience/quality of the developers is much more important
than the chosen paradigm. Hence survey and experts interview result mirror the subjective
affinity of developers and experts towards these paradigms.

The survey, experts interviews and experiment is conducted in one location(Germany). It
limits the generalizability of our various approaches.

Furthermore, experimental results are collected from a small group of developers.

66 Limitations

Developers relative experience may affect the work and efforts recorded from the experiment.

Nevertheless, despite such potential limitations, we think that our research approaches
provide valuable insights on the maintainability of service-based and Object-Oriented
System.

7 Conclusion

The purpose of this thesis is to provide limited generalizability on the maintainability of
Service-Based System and Object-Oriented System. A case study was developed using two
contrast approaches. Resulting implementations were measured using a set of six mutually
consistent metrics.

7.0.1 Summary

The outcome of the software metrics suggests that 1) The Service-Oriented approach
exhibit a lower degree of coupling than the Object-Oriented approach to a certain extent,
2) The Service-Oriented approach indicates a higher degree of cohesion compared to
Object-Orientation.
Survey results imply that Service-Oriented System promises a better degree of modifiability,
encapsulation and abstraction compared to Object-Orientation while object-orientation
provides a reduced degree of testing and system complexity.
Experts interview indicates that Service-Oriented System presents a better degree of
stability, analyzability and modifiability while Object-Oriented System tends to provide a
lower degree of complexity.
Furthermore, experimental results denotes that Service-Oriented Systems provide a better
degree of extensibility and changeability.

7.0.2 Future Research

The findings of this thesis contribute to the research on the maintainability of service-based
and Object-Oriented System. Future research may utilize these results and provide further
insights.

This case study is limited in two key quality attributes: coupling and cohesion. Addi-
tional quality attributes like size and complexity induce a significant impact on the overall
maintainability of software systems. Therefore, further analysis of these attributes can
provide more useful insights on maintainability.
Overall this thesis attempts to generalize the maintainability of a Service-Oriented and
Object-Oriented System from the research perspective.
There is limited research exists that compares Service Orientation and Object Orientation.
Thus, I hope that academics continue to explore maintainability from a research perspective
and throw more light onto this essential quality attributes.

List of Figures

1.1 An outline describing the organisation of the thesis 3

2.1 Evolution of Service-Oriented Architecture 5
2.2 Primary influence of Service-Oriented Architecture [9] 6
2.3 Potential benefits of Service-Oriented Architecture 6
2.4 A basic Service-Oriented architecture[10] 7
2.5 Collaborations in service-Oriented Architecture[11] 7
2.6 Principles of Service-Oriented Architecture[12] 8
2.7 Why service abstraction needed [13] . 9
2.8 Coupling [14] . 9
2.9 Reusability in Service Orientation [15] . 10
2.10 Inter relation of service reusability with other design principles [17] 11
2.11 Service composition in Service Orientation [18] 12
2.12 Characteristics of SOA[19] . 13
2.13 Software Quality Sub-characteristics [22] 14
2.14 Various approaches to Quality [23] . 15
2.15 Relations among elements [22] . 15
2.16 Types of software maintainability . 16

3.1 Taxonomy of metrics [46] . 26

4.1 Structure of the case study . 27
4.2 An Exploratory strategy . 29
4.3 Flexible type of research design[49] . 30
4.4 Deductive approach[50] . 31
4.5 A service-based online bookstore . 33
4.6 An Object-Oriented online bookstore . 34

5.1 Phases in the collection of quantitative results and findings 37
5.2 coupling and cohesion metrics . 38
5.3 Coupling in a Service-Based System . 38
5.4 Attributes Calling Graph for a Service-Based System 40
5.5 Coupling in a Object-Oriented System . 42
5.6 Attribute Calling Graph for a Object-Oriented System 43
5.7 Comparing cohesion between Service-Based and Object-Oriented Online

BookStore(OBS) . 45
5.8 Comparing coupling between Service-based and Object-Oriented Online

BookStore(OBS) . 45
5.9 Importance of software maintainability . 47
5.10 Impact of coupling on maintainability . 48

70 List of Figures

5.11 Impact of cohesion on maintainability . 49
5.12 Importance of software quality measurements 50
5.13 Notion of cohesion in SBS and OO . 51
5.14 Reusability in SBS and OO . 52
5.15 Analyzability level in SBS and OO . 53
5.16 Testing complexity in SBS and OO . 54
5.17 Notion of modifiability in the paradigms . 55
5.18 Encapsulation and abstraction of the paradigms 56
5.19 Size and complexity of the paradigms . 57
5.20 Development duration of the participants in SO and OO 62
5.21 Development efforts of the participants in SO and OO 63
5.22 Comparative analysis of development time in SO and OO 63
5.23 Comparative analysis of development efforts in SO and OO 64

List of Tables

2.1 Factors affecting code, documentation and tools [25] 17
2.2 Factors affecting maintainability, based on methodology [26] 17
2.3 Factors affecting maintainability, based on maintainability model [25] 18
2.4 Metrics suite by Keremer [28] . 19
2.5 Traditional metrics [33] . 19

3.1 Characteristics of metrics . 22
3.2 A contrast between Service Orientation and Object-Orientation paradigms [46] 24
3.3 Dissimilarities between Service Orientation and Object-Orientation

paradigms [47] . 25

4.1 Distribution of the phases . 28
4.2 Summary of the Research Approach . 32
4.3 Survey questionnaire . 35
4.4 Scope of experts interviews . 36

5.1 Summary of coupling metrics for Service-Based System 39
5.2 Degree of cohesion in Service-Oriented System 41
5.3 Degree of cohesion in Object-Oriented System 44
5.4 Metrics values collected by measuring Service-Oriented and Object-Oriented

OBS . 44
5.5 Summary of the survey questionnaire . 46
5.6 Experiment information . 62

Bibliography

[1] T. DeMarco, Controlling software projects: Management, measurement, and estimates.
Prentice Hall PTR, 1986.

[2] R. Land, “Measurements of software maintainability,” in Proceedings of ARTES Grad-
uate Student Conference, ARTES, 2002, pp. 1–7.

[3] L. Bass, Software architecture in practice. Pearson Education India, 2012.

[4] E. Arisholm, “Empirical assessment of the impact of structural properties on the
changeability of object-oriented software,” Information and software technology,
vol. 48, no. 11, pp. 1046–1055, 2006.

[5] L. C. Briand, J. W. Daly and J. K. Wust, “A unified framework for coupling measure-
ment in object-oriented systems,” IEEE Transactions on software Engineering, vol. 25,
no. 1, pp. 91–121, 1999.

[6] J. Al Dallal, “Object-oriented class maintainability prediction using internal quality
attributes,” Information and Software Technology, vol. 55, no. 11, pp. 2028–2048, 2013.

[7] “Business implications of soa.” [Online]. Available: https:
//www.ibm.com/support/knowledgecenter/en/SSMQ79_9.5.1/com.ibm.egl.pg.doc/

topics/pegl_serv_overview.html

[8] “Service-oriented architecture: The business drivers for a new approach.” [Online].
Available: http://cic.puj.edu.co/wiki/lib/exe/fetch.php?media=materias:soa-ibmvision.
pdf

[9] T. Erl, Soa: principles of service design. Prentice Hall Upper Saddle River, 2008,
vol. 1.

[10] “Service architecture: Connections.” [Online]. Available: https:
//www.service-architecture.com/articles/web-services/service-oriented_architecture_
soa_definition.html

[11] “Service-oriented architecture: Soa collaborations.” [Online]. Available: http:
//cic.puj.edu.co/wiki/lib/exe/fetch.php?media=materias:soa-ibmvision.pdf

[12] “Service-orientation design principles.” [Online]. Available: http://serviceorientation.
com/serviceorientation/services

[13] “Soa principles : 5. service abstraction.” [Online]. Available: https://www.slideshare.
net/MohamedZakarya2/soa-principles-5-service-abstraction

[14] “Embolden low coupling with dependency injec-
tion.” [Online]. Available: https://medium.com/@CStudio/

embolden-low-coupling-with-dependency-injection-a1e6c1970872

https://www.ibm.com/support/knowledgecenter/en/SSMQ79_9.5.1/com.ibm.egl.pg.doc/topics/pegl_serv_overview.html
https://www.ibm.com/support/knowledgecenter/en/SSMQ79_9.5.1/com.ibm.egl.pg.doc/topics/pegl_serv_overview.html
https://www.ibm.com/support/knowledgecenter/en/SSMQ79_9.5.1/com.ibm.egl.pg.doc/topics/pegl_serv_overview.html
http://cic.puj.edu.co/wiki/lib/exe/fetch.php?media=materias:soa-ibmvision.pdf
http://cic.puj.edu.co/wiki/lib/exe/fetch.php?media=materias:soa-ibmvision.pdf
https://www.service-architecture.com/articles/web-services/service-oriented_architecture_soa_definition.html
https://www.service-architecture.com/articles/web-services/service-oriented_architecture_soa_definition.html
https://www.service-architecture.com/articles/web-services/service-oriented_architecture_soa_definition.html
http://cic.puj.edu.co/wiki/lib/exe/fetch.php?media=materias:soa-ibmvision.pdf
http://cic.puj.edu.co/wiki/lib/exe/fetch.php?media=materias:soa-ibmvision.pdf
http://serviceorientation.com/serviceorientation/services
http://serviceorientation.com/serviceorientation/services
https://www.slideshare.net/MohamedZakarya2/soa-principles-5-service-abstraction
https://www.slideshare.net/MohamedZakarya2/soa-principles-5-service-abstraction
https://medium.com/@CStudio/embolden-low-coupling-with-dependency-injection-a1e6c1970872
https://medium.com/@CStudio/embolden-low-coupling-with-dependency-injection-a1e6c1970872

74 Bibliography

[15] “Enterprise benefits on service oriented architecture – soa:
Reusability.” [Online]. Available: https://www.javacodegeeks.com/2013/03/

enterprise-benefits-on-service-oriented-architecture-soa.html

[16] “Service reusability.” [Online]. Available: http://serviceorientation.com/

serviceorientation/service_reusability

[17] “Principle interrelationships and service layers.” [On-
line]. Available: https://searchmicroservices.techtarget.com/tip/

The-principles-of-service-orientation-part-6-of-6-Principle-interrelationships-and-service-layers

[18] “Capability composition.” [Online]. Available: http://soapatterns.org/design_patterns/
capability_composition

[19] “The service, the cloud the method: The connection points.” [Online]. Available:
http://2010.secrus.org/wp-content/uploads/download/Erl.pdf

[20] “Soa characteristic:enterprise-centric.” [Online]. Available: http://2010.secrus.org/

wp-content/uploads/download/Erl.pdf

[21] P. B. Crosby, Quality is free: The art of making quality certain. Signet, 1980.

[22] F. Losavio, L. Chirinos, N. Lévy and A. Ramdane-Cherif, “Quality characteristics for
software architecture,” Journal of object Technology, vol. 2, no. 2, pp. 133–150, 2003.

[23] P. Berander, L.-O. Damm, J. Eriksson, T. Gorschek, K. Henningsson, P. Jönsson,
S. Kågström, D. Milicic, F. Mårtensson, K. Rönkkö et al., “Software quality attributes
and trade-offs,” Blekinge Institute of Technology, 2005.

[24] E. Iee, “Ieee standard glossary of software engineering terminology,” 1990.

[25] B. Kumar, “A survey of key factors affecting software maintainability,” in Computing
Sciences (ICCS), 2012 International Conference on. IEEE, 2012, pp. 261–266.

[26] D. E. Peercy, “A software maintainability evaluation methodology,” IEEE Transactions
on Software Engineering, no. 4, pp. 343–351, 1981.

[27] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented design,” IEEE
Transactions on software engineering, vol. 20, no. 6, pp. 476–493, 1994.

[28] S. K. Dubey and A. Rana, “Assessment of maintainability metrics for object-oriented
software system,” ACM SIGSOFT Software Engineering Notes, vol. 36, no. 5, pp. 1–7,
2011.

[29] A. Yamashita and L. Moonen, “Do code smells reflect important maintainability as-
pects?” in Software Maintenance (ICSM), 2012 28th IEEE International Conference
on. IEEE, 2012, pp. 306–315.

[30] T. J. McCabe, “A complexity measure,” IEEE Transactions on software Engineering,
no. 4, pp. 308–320, 1976.

[31] M. H. Halstead, “Elements of software science,” 1977.

[32] K. D. Welker and P. W. Oman, “Software maintainability metrics models in practice,”
Crosstalk, Journal of Defense Software Engineering, vol. 8, no. 11, pp. 19–23, 1995.

[33] J. Viljanen et al., “Measuring software maintainability,” 2015.

https://www.javacodegeeks.com/2013/03/enterprise-benefits-on-service-oriented-architecture-soa.html
https://www.javacodegeeks.com/2013/03/enterprise-benefits-on-service-oriented-architecture-soa.html
http://serviceorientation.com/serviceorientation/service_reusability
http://serviceorientation.com/serviceorientation/service_reusability
https://searchmicroservices.techtarget.com/tip/The-principles-of-service-orientation-part-6-of-6-Principle-interrelationships-and-service-layers
https://searchmicroservices.techtarget.com/tip/The-principles-of-service-orientation-part-6-of-6-Principle-interrelationships-and-service-layers
http://soapatterns.org/design_patterns/capability_composition
http://soapatterns.org/design_patterns/capability_composition
http://2010.secrus.org/wp-content/uploads/download/Erl.pdf
http://2010.secrus.org/wp-content/uploads/download/Erl.pdf
http://2010.secrus.org/wp-content/uploads/download/Erl.pdf

Bibliography 75

[34] M. Perepletchikov and C. Ryan, “A controlled experiment for evaluating the impact of
coupling on the maintainability of service-oriented software,” IEEE Transactions on
software engineering, vol. 37, no. 4, pp. 449–465, 2011.

[35] M. Perepletchikov, C. Ryan, K. Frampton and Z. Tari, “Coupling metrics for predict-
ing maintainability in service-oriented designs,” in Software Engineering Conference,
2007. ASWEC 2007. 18th Australian. IEEE, 2007, pp. 329–340.

[36] N. Fenton, “Software measurement: A necessary scientific basis,” IEEE Transactions
on software engineering, vol. 20, no. 3, pp. 199–206, 1994.

[37] L. C. Briand, J. Daly, V. Porter and J. Wust, “A comprehensive empirical validation of
design measures for object-oriented systems,” in Software Metrics Symposium, 1998.
Metrics 1998. Proceedings. Fifth International. IEEE, 1998, pp. 246–257.

[38] M. Alshayeb and W. Li, “An empirical validation of object-oriented metrics in two
different iterative software processes,” IEEE Transactions on software engineering,
vol. 29, no. 11, pp. 1043–1049, 2003.

[39] D. P. Darcy, C. F. Kemerer, S. A. Slaughter and J. E. Tomayko, “The structural com-
plexity of software an experimental test,” IEEE Transactions on Software Engineering,
vol. 31, no. 11, pp. 982–995, 2005.

[40] I. O. for Standardization and I. E. Commission, Software Engineering–Product Quality:
Quality model. ISO/IEC, 2001, vol. 1.

[41] M. Perepletchikov, C. Ryan and K. Frampton, “Cohesion metrics for predicting main-
tainability of service-oriented software,” in Quality Software, 2007. QSIC’07. Seventh
International Conference on. IEEE, 2007, pp. 328–335.

[42] D. Rud, A. Schmietendorf and R. Dumke, “Product metrics for service-oriented infras-
tructures,” IWSM/MetriKon, pp. 161–174, 2006.

[43] V. Saxena and S. Kumar, “Impact of coupling and cohesion in object-oriented technol-
ogy,” Journal of Software Engineering and Applications, vol. 5, no. 09, p. 671, 2012.

[44] L. Hui, H. Yu, J. Zhihong, H. Yuancan and H. Qiang, “High-cohesion and low-coupling
integrative joint for space manipulator,” in Advanced Intelligent Mechatronics, 2009.
AIM 2009. IEEE/ASME International Conference on. IEEE, 2009, pp. 1463–1467.

[45] J. M. Bieman and B.-K. Kang, “Cohesion and reuse in an object-oriented system,” ACM
SIGSOFT Software Engineering Notes, vol. 20, no. SI, pp. 259–262, 1995.

[46] Y. I. Mansour and S. H. Mustafa, “Assessing internal software quality attributes of the
object-oriented and service-oriented software development paradigms: A comparative
study,” Journal of Software Engineering and Applications, vol. 4, no. 04, p. 244, 2011.

[47] G. Stubbings, “Service-orientation and object-orientation: Complementary design
paradigms,” SPARK, vol. 1, no. 1, 2010.

[48] M. Perepletchikov, C. Ryan and K. Frampton, “Comparing the impact of service-
oriented and object-oriented paradigms on the structural properties of software,” in
OTM Confederated International Conferences" On the Move to Meaningful Internet
Systems". Springer, 2005, pp. 431–441.

[49] V. B. Kampenes, B. Anda and T. Dybå, “Flexibility in research designs in empirical
software engineering.” in EASE. Citeseer, 2008.

76 Bibliography

[50] “Deduction induction.” [Online]. Available: https://socialresearchmethods.net/kb/

dedind.php

[51] P. Gandhi and P. K. Bhatia, “Optimization of object-oriented design using coupling
metrics,” Optimization, vol. 27, no. 10, 2011.

[52] “Online survey.” [Online]. Available: https://www.smartsurvey.co.uk/

https://socialresearchmethods.net/kb/dedind.php
https://socialresearchmethods.net/kb/dedind.php
https://www.smartsurvey.co.uk/

Declaration

Herewith, I declare that I have developed and written
the enclosed thesis entirely by myself and that I have
not used sources or means except those declared.

This thesis has not been submitted to any other au-
thority to achieve an academic grading and has not
been published elsewhere.

Stuttgart, 30.05.2018 Bhupendra Choudhary

	Introduction
	Motivation
	Thesis outline

	Key Concepts
	Service-Oriented Architecture
	Principles of Service Orientation
	Characteristics of Service Orientation

	Software Quality
	Software Maintainability
	Factors Affecting Maintainability
	Measuring Maintainability

	Related Work
	Exploring Maintainability
	Employing software metrics
	Coupling metrics
	Cohesion metrics

	Comparing Service Orientation and Object Orientation Paradigm

	Research Approach
	Research Methodology
	Research Strategy
	Research Design
	Research Category

	Research Approach for Data Collection
	Case Study Design

	Results and Discussion
	Quantitative Results
	Metrics Collection
	Coupling in Service-Based System
	Cohesion in Service-Based System
	Coupling in a Object-Oriented System
	Discussion

	Questionnaire Survey

	Qualitative Results
	Results from Expert Interviews
	Discussion of key findings arising from the expert interviews

	Experimental Results

	Limitations
	Conclusion
	Summary
	Future Research

	List of Figures
	List of Tables
	Bibliography

