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Introduction

Hemodynamic monitoring plays an important role in the 

management of today’s acutely ill patient. Essentially, 

hemodynamic monitoring can be helpful in two key 

settings. Th e fi rst is when a problem has been recognized; 

here, monitoring can help to identify underlying patho-

physiological processes so that appropriate forms of 

therapy can be selected. A typical scenario is the patient 

in shock for whom options are to give more fl uids or to 

give a vasopressor or an inotropic agent, depending on 

the hemodynamic evaluation. Th e second setting is more 

preventative, with monitoring allowing preemptive 

actions to be performed before a signifi cant problem 

arises. A typical scenario here is the perioperative patient 

in whom monitoring can be used to detect hypovolemia 

or low oxygen delivery (DO
2
) early, enabling timely 

corrective therapy to be initiated.

Although microcirculatory changes are believed to play 

a major role in the development of organ dysfunction and 

multiple organ failure and there is increasing interest in 

new techniques to monitor the microcirculation, these 

are not yet available for clinical practice, and hemo-

dynamic monitoring, therefore, still focuses on the macro-

circulation. Current hemodynamic monitoring there fore 

includes measurement of heart rate, arterial pressure, 

cardiac fi lling pressures or volumes, cardiac output, and 

mixed venous oxygen saturation (SvO
2
). Although not 

perfect, the pulmonary artery catheter (PAC) has long 

been considered the optimal form of hemodynamic 

monitoring, allowing for the almost continuous, 

simultaneous recording of pulmonary artery and cardiac 

fi lling pressures, cardiac output and SvO
2
. However, 

although the incidence of complications with the PAC is 

relatively low, the technique is still quite invasive and 

there is no clear evidence for improved outcomes asso-

ciated with its insertion and use to guide therapy [1]. As a 

result, interest in alternative monitoring systems has 

surged in recent years.

Th ere are now many diff erent monitoring systems 

available, and physicians may feel somewhat confused by 

the multiple possibilities. Th ese systems can be easily 

listed in order of degree of invasiveness, from the highly 

invasive PAC to the completely non-invasive bioimpedance/

bioreactance technique and transthoracic echo-Doppler. 

Classifying them according to how accurate (closeness of 

measured values to the ‘true’ value, expressed as the bias) 

or precise (variability of values due to random errors of 

measurement) [2] they are is more diffi  cult, in part 

because of the lack of a perfect ‘gold’ standard for com-

parison. Most devices have been evaluated by comparing 

their results with those obtained by intermittent thermo-

dilution from the PAC as the reference, although this 

technique has its own limitations and may not represent 

the best choice of comparator [2].

Our purpose in this consensus article is not to review 

the technology or modus operandi of the various systems 
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in any detail, not to provide readers with a shopping list, 

nor to identify one system that would be suitable in all 

patients; rather, we will briefl y review the advantages and 

limitations of each system, and propose ten key principles 

to guide choice of monitoring system(s) in today’s acutely 

ill patients.

Available systems for monitoring cardiac output

Examples of the main systems that are available for 

estimating cardiac output are listed in Table 1.

Thermodilution (pulmonary artery catheter)

Th e intermittent thermodilution technique, in which 

boluses of ice-cold fl uid are injected into the right atrium 

via a PAC and the change in temperature detected in the 

blood of the pulmonary artery used to calculate cardiac 

output, is still widely considered as the standard method 

of reference. Adaptation of the PAC to incorporate a 

thermal fi lament (Vigilance™, Edwards Life Sciences, 

Irvine, CA, USA) or thermal coil (OptiQ™, ICU Medical, 

San Clemente, CA, USA) that warms blood in the 

superior vena cava and measures changes in blood 

temperature at the PAC tip using a thermistor, provides a 

continuous measure of the trend in cardiac output, with 

the displayed values representing an average of the values 

over the previous 10 minutes. Th e averaged values have 

the advantage of eliminating variability in the presence of 

arrhythmias, but the disadvantage of not being real-time 

values, thus limiting the usefulness of this approach for 

assessing rapid hemodynamic changes in unstable 

patients.

Th e PAC has a key advantage over many other systems 

in that it provides simultaneous measurements of other 

hemodynamic parameters in addition to cardiac output, 

including pulmonary artery pressures, right-sided and 

left-sided fi lling pressures, and SvO
2
.

Transpulmonary or ultrasound indicator dilution

Th e PiCCO® (Pulsion Medical Systems, Munich, Germany), 

LiDCO™ (LiDCO Ltd, London, UK), VolumeView™ 

(Edwards Life Sciences), and COstatus® (Transonic Systems 

Inc., Ithaca, NY, USA) systems allow cardiac output to be 

investigated less invasively, using a central venous (to 

allow calibration) and an arterial catheter, rather than 

needing to introduce a catheter into the pulmonary 

artery. Th e PiCCO® and recently launched VolumeView™ 

systems require a femoral artery catheter. Th ese devices 

use the same basic principles of dilution to estimate the 

cardiac output as with PAC thermodilution. PiCCO® and 

VolumeView™ use injections of ice cold intravenous fl uid 

Table 1. Examples of available methods to measure cardiac output

Method System Limitations

Thermodilution PAC Invasiveness - training required

  

Transpulmonary  PiCCO® Decreased accuracy?

indicator dilution  Need for dedicated arterial catheter

 LiDCO™ Decreased accuracy?

  Need for lithium injection

  Interference by non-depolarizing muscle relaxants; inaccurate in case of 

  hyponatremia

 COstatus® Decreased accuracy?

 VolumeView™ Decreased accuracy?

  Need for dedicated arterial catheter

  

Arterial-pressure  PiCCO®, LiDCO™, Vigileo™,  Decreased accuracy, need for optimal arterial pressure tracing

waveform-derived MostCare™ 

  

Esophageal Doppler CardioQ™, WAKIe TO Training required, intermittent measurement

  

Suprasternal Doppler USCOM® Diffi  cult in some patients

  

Echocardiography Vivid™, Sonosite MicroMaxx®,  Training required, intermittent measurement

 Philips CX50™, and so on

  

Partial CO
2 
rebreathing NiCO® Less reliable in respiratory failure

  

Bioimpedance Lifegard®, TEBCO®, Hotman®,  Less reliable in critically ill patients, not applicable in cardiothoracic surgery

 BioZ®, and so on 

  

Bioreactance NICOM® Validated in only one study in critically ill patients

PAC, pulmonary artery catheter.
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as the indicator, measuring change in temperature down-

stream to calculate cardiac output, whereas LiDCO™ uses 

minute amounts of lithium chloride as the indicator and 

measures levels using a lithium-selective electrode. 

COstatus® calculates cardiac output by using ultrasound 

technology to measure changes in blood ultrasound 

velocity and blood fl ow following an injection of warm 

saline solution.

Cardiac output values measured using transpulmonary 

or ultrasound indicator dilution techniques correlate well 

with those measured using PAC thermodilution [3-6] 

and may show less respiratory phase-dependent variation 

[4]. Th e PiCCO® and the VolumeView™ systems provide 

variables in addition to cardiac output, such as global 

end-diastolic volume and measurements of extravascular 

lung water. Th e COstatus® system also provides some 

derived variables, including total end diastolic volume 

index.

Arterial pressure trace-derived estimation of cardiac 

output

In addition to the intermittent indicator dilution cardiac 

output measurements discussed above, the PiCCO® and 

LiDCO™ systems can also estimate cardiac output on a 

con tinuous basis from the arterial pressure waveform 

with (PiCCO2® and LiDCOplus™) or without (LidCOrapid™) 

the need for recalibration when changes in vascular com-

pliance may have occurred. Th e PiCCO® system uses a 

pulse contour analysis and the LiDCO™ system a pulse 

power analysis. In addition to these, Vigileo™ (Edwards 

Life Sciences) and MostCare™ (Vytech, Padova, Italy, 

using the Pressure Recording Analytical Method (PRAM)) 

systems have been developed for arterial waveform 

analysis without external calibration. Each of these 

systems contains a proprietary algorithm for converting a 

pressure-based signal into a fl ow measurement. Th e 

specifi c algorithms have individual characteristics and 

make diff erent assumptions - for example, related to 

arterial compliance (Vigileo™) or pressure (MostCare™) - 

which can make them more or less accurate depending 

on the clinical circumstances. Th e level of accuracy and 

precision of each device needs to be understood as the 

data cannot be superimposed from one system to 

another. Th e advantages of these arterial pressure-based 

cardiac output monitoring systems over PAC-derived 

measurements is primarily their less invasive nature.

Th e major weakness of all these devices is the drift in 

values whenever there is a major change in vascular 

compliance, as, for example, in vascular leak syndrome 

with increased vessel wall edema leading to decreased 

arterial compliance. Aortic valve regurgitation may 

further decrease the accuracy of these techniques. Over- 

or under-damped arterial pressure waveforms will also 

decrease the precision of these monitors.

Echocardiography and echo-Doppler

Echocardiography allows measurement of cardiac output 

using standard two-dimensional imaging or, more com-

monly, Doppler-based methods. Th e main interest in 

echocardiography in general is that it can be used not 

only for measurement of cardiac output but also for the 

additional assessment of cardiac function. Echo cardio-

graphy is particularly useful as a diagnostic tool because 

it allows the visualization of cardiac chambers, valves and 

pericardium. Small ventricles (‘kissing ventricles’) may 

incite fl uid administration whereas a poorly contractile 

myocardium may suggest that a dobutamine infusion is a 

better choice. Right ventricular dilatation may orient 

towards the diagnosis of massive pulmonary embolism or 

myocardial infarction whereas the presence of pericardial 

fl uid may suggest a diagnosis of pericardial tamponade. 

Severe valvulopathy can also be recognized promptly. 

However, echocardiography instruments and expertise 

may not be readily available everywhere; in some 

institutions, this is still the domain of the cardiologists 

and they need to be called to do the procedure.

If an ultrasound beam is directed along the aorta using a 

probe, part of the ultrasound signal will be refl ected back 

by the moving red blood cells at a diff erent frequency. Th e 

resultant Doppler shift in the frequency can be used to 

calculate the fl ow velocity and volume and hence cardiac 

output. Echo-Doppler evaluation can provide reasonable 

estimates of cardiac output, but again is operator-

dependent and continuous measurement of cardiac 

output using this technique is not possible. Echo-Doppler 

evalu ation may be applied either trans thoraci cally or 

trans esophageally. However, transthoracic tech niques do 

not always yield good images and trans esophageal 

techniques are more invasive such that some sedation, 

and often endotracheal intubation, is required in order to 

obtain reliable measurements. Moreover, the esophageal 

probe is uncomfortable in non-intubated patients, 

although may be better tolerated if inserted nasally, and 

should be used cautiously in patients with esophageal 

lesions. Th e signal produces diff erent wave forms that can 

be used to distinguish to some extent changes in preload, 

afterload and left ventricular contrac tility. Doppler fl ow 

studies focusing on the descending thoracic aorta may not 

provide a reliable measurement of the total cardiac output 

(for example, with epidural use), and are invalid in the 

presence of intra-aortic balloon pumping. Echo-Doppler 

cardiac output estimates vary considerably for several 

reasons, including diffi  culty in assessment of the velocity 

time integral, calculation error due to the angle of 

insonation, and problems with correct measurement of 

the cross-sectional area. Some training is required when 

using these techniques. Esophageal-Doppler techniques 

have been shown to be useful for optimizing fl uid 

adminis tration in high risk surgical patients [7,8].
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Simplifi ed transesophageal Doppler techniques can be 

convenient as the probe is smaller than for standard 

esophageal echocardiography techniques. Simplifi ed trans-

thoracic Doppler systems allow estimation of aortic blood 

fl ow and may be even less invasive; however, although these 

techniques can be simple to perform in healthy volun-

teers, access to good images may be more diffi  cult in 

critically ill patients. Moreover, there is a fairly prolonged 

learning curve for correct use of this system [9]. Th ese 

methods need further validation in critically ill patients.

CO
2
 rebreathing

CO
2
 rebreathing systems, based on the Fick principle, use 

a CO
2
 sensor, a disposable airfl ow sensor and a disposable 

rebreathing loop. CO
2
 production is calculated from 

minute ventilation and its CO
2 

content, and the arterial 

CO
2 

content is estimated from end-tidal CO
2
. Partial re-

breathing reduces CO
2 

elimination and increases the 

end-tidal CO
2
. By combining measurements taken during 

and without rebreathing, venous CO
2
 content can be 

eliminated from the Fick equation. However, intra-

pulmonary shunting of blood and rapid hemodynamic 

changes aff ect the accuracy of the measurement, so that 

this technique is not considered to be reliable in acutely 

ill patients.

Bioimpedance and bioreactance

Bioimpedance is based on the fact that the conductivity 

of a high-frequency, low-magnitude alternating current 

passed across the thorax changes as blood fl ow varies 

with each cardiac cycle. Th ese changes can be measured 

using electrodes placed on a patient’s chest and used to 

generate a waveform from which cardiac output can be 

calculated. Bioreactance has developed out of bio-

impedance and measures changes in the frequency of the 

electrical currents traversing the chest, rather than 

changes in impedance, potentially making it less sensitive 

to noise. Th ese techniques are non-invasive and can be 

applied quickly. Th ey have been used for physiological 

studies in healthy individuals and may be useful in 

perioperative applications [10], but are less reliable in 

critically ill patients [11]. Electrical interference may also 

occur in the ICU environment.

Key principles of hemodynamic monitoring

Having briefl y discussed some of the advantages and 

limitations of the available systems, we now consider 

some key principles than can help when considering 

which hemodynamic monitoring system to use.

Principle 1: no hemodynamic monitoring technique can 

improve outcome by itself

Hemodynamic monitoring can only improve outcomes if 

three conditions are met: the data obtained from the 

monitoring device must be suffi  ciently accurate to be able 

to infl uence therapeutic decision making; the data 

obtained from the monitoring system must be relevant to 

the patient being monitored; and changes in management 

made as a result of the data obtained need to be able to 

improve outcomes. If the data are interpreted or applied 

incorrectly, or the therapies themselves are ineff ective or 

harmful, the resultant change in management will not 

improve patient status and may be deleterious.

If these three conditions are not met, monitoring is 

unlikely to be associated with improved outcomes, and 

this may account for the lack of evidence of improved 

outcomes in acutely ill patients with use of any 

monitoring device, not only the PAC [12].

Principle 2: monitoring requirements may vary over time 

and can depend on local equipment availability and 

training

Th e optimal monitoring system will depend on the 

individual patient, the problem already present or 

potentially arising for which the monitoring is required, 

and the devices and expertise available at the institution 

in question.

For initial evaluation of the critically ill patient, an 

invasive approach is still often needed, which includes 

insertion of an arterial catheter and a central venous 

catheter; this is because of the need for secure 

intravenous and arterial access in such patients and the 

presumed increased accuracy of measurements based on 

direct pressure monitoring. Th e data provided can 

already guide initial treatment. Analysis of the arterial 

pressure trace can identify fl uid responsiveness in 

mechanically ventilated patients, although there are some 

limitations to this technique, including adaptation to the 

respirator (often with high doses of sedative agents and 

even paralysis), need for absence of arrhythmias, and use 

of relatively large tidal volumes. Response to passive leg 

raising can be used if beat-by-beat measurements of 

stroke volume are monitored. Once stabilized, less 

invasive monitoring techniques should be employed. 

Importantly, monitoring systems are not necessarily 

mutually exclusive and can sometimes be used to 

complement each other. For example, echocardiography 

can provide additional information in the early assess-

ment of critically ill patients (Figure 1).

Th ere is still a place for the PAC (Swan-Ganz), which 

has the advantage of allowing measurement of cardiac 

fi lling pressures and pulmonary artery pressures, cardiac 

output and SvO
2
 (and now also extravascular lung water). 

However, although in the past a PAC was inserted early 

in all critically ill patients, today its insertion is no longer 

necessary during initial resuscitation, but should rather 

be reserved for complex cases, for example, patients with 

right ventricular dysfunction, diffi  cult assessment of 
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optimal fl uid management, or specifi c cases of cardiac 

failure.

Principle 3: there are no optimal hemodynamic values that 

are applicable to all patients

Although it may be appealing to have some simple 

targets, such as keeping the mean arterial pressure above 

65  mmHg, the central venous pressure (CVP) above 

8 mmHg, or DO
2
 above 600 mL/minute/M², such targets 

are overly simplistic and may even be potentially 

dangerous. For example, the acceptable minimal arterial 

pressure may be very diff erent in a young individual 

without co-morbidity compared to an elderly athero-

sclerotic, previously hypertensive patient. Likewise, the 

CVP may remain low in adequately resuscitated patients 

or may be high at baseline in patients with pulmonary 

hypertension due to underlying chronic lung disease. 

Similarly, it is diffi  cult to defi ne an optimal level of 

cardiac output as cardiac output is an adaptative para-

meter for which there is no single ‘normal’ value, but only 

normal ranges. Since the purpose of the cardiovascular 

system is to match blood fl ow to metabolic demand, and 

this demand may vary widely even over short time 

intervals, targeting a specifi c cardiac output or even 

sustaining a threshold value may be inappropriate. For 

example, keeping a cardiac output above 5 or 6 liters per 

minute in an adult would be like driving constantly at 

80 km/h, whether in a small town or on the freeway. In 

the critically ill, cardiac output increases in sepsis, as in 

anemia, but may be reduced with sedation or anesthesia. 

Multiple factors therefore need to be considered when 

determining whether cardiac output is optimal for a 

particular patient, including the degree of tissue 

perfusion as estimated from a careful clinical examination 

and blood lactate levels (Figure 2). Alarms should thus be 

individualized for each patient and reevaluated regularly.

Principle 4: we need to combine and integrate variables

Any variable on its own provides relatively little infor ma-

tion - it is just one piece of a large puzzle. We need rather 

to integrate all the available data from multiple sources. 

For example, a hypotensive patient with a low cardiac 

output will present diff erent diagnoses (hypovolemia, 

decreased contractility or obstruction) and hence require 

diff erent treatments to a hypotensive patient with a high 

cardiac output (decreased vascular tone). Likewise, as 

discussed earlier, correct interpretation of a low cardiac 

output involves consideration of many factors (Figure 2), 

including some assessment of cardiac fi lling (pressures or 

dimensions) to assess ventricular preload.

Principle 5: measurements of SvO
2
 can be helpful

SvO
2 

refl ects the balance between oxygen consumption 

(VO
2
) and DO

2
 and thus provides an indication of the 

adequacy of tissue oxygenation. If there is no PAC in situ, 

the oxygen saturation in the superior vena cava (ScvO
2
) 

can be measured using a central venous catheter and has 

been proposed as a surrogate for SvO
2
. Importantly, 

ScvO
2
 represents just an approximation of the SvO

2
 [13] 

and the absolute values of ScvO
2
 and SvO

2
 are not 

interchangeable. Th e diff erence between these two para-

meters is infl uenced by the sampling site of central 

venous blood, the presence of left-to-right shunts, in-

complete mixing of venous blood, oxygen extraction in 

the renal and the splanchnic beds, redistribution of blood 

fl ow through the upper and lower body, level of con-

scious ness (anesthesia) and myocardial VO
2
. Th e relia-

bility of ScvO
2
 is also dependent on the position of the tip 

of the catheter, with right atrial measurements closely 

Figure 1. Diagnostic algorithm based on use of 

echocardiography. CVP, central venous pressure; RV, right 

ventricular.
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fluid challenge
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small chambers
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RV dilation
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Hemodynamic instability
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Figure 2. Factors infl uencing the interpretation of cardiac output 

(CO). EKG, electrocardiogram; NIRS, near-infrared spectral imaging; 

OPS, orthogonal polarization spectral imaging; PAOP, pulmonary 

artery occlusion pressure; PAP, pulmonary artery pressure; PgCO
2
, 

gastric intramucosal carbon dioxide partial pressure; RAP, right atrial 

pressure; SvO
2
, mixed venous oxygen saturation.
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approximating SvO
2
 and high vena cava measurements 

often deviating substantially from SvO
2
. In general, SvO

2
 

is more useful when the value is below normal (see 

below), even though in these conditions it may not refl ect 

a hemodynamic problem. Simultaneous measurements 

of blood lactate levels can be helpful. A diagnostic 

algorithm based on SvO
2
 and cardiac output is shown in 

Figure 3.

Principle 6: a high cardiac output and a high SvO
2 

are not 

always best

Although ICU physicians may like to increase cardiac 

output and SvO
2
 by giving more fl uid and inotropic 

agents, is this always good? Excessive fl uid administration 

to increase cardiac output may result in fl uid overload 

with massive edema formation and this may be associated 

with worse outcomes [14]; some systems measure 

extravascular lung water, which can help document this. 

Similarly, excessive doses of dobutamine can be detri-

mental, compromising myocardial function, especially in 

patients with coronary artery disease; giving inotropic 

agents in the presence of coronary artery disease is like 

trying to stimulate a tired horse. Using vasoactive agents 

and fl uids to increase DO
2
 to supranormal levels in all 

patients may result in excessive mortality rates and this 

strategy has been abandoned [15]. A high ScvO
2
 has been 

suggested as a target for some high risk patients or in 

shock resuscitation, with Rivers and colleagues [16] 

reporting that septic patients assigned to an early goal-

directed therapy algorithm had higher ScvO
2
 values and 

reduced mortality rates. However, this was a strategy for 

early resuscitation of patients with severe sepsis in a 

single institution, and needs further validation in multi-

center studies, several of which are currently ongoing. 

Importantly, applying the same strategy in general ICU 

patients may not improve outcomes [17]. Indeed, in 

patients with sepsis, a high SvO
2
 may be the result of 

maldistribution of peripheral blood fl ow and altered 

oxygen extraction, rather than adequate perfusion, such 

that patients may still deteriorate even with a high SvO
2
. 

In sepsis, a high cardiac output, like a high SvO
2
, can be 

associated with worse outcomes.

Principle 7: cardiac output is estimated, not measured

No bedside method is available to directly assess cardiac 

output, so all values obtained are estimates. As such, 

com parison of measurements obtained with diff erent 

techniques results in relatively poor agreement and signi-

fi  cant bias. Th e intermittent thermodilution technique is 

generally considered as the ‘reference’ standard, but has 

its own limitations. A measurement obtained by a less 

invasive technique may be preferable if it can be obtained 

more rapidly and easily, even if it is slightly less accurate. 

Importantly, the accuracy of absolute values may be less 

important if one is following trends, for example, to track 

the short-term eff ects of therapies, such as fl uid loading.

Principle 8: monitoring hemodynamic changes over short 

periods of time is important

Monitoring of acute changes in cardiac output can be 

important, for example, in patients at risk of acute 

bleeding or in assessing the response to fl uid adminis-

tration to separate fl uid responders from non-responders. 

Evaluating the response to a dobutamine or to a nitrate 

infusion is another example of this functional monitoring 

that may also have sound clinical applications. Th is 

assessment of hemodynamic variations observed during 

the challenge of the cardiovascular system has been 

termed ‘functional hemodynamic monitoring’ [18]. Th e 

study of slow changes in cardiac output over several days 

may be less relevant in most patients, although can be 

useful to follow the clinical course of the cardiac patient. 

Combining measures of multiple variables and their 

dynamic interactions in response to time and specifi c 

treatments often increases the sensitivity and specifi city of 

these monitoring modalities to identify specifi c disease 

processes and quantify whether therapy is eff ective or not.

Principle 9: continuous measurement of all hemodynamic 

variables is preferable

Although there are no data to demonstrate the 

superiority of continuous cardiac output measurements 

over intermittent monitoring, there has been a global 

evolution towards more continuous measurement of 

varia bles. We can now routinely measure various hemo-

dynamic variables continuously, including heart rate, 

arterial pressure and CVP. Using the thermodilution 

technique, one may not wish to go back to intermittent 

measurements of cardiac output by repeated injections of 

cold water boluses. It may even be preferable to have real-

time (beat-by-beat) continuous cardiac output measure-

ment rather than a built-in delay like the semi-continuous 

Figure 3. Diagnostic algorithm based on mixed venous oxygen 

saturation (SvO
2
) and cardiac output. VO

2
, oxygen consumption.

CARDIAC OUTPUT

HIGH                               LOW

SvO2 SvO2

HIGH              LOW              HIGH               LOW
INFLAMMATION
(incl.  SEPSIS)

EXCESSIVE
BLOOD FLOW

ANEMIA
HYPOXEMIA

HIGH VO2

LOW OUTPUT
SYNDROME

(hypervolemia,
excessive vasoactive therapy)

(hypovolemia,
heart failure,

pulm. embolism...)

(anesthesia,
hypothermia,...)

LOW   VO2
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cardiac output provided with the Vigilance™ system. 

Systems that are not continuous (for example, echo-

cardiography) or that require calibration (for example, 

trans pulmonary indicator dilution) may not provide the 

real-time data needed for optimal acute manage ment of 

unstable critically ill patients, whereas systems that 

provide continuous non-calibrated cardiac output measure-

ments suff er from reduced accuracy.

Principle 10: non-invasiveness is not the only issue

Non-invasiveness is not the only goal. Although it is 

always preferable to be less invasive, being non-invasive 

is not always possible and may even be counter eff ective. 

For example, continuous monitoring of arterial pressure 

is more invasive than intermittent monitoring but is 

helpful in hypotensive (or severe hypertensive) states. 

Likewise, a central venous catheter can be helpful to 

monitor the CVP and the ScvO
2
 (and also facilitates the 

rapid administration of fl uids). Whenever possible, we 

should of course try to be as non-invasive as possible, but 

arterial pressure monitoring and CVP monitoring are 

still invasive. Echocardiography must be promoted more 

for its ability to off er a direct evaluation of cardiac 

function than for its non-invasiveness. Even though it is 

the most invasive method, the PAC is still of value in very 

sick patients with complex problems, for example, 

respiratory failure with shock and oliguria. At the other 

extreme, completely non-invasive bioimpedance has a 

place in healthy individuals, but little place in critically ill 

patients. Other monitoring systems are of use in patients 

with conditions somewhere between these two extremes. 

Th e optimal device depends on the type of patient, the 

question being asked, and the condition being managed 

or anticipated.

Conclusion

Th e ideal hemodynamic monitoring system should 

comprise all the key factors listed in Table 2; however, 

such a system does not currently exist so we must try and 

choose devices that have a maximum of these attributes, 

bearing in mind that there is no ‘one size fi ts all’ type of 

system and one should, therefore, select the system most 

appropriate for each patient and, perhaps even more 

importantly, for each type of problem. It is important to 

be familiar with the technology being used, profi ting 

from its advantages but recognizing its limitations. Most 

systems now off er (almost) continuous measurements, 

with the possible exception of echocardiography tech-

niques because it is diffi  cult to leave the probe in place 

for prolonged periods. Hemodynamic monitoring can be 

particularly helpful in the early stages of resusci tation, 

but is less useful when organ failure is established. Most 

importantly, one must never forget that it is not the 

monitoring itself that can improve outcomes but the 

changes in therapy guided by the data obtained.
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