
9

Multiparty Asynchronous Session Types

KOHEI HONDA, Queen Mary University of London
NOBUKO YOSHIDA, Imperial College London
MARCO CARBONE, IT University of Copenhagen

Communication is a central elements in software development. As a potential typed foundation for structured
communication-centered programming, session types have been studied over the past decade for a wide
range of process calculi and programming languages, focusing on binary (two-party) sessions. This work
extends the foregoing theories of binary session types to multiparty, asynchronous sessions, which often
arise in practical communication-centered applications. Presented as a typed calculus for mobile processes,
the theory introduces a new notion of types in which interactions involving multiple peers are directly
abstracted as a global scenario. Global types retain the friendly type syntax of binary session types while
specifying dependencies and capturing complex causal chains of multiparty asynchronous interactions. A
global type plays the role of a shared agreement among communication peers and is used as a basis of efficient
type-checking through its projection onto individual peers. The fundamental properties of the session type
discipline, such as communication safety, progress, and session fidelity, are established for general n-party
asynchronous interactions.

CCS Concepts: � Theory of computation → Distributed computing models; Process calculi;
Type theory; Type structures; Program analysis; Operational semantics; � Software and its
engineering → Distributed programming languages; Concurrent programming structures;

Additional Key Words and Phrases: Session types, the pi-calculus, projection, global types, global protocols,
progress

ACM Reference Format:
Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2016. Multiparty asynchronous session types. J. ACM
63, 1, Article 9 (March 2016), 67 pages.
DOI: http://dx.doi.org/10.1145/2827695

1. INTRODUCTION

Background. Communication is one of the central elements in software development,
ranging from web services to parallel scientific computing to multicore programming.
One of the main application areas of communication-based systems is business
protocols. A business protocol is a series of structured and automated interactions
among two or more business entities. During the 1990s, many attempts were made

A preliminary version of this article appeared in Proceedings of 35th annual ACM SIGPLAN - SIGACT
Symposium on Principles of Programming Languages (POPL 2008).
Yoshida was supported by EPSRC EPSRC EP/K011715/1, EP/K034413/1, and EP/L00058X/1, EU project
FP7-612985 UpScale and COST Action IC1201 BETTY. Carbone was supported by the Chords (granted by
the Danish Agency for Science, Technology and Innovation) and COST Action IC1201 BETTY.
Authors’ addresses: K. Honda, School of Electronic Engineering and Computer Science, Queen Mary, Uni-
versity of London, Mile End Road, London E1 4NS, United Kingdom; email: kohei.honda@eecs.qmul.ac.uk;
N. Yoshida, Department of Computing, Imperial College London, South Kensington Campus, London SW7
2AZ, United Kingdom; email: n.yoshida@imperial.ac.uk; M. Carbone, IT University of Copenhagen, Rued
Langgaards Vej 7, 2300 Copenhagen, Denmark; email: carbonem@itu.dk.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 0004-5411/2016/03-ART9 $15.00
DOI: http://dx.doi.org/10.1145/2827695

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/161811322?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1145/2827695
http://dx.doi.org/10.1145/2827695

9:2 K. Honda et al.

to describe and model business protocols in order to achieve, for example, automation,
scalability, and correctness of protocols. As a result, several institutions started
investing heavily in distributed computing technologies for the purpose of reducing
the risk of centralized controls.

Against this background, the Web Services Choreography Description Language
Working Group (WS-CDL WG) [WS-CDL 2003] was formed by W3C with the goal of
defining a language standard for specifying web service business protocols by means
of distributed interactions among peers (business entities). Recognizing the need for
a foundational theory on which the design and infrastructure of the language were
to be built, the working group took a strong interest in the π -calculus, leading to
the involvement of Robin Milner and the authors as official invited experts in the
standardization process. Although WS-CDL’s design is informed by the π -calculus in
both communication primitives and structuring constructs, WS-CDL differs from the
π -calculus in that it describes message flows among multiple participants globally.

Engineers have always found it essential to use various notations for describing in-
teraction patterns globally, such as the notations for cryptographic protocols, Message
Sequence Charts [International Telecommunication Union 1996], and UML sequence
diagrams. This is because a global description presents information on the behavior of
systems that is not immediately available from the corresponding endpoint-based de-
scriptions: How conversations among multiple participants evolve and interleave, what
are the synchronization/communication points among participants, and how they to-
gether induce a desired global scenario. More formally, under a certain well-formedness
condition, a global protocol automatically ensures that interactions satisfy the safety
and deadlock-freedom properties.

WS-CDL follows these preceding global notations: An underlying intuition of its term
choreography may be summarized as:

“Dancers dance following a global scenario (choreography) without a single point of
control.”

Once specified, this scenario is to be executed by individual distributed processes with-
out orchestrating nodes. A global description is meant to be executed by distributed
interactions among end-point processes. Thus, each global description should be pro-
jected onto processes at each end-point whose mutual communications precisely realize
the original global scenario. This translation from a global description to end-point pro-
cesses is called End-Point Projection (EPP), in the terminology of the WS-CDL WG. The
theory of multiparty session types introduced in this article was born from attempts to
formalize the EPP in WS-CDL, applying the idea to types, in order to overcome a sig-
nificant technical limitation of binary session types. This is one step beyond WS-CDL
and gives closer links to recent tools for web services such as BPMN 2.0 Choreography
[BPMNC 2012], as explained in the next paragraph.

Session Types. Over the past decade, session types, introduced in the 1990s [Honda
1993; Takeuchi et al. 1994; Honda et al. 1998], have provided a potential typed founda-
tion for the design of communication-based systems. The main intuition behind session
types is that a communication-centered application often exhibits a highly structured
sequence of interactions involving, for example, sequencing and branching, which as a
whole form a natural unit of conversation called a session. The structure of a conversa-
tion is abstracted as a type through an intuitive syntax, which is then used as a basis for
validating programs through associated language primitives and a typing discipline.

As an example, consider a simple business protocol between a buyer (Buyer) and a
seller (Seller) from Buyer’s viewpoint: Buyer sends the title of a book (a string), Seller
sends a quote (an integer). If Buyer is satisfied by the quote, he then sends his address
(a string) and Seller sends back the delivery date (a date); otherwise, he quits the

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

Multiparty Asynchronous Session Types 9:3

conversation. This can be precisely described by the following session type:

!string; ?int; ⊕{ ok : !string; ?date; end, quit : end }. (1)

This session type denotes patterns of communication operations (where ; denotes se-
quencing and ⊕ choice) describing Buyer’s communication behavior in the business
protocol. In particular, the term !string denotes an output of a value of type string,
whereas ?int denotes an input of a value of type int. The choice ⊕ features the two
options ok and quit. The term end represents the termination of the session. From
Seller’s viewpoint, the same session is described by the dual type

?string; !int; &{ ok : ?string; !date; end, quit : end }, (2)

in which & means that a choice is offered.
Such an explicit representation of conversation structures allows us to deal with one

of the most common bugs in communication-based programming, namely, the synchro-
nization bug. A programmer expects that communicating programs should together
realize a consistent conversation, but, unfortunately, they can easily fail to handle a
specific incoming message or to send a message at the correct timing, with no way to
detect such errors before runtime. An explicit specification as in Equation (1) guides
us to principled programming of communication behavior and enables automatic pro-
tocol validation [WS-CDL 2003]. In addition, a clean separation between abstraction
and implementation given by type-based abstraction and associated primitives leads to
intelligible programs and flexible implementations [Hu et al. 2008, 2010]. Underlying
these merits are the following central properties guaranteed by session types:

(1) Interactions within a session never incur a communication error (communication
safety).

(2) Channels for a session are used linearly (linearity) and are deadlock-free in a single
session (progress).

(3) The communication sequence in a session follows the scenario declared in the
session type (session fidelity, predictability).

As a consequence of these properties, at each step in a session, a single input and a
single output or a single selection and a single branching can take place via a session
channel, moving to the next step.

Our previous research shows that the session-based programming framework is
applicable to a wide range of calculi, programming languages, and computing envi-
ronments, including calculi of mobile processes [Takeuchi et al. 1994; Gay and Hole
2005; Honda et al. 1998; Bonelli and Compagnoni 2007; Mezzina 2008; Yoshida and
Vasconcelos 2007; Gay 2008; Dezani-Ciancaglini et al. 2007; Carbone et al. 2008],
higher-order processes [Mostrous and Yoshida 2007, 2009], ambients [Garralda et al.
2006], multithreaded ML [Vasconcelos et al. 2006; Gay and Vasconcelos 2009], mul-
ticore programming [Yoshida et al. 2008], Haskell [Neubauer and Thiemann 2004a;
Pucella and Tov 2008], F# [Bhargavan et al. 2009; Swamy et al. 2011], operating sys-
tems [Fähndrich et al. 2006], Java [Dezani-Ciancaglini et al. 2006; Coppo et al. 2007;
Dezani-Ciancaglini et al. 2009; Hu et al. 2008; Gay et al. 2010; Hu et al. 2010; Ng et al.
2011], and Web Services [Carbone et al. 2006; 2007; WS-CDL 2003; Carbone et al.
2012; Sparkes 2006; Honda et al. 2007].

Multiparty Asynchronous Sessions. The foregoing studies on session types have fo-
cused on binary (two-party) sessions. Although many conversation patterns can be
captured through a composition of binary sessions, there are cases where binary ses-
sion types are not powerful enough for describing and validating interactions that
involve more than two parties.

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

9:4 K. Honda et al.

As an example, consider a simple refinement of the earlier Buyer-Seller protocol:
Consider two buyers, Buyer1 and Buyer2, who wish to buy an expensive book from
Seller by combining their money. Buyer1 sends the title of the book to Seller, Seller
sends to both Buyer1 and Buyer2 its quote, Buyer1 tells Buyer2 how much she can
pay, and Buyer2 either accepts the quote or rejects the quote by notifying Seller. It is
extremely awkward (if logically possible) to decompose this scenario into three binary
sessions, between Buyer1 and Seller, between Buyer2 and Seller, and between Buyer1
and Buyer2. Abstracting this protocol as three separate session types also means that
our type abstraction loses essential sequencing information in this interaction sce-
nario. For validating this conversation scenario as a whole, therefore, the conversation
structure should be represented as a single session.

Many existing business protocols, including financial protocols, are written as a
collaboration of several peers. Typical message-passing parallel algorithms also fre-
quently demand distribution of a request to and collection of the results from many
peers. All these use cases are most naturally abstracted as single multiparty sessions.

Furthermore, many of these applications are implemented with an asynchronous
transport, where the senders send the messages without being blocked (but often pre-
serving their order) to avoid the heavy overhead of synchronization. The widely used
network transport, such as TCP, provides this mechanism through familiar APIs to
alleviate the latency problem. Asynchronous message passing is also a standard as-
sumption in financial messaging [AMQ 2015], parallel algorithms, and distributed
objects and functions [Coppo et al. 2007; Hu et al. 2010, 2008; Ng et al. 2011; Neubauer
and Thiemann 2004b; Fähndrich et al. 2006]. Thus, we ask:

Can we generalize the foregoing binary session types to multiparty asynchronous
sessions, preserving clarity and their key formal properties?

Challenges of Multiparty Asynchronous Sessions. To answer this open question, we
face two major technical difficulties. First, the simplicity and tractability of the theory
of binary sessions come from a notion of duality in interactions found in Linear Logic
[Girard 1987]. Consider the binary session type specified in Equation (1) for Buyer.
Not only can Buyer’s behavior be checked against the session type, but also the whole
conversation structure is already represented in this single type since the interaction
pattern of Seller is fully given as this type’s dual (exchanging input and output and
branching and selection in the original type). When composing two parties, we only have
to check that they have mutually dual types. This framework based on duality is no
longer effective in multiparty communication, where the whole conversation cannot be
constructed from only single behavior. We need an effective means to abstract as a type
a global scenario that a programmer wishes to realize through interacting programs
(hence against which she would wish to check their correctness) and establish an
effective method to ensure composability.

Second, linearity analysis of channels, which is the key for ensuring safety and
progress, becomes highly involved under a combination of asynchrony and multiparty
communication since a conflict of actions can arise more easily. A linearity property
holds if a communication via the same channel of a global type does not break the order
of messages as it is specified in the global description. This demands a precise causal
analysis for correct sequencing of interactions distributed among multipeers.

This Work. This article presents a generalization of binary session types to multiparty
sessions for the π -calculus. We propose three major technical contributions to overcome
the aforementioned challenges:

(1) A new notion of types that can directly abstract intended conversation structure
among n-parties as global scenarios, retaining an intuitive type syntax.

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

Multiparty Asynchronous Session Types 9:5

(2) Consistency criteria for a conversation structure with respect to a protocol specifica-
tion given as a causality analysis of actions in global types, modularly articulating
different kinds of dependency.

(3) A type discipline for individual processes (programs) that uses global types through
their projections onto individual endpoint participants: The resulting endpoint
types are directly associated with individual processes for type-checking.

The idea of type abstraction based on a global view (Point 1) comes from an abstract
version of “choreography” developed in a W3C web services working group [Carbone
et al. 2006; WS-CDL 2003]. Causality structures in asynchronous interactions are
precisely and modularly captured in the abstract setting of global types, offering a
foundation for the type discipline (Point 2). Through the use of global types, we propose
a new effective method for designing, type-checking, and developing programs based
on multiparty sessions (Point 3).

Let us illustrate Point 3 in detail. First, we design and agree upon a global type G
as an intended conversation scenario. A team of programmers then develops code, one
for each participant, incrementally validating its conformance to (the projections of)
G. When programs are executed, their interactions automatically follow the stipulated
scenario. The projection can also be used as a hint for modeling, designing, and debug-
ging local behaviors of participants. After the development, a global type will serve as
a basis of monitoring, maintenance, and upgrade. For materializing this design frame-
work, the proposed framework presents a type discipline that can validate whether a
program is typable or not, given G (as a shared agreement) and an individual program
(as its endpoint realizer). The resulting type discipline guarantees all the original key
properties of binary session types, such as communication error freedom, progress, and
session fidelity in a general n-party session, underpinning its practical use. For further
discussions on this development framework and its applications developed in industry
and academia, see Sections 4.1, 6.1, and 7.

This article is a full version of Honda et al. [2008a], with detailed definitions and full
proofs. It is also expanded with more examples and comparisons with recent related
work. Section 2 gives the syntax and semantics of the calculus and motivates the key
ideas through business and streaming protocol examples and a use case from OOI
[2015]. Section 3 explains the global types. Section 4 describes the typing system. Sec-
tion 5 establishes the main results. Section 6 discusses extensions and related works.
Section 7 concludes with future issues and a summary of applications, software, and
languages developed with industry collaborators based on the multiparty session type
theory. The appendix contains the proofs of the propositions, lemmas, and theorems
stated in the main sections.

2. MULTIPARTY ASYNCHRONOUS SESSIONS

2.1. Syntax for Multiparty Sessions

Several versions of π -calculi with session types have been proposed in the literature.
A detailed survey can be found in Dezani-Ciancaglini and de’ Liguoro [2010]. In this
work, we use a simple extension of the original language for binary sessions [Honda
et al. 1998; Takeuchi et al. 1994] to multiparty sessions.

Informally, a session is a series of interactions that serve as a unit of conversation. A
session is established among multiple parties via a shared name, which represents a
public interaction point. Then, fresh session channels are generated and shared among
all participants who can use them for communicating with each other.

In the remainder, we use the following base sets:

—shared names or names, ranged over by a, b, x, y, z, . . . ;
—session channels or channels, ranged over by s, t, . . . ;

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

9:6 K. Honda et al.

Fig. 1. Syntax.

—labels, ranged over by l, l′, . . . ; and
—process variables, ranged over by X, Y,

We use n for either a single shared name or a vector of session channels. The sym-
bol s̃ denotes the vector of session channels s1, . . . , sk for some k. Similarly, for other
names, channels and variables. Then, processes, ranged over by P, Q . . . , and expres-
sions, ranged over by e, e′, . . . , are given by the grammar in Figure 1.

Except for the first two primitives for session initiation and the final message queue,
all constructs are from the binary session calculi [Honda et al. 1998]. Session initia-
tion is introduced to establish a session between multiple processes, whereas message
queues are added to model asynchronous session communication, as explained later.

Among the primitives for session initiation, the prefix process a[2..n] (s̃).P initiates a
new session through a shared interaction point a by distributing a vector of freshly gen-
erated session channels s̃ to the remaining n − 1 participants, each of shape a[p] (s̃).Qp

for 2 ≤ p ≤ n. All receive s̃, over which the actual session communications can now take
place among the n parties. p, q, . . . range over natural numbers called participants of a
session. As we formalize later through operational semantics, these primitives offer a
distilled syntactic presentation of “sharing of a fresh context for a new session” among
multiple parties.

Session communications are performed using the next three pairs of primitives:
sending and receiving, session delegation, and reception (the former delegates to the
latter the capability to participate in a session by passing channels associated with the
session), and selection and branching (the former chooses one of the branches offered
by the latter). Branching and selection constructs correspond to external and internal
choices.

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

Multiparty Asynchronous Session Types 9:7

Fig. 2. Structural congruence.

The next three (conditional, parallel, and inaction) are standard. (νa)P makes a
local to P whereas (νs̃)P makes s̃ local to P. The recursion and process call primitives
realize recursive behavior. s :: h̃ is a message queue representing ordered messages in
transit h̃ with destination s (which may be considered a network pipe in a TCP-like
transport). (νs̃)P and s :: h̃ only appear at runtime. We often omit trailing 0 and write s!
and s?.P, omitting the arguments if unnecessary. Informally speaking, if we map our
syntax to TCP, each queue corresponds to the TCP FIFO channel. Then, a shared name
correspond to a pair of an IP and a port name to initiate the session, while each session
name is mapped to a pair of freshly generated IP and a port name that connects to the
pair of the other side.

Binders are s̃ in a[2..n] (s̃).P, a[p] (s̃).P and s?((s̃)); P, x̃ in s?(x̃); P, x̃s̃ in X(x̃s̃) = P, n
in (ν n)P and process variables in def D in P. The notions of bound and free identifiers,
channels, alpha equivalence ≡α, and substitution are standard. The functions fpv(P)
and fn(P) denote the sets of free process variables and free identifiers, respectively.
Function dpv({Xi(x̃i s̃i) = Pi}i∈I) denotes the set of process variables{Xi}i∈I introduced in
{Xi(x̃i s̃i) = Pi}i∈I . The notation �i Pi denotes the parallel composition of zero or more
processes Pi.

Structural congruence ≡ over processes is the smallest congruence relation on pro-
cesses that includes the equations given in Figure 2. These are standard except that
we allow a vector of session channels in hiding, which is convenient for some proofs in
the typing system (no substantial difference arises regarding the nature of the calculus
by hiding channels one by one).

Definition 2.1 (Program Phrase and Program). A process P is a program phrase if
P has no queues and no ν-bound session channels (up to ≡). P is a program (up to ≡) if
P is a program phrase in which no free session channels and process variables occur.

In the examples in Section 2.3, processes such as Buyer1, Buyer2, Seller, Kernel,
DataProducer, and Consumer are programs; hence, they are also program phrases.

2.2. Operational Semantics

The operational semantics is given by the reduction relation, denoted P → Q, which
is the smallest relation on processes generated by the rules in Figure 3. In the figure,
e ↓ v says that expression e evaluates to values v, but we leave its formal definition
unspecified. We now explain each rule.

Rule [LINK] describes a session initiation among n-parties through n-party synchro-
nization, generating m fresh session channels and the associated m empty queues (∅
denotes the empty string). Each fresh channel is given a new empty queue. As a result,
n participants now share the newly generated m channels, hence their queues. Note
that the number of participants (n) can be different from that of session channels (m),

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

9:8 K. Honda et al.

Fig. 3. Reduction.

giving flexibility and maintaining linearity in channel usage. The use of the n-party
synchronization in this rule captures, albeit abstractly, an n-party handshake that
would be necessary for establishing an n-party link in real-world protocols. For exam-
ple, we can create an arbitrary number of queues that can be dequeued and enqueued
by all parties in that session.

Rules [SEND], [DELEG], and [LABEL] respectively enqueue values, channels, and a label
at the tail of the queue for s. In rule [SEND], ẽ ↓ ṽ evaluates each expression ei to a
value vi and its definition is left unspecified. Symmetrically, rules [RECV], [SREC], and
[BRANCH] dequeue, from the head of the queue, values, session channels, and a label,
respectively. Rules [RECV] further instantiates the received value in the continuation
P, while rule [BRANCH] selects, from its continuation, the branch corresponding to
the received label. The reduction rules [DELEG] and [SREC] are often called (session)
delegation or higher order session passing.

In these communication rules, sending and receiving are mediated by a queue: Only
when a message sent by (say) Alice is received by (say) Bob through a queue, can we
say that an interaction between Alice and Bob has taken place. Since [LINK] generates
a queue for each channel, these rules entail that:

(1) A sending action is never blocked (communication asynchrony); and that
(2) two messages from the same sender to the same channel arrive in the sending

order (message order preservation).

As we discussed in Section 1, these are among the main features of the well-known
transport mechanisms TCP, and the message queue is introduced for modeling these
transports.

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

Multiparty Asynchronous Session Types 9:9

All other rules are standard: For reference, we briefly describe them. The two rules for
conditional, [IFT] and [IFF], reduce to one of the branches, depending on the evaluation
of the guard. Rule [DEF] performs unfolding of recursion. Rules [SCOP], [PAR], and
[DEFIN] close the reduction relation under hiding, parallel composition, and definition,
respectively. Finally, rule [STR] says that the reduction relation is defined over processes
up to ≡.

Remark 2.2. The rule for delegation [SREC], originally introduced in Honda et al.
[1998] for the π -calculus with sessions, uses the same session name t̃ without sub-
stitution for a simpler presentation. However, having [SREC] with substitution as in
[RECV] breaks the subject reduction theorem and requires either two endpoint channels
or bidirectional buffers [Gay and Hole 2005; Gay and Vasconcelos 2009; Yoshida and
Vasconcelos 2007]. The reader can find a more detained explanation in Yoshida and
Vasconcelos [2007]. Roughly speaking, a substitution creates a self-delegation where
the receiver gets his own session by which the shape of the session type is changed and
the subject reduction is broken. Hence, we require additional queues and restrictions
on the form of the communication. The technical development of this work does not
depend on this choice (see also Section 6.2).

2.3. Examples

We now report two examples that have been used for discussion within the W3C
WS-CDL working group [WS-CDL 2003]. Further large examples and applications of
multiparty session types are listed in Honda et al. [2008b].

Example 2.3 (Two-buyer Protocol). We describe the two-buyer protocol from the
Introduction first by a sequence diagram, then by processes.

First Buyer1 sends a book title to Seller; then, Seller sends back a quote to Buyer1
and Buyer2; Buyer1 tells Buyer2 how much she is willing to contribute; and, finally,
Buyer2 notifies Seller whether it accepts the quote or not. We can describe the behavior
of Buyer1 with the following process:

Buyer1 def= a[2,3](b1, b2, b′
2, s). s!〈“War and Peace”〉;

b1?(quote); b′
2!〈quote div 2〉; P1

Channel b1 is for Buyer1 to receive messages: b2 and b′
2 for Buyer2 and s for Seller (we

discuss soon why Buyer2 needs two receiving channels). Buyer1 is willing to contribute
to half of the quote. In P1, Buyer1 may perform the remaining transactions with Seller

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

9:10 K. Honda et al.

and Buyer2. The remaining participants follow.

Buyer2 def= a[2] (b1, b2, b′
2, s). b2?(quote); b′

2?(contrib);
if (quote − contrib ≤ 99)

then s � ok; s! 〈address〉; b2?(x); P2

else s � quit; 0

Seller def= a[3] (b1, b2, b′
2, s). s?(title); b1, b2!〈quote〉;

s � {ok : s?(x); b2! 〈date〉; Q, quit : 0}

Here, s1..sm!〈v〉; P stands for s1!〈v〉; ..sm!〈v〉; P, assuming s1..sm are pairwise distinct.1 We
now explain why Buyer2 needs to use two input channels, b2 and b′

2. The first input (for
quote) is from Seller, whereas the second one (for contrib) is from Buyer1. Hence, there
is no guarantee that they arrive in a fixed order, as can be easily seen by analyzing
reduction paths (this is Lamport’s principle [Lamport 1978]). Thus, if we were to use
b2 for both actions, the two messages can be confused, losing linear usage of a channel.
The problem becomes visible after the fifth step of the following reduction. If b2 and b′

2
were the same then the contribution of the Buyer1 could be queued before the price
of the book and therefore received before at Buyer2. In Section 4, we use our type
discipline to detect this kind of error.

We now show an example of reductions. Let us define:

P � if (quote − contrib ≤ 99)
then s � ok; s! 〈address〉; b2?(x); P2
else s � quit; 0

S � s � {ok : s?(x); b2! 〈date〉; Q, quit : 0}

Below, a tag denotes the name of the rule from Figure 3 we apply. For simplicity, we
omit [PAR] and [SCOP] after the second reduction.

Buyer1 | Buyer2 | Seller

→ [LINK] (ν b1, b2, b′
2, s)(s!〈“War and Peace”〉; b1?(quote); b′

2!〈quote div 2〉; P1

| b2?(quote); b′
2?(contrib); P

| s?(title); b1, b2!〈quote〉; S
| b1 ::∅ | b2 ::∅ | b′

2 ::∅ | s ::∅)

→ [SEND],[PAR],[SCOP] (ν b1, b2, b′
2, s)(b′

2!〈quote div 2〉; P1

| b2?(quote); b′
2?(contrib); P

| s?(title); b1, b2!〈quote〉; S
| b1 ::∅ | b2 ::∅ | b′

2 ::∅ | s :: “War and Peace”)

→ [RCV] (ν b1, b2, b′
2, s)(b1?(quote); b′

2!〈quote div 2〉; P1

| b2?(quote); b′
2?(contrib); P

| b1, b2!〈quote〉; S
| b1 ::∅ | b2 ::∅ | b′

2 ::∅ | s ::∅)

1Due to asynchrony, there is in effect no order among the sending actions at s1..sm.

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

Multiparty Asynchronous Session Types 9:11

→ [SEND] (ν b1, b2, b′
2, s)(b1?(quote); b′

2!〈quote div 2〉; P1

| b2?(quote); b′
2?(contrib); P

| b2!〈quote〉; S

| b1 ::quote | b2 ::∅ | b′
2 ::∅ | s ::∅)

→ [RCV] (ν b1, b2, b′
2, s)(b′

2!〈quote div 2〉; P1

| b2?(quote); b′
2?(contrib); P

| b2!〈quote〉; S

| b1 ::∅ | b2 ::∅ | b′
2 ::∅ | s ::∅)

...

Example 2.4 (Streaming Protocol). We next consider a simple protocol for the stan-
dard stream cipher [Schneier 1993].

Data Producer and Key Producer continuously send a data stream and a key stream,
respectively, to Kernel. Kernel calculates their XOR and sends the result to Consumer.

Assuming streams are sent block by block (say, as large arrays), we can realize this
protocol as communicating processes. We focus only on communication behavior. The
kernel initiates a session:

Kernel def= def K(d, k, c) = d?(x); k?(y); c!〈x xor y〉; K〈d, k, c〉
in a[2,3,4] (d, k, c).K〈d, k, c〉

The channels d and k are used for Kernel to receive data and keys from Data Producer
and Key Producer, respectively, while c is used for Consumer to receive the encrypted
data from Kernel. Data Producer and Consumer can be given as:2

DataProducer def= def P(d, k, c) = d!〈data〉; P〈d, k, c〉 in a[2] (d, k, c).P〈d, k, c〉
Consumer def= def C(d, k, c) = c?(data); C〈d, k, c〉 in a[3] (d, k, c).C〈d, k, c〉

Key Producer is identical to Data Producer except it outputs at k instead of d. When
three processes are composed, we can verify that messages are always consumed in
the order they are produced, an essential requirement for correctness of the protocol
(although processes repeatedly send and receive data using the same channel). This is
because each channel is used by exactly one sender. We show how this argument can
be cleanly represented and validated through session types in the next two sections.

2For simplicity, our description lets both Data Producer and Consumer repeatedly send the same data:
Practically, this is not the case, but this simplified form is enough for our current concern (i.e., validation of
communication behavior).

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

9:12 K. Honda et al.

Fig. 4. Syntax of global types.

3. GLOBAL TYPES AND CAUSAL ANALYSIS

Developing programs for multiparty sessions demands a clear formal design since we
need to program global interactions where multiple participants communicate and syn-
chronize with each other. Programming individual participants without such a design
and hoping they somehow realize a meaningful and error-free conversation is hardly
practical, especially when the implementation is done by a team of several program-
mers. In binary session types, the type for an endpoint also served as the description of
the whole conversation between two parties, but this is no longer possible for multiparty
sessions. This is why we require the type abstraction to describe global conversation
scenarios of multiparty sessions: The global types introduced in this section extend bi-
nary session types to be able to directly express dependencies between communications
among multiple peers.

3.1. Syntax of Global Types

A global type abstracts global multiparty conversations as a type signature. It takes a
similar form to cryptography protocols where a message exchange from participant p to
participant p′ is specified as p → p′. For example, the protocol “Alice sends a message
with type nat to Bob via channel k, then terminates the interaction” is simply described
as Alice → Bob : k 〈nat〉. end. Unlike the standard types of process calculi, the syntax
no longer describes the input and output types separately: The information exchange
between two parties is directly abstracted as one interaction.

The full syntax of global session types, or global types, denoted by G, G′, . . . , is given
in Figure 4. In a global type, we refer to session channels with a number, denoted by
k, k′, . . . , which corresponds to the index of a vector of session channels: If we want
to refer to the k-th session channel sk of s1..sn (such a vector is created by a session
initiation), we write k in the global type. By writing number k (like de Bruijn notation),
instead of channel sk, we avoid including binding in the syntax of global types. We call
k a session channel index.

U,U ′, . . . range over value types, denoting types for message values. Each value type
is either a vector of sorts or a located type. Sorts, written S, S′, . . . , are types for shared
names, where 〈G〉 means communicating a shared name typed by 〈G〉. A located type
T @p denotes the communication (delegation) of a session channel of type T (called
endpoint type) with role p. Both of these types (T and S) are discussed in detail in
Section 4.2. For understanding this section, it suffices to assume U as a single base
type (i.e., only nat or bool). We often write p → p′ : k. G′ for p → p′ : k 〈〉. G′ (i.e., U is
empty).

We now give a detailed description of each term in Figure 4.
Type p → p′ : k 〈U 〉. G′ says that an interaction between two participants over a

session channel with index k must take place. In an implementation of such a behavior,

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

Multiparty Asynchronous Session Types 9:13

given a vector of session channels s̃, participant p would send some message of type
U to participant p′ over sk and then the session would continue according to G′. The
type U is called carried type. Note that the operator “.” captures sequentiality. As an
example, the global type

1 → 3 : k 〈int〉. 3 → 2 : k′ 〈bool〉. end (3)

describes a protocol where, given a vector s̃, participant 1 sends an integer to participant
3 over session channel sk, and then 3 sends a boolean to participant 2 over sk′ . This
protocol can be written in the model introduced in the previous section as follows:

sk!〈5〉; 0︸ ︷︷ ︸
1

| sk′?(y); 0︸ ︷︷ ︸
2

| sk?(x); sk′ !〈x = 5〉; 0︸ ︷︷ ︸
3

According to the semantics given in Figure 3, the preceding processes (where, for
the sake of clarity, we have labeled each process with a number corresponding to a
participant) will execute according to the specification given by the global type in
Equation (3). Obviously, the same channel can be used several times, as in the following
type:

1 → 3 : k 〈int〉. 3 → 2 : k′ 〈bool〉. 2 → 1 : k 〈bool〉. (4)

A possible implementation respecting such a protocol is:

sk!〈5〉; sk?(z); 0︸ ︷︷ ︸
1

| sk′?(y); sk!〈true〉; 0︸ ︷︷ ︸
2

| sk?(x); sk′ !〈x = 5〉; 0︸ ︷︷ ︸
3

On the other hand, the following process would not satisfy the specification in
Equation (4):

sk!〈5〉; sk?(z); 0︸ ︷︷ ︸
1

| sk!〈true〉; sk′?(y); 0︸ ︷︷ ︸
2

| sk?(x); sk′ !〈x = 5〉; 0︸ ︷︷ ︸
3

Unfortunately, due to asynchrony, it is possible that participant 3 receives a boolean
while participant 1 receives, later on, an integer, causing a runtime error.

Type p → p′ : k {lj : Gj} j∈J denotes branching of a session. Intuitively, participant
p must send one of the labels in {lj | j ∈ I} on channel sk to participant p′. When li is
sent, interactions described in Gi will take place. For example, the global type

1 → 3 : k { five : 3 → 2 : k′ 〈bool〉. end, notfive : 3 → 2 : k′ 〈bool〉. end }
could be implemented by the process

if e then sk � five else sk � notfive︸ ︷︷ ︸
1

| sk′?(y)︸ ︷︷ ︸
2

| sk′ �

{
five : sk′ !〈true〉,

notfive : sk′ !〈false〉
}

︸ ︷︷ ︸
3

Type G | G′ specifies the concurrent execution of the interactions in G and G′.
Type μt.G is a recursive type for recurring conversation structures, assuming type

variables (t, t′, . . .) are guarded in the standard way (i.e., type variables only appear
under the prefixes [hence contractive]). We take an equi-recursive view, not distinguish-
ing between μt.G and its unfolding G[μt.G/t] [Pierce 2002]. We assume that 〈G〉 in the
grammar of sorts is closed (i.e., without type variables).3

Type end represents the termination of the session and is often omitted. We identify
“G | end” and “end | G” with G.

3In the presence of the standard recursive sorts [Honda et al. 1998], which we omit for simpler presentation,
we allow sort variables to occur in 〈G〉.

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

9:14 K. Honda et al.

We conclude this subsection by giving the following definition:

Definition 3.1 (Action). We say that p → p′ : k in p → p′ : k 〈U 〉. G′ or p → p′ : k {lj :
Gj} j∈J is an action from p to p′ at k.

3.2. Operational Semantics for Global Types

This subsection defines semantics of global types, introducing the Labeled Transition
Relation (LTS). The LTS is useful not only to give a clear justification for causal de-
pendencies of global types defined in the next subsection, but also to prove the main
theorems for the typing system later.

Definition 3.2 (Global Type Labeled Transition Relation). The syntax of labels
(�, �′, . . .) of global types is defined as follows:

� ::= p → p′ : k 〈U 〉 | p → p′ : k 〈l〉
A label � denotes a communication over a channel k of some type U or label l. Then the
transition relation G

�→ G′ is defined by the following rules:

[GR1] p → q : k 〈U 〉. G
p→q : k 〈U 〉→ G [GR2] p → q : k {li : Gi}i∈I

p→q : k 〈l j 〉→ Gj

[GR3]
G1

�→ G2 q �∈ �

p → q : k 〈U 〉. G1
�→ p → q : k 〈U 〉. G2

[GR4]
∀i ∈ I. Gi

�→ G′
i q �∈ �

p → q : k {li : Gi}i∈I
�→ p → q : k {li : G′

i}i∈I

[GR5]
G1

�→ G′
1

G1 | G2
�→ G′

1 | G2

[GR6]
G2

�→ G′
2

G1 | G2
�→ G1 | G′

2

The rules allow us to permute the order of two actions that are causally unrelated.
This is defined by the condition q �∈ � in [GR3,4]. Note that in [GR4], we require that
each branch must be able to perform action �.

As a simple example, consider G = 1 → 2 : k 〈int〉. 3 → 4 : k′ 〈bool〉. end and let
�1 = 1 → 2 : k 〈int〉 and �2 = 2 → 3 : k′ 〈bool〉. Since the participants are pairwise
distinct, we can perform the second action first. Hence, using [GR1] and [GR3] above,
we have two possible transition relations from as follows:

G
�1→ 3 → 4 : k′ 〈bool〉. end

�2→ end and G
�2→ 1 → 2 : k 〈int〉. end

�1→ end

Another interesting example is: 1 → 2 : k 〈int〉. 3 → 1 : k′ 〈bool〉. end. This global type
means that participant 1 is allowed to receive the message from participant 3 before the
message from 1 is received by 2 since they are delivered to the two different channels
(i.e., queues). Thus, with �3 = 2 → 1 : k′ 〈bool〉, we have:

G′ �1→ 3 → 1 : k′ 〈bool〉. end
�3→ end and G′ �3→ 1 → 2 : k 〈int〉. end

�1→ end

On the other hand, G′′ = 3 → 1 : k′ 〈bool〉. 1 → 2 : k 〈int〉. end has only one possible
transition since the two inputs at the receiver q are ordered. Hence, we only have the
following one transition from G′′.

G′′ �3→ 1 → 2 : k′ 〈bool〉. end
�1→ end

This means the message from 1 is surely received at 2 after 1 received the message
from 3; hence, two actions are not permutable. The semantics of the permutation will
be clearer when we introduce the causality relation between the actions in Section 3.5.

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

Multiparty Asynchronous Session Types 9:15

3.3. Action Ordering

Henceforth, we refer to the acyclic directed graph of a global type G as a standard
regular tree representation [Pierce 2002]. In order to give a definition, we annotate the
actions in p → p′ : k 〈U 〉. G′ and p → p′ : k {lj : Gj} j∈J by a node name n.

Definition 3.3 (Regular Tree Representation). The regular tree representation tree(G)
of a global type G is defined over the annotated unfolding of G such that

tree(n : p → p′ : k 〈U 〉. G′) has root n with an edge to the root of tree(G′)
tree(n : p → p′ : k {lj : Gj} j∈J) has root n with edges to the roots of each tree(Gj) (j ∈ J)
tree(G1 | G2) has root | with edges to the roots of each tree(Gi) (i = 1, 2)

Each node in tree(G) is labeled by the occurrence of its corresponding action, or it has
no label in the case of parallel. These node names are unique in the unfolding.

As an example, the global type

μt. 1 → 2 : k
{

l1 : 2 → 1 : k 〈int〉. end | 2 → 3 : k′ 〈bool〉. end
l2 : 2 → 1 : k 〈nat〉. t

}
has the following (infinite) regular tree representation:

We now define:

Definition 3.4. An action from p to p′ at k is in a global type G, written p → p′ : k ∈ G,
whenever, in the regular tree representation of G, there exists some node n with label
p → p′ : k. We write n = p → p′ : k if n has label p → p′ : k.

Definition 3.5. We denote:

—pid(G) for the set of participants occurring in G (but not in any carried types).
—sid(G) for the number of the set of session channel indices in G (but not in any carried

types).

For example, if G = 1 → 3 : k 〈int〉. 3 → 2 : k′ 〈bool〉. end, then pid(G) = {1, 2, 3} and
sid(G)=2.

Convention 3.6. We assume that, in each action from p to p′, we have p �= p′; that is,
we prohibit reflexive interaction.

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

9:16 K. Honda et al.

Here, we define the relation n1 ≺ n2 ∈ G, which holds whenever n1 directly or
indirectly occurs before n2 in the regular tree representation of G. For instance, in the
global type G = p1 → p′

1 : k1 〈U1〉. p2 → p′
2 : k2 〈U2〉. G′

2 we have that p1 → p′
1 : k1 ≺

p2 → p′
2 : k2 ∈ G.

Definition 3.7 (Action Ordering). We define ≺ as the least partial order such that:

(1) n1 ≺ n2 ∈ p → p′ : k 〈U 〉. G′ if n1 = p → p′ : k and n2 ∈G′
(2) n1 ≺ n2 ∈ p → p′ : k {lj : Gj} j∈J if n1 = p → p′ : k and ∃i ∈ J. n2 ∈Gi
(3) n1 ≺ n2 ∈ p → p′ : k 〈U 〉. G′ if n1 ≺ n2 ∈ G′
(4) n1 ≺ n2 ∈ p1 → p′

1 : k′ {lj : G′
j} j∈J if n1 ≺ n2 ∈ G′

i for some i ∈ J
(5) n1 ≺ n2 ∈ G1 | G2 if n1 ≺ n2 ∈ Gi for some i ∈ {1, 2}

Here, Lines 1 and 2 say that, in values and branching types, any nested action comes
always after the top one for value and branch types. Lines 3 and 4 say that if two
actions are related by the action ordering in a subterm of some global type G, then
they are also related in G. Parallel composition and recursion are dealt with by Lines 5
and 6.

The action ordering allows us to express intended causal dependencies in global
types, which is subtle under asynchronous semantics. Consider the following simple
global type:

G = A → B :k 〈U 〉. A → C :k′ 〈U ′〉. end (5)

where A, B, and C denote participants. We use this example to show an important
difference between asynchronous and synchronous communication. In a “synchronous”
interpretation of Equation (5), the ordering would mean “only after the first sending
and receiving take place, the second sending and receiving take place.” This is a suitable
reading when sending and receiving constitute a single atomic action, as in synchronous
languages, but not with asynchronous communication, where it is hard to impose such
an ordering, since messages to distinct channels may not arrive in order (e.g., C may
receive the second output from A before its first message reaches B). This corresponds
to [GR3] and [GR4] in Definition 3.2, where the action � can be executed before the
action in the prefix.

Thus, the present theory takes a more liberal interpretation of ≺, imposing sequenc-
ing only on the actions of the same participant in ordered actions. For example, in
Equation (5), A’s two sending actions are ordered, but B’s and C’s receiving actions are
not. This relation is explained in the next subsection with several examples.

3.4. Examples of Global Types

Example 3.8 (Two-Buyer Protocol). The following is a global type of the two-buyer-
protocol in Section 2.3. We write participants and channels with legible symbols al-
though they are actually numbers (e.g., Bi = i, S = 3, b1 = 1, b2 = 2, b′

2 = 3, and
s = 4):

1. B1 → S : s〈string〉.
2. S → B1 : b1〈int〉.
3. S → B2 : b2〈int〉.
4. B1 → B2 : b′

2〈int〉.
5. B2 → S : s

{
ok : B2 → S : s 〈string〉. S → B2 : b2 〈date〉. end,

quit : end

}
The type gives a clear, abstract view of the whole conversation scenario. The following
are several salient points in the asynchronous interpretation of this type:

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

Multiparty Asynchronous Session Types 9:17

—Consider Lines 3 and 4. Since they have different senders, the sending actions are
unordered in spite of their ≺-ordering. Hence, if b2 = b′

2, two messages have a conflict
at s (i.e., lose the ordering).

—Next, we consider the following causal chain from Line 1 to Line 3 to Line 5:

B1 → S ≺ S → B2 ≺ B2 → S

Here, → can be interpreted as the ordering given by message delivery (see previous
subsection), whereas ≺ is the action ordering. Note in particular that two sending
actions by B1 (Line 1) and by B2 (Line 5), both done at s, are causally ordered. By
focusing on ≺ from the first S (of Line 1) to the last S (of Line 5), the receiving actions
in Line 1 and the first B1 → S in Line 5 are also ordered. Since the interaction in Line
1 will surely take place before the interaction in Line 5, no conflict occurs between
these two communications in spite of their use of a common channel s.

Example 3.9 (Streaming Protocol). We now present the global type of the simple
streaming protocol in Section 2.3. Here, we unfold its recursion once and set: d = 1,
k = 2, c = 3, K = 1, DP = 2, C = 3 and KP = 4.

1. μt. DP → K : d 〈bool〉.
2. KP → K : k 〈bool〉.
3. K → C : c 〈bool〉.

4. DP → K : d 〈bool〉.
5. KP → K : k 〈bool〉.
6. K → C : c 〈bool〉.t

The following arguments hold for any n-fold unfoldings.

—Lines 1 and 2 are temporally unordered in sending, but this does not cause conflict
since channels d and k are distinct.

—Line 1 and its unfolding, Line 4, share d. But the two use the same sender and the
same receiver, so each pair of actions are ≺-ordered, hence safe. Similarly for other
unfolded actions.

Example 3.10 (Instrument Controlling). We now present another example from
OOI [2015] that focuses on the usage of an instrument through repeated commands,
together with checking privileges initially and later reporting the status to the central
operator in charge of the instrument. The global type description involves a user User,
an operator Op, and the instrument Instr and is given as follows.

User → Op : 1 〈privilege〉.

Op → User : 2

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ok : μt.

User → Instr : 3

{ move : t
photo : t

quit : Instr → Op : 4 〈string〉. end

}

no : end

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

Note that the protocol description given by the global type here can have several
implementations. In particular, the instrument can be used with any combination of
the operations Move and Photo. However, any sequence will be terminated by Quit.

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

9:18 K. Honda et al.

Fig. 5. Causality analysis.

Here, we give a possible implementation of each participant:

User def= s1!〈high〉; s2 �

{
ok : s3 � move; s3 � photo; s3 � quit; 0
no : 0

}

Operator def= s1?(x); if f (x) then s2 � ok; 0 else s2 � no; 0

Instrument def= μt. s3 �

{ move : t
photo : t

quit : s4!〈report〉; 0

}

3.5. A Safety Principle for Global Types: Linearity of Channels

For a conversation in a session to proceed properly, it is desirable that there is no conflict
(racing) at session channels. The process sk!〈true〉 | sk!〈5〉 | sk?x; if x then P else Q is a
typical example of a race at channel sk: If the second output synchronizes with the first
input, we have a runtime error when evaluating the guard of the conditional. To ensure
absence of such races, when a common channel is used in two communications, their
sending actions and their receiving actions should (respectively) be ordered temporally
(causality) so that no confusion arises at sending or receiving. If a global type satisfies
this principle, then it specifies an ordering of interactions and can be used as a basis of
guaranteeing process behaviors through type-checking. The correspondence between
the linearity property and the LTS of the global types defined in Definition 3.2 will be
used for proving the main theorems, Subject Reduction Theorem (Theorem 5.19) and
Session Fidelity Theorem (Corollary 5.23).

Causality is induced in several ways in the present asynchronous model. We sum-
marise all essential cases in Figure 5, with concrete process instances for illustration.

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

Multiparty Asynchronous Session Types 9:19

In the figure, IO indicates a causal ordering from input (receiving) to output (sending),
similarly for II, OO, and OI. In (II)-Bad, we demand A �= C. We observe:

—The “good” and “bad” cases for II show that II alone is safe only when two channels
differ. Similarly for IO.

—In OO,II, two outputs have the same sender and the same channel, so (by message
order-preservation) outputs are ordered. Inputs are also ordered by ≺; hence, they
are safe.

—There is no ordering from output to input (due to asynchrony), so OI gives us no
dependency.

These observations lead to the following causal relations on global types.

Definition 3.11 (Dependency Relations). Fix G. The relation ≺φ , with φ ∈ {II, IO, OO},
over actions is generated from:

n1 ≺II n2 if n1 ≺ n2 ∈ G and ni = pi → p : ki (i = 1, 2)
n1 ≺IO n2 if n1 ≺ n2 ∈ G, n1 = p1 → p : k1 and n2 = p → p2 : k2.
n1 ≺OO n2 if n1 ≺ n2 ∈ G, ni = p → pi : k (i = 1, 2).

—An input dependency from n1 to n2 is a chain of the form n1 ≺φ1 · · · ≺φn n2 (n ≥ 0) such
that φi ∈ {IO} for 1 ≤ i ≤ n − 1 and φn = II.

—An output dependency from n1 to n2 is a chain n1 ≺φ1 · · · ≺φn n2 (n ≥ 1) such that
φi ∈ {OO, IO}.

Note that, in the input dependency, the last II-ordering is necessary. In fact, if we allow
the dependency to end with an IO-edge, an input at n2 is not checked. We can further
clarify dependencies with the following graphical examples:

In picture (a), there is an output dependency from the first to the third line that has
been marked as OO, and an input dependency through all lines. However, in (b), we
only have an output dependency. It is clear that, although (a) could be implemented
in an asynchronous setting, the conversation in (b) would cause problems. In fact, the
messages sent by A on k1 could be delivered in the wrong order (first to C and then to
B). The notion of linearity, hereby introduced, precisely captures such inconsistencies
in global types.

Definition 3.12 (Linearity). G is linear whenever, for all n1 ≺ n2 ∈ G such that
ni = pi → p′

i : k (i = 1, 2), both input and output dependencies from n1 to n2 exist. We
inductively apply this constraint to all global types which G carries.

Observe that we do not require ordering between ni ∈ Gk and n j ∈ Gh in p → p′ : k{lj :
Gj} j∈J (for h, k ∈ J, h �= k) since only one branch is performed. In fact, they cannot be

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

9:20 K. Honda et al.

related by ≺ according to Definition 3.7. We further clarify the condition on branching
with an example:

A → B : t
{

ok : C → D : s.end,
quit : C → D : s.end

}
A → B : t.

(
C → D : s.end |
C → D : s.end

)

(a) branching (b) parallel

The type (a) represents branching: Since only one branch is selected, there is no conflict
between the two actions C → D : s. On the other hand, (b) denotes a concurrent execution
of two independent C → D : s, so an input conflict at D exists.

Linearity and its violation can be detected algorithmically, without infinite unfolding.
First, we observe that we do need to unfold once:

μt.(A → B : s.end | B → A : t.t).

This is linear in its 0-th unfolding (i.e., we replace t with end), but, when unfolded once,
it becomes nonlinear, as follows:

A → B : s.end, B → A : t.μt.(A → B : s.end | B → A : t.t)

since the two actions A → B : s appear in parallel. This is witnessed by:

def X(st) = ((s! | t?.s!.X〈ts〉) | s?.t!) in X〈ts〉,
where (s! | t?.s!.X〈ts〉) belongs to A and s?.t! belongs to B. Unfolding once is necessary
also in global types that do not contain parallel global types. The example in Equation 6
shows a global type that satisfies the linearity condition:

μt.A → B : s.B → C : s′.A → C : s.t. (6)

However, when unfolded once, it is no longer linear as:

A → B : s.B → C : s′.A → C : s.μt.A → B : s.B → C : s′.A → C : s.t (7)

since there is no input and output dependencies between A → C : s and A → B : s.
But, in fact, unfolding once turns out to be enough. Taking G as a syntax, let us call

the one-time unfolding of G the result of unfolding once for each recursion in G (but
never in carried types) and replacing the remaining variable with end. For example,
the type in Equation (6) would be first transformed into the type in Equation (7) and
finally become:

A → B : s.B → C : s′.A → C : s.μt.A → B : s.B → C : s′.A → C : s.end

PROPOSITION 3.13.

(1) The one-time unfolding of a global type is linear if and only if its n-th unfolding is
linear.

(2) The linearity of a global type is decidable.

PROOF. For Property (1), the if-direction is obvious. The only if-direction is proved
by induction on n. See Appendix A for the full proofs. Property (2) is an immediate
corollary of (1).

PROPOSITION 3.14. Suppose G is linear and G
�→ G′. Then G′ is linear.

PROOF. By induction on the last LTS rule applied. The cases [GR1,GR2,GR5,GR6]
are obvious. We prove the case [GR3]. The case [GR4] is similar. Suppose G = p1 →
p2 : k 〈U 〉. G1

�→ p1 → p2 : k 〈U 〉. G2 = G′ is derived by G1
�→ G2 with p2 �∈ �.

Assume � = q1 → q2 : k′ 〈U ′〉. We first prove if G satisfies the linearity condition, then

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

Multiparty Asynchronous Session Types 9:21

k �= k′. Suppose by contradiction, k = k′. Then there should be both output and input
causalities from n = p1 → p2 : k to n′ = q1 → q2 : k. If there is the IO-causality from n
to n′ in G, then we cannot apply [GR3]. Hence, there is only OO and II causalities from
n to n′. In this case, we should have p2 = q2. This contradicts p2 �∈ � in [GR3]. Thus we
assume k �= k′. Then there are three cases.

Case (a): If p1, p2, q1, q2 are pairwise-distinct, then p1 → p2 : k �≺φ q1 → q2 : k′ in G.
Thus, no dependency relation from p1 → p2 : k to any action n′ �= q1 → q2 : k′ in G1 is
changed before and after the transition. Hence, obviously, p1 → p2 : k ≺φ n′ ∈ G implies
p1 → p2 : k ≺φ n′ ∈ G′ for all n′ such that n′ �= q1 → q2 : k′. Hence G′ is linear.

Case (b): Suppose p1 = q2 and others are pairwise distinct. Then p1 → p2 : k �≺φ q1 →
p1 : k′ in G again. Hence, by the same reasoning as previously, p1 → p2 : k ≺φ n′ ∈ G
implies p1 → p2 : k ≺φ n′ ∈ G′ in n′ �= q1 → q2 : k′.

Case (c): Suppose p1 = q1 and others are pairwise distinct. Then, again, we have
p1 → p2 : k �≺φ q1 → q2 : k′ in G. The remaining is the same as the previous cases.

4. TYPE DISCIPLINE FOR MULTIPARTY SESSIONS

4.1. Programming Methodology for Multiparty Interactions

Once given global types as a description of global interactions among communicating
processes, we can consider the following development steps for programs with multi-
party sessions.

Step 1. A programmer describes an intended interaction scenario as global type G
and checks that it is linear.
Step 2. She develops code, one for the local behavior of each participant, incrementally
validating its conformance to the projection of G onto each participant by efficient
type-checking.

The local behaviors might be developed by a team of programmers (who may well be
distributed geographically), in which case the use of a clear, precise global description is
all the more essential. When programs are executed, their interactions are guaranteed
to follow the stipulated scenario. Furthermore, when transport issues interfere with
communication, the global type gives a basic criteria by which communications are
monitored and (in)validated at runtime. The type specification also serves as a basis
for debugging, maintenance and upgrade.

For all these purposes, we need a type discipline that relates global types to com-
munication behavior of individual (endpoint) programs and guarantees key properties
such as communication safety. This section introduces such a type discipline.

4.2. Endpoint Types

Syntax. Endpoint session types or endpoint types, ranged over by T , T ′, . . , are types
for the endpoint behavior of processes, acting as a link between the global types in
Section 3, which give intended conversation structures of multiparty sessions, and
processes in Section 2.1. The grammar is given in Figure 6 (the grammars for U and
S are repeated from Figure 4). All constructs come from binary session types [Honda
et al. 1998] except for the following major changes for multiparty interactions.

—Since a process uses multiple channels for addressing multiple parties, a session
type records the identity (number) of the session channel it uses at each action type.

—Since a type is used for type-checking each participant, we use a notation T @p (called
located type) representing an endpoint type T assigned to participant p. A located
type is also used for delegation.

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

9:22 K. Honda et al.

Fig. 6. Syntax of endpoint session types.

The remainder remains identical to the original session types [Honda et al. 1998]. Type
k? 〈U 〉; T represents the behavior of inputting values of type U at sk (assume s1 . . . sn
is shared at initialization), then performing the actions represented by T . Similarly,
k! 〈U 〉; T is for sending.

Type k&{li : Ti}i∈I describes a branching (external choice): It waits with n options at
k, and then behaves as type Ti if the i-th label is selected; type k⊕{li : Ti}i∈I represents
the behavior that selects one of the labels, say li at k, then behaves as Ti (internal
choice). These four are action prefixes in endpoint types. We call send and selection
types output types and receive and branching input types. The rest is the same as the
global types, demanding that type variables occur guarded by a prefix and taking an
equi-recursive approach for recursive types. We often omit end. Note that endpoint
types do not contain parallel composition, hence retaining simplicity.

Projection and Coherence. The following defines the projection of a global type to
endpoint types at each participant.

Definition 4.1 (Projection). The projection of G onto p, written G � p, is inductively
given as:

− (p1 → p2 : k 〈U 〉. G′)�p =
⎧⎨
⎩

k! 〈U 〉; (G′ �p) if p = p1 �= p2

k? 〈U 〉; (G′ �p) if p = p2 �= p1

(G′ �p) if p �= p2 and p �= p1

− (p1 → p2 : k {lj : Gj} j∈J)�p =

⎧⎪⎪⎨
⎪⎪⎩

k ⊕ {lj : (Gj �p)} j∈J if p = p1 �= p2

k&{lj : (Gj �p)} j∈J if p = p2 �= p1

(G1 �p) if p �= p2 and p �= p1

and ∀i, j ∈ J.Gi �p = Gj �p

− (G1 | G2)�p =
{

Gi �p if p ∈ Gi and p �∈ Gj, i �= j ∈ {1, 2}
end if p �∈ G1 and p �∈ G2

− (μt.G)�p =
{

μt.(G�p) if G�p �= end
end

t�p = t end�p = end.

When none of the side conditions holds, the map is undefined.

We regard the map to act on the syntax of global types. In the branching clause, all
the projections of those participants whose behavior does not depend on the branching
should generate an identical endpoint type (otherwise undefined); and, in parallel
composition, p should be contained in at most a single type, ensuring each type is single-
threaded. Note that, for the sake of clarity, we forbid reflexive interactions directly in

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

Multiparty Asynchronous Session Types 9:23

the definition of projection, making Convention 3.6 redundant. Here, in Property (2),
the term Tp@p was introduced at the beginning of Section 4.2.

Definition 4.2 (Coherence).

(1) We say G is coherent if it is linear and G � p is well-defined for each p ∈ pid(G),
similarly for each carried global type inductively;

(2) {Tp@p}p∈I is coherent if, for some coherent G s.t. I = pid(G), we have G �p = Tp for
each p ∈ I.

THEOREM 4.3. Coherence of G is decidable.

PROOF. By Proposition 3.13 Property (2), noting that the projection is only applied to
a given global type without unfolding. A complexity analysis is given in Deniélou and
Yoshida [2010].

PROPOSITION 4.4. Assume G is coherent and G
�→ G′. Then G′ is coherent.

PROOF. By Proposition 3.14, we only have to prove if G is projectable, then G′ is pro-
jectable. This can be done by induction on the last LTS rule applied. Cases [GR1,GR2]
are straightforward by definition of projection, whereas [GR3,GR4,GR5,GR6] follow
immediately by induction hypothesis.

If the projection mapping is undefined, a global type is not coherent. Linearity guar-
antees linear channel usage including message-order preservation. The next examples
demonstrate the need of these conditions.

4.3. Examples of Coherence

The following global type is linear but not coherent because the projection is undefined:

A → B : k{ok : C → D : k′〈bool〉, quit : C → D : k′〈nat〉}. (8)
Intuitively, when we project this type onto C or D, regardless of the choice made by
A, they should behave in the same way: Participants C and D should be independent
threads. If we change the nat to bool as:

A → B : k{ok : C → D : k′〈bool〉, quit : C → D : k′〈bool〉}, (9)

we can define the coherent projection as follows:

{k ⊕ {ok : end, quit : end}@A, k&{ok : end, quit : end}@B
k′!〈bool〉@C, k′?〈bool〉@D}.

As examples of endpoint types that are not coherent, consider processes in the second
case of Figure 5:

(II) Bad {s!〈〉@A, s?〈〉; s?〈〉@B, s!〈〉@C}.
This process is not coherent since the corresponding global type A → B : s.C → B : s is
not linear.

4.4. Typing System

The purpose of the typing system is to efficiently type behaviors that are built by
programmers and hence that do not include runtime elements such as queues.

Environments and Type Algebra. The typing system uses a map from shared names
to their sorts (S, S′, ..). As given in Figure 6, other than atomic types, a sort has the
shape 〈G〉 assuming G is coherent. Using these sorts, we define:

� ::= ∅ | �, u : S | �, X : S̃T̃ 	 ::= ∅ | 	, s̃ : {T @p}p∈I.

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

9:24 K. Honda et al.

A sorting (�,�′, . .) is a finite map from names to sorts or from process variables to
sequences of sorts and types. Typing (,	′, . .) records linear usage of session channels.
In binary sessions types, it assigned a type to a single channel; now, it assigns a family
of located types to a vector of session channels.

Notation 4.5.

—We write 	,	′ to denote a typing made from the disjoint union of 	 and 	′, always
assuming their domains contain disjoint sets of session channels.

—We write s̃ : T @p for a singleton typing s̃ : {T @p}.
A family of located types is needed to link a set of session types to types of a set of
processes created by the session initialization.

Typing System. The type assignment system for processes is given in Figure 7. We
use the following judgments for processes and expressions, respectively:

� � P � 	 � � e : S.

These read “under the environment �, process P has typing 	” and “under the envi-
ronment �, expression e has type S”. If we set |s̃| = 1 and n = 2, and we delete p from
located type, the rules are essentially identical to those for the original binary session
[Yoshida and Vasconcelos 2007]. Here, we explain the key rules.

[NAME], [BOOL], [OR] are the rules for the expressions and identical with [Yoshida and
Vasconcelos 2007].

[MCAST] is the rule for session request. The condition � � a : 〈G〉 says that sessions
established on shared channel a will execute according to global type G. Therefore,
s̃ must be used in the body P as the first projection of G. Note how s̃ are bound in
a[2..n] (s̃).P and therefore disappear from the typing. [MACC] is for the session accept,
taking the p-th projection. The endpoint type (G�p)@p means that the participant p has
G � p, which is the projection of G onto p as its endpoint type. In both rules, condition
|s̃| = sid(G) (see Definition 3.5) ensures the number of session channels meets those in
G. The typing s̃ : T @p (stands for s̃ : {T @p}) means that each prefix does not contain
parallel threads which share s̃.

[SEND] and [RCV] are the rules for sending and receiving values. Since the k-th name
s[k] of s̃ is used as the subject, we record k in the type. Hence, vector s̃ has type
k! 〈S̃〉; T @p in [SEND] and type k? 〈S̃〉; T @p in [RCV], under the assumption that it is
used as T @p by the subterm P. Note how the relevant type prefixes (k!〈S̃〉 for the
output and k?〈S̃〉 for the input) are composed. In both rules, “p” in T @p ensures that P
is (being inferred as) the behavior for participant p, and its domain should be s̃.

[DELEG] and [SREC] are the rules for delegation of a session and its dual. Delegation
of a multiparty session passes the whole remaining capability to participate in a mul-
tiparty session: Thus, operationally, we send the whole vector of session channels. The
carried type T ′ is located, making sure that the behavior by the receiver at the passed
channels takes the role of a specific participant (here p′) in the delegated multiparty
session. The rest follows the standard delegation rule [Yoshida and Vasconcelos 2007],
observing [DELEG] says that t̃ : T ′@p′ does not appear in P, symmetrically to [SREC],
which uses the channels in P.

[SEL] and [BRANCH], identical with Yoshida and Vasconcelos [2007], are the rules for
selection and branching.

[CONC] composes two processes if their endpoint types are disjoint.
[IF], [INACT], [VAR], and [DEF] are standard. [NRES] is the restriction rule for shared

name a.
In [INACT] and [VAR], “end only” means 	 only contains end as session types.

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

Multiparty Asynchronous Session Types 9:25

Fig. 7. Typing system for expressions and processes.

As for binary session types, the type-checking problem for programs is decidable.
Here, we say � is well-formed when the global types it uses are all coherent. A program
(or a process) is annotated when each of its ν-bound shared names is annotated by a
well-formed global type.

PROPOSITION 4.6. Let � be well-formed and P be an annotated program. Then it is
decidable whether � � P � ∅ is derivable or not.

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

9:26 K. Honda et al.

PROOF. By annotation, in each typing rule in Figure 7, the conclusion uniquely
determines its premise(s). Note also, by well-formedness, projection of global types P
may use is always well-defined.

In this article, we leave open the generalization of the result to non-annotated pro-
grams and the corresponding result for type inference.

4.5. Typing Examples

Two-Buyer Protocol. Write a[2,3] (b1, b2, b′
2, s).Q1 and a[2] (b1, b2, b′

2, s).Q2 for Buyer1 and
Buyer2 in Section 2.3. Then, Q1 and Q2 have the following typing under � = {a : 〈G〉}
where G is given in the corresponding example in Section 3.4, letting Bi = i, S = 3,
b1 = 1, b2 = 2, b′

2 = 3, and s = 4 and assuming P1, P2, Q are 0:

� � Q1 � s̃ : s! 〈string〉; b1? 〈int〉; b′
2! 〈int〉@B1

� � Q2 � s̃ : b2? 〈int〉; b′
2? 〈int〉; s ⊕ {ok : s! 〈string〉; b2? 〈date〉; end, quit : end}@B2

Similarly for Seller. After prefixing at a, we can compose all three by [CONC].

A Streaming Protocol. Let � = {a : 〈G′〉} where G′ is from the streaming example in
Section 3.4. Let d = 1, k = 2, c = 3, K = 1, DP = 2, C = 3, and KP = 4. Write R1, R2, R3,
and R4 for the processes under the initial prefixes of Kernel, DataProducer, Consumer,
and KeyProducer, respectively. We can type them as:

� � R1 � dkc : μt.d? 〈bool〉; k? 〈bool〉; c! 〈bool〉; t@K
� � R2 � dkc : μt.d! 〈bool〉; t@DP � � R4 � dkc : μt.c? 〈bool〉; t@C

(R4 is similar as R2). Note that these types correspond to the projection of G′ onto
respective participants: Thus, Kernel, DataProducer, Consumer, and KeyProducer are
typable programs under �, which can be composed to make the initial configuration.

Delegation. One source of the expressiveness of the session types comes from a
facility of delegation (often called higher order session passing). We type the example
in Section 3.4 and see the relationship with global and endpoint types. Consider the
following three participants:

Alice def= a[2] (t1, t2).b[2,3] (s1, s2).t1!〈〈s1, s2〉〉;0
Bob def= a[2] (t1, t2).b[1] (s1, s2).t1?((s1, s2)); s1! 〈1〉; 0
Carol def= b[2] (s1, s2).s1?(x); P,

where Alice delegates its capability to Bob. Since there are two multicastings, there
are two global specifications, one for a and another for b as follows:

Ga = A → B : t1 〈s1! 〈int〉@A〉. end
Gb = A → C : s1 〈int〉. end,

where the type s1! 〈int〉@A means the capability to send an integer from participant A
via channel s1. This capability is passed to B so that B behaves as A. However, since
the two specifications are independent, C does not have to know who would pass the
capability.

Let (Alice | Bob | Carol) → (ν t̃s̃)(A | B | C | R) where A, B, C are the processes of
Alice, Bob, and Carol after the initial multicasting and R is the generated queues. Let

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

Multiparty Asynchronous Session Types 9:27

s1 = 1, t1 = 1, A = 1, B = 2, C = 3. We have the following typings under � with P ≡ 0:

� � A � t̃ : t1! 〈s1! 〈int〉@A〉@A, s̃ : s1! 〈int〉@A

� � B � t̃ : t1? 〈s1! 〈int〉@A〉@B

� � C � s̃ : s1? 〈int〉@C,

where each endpoint type reflects the original global specifications (e.g., Carol does not
know Alice passed the capability to Bob, and Bob behaves as Alice). These types give
projections of Ga and Gb.

5. SAFETY AND PROGRESS

This section establishes the fundamental behavioral properties of typed processes. We
follow three technical steps:

(1) We extend the typing rules to include those for runtime processes that involve
message queues.

(2) We define reduction over session typings, which eliminates a pair of minimal com-
plementary actions from endpoint types.

(3) We then relate the reduction of processes and that of typings: Showing the latter
follows the former gives us subject reduction (Theorem 5.19), safety (Theorem 5.22),
and session fidelity (Corollary 5.23), whereas showing the former follows the latter
under a certain condition gives us progress (Corollary 5.30).

By the correspondence between endpoint types and global types, these results guar-
antee that interactions between typed processes exactly follow the conversation sce-
nario specified in a global type.

Note that the typing system for runtime processes that we introduce in this section
is used solely for establishing the behavioral properties of typed processes, tracing how
typability is preserved during reduction. This is in contrast to the simple typing system
in Section 4, which is for typing programs and program phrases.

5.1. Typing Runtime

How to Type a Queue. We first illustrate a key idea underlying our runtime typing
using the following example:

s!〈3〉; s!〈true〉; 0︸ ︷︷ ︸
1

| s ::∅ | s?(x); s?(y); 0︸ ︷︷ ︸
2

. (10)

Here, process 1 sends an integer and a boolean to process 2 through queue s :: ∅.
Process 1 can be typed with s : 1! 〈nat〉; 1! 〈bool〉; end@p, whereas process 2 by
s : 1? 〈nat〉; 1? 〈bool〉; end@q. After a reduction, (10) changes into:

s!〈true〉; 0 | s ::3 | s?(x); s?(y); 0. (11)

Note that Equation (11) is identical to Equation (10) except that an output prefix in
Equation (10) changes its place to the queue. Thus, we can go back from Equation (11)
to Equation (10) by placing this message on the top of the process. A key idea in our
runtime typing is to carry out this “rollback of a message” in typing using an endpoint
type with a hole (a type context) for typing a queue. For example, we type the queue in
Equation (11) as:

s : { 1! 〈nat〉; []@p, []@q }, (12)

where [] indicates a hole (this will be formalized in Definition 5.2). Each of the holes
should be filled by the remaining endpoint type of s at p and q. Hence, we cover the

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

9:28 K. Honda et al.

type 1! 〈bool〉; end with the type context for p just given, 1! 〈nat〉; [], obtaining the type
1! 〈nat〉; 1! 〈bool〉; end for p, restoring the original typing.

Labels in a queue are also typed using a type context. For example, k : l1 · true · l2 can
be typed with

k ⊕ l1 : k!〈bool〉; k ⊕ l2 : [], (13)

omitting braces for a singleton selection. Now consider reduction

si � ok; P | si : ∅ → P | si : ok. (14)

Assume we type the left-hand side as

s̃ : k ⊕ {ok : T , quit : T ′}@p. (15)

After the reduction, we obtain the type for P as

s̃ : T @p. (16)

and the type for the queue as:

s̃ : k ⊕ {ok : []}@p. (17)

By combining Equations (16) and (17) as before, we obtain

s̃ : k ⊕ {ok : T }@p. (18)

We now observe that the located type in Equation (18) is a subtype of the located type
in Equation (15) in the standard session subtyping [Gay and Hole 2005; Carbone et al.
2007, 2012], which is formally defined as [Pierce and Sangiorgi 1996]:

Definition 5.1. The subtyping over endpoint types, denoted ≤sub, is the maximal
fixed point of function F that maps each binary relation R on endpoint types as regular
trees to F(R) given as:

—if (T , T ′) ∈ R, then (k! 〈U 〉; T , k! 〈U 〉; T ′) ∈ F(R) and (k? 〈U 〉; T , k? 〈U 〉; T ′) ∈ F(R)
—if (Ti, T ′

i) ∈ R for each i ∈ I ⊂ J, then (⊕{li : Ti}i∈I,⊕{lj : T ′
j} j∈J) ∈ F(R) and

(&{lj : Tj}i∈J, &{li : T ′
i }i∈I) ∈ F(R).

If T ≤sub T ′, then T is a subtype of T ′ whereas T ′ is a supertype of T .

Note that we do not have a subsumption rule for a program in Figure 7. On the other
hand, we require a subtying relation between located types to type runtime processes.

Since k ⊕ {ok : T } ≤sub k ⊕ {ok : T , quit : T ′}, we can type the reductum in Equa-
tion (14) using the located type given in Equation (15), which is a supertype of the
located type in Equation (18) through the standard subsumption, thus achieving the
required rollback.

Type Contexts. Here, we formalize the notion of type context used in the previous
section.

Definition 5.2. The type contexts (T , T ′, . . .) and the extended session typing
(,	′, . . . as before) are given as:

T ::= [] | k! 〈U 〉; T | k ⊕ li : T
H ::= T | T
	 ::= ∅ | 	, s̃ : {Hp@p}p∈I .

Thus, a type context represents a sequence of outputs and singleton selections that ends
with a hole. As before, the notation “	,	′” denotes the union, assuming the domains
should not include a common channel name. The isomorphism ≈ on type contexts is
generated from permutations given here:

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

Multiparty Asynchronous Session Types 9:29

Definition 5.3 (Permutation). In addition to the folding/unfolding of recursive types,
we consider endpoint types up to the following isomorphism (closed under all type
constructors):

k! 〈U 〉; k′! 〈U ′〉; T ≈ k′! 〈U ′〉; k! 〈U 〉; T (k �= k′) (19)

k ⊕ {li :k′ ⊕ {l′j :Tij} j∈J}i∈I ≈ k′ ⊕ {l′j :k ⊕ {li :Tij}i∈I} j∈J (k �= k′) (20)

k ⊕ {li :k′! 〈U 〉; Ti}i∈I ≈ k′! 〈U 〉; k ⊕ {li :Ti}i∈I (k �= k′) (21)

The equations permute two consecutive outputs or selections with different subjects,
capturing asynchrony in communication.

Assignments in 	 may contain both endpoint types and type contexts. Here, we
define the partial commutative algebra ◦ where sid(T) are the channel numbers in T :

T ◦ T = T ◦ T = T [T]
T ◦ T ′ = T [T ′] (sid(T) ∩ sid(T ′) = ∅).

In the first rule, we place the output types of message queues on that of a process. In
the second, we compose the type contexts for two sets of messages from the mutually
disjoint sets of queues. Note T ◦T ′ is defined if and only if T ′ ◦T is defined and in which
case we have T [T ′] ≈ T ′[T]. Note also that T ◦ T ′ is never defined.

Here, we define a simple algebra of environments for runtime processes:

Definition 5.4 (Type Algebra). A partial operator ◦ is defined as:

{Hp@p}p∈I ◦ {H′
p′@p′}p′∈J = {(Hp ◦ H′

p)@p}p∈I∩J ∪ {Hp@p}p∈I\J ∪ {H′
p′@p′}p′∈J\I,

assuming each ◦ on the right-hand side is defined. Otherwise the operation is undefined.
Then we say 	1 and 	2 are compatible, written 	1 � 	2, if for all s̃i ∈ dom(i) such
that s̃1 ∩ s̃2 �= ∅, s̃ = s̃1 = s̃,2 and 	1(s̃)◦	2(s̃) is defined. When 	1 � 	2, the composition
of 	1 and 	2, written 	1 ◦ 	2, is given as:

	1 ◦ 	2 = {	1(s̃) ◦ 	2(s̃) | s̃ ∈ dom(1) ∩ dom(2)} ∪ 	1 \ dom(2) ∪ 	2 \ dom(1).

The operation 	 ◦ 	′ is undefined if 	 � 	′ does not hold.

5.2. Typing Rules for Runtime

To guarantee that there is at most one queue for each channel, we use the typing
judgment refined as:

� � P �s̃ 	,

where s̃ (regarded as a set) records the session channels associated with the message
queues. The typing rules for runtime are given in Figure 8. [SUBS] allows subsumption
(≤sub is extended pointwise from types). [QNIL] starts from the empty hole for each
participant, recording the session channel in the judgment. [QVAL] says that when we
enqueue ṽ, the type for ṽ is added at the tail. [QSESS] and [QSEL] are the corresponding
rules for delegated channels and a label.

[INACT] allows weakening for empty queue types, whereas [CONC] is refined to prohibit
duplicated message queues. The rule does not use coherence (cf. Def. 4.2 (2)) since
coherence is meaningful only when all participants and queues are ready.

In [CRES], since we are hiding session channels, we now know no other participants
can be added. Hence, we check that all message queues are composed and the given
configuration at s̃ is coherent.

For the rest, we refine the original typing rules in Figure 7 not appearing in Figure 8
as follows (the full typing rules are listed in Appendix B):

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

9:30 K. Honda et al.

Fig. 8. Selected typing rules for runtime processes.

—For [MCAST], [MACC], [RCV], [SREC], [BRANCH], and [DEF], we replace � � P � 	 with
� � P �∅ 	.

—[VAR] is similar to [INACT] (so that a queue can never occur in processes realizing
participants).

—For both [DEF] and [NRES], we replace � � P � 	 by � � P �s̃ 	.

Using these typing rules, we can check that the configurations at the beginning of
this section, in Equations (10) and (11), are given an identical typing by “rolling back”
the type of the message in the queues; similarly, for the next redex and reductum pair
in the same page, Equations (15) and (16).

The typability in the original system in Section 4 and the one in this system coincide
for processes without runtime elements.

PROPOSITION 5.5. Let P be a program phrase and 	 be without a type context. Then,
� � P � 	 in the typing system in Section 4 if and only if � � P �∅ 	 is derived without
using [SUBS] in the typing system in this section.

PROOF. See Appendix B.

PROPOSITION 5.6. If � � P �s[1..m] 	, then P has a unique queue at s[i] (1 ≤ i ≤ m), no
other queue at a free channel occurs in P, and no queue in P is under any prefix.

PROOF. It is routine by rule induction, see Appendix B.2.

5.3. Type Reduction

Next, we introduce a reduction relation over session typings, which abstractly repre-
sents interaction in processes at session channels. Here, we assume well-formedness
of types and typing.

Definition 5.7 (Type Reduction). The syntax of labels (�, �′, . . .) of local types is defined
as follows:

� ::= p → p′ : k〈U 〉 | p → p′ : k〈l〉 | p → p′ : s[k]〈U 〉 | p → p′ : s[k]〈l〉.

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

Multiparty Asynchronous Session Types 9:31

We generate 	
�→ 	′ by the following rule:

k! 〈U 〉; H@p, k? 〈U 〉; T @q
p→q : k 〈U 〉→ H@p, T @q [TR-COM]

k ⊕ {l : H, . . .}@p, k&{l : T , . . .}@q
p→q : k 〈l〉→ H@p, T @q [TR-BRA]

H1@p1, H2@p2
�→ H′

1@p1, H′
2@p2 p1, p2 ∈ I k ∈ �

s̃ : {H1@p1, H2@p2, . . .}i∈I,	
�[s[k]/k]→ s̃ : {H′

1@p1, H′
2@p2, . . .}i∈I,	

[TR-CONTEXT]

	 ≈ 	0 	0
�→ 	′

0 	′
0 ≈ 	′

	
�→ 	′

[TR-ISO]

In the sequel, we investigate the relationship between the LTS semantics of global
and local types to prove the key properties for the main theorems.

Definition 5.8 (Full Projection). Assume G is coherent. Then the full projection of G,
denoted by [[G]], is defined as the set {(G � p)@p | p ∈ pid(G)}. We write [[G]]

�→ [[G′]] if

s̃ : [[G]]
�[s[k]/k]→ s̃ : [[G′]].

Definition 5.9 (Coherence and Partial Coherence of Typings). (1) We say 	 is coherent
if 	(s̃) is coherent for each s̃ ∈ dom(). (2) 	 is partially coherent if for some 	′ we have
	 � 	′, and 	 ◦ 	′ is coherent.

The following lemma states that for any type reduction in the local types projected
from G, its corresponding action pi → p j : k in G is the minimum with respect to ≺φ .

LEMMA 5.10 (PROJECTION AND CAUSALITY). Assume [[G]] = {Ti@pi}i∈I and there exists

i, j ∈ I such that Ti@pi, Tj@p j
�→ T ′

i @pi, T ′
j@p j with k ∈ �. Then there is no action

q → q′ : k′ ∈ G such that (q → q′ : k′) ≺φ (pi → p j : k) ∈ G with either (i) φ ∈ {II, IO} or
(ii) φ = OO and k = k′.

PROOF. By the linearity of G, if Ti is the output type at k, then there is no output type
at k except Ti. Similarly if Tj is an input type at k, there is no input type at k except Tj
in [[G]]. Then it is obvious by the definition of ≺.

The key lemma that states the one-to-one correspondence between the semantics of
a global type and the semantics of its projected local types follows.

LEMMA 5.11 (GLOBAL AND LOCAL TYPES). Suppose G is coherent. Then G
�→ G′ if and

only if [[G]]
�→ [[G′]].

PROOF. The only-if direction is straightforward by definition of [[G]]. We prove the if
direction by induction on the derivation of [[G]]

�→ [[G′]].
Let us first analyze the case where either [TR-COM] or [TR-BRA] are in the premise of

[TR-CONTEXT]. If p1 and p2 are top level in G, then we can straightforwardly use [GR1]
and [GR2] from Definition 3.2. Otherwise, if [TR-BRA] is in the premise, then it must
be the case that both p1 and p2 are not top level in G. This follows by the definition of
projection and applicability of [TR-CONTEXT] with [TR-ISO] not in the premise. In such
a case, by definition of projection, all roles different from p1 and p2 must behave the
same on each branch. Hence, the precondition of [GR4] is satisfied, and we can apply
such rule. Note that the global type obtained after reduction can be projected to the

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

9:32 K. Honda et al.

reductum of [TR-CONTEXT] as expected. The case where [T-COM] is used in the premise
of [TR-CONTEXT] is similar.

If [TR-ISO] is in the premise of [TR-CONTEXT], then we must have done a permutation
of some outputs/selections. We show that such a behavior can be emulated by the global
type semantics. Suppose that

s̃ : [[G]] = s̃ : {k! 〈U 〉; k′! 〈U ′〉; T1@1, k? 〈U 〉; T2@2, k′? 〈U ′〉; T3@3}
�0→ s̃ : [[G′]] = s̃ : {k′! 〈U ′〉; T1@1, T2@2, k′? 〈U ′〉; T3@3}

where G = 1 → 2 : k〈U 〉.1 → 3 : k′〈U ′〉.G1 and G′ = 1 → 3 : k′〈U ′〉.G1 with
�0[s[k]/k] = �.

Now, suppose

s̃ : [[G]] ≈ s̃ : {k′! 〈U ′〉; k! 〈U 〉; T1@1, k? 〈U 〉; T2@2, k′? 〈U ′〉; T3@3}
�′

0→ s̃ : [[G0]] = s̃ : {k! 〈U 〉; T1@1, k? 〈U 〉; T2@2, T3@3}
by Equation (19) in Definition 5.3, where G0 = 1 → 2 : k〈U 〉.G1. By the definition of

LTS ([GR3] in Definition 3.2), we can obtain G1
�′→ G0 with �′

0[s[k]/k] = �′, as required.
Other cases are similar.

The following lemma states that the transitions from global types and projected local
types are deterministic.

LEMMA 5.12 (DETERMINACY).

(1) Suppose G is coherent. Then G
�→ G1 and G

�→ G2 imply G1 ≈ G2.
(2) Suppose 	 is coherent. Then 	

�→ 	1 and 	
�→ 	2 imply 	1 ≈ 	2.

(3) Suppose G is coherent, and G
�1→ G1 and G

�2→ G2 with k ∈ �1, �2. Then �1 = �2.

(4) Suppose 	 is coherent, and 	
�1→ 	1 and 	

�2→ 	2 with s[k] ∈ �1, �2. Then �1 = �2.

PROOF. Condition (1) is immediate, noting that if G1 | G2
�→ G′

1 | G2 then G2
�

�→
(since the participants are disjoint between G1 and G2). Condition (2) is by Condi-
tion (1) and Lemma 5.10. Conditions (3) and (4) are similar to Conditions (1) and
(2), respectively.

The following proposition states that (Condition 1) transitions of 	 are closed under
�; (Conditions 2, 3) 	 is invariant with regard to partial and coherence; and (Condi-
tion 4), the transition of a global type and its mapping have exact correspondence.

PROPOSITION 5.13.

(1) 	1
�→ 	′

1 and 	1 � 	2 imply 	′
1 � 	2 and 	1 ◦ 	2

�→ 	′
1 ◦ 	2.

(2) Let 	 be coherent. Then 	
�→ 	′ implies 	′ is coherent.

(3) Let 	 be partial coherent. Then 	
�→ 	′ implies 	′ is partial coherent.

(4) Let 	 be coherent and 	(s̃) = [[G]]. Then 	
�→ 	′ with s[k] ∈ � iff G

�[k/s[k]]→ G′ with
	′(s̃) = [[G′]].

PROOF. For Condition (1), suppose 	1
�→ 	′

1 with s[k] ∈ � and 	1 � 	2. Note by
definition of 	1 � 	2, each pair of vectors of channels from 	1,2 either coincide or
are disjoint; that is, (a) s[k] ∈ s̃ ∈ dom(1) ∩ dom(2) or (b) s[k] ∈ s̃ ∈ dom(i) and
s̃ �∈ dom(j) with i �= j. For case (a), since the typed reduction only erases the top input

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

Multiparty Asynchronous Session Types 9:33

and output pair in 	1, we have 	′
1 � 	2 by the inductive hypothesis and Lemma 5.12

(Condition 2). Then 	1 ◦ 	2
�→ 	′

1 ◦ 	2 is by definition.
Case (b) is vacuous since the reduction does not relate to the domain of 	2. Hence

	′
1 � 	2.

For Condition (2), suppose 	 is coherent and 	
�→ 	′. Suppose the associated redex

is in 	(s̃). By coherence, we can write 	(s̃) as [[G]] for some coherent G. By Lemma 5.11,

there exists G′ such G
�′→ G′ such that �′[s[k]/k] = � and [[G′]] = 	′(s̃). Then, by

Proposition 4.4, G′ is coherent. Hence, [[G′]] and 	′(s̃) are both coherent.
Implication (3) is immediate from Conditions (1) and (2).
Finally the only if-direction of Condition (4) follows directly from Definition 5.8,

whereas the if direction is immediate by Lemma 5.11.

5.4. Subject Reduction and Communication Safety

For subject reduction, we use the following lemmas. In Lemma 5.14, we say that two
typings, 	1 and 	2, share a common target channel in their type contexts when, for
some s̃ and k, we have: (1) T1@p ∈ 	1(s̃) and T2@p ∈ 	2(s̃); and (2) k! 〈U 〉 or k ⊕ l occurs
in T1 and k! 〈U ′〉 or k ⊕ l′ occurs in T2 (i.e., they have an output/selection type at a
shared channel).4

LEMMA 5.14 (PARTIAL COMMUTATIVITY AND ASSOCIATIVITY OF ◦). ◦ on typings is partially
commutative and associative with identity ∅ under the condition that, whenever we
compose two typings, they never share a target channel in their type contexts (in the
above sense).

PROOF. See Appendix B.3.

LEMMA 5.15. Assume � � P �s̃ 	. Then, all free names and free variables in P occur
in �, and all free channels in P occur in 	.

Here, a derivation of � � P �s̃ 	 is a derivation tree of the typing rules for runtime
processes (fully listed in Appendix B) whose conclusion is � � P �s̃ 	.

LEMMA 5.16 (PERMUTATION). (1) Assume given a derivation of � � P �s̃ 	 which uses
[SUBS] at its last two steps. Then, � � P �s̃ 	 has a derivation identical with the original
one except its last two steps are replaced by a single application of [SUBS]. (2) Assume
given a derivation of � � P �s̃ 	 which uses [SUBS] as its last rule and another rule
that is not one of [SUBS], [SEL], and [BRANCH]. Then ,� � P �s̃ 	 has a derivation that is
identical to the original one except that the last two rules used are permuted.

PROOF. Condition (1) is immediate from the transitivity of [SUBS]. Condition (2) is
routine.

LEMMA 5.17 (QUEUE). The following rules are admissible in the typing system for
runtime processes. Here, let s̃ = s[1..k..n] and let us assume that occurrences of ◦ in the

4Whenever we compose two processes, their typings never share a common target channel in their type
contexts in this sense because, by the disjointness of mentioned channels for queues, target channels in type
contexts can never coincide.

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

9:34 K. Honda et al.

premise of each rule are well-defined.

� � s[k] :: h̃ �s̃′ 	 ◦ s̃ : {T @p} � � ṽ � S̃

� � s[k] :: h̃ · ṽ �s̃′ 	 ◦ s̃ : {T [k! 〈S̃〉; []]@p} [QVAL]

� � s[k] :: h̃ �s̃′ 	 ◦ s̃ : {T @p} {t̃} fresh
� � s :: h̃ · t̃ �s̃′ 	 ◦ s̃ : {T [k! 〈T @p′〉; []]@p}, t̃ : {T @p′} [QSESS]

� � s :: h̃ �s̃′ 	 ◦ s̃ : {T @p}
� � s :: h̃ · l �s̃′ 	 ◦ s̃ : {T [k ⊕ {.. , l : [], ..}]@p} [QSEL]

� � s :: ṽ · h̃ �s̃′ 	 ◦ s̃ : {k! 〈S̃〉; T @p}@p

� � s :: h̃ �s̃′ 	 ◦ s̃ : {T @p} [QVALDQ]

� � s :: t̃ · h̃ �s̃′ 	 ◦ s̃ : {k! 〈T @p′〉; T @p}, t̃ : {T @p′}@p′

� � s :: h̃ �s̃′ 	 ◦ s̃ : {T @p} [QSESSDQ]

� � s ::l · h̃ �s̃′ 	 ◦ s̃ : {k ⊕ l : T @p}
� � s :: h̃ �s̃′ 	 ◦ s̃ : {T @p} [QSELDQ]

PROOF. See Appendix B.2.

Here, we do not require the substitution lemmas for session channels and process
variables (cf. Yoshida and Vasconcelos [2007]).

LEMMA 5.18 (SUBSTITUTION AND WEAKENING). (1) (substitution) �, x : S � P �s̃ 	 and
� � v : S imply � � P[v/x] �s̃ 	. (2) (weakening) Whenever � � P �s̃ 	 is derivable, then
its weakening, � � P �s̃ 	,	′ for disjoint 	′, where 	′ contains only empty type contexts
and for types end, is also derivable.

PROOF. Standard, see Yoshida and Vasconcelos [2007].

Among the preceding lemmas, the lemmas for queues are needed for treating reduc-
tion involving queues in the present asynchronous operational semantics. We can now
establish subject reduction.

Subject Reduction, Communication Safety, and Session Fidelity. By the preceding
proposition and the substitution lemma, we obtain:

THEOREM 5.19 (SUBJECT CONGRUENCE AND REDUCTION).

(1) � � P �s̃ 	 and P ≡ P ′ imply � � P ′ �s̃ 	.
(2) � � P �s̃ 	 such that 	 is coherent and P → P ′ imply � � P ′ �s̃ 	′ where 	 = 	′ or

	
�→ 	′ for some �.

(3) � � P �∅ ∅ and P → P ′ imply � � P ′ �∅ ∅.

PROOF. See Appendix B.4.

Remark 5.20. Theorem 5.19, Condition (3) and the subsequent results (in particular
Theorem 5.22 and Corollary 5.30) tell us, through Proposition 5.5, that the typing
system in Section 4, which is for programs and program phrases, guarantees type
safety and other significant behavioral properties for typable programs, noting that
typability of (annotated) programs is decidable by Proposition 4.6.

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

Multiparty Asynchronous Session Types 9:35

Theorem 5.19 immediately entails the lack of the standard type errors in expressions
(such as true + 3). The type discipline also satisfies, as in the preceding session type
disciplines [Honda et al. 1998], communication error freedom, including linear usage
of channels. We first introduce the reduction context E as follows:

E ::= E | P | P |E | (νn)E | def D in E
We also state:

—A prefix is at s (at a, respectively) if its subject (i.e., its initial channel) is s (a,
respectively). Furthermore, a prefix is emitting if it is request, output, delegation, or
selection; otherwise it is receiving.

—A prefix is active if it is not under a prefix or an if branch, after any unfoldings by
[DEF]. We write P〈〈s〉〉 if P contains an active subject at s after applying [DEF], and we
write P〈〈s!〉〉 (resp. P〈〈s?〉〉) if P contains an emitting (receiving, respectively) active
prefix at s.

—P has a redex at s if it has an active prefix at s among its redexes.

Here and henceforth, we safely confuse a channel (as a number) in a typing and the
corresponding free session channel of a process.

LEMMA 5.21. Assume � � P �∅ 	 s.t. 	 ◦ 	0 is coherent for some 	0.

(1) If P〈〈s〉〉, then P contains either a unique active prefix at s or a unique active emitting
prefix and a unique active receiving prefix at s.

(2) If P contains an active emitting (receiving, respectively) prefix at s, then 	 contains
an emitting (receiving, respectively) minimal prefix at s.

PROOF. By easy rule induction, see Appendix B.6.

The following result adapts the standard properties for synchronous session
types [Takeuchi et al. 1994; Honda et al. 1998; Yoshida and Vasconcelos 2007] to
multiparty asynchronous session types. Note that reductions may go wrong for sev-
eral reasons. Traditional problems include non-boolean values in a conditional, as
in if a then P else Q, and arity mismatch for process definitions as in def X(yx) =
P in X〈true〉. Here, we are instead interested in communication safety, which ensures
there is no error when participants interact with each other. Since interactions al-
ways happen at session channels, we focus on the linearity property (no races) and the
interactions between processes and their corresponding queue. Here, we assume the
standard bound name convention.

THEOREM 5.22 (VOMMUNICATION SAFETY). Suppose � � P �t̃ 	 s.t. 	 is coherent and P
has a redex at free s. Then:

(1) (linearity) P ≡ E[s :: h̃] such that either
(a) P〈〈s?〉〉, s occurs exactly once in E and h̃ �= ∅; or
(b) P〈〈s!〉〉 and s occurs exactly once in E ; or
(c) P〈〈s?〉〉, P〈〈s!〉〉, and s occurs exactly twice in E .

(2) (error-freedom) if P ≡ E[R] with R〈〈s?〉〉 being a redex:
(a) If R ≡ s?(ỹ); Q then P ≡ E ′[s : ṽ · h̃] for some E ′ and |ṽ| = |ỹ|.
(b) If R ≡ s?((s̃)); Q then P ≡ E ′[s : t̃ · h̃] for some E ′ and |s̃| = |t̃|.
(c) If R≡s � {li : Qi}i∈I then P ≡E ′[s :lj ·h̃] for some E ′ and j ∈ I.

PROOF. For Condition (1), let P ≡ (νñ)(P0|s : h̃|Q) where P0 does not contain a queue
and Q only contains queues (by Proposition 5.6). By Lemma 5.21, we know P0 has
either a single active prefix or a pair of a receiving active prefix and an emitting active
prefix. So we have three cases:

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

9:36 K. Honda et al.

—P0〈〈s?〉〉 and there is no other active prefixes at s: If so because there is a redex in P
the queue cannot be empty.

—P0〈〈s!〉〉 and there is no other active prefixes at s: Then this gives us a redex.
—P0〈〈s!〉〉 and P0〈〈s?〉〉. Then at least the former gives a redex, but the latter can also

give a redex.

Hence, as required.
For Condition (2), if P satisfies the stated condition, then we can write P ≡ E ′[s : h̃|R]

and S def= s : h̃|R form a redex, with the same typing by Theorem 5.7 Condition (1).
Since this should have a partially coherent typing, it means, in particular, that the pair
of active prefixes at s in the tying of S should be complementary. The rest is by the
direct correspondence between the type constructors and the prefixes.

By Theorems 5.19 and 5.22, a typed process “never goes wrong” in the sense that
its interaction at a multiparty session channel is always one-to-one and that each
delivered value matches the receiving prefix.

By Lemma 5.21 Condition (2) and by the typing of the associated queue, this delivery
precisely corresponds to a redex in the session typing.

As the corollary of Theorem 5.19 Condition (2) and Proposition 5.13 Condition (4),
we obtain session fidelity: The interactions of a typable process exactly follow the
specification described by its global type.

COROLLARY 5.23 (SESSION FIDELITY). Assume � � P �t̃ 	 such that 	 is coherent and
	(s̃) = [[G]]. If

(1) P〈〈s[k]?〉〉 → P ′ at the redex of s[k], then � � P ′ �t̃ 	′ with G
�→ G′ with k ∈ � and

[[G′]] = 	′(s̃), or
(2) P〈〈s[k]!〉〉 → P ′ at the redex of s[k], then � � P ′ �t̃ 	.

PROOF. In Conditioin (1), the conclusion � � P ′ �t̃ 	′ where 	 = 	′ or 	
�→ 	′ follows

directly from Theorem 5.19 Condition (2). The second conclusion G
�→ G′ with k ∈ �

and [[G′]] = 	′(s̃) follow directly from Lemma 5.12 Condition (3) and Proposition 5.13
Condition (4). If not, a sender puts some value in the queue. Hence, Condition (2)
obviously holds.

5.5. Progress

Communication safety says that if a process ever does a reduction, it conforms to the
typing and it is linear. If interactions within a session are not hindered by initialization
and communication of different sessions, then the converse holds: The reduction pre-
dicted by the typing surely takes place, that is the standard progress property in binary
session types [Dezani-Ciancaglini et al. 2006; Honda et al. 1998]. First, we define:

Definition 5.24. Let � � P �s̃ 	. Then, P is queue-full when {s̃} coincide with the set
of session channels occurring in 	.

A process is queue-full when it has a queue for each session channel. The following
precludes interleaving of other sessions (including initializations and communications)
that can introduce deadlock. For example, two session initializations a[2](s).b[2](t).s?; t!
and a[2](s).b[2](t).t?; s! cause deadlock. Observe, because we have multiparty sessions,
that there is less need to use interleaved sessions.

Definition 5.25 (Simple). A process P is simple when it is typable with a type
derivation where the session typing in the premise and the conclusion of each prefix
rule in Figure 7 is restricted to at most a singleton. That is, (1)	 of [MCAST], [MACC],

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

Multiparty Asynchronous Session Types 9:37

[SEND], [RCV], [BRANCH] and [VAR] are empty. (2) Neither [RCV] nor [DELEG] is used. (3)
	 of [IF], [INACT], [NRES] and [DEF] contains at most a singleton, and, in [CONC], either
	,	′ contains at most a singleton.

Thus, each prefixed subterm in a simple process has only a unique session.

PROPOSITION 5.26. Let P0 be simple and P0 →∗ P. Then, no delegation prefix (input
or output) occurs in P and for each prefix with a shared name in P, say a[i](s̃).P ′ or
a[2..n](s̃).P ′, there is no free session channels in P ′ except s̃.

PROOF. See Appendix B.7.

Another element that can hinder progress is when interactions at shared names
cannot proceed.

Definition 5.27 (Well-Linked). We say P is well-linked when for each P →∗ Q,
whenever Q has an active prefix whose subject is a (free or bound) shared name, then
it is always part of a redex.

Thus, in a simple well-linked P, each session is never hindered by other sessions
nor by a name prefixing. The key lemma for simple processes follows. Here, we safely
confuse a channel in a typing and the corresponding free session channel of a process.

LEMMA 5.28. Let � � P �s̃ 	 and P is simple. If there is an active receiving (active
emitting, respectively) prefix in 	 at s and none of prefixes at s in P is under a prefix at
a shared name or under an if-branch, then P〈〈s?〉〉 (either P〈〈s!〉〉 or the queue at s is not
empty, respectively).

PROOF. By rule induction using Proposition 5.26, see Appendix B.8.

PROPOSITION 5.29. Let � � P �s̃ 	, 	 is coherent, P is simple, well-linked and queue-
full. Then:

(1) If P �≡ 0, then P → P ′ for some P ′.
(2) If 	(t̃) = [[G]] and G

�→ G′ with k ∈ �, then P →+ P ′ at the redex at tk such
that � � P ′ �s̃ 	′ with 	′(t̃) = [[G′]].

PROOF. Let P be simple, queue-full, and well-linked, and � � P �s̃ 	 such that 	 is
coherent. Without loss of generality we can assume P does not have hidings (we can
just take off and the result is again simple, queue-full, well-linked, and coherent). Since
	 is coherent, if 	 contains any prefix then, by, Proposition 5.26, it should form a redex
(together with another prefix to form the image of an identical set). By Lemma 5.28
and Theorem 5.22 (Conditions 1 and 2) and by the well-linkedness, either there is an
if-branch above the prefix or P has an active prefix (or prefixes) at s in P. For the former,
this if-branch itself cannot be under any prefix since that violates the activeness at s
in 	. So this if-branch can reduce; hence, we conclude the case.

If not, then, by Lemma 5.28, there are the following cases:

(a) P ≡ E[Q〈〈s!〉〉|s : h̃|R〈〈s?〉〉], in which case there is at least one redex in P between
the emitting prefix and the queue.

(b) P ≡ E[s : h̃|R〈〈s?〉〉] with h̃ non-empty, in which case there is a redex between the
non-empty queue and the receiving redex.

(c) P ≡ E[Q〈〈s!〉〉|s : h̃], in which case there is a redex as in (a).

In each case, there is a reduction; hence, done.

(2) above gives the converse of Corollary 5.23: if the global type has a reduction, then
the process can always realize it.

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

9:38 K. Honda et al.

COROLLARY 5.30 (PROGRESS). Let P be a simple and well-linked program. Then P has
the progress property in the sense that P →∗ P ′ implies either P ′ ≡ 0 or P ′ → P ′′ for
some P ′′.

PROOF. Immediate from Proposition 5.26, Lemma 5.28, and Theorem 5.29.

A simple application of Theorems 5.19 Condition (3) and 5.22 and Corollary 5.30
for processes from Section 2.3 follow. Here, communication mismatch stands for the
violation of the conditions given in Theorem 5.22 Condition (2).

PROPOSITION 5.31 (PROPERTIES OF TWO PROTOCOLS).

(1) Let Buyer1|Buyer2|Seller →∗ P. Then P is well-typed, simple, and well-linked; P
has no communication mismatch; and either P ≡ 0 or P → P ′ for some P ′.

(2) Similarly for DataProducer|KeyProducer|Kernel|Consumer.

PROOF. Immediate from Corollary 5.30 because these two configurations are typable
programs each of which loses its shared name in the initial reduction (at which point
all the occurrences of the shared name are used).

The significance of the progress result under these constraints is that, if a typable
program ever gets stuck during reduction, then its causes are other than the structure
of individual typed conversations: Thus, we are ensured that the causes of deadlock
(if any) in typed interactions do not lie in each conversation structure itself, allowing
their well-articulated analysis.

6. EXTENSIONS AND RELATED WORK

We outline applications and several possible extensions of the presented framework,
then discuss related works. We also summarize recent results and applications of mul-
tiparty session types after the publication of the extended abstract [Honda et al. 2008a].

6.1. Applications and Extensions

Applications. As we already discussed (cf. Section 1 and Section 4.1), the type discipline
we explored in the present article is intended to be used as a typed foundation for the
development of communication-centered software in various ways and at different
development stages. Types will also serve as a core specification on which other formal
specifications and techniques such as program analyses and assertions may be built.

A global type serves as an agreement of a protocol following which each end-point pro-
gram will execute its communication. An automatic method to check well-formedness
of the global types (linearity, by Proposition 3.13, and coherence, by Proposition 4.3)
guarantees the behaviors specified by the global specification. Development of individ-
ual programs for endpoint communications, which materialize a global conversation,
is assisted in several ways: first, the projection of a global type to each participant
(well-defined by coherence) directly suggests the possible shape of end-point inter-
actional behavior. Second, during development, a programmer can check whether her
program conforms to the agreed global type through type-checking the program against
an appropriate projection of the global type (Proposition 4.6). The global type and its
projections may also be used as a basis of the debugging/testing process, including
automatic generation of test suites.

Once the development of all programs is complete, their typability ensures, in the
absence of systems errors (such as transport-level failure), that the runtime behavior
of the deployed programs satisfies the key properties including communication safety,
session fidelity, and progress through the theorems in Section 5 (cf. Theorems 5.19
and 5.22 and Corollary 5.30). Since global types and their projections specify possible

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

Multiparty Asynchronous Session Types 9:39

legitimate interaction sequences of the deployed programs, they can be used for run-
time monitoring, flagging those communications that go out of expected conversation
sequences and thus signaling the existence of system-level errors (which is another di-
rect consequence of the theorems in Section 5), thus helping to locate the cause of such
errors. These static and dynamic validations of programs may add further precision
by using refined specifications, such as logical assertions following (global and local)
session type structures, as we recently did in Bocchi et al. [2010].

The effectiveness of these applications hinges on the exactitude with which global
types and the associated type discipline can assure basic properties of programs and
thus is underpinned by the formal results discussed in this article. At the same time,
to put these ideas into practise, the presented framework may need various extensions
as well as engineering experiments. Some possible extensions of the presented type
discipline are discussed in the following.

Existing Extensions of Binary Session Types. In the literature, several extensions of
binary session type disciplines have been proposed, including subtyping [Gay and Hole
2005], bounded polymorphism [Gay 2008], integration with security annotations to
guarantee authentication properties [Bonelli et al. 2005], and integration with higher
order π -calculus [Mostrous and Yoshida 2007, 2009]. We believe that integrations
with these extensions should be possible and will enrich the expressive power and
applicability of the theory.

Multithreaded Participants. Another straightforward extension is to allow a multi-
threaded participant, so that a single participant can perform parallel conversations
with others during a session. For this extension, we need to augment endpoint types
with the parallel composition T1 | T2, equipped with the following isomorphism (using
type contexts in Section 5): T [T1] | T2 ≈ T [T1 | T2] if for no k there is an output at k
in both T and T2 (such a prefix adds false OO-dependency), as well as commutativity
and associativity. Linearity between T1 and T2 in T1, T2 is given by coherence via pro-
jection. This extension has been recently studied with more advanced dynamic roles in
Deniélou and Yoshida [2011].

Graph-Based Global Types and Type Inference. The syntax of global types uses the
standard abstract syntax tree. We can further generalize this tree-based syntax to
graph structures to obtain a strictly more expressive type language, thus enlarging
typability. Consider the two endpoint processes P ≡ s!.t? and Q ≡ t!.s?: Their parallel
composition does not introduce conflict, hence, it is linear and safe. This situation,
however, cannot be represented in the current global types since two “prefixes”
criss-cross each other. Interestingly, our linearity conditions in Section 3.5, based on
input/output dependencies, can directly capture the safety of this configuration. All we
need do is to take the graphs of prefixes and II, IO, and OO-edges (cf. Figure 5) under
the linearity condition (precisely following Section 3.5) as global types, augmented
with an acyclicity condition on chains of these causal edges. All other definitions and
results stay the same.

Our recent work [Mostrous et al. 2009] studies the generation of graph-based global
types from endpoint types, where we also use such graph-based types for solving the
type inference problem for (the generalized version of) the presented type discipline.
This is further extended in Deniélou and Yoshida [2012] and Lange et al. [2015], making
a connection with Communicating Automata. See Section 6.3.

Synchrony and Asynchrony. Most of the session types currently studied are binary
and synchronous [Honda et al. 1998]. In some computing environments (e.g., tightly
coupled SMP), synchrony would be more suitable. Adding synchrony means we have
more causality: OO-dependency between different names as well as the OI-dependency

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

9:40 K. Honda et al.

(i.e., the dependency from output to input, cf. Figure 5), which in asynchrony never
arises Section 3.4. Our subsequent work [Bejleri and Yoshida 2009] studies a syn-
chronous multiparty session type.

A different direction is to consider asynchronous message passing without order
preservation [Honda and Tokoro 1991], which is also used in some computing environ-
ments (although in many environments we have efficient order-preserving transports
such as TCP). Again, we can use our modular articulation by taking off OO-edges to
obtain a consistent theory for pure asynchrony.

Multicast Primitives for Sessions Communication. The two-buyer protocol uses a mul-
ticasting prefix notation s, t! 〈V 〉. The present work treats it as a macro for s! 〈V 〉; t! 〈W〉,
which has an essentially identical abstract semantics. Having proper multicasting
primitives for session communication is, however, useful especially in the case of ses-
sions involving a large number of participants using multicast protocols such as IP-
multicast through APIs. It also enriches the type structures: We extend p → p′ : k in
the prefix of global types to p → p1, . . , pn : {k1, . . . , kn} (with a practical adaptation such
as group addressing), representing the multicast of a message to p1, . . , pn via channels
k1, . . . , kn by participant p; similarly, we extend endpoint session types to k̃!〈U 〉 from
k!〈U 〉. Causality analysis remains the same by decomposing each multicasting prefix
into its unicasting elements and considering causality for each of them. Our subsequent
work [Bettini et al. 2008; Coppo et al. 2015a, 2015b] uses multicasting and proves the
progress properties in asynchronous multiparty sessions.

6.2. Related Work

There is a large literature on session types for both process calculi (in particular π -
calculi) and programming languages. Here, we discuss some of the most closely related
works.

Asynchronous Session Types. Multiparty session types are based on message-
order preserving asynchronous communication. Operational semantics of binary ses-
sions based on asynchronous communication was first considered by Neubauer and
Thiemann [2004b]. Recently, Gay and Vasconcelos [2009] studied the asynchronous
version of binary sessions for an ML-like language [Vasconcelos et al. 2006]. In Gay and
Vasconcelos [2009], message queues are given two endpoint channels and a direction.

Coppo et al. [2007] study asynchronous binary session types for Java, extending the
previous work [Dezani-Ciancaglini et al. 2006] and proving progress by introducing
an effect system. The resulting system does not allow interleaving sessions so that
interactions involving more than two parties—such as our examples in Section 2.3—
cannot be represented. Our theorem establishes the progress property on multiple
session channels, significantly enlarging the framework in Coppo et al. [2007]. Re-
cently, Dezani-Ciancaglini et al. [2007] propose a typing system for progress in binary
synchronous interleaving sessions. There, typable processes obey the partial orders
of shared and session channels inferred during type-checking. Because of the use of
global types, processes typed by our multiparty session typing do not have to follow such
ordering; on the other hand, the system in Dezani-Ciancaglini et al. [2007] does not
require the simpleness condition (Definition 5.25). In Dezani-Ciancaglini et al. [2007],
a progress property is defined as a typable process that never reduces to a process
which contains open sessions (this amounts to containing session channels) and that is
irreducible in any inactive context (represented by another inactive process running in
parallel). A combination of this and our multiparty session typing systems will enlarge
typability, guaranteeing progress in many situations. See also Section 6.3.

The concurrent work done by Bonelli and Compagnoni [2007], which is indepen-
dently conceived and developed, studies a multiparty session typing for asynchronous

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

Multiparty Asynchronous Session Types 9:41

communication. Although treating the common topic, the technical direction of their
work is different from that of the present work. Instead of global types, they solely use
what we call (recursion-free) endpoint types. In type-checking, endpoint types are pro-
jected to each binary session so that type safety can be ensured using duality. Since we
lose sequencing information in this way, the progress property is not guaranteed. The
use of global types in the present work leads to transparent treatment of type structures
such as recursion, the guarantee of stronger behavioral properties such as progress,
and (arguably) more intelligible description of multiparty interaction structures.

Global Description of Session Types. Two recent works studied global descriptions
of sessions in the context of Web services and business protocols [Carbone et al. 2007,
2012; Bhargavan et al. 2009]. Our work [Carbone et al. 2007, 2012] presented an
executable language for directly describing Web interactions from a global viewpoint
and provided the framework for projecting a description in the language to endpoint
processes. The use of global description for types and its associated theories have not
been developed in Carbone et al. [2007]. The type disciplines for the two (global and end-
point) calculi studied in Carbone et al. [2007] are based on binary synchronous session
types; hence, safety and progress for multiparty interactions are not considered. See
also Section 6.3 for further extensions of Carbone et al. [2007, 2012].

Bhargavan et al. [2009] investigates approaches to cryptographically protecting ses-
sion execution from both external attackers in networks and malicious session princi-
pals. Their session specification models an interaction sequence between two or more
constituent roles, an abstraction of network peers. The description is given as a graph
whose node represents a specific state of a role in a session and whose edge denotes
a dyadic communication and control flow. The purpose of the message flow graphs in
Bhargavan et al. [2009] is more to serve as a model for systems and programs than to
offer a type discipline for programming languages.

First, their work does not (aim to) present compositional typing rules for processes.
Second, their flow graphs do not (try to) represent such elements as local control flow
(e.g., prefixing), channel-based communication, and delegation. Third, their operational
structures may not be oriented toward type abstractions: For example, their choice
structures are based on transitions of flow graphs rather than on additive structures
realizable by branching and selection.

Integration of their and our approaches is an interesting further topic: For example,
we may consider developing a runtime validation method for multiparty sessions using
flow models induced by our global types.

With a similar intent to address secure implementation of multiparty sessions, the
works in Carbone and Guttman [2009a, 2009b] provide an abstract semantics for global
types without parallel composition and recursion into the Strand Spaces model [Thayer
et al. 1999]. The semantic function exploits a projection similar to ours.

Semantics of Delegation. For a simpler presentation, we used the operational seman-
tics of delegation from Honda et al. [1998], which demands that delegated channels do
not occur in the receiver. This prevents a process from acting as two or more partici-
pants in the same session, which usually leads to a deadlock. The duplication check is
easily implementable in a way analogous to the standard mechanism of firewalls. The
more generous rule [Gay and Hole 2005 and Yoshida and Vasconcelos 2007] allows sub-
stitution of session channels, as in [RECV], which also satisfies type safety and progress
through annotations on channels and types. This annotation extends the method in
Gay and Hole [2005] and Yoshida and Vasconcelos [2007]: Instead of polarities, we use
indices by participants to annotate each usage of channels. With this change, the whole
theories remain intact with exactly the same operational semantics and typing for pro-
grams. We study this delegation in Bettini et al. [2008] and Bejleri and Yoshida [2009].

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

9:42 K. Honda et al.

Linear and Behavioral Types for Mobile Processes. Among many works on types for
mobile processes, session type disciplines in general and the present work in particular
are most closely related with linear/IO-typed π -calculi with causality information. The
session type disciplines are related with linear and IO-typed π -calculi with causality
information. The causality analysis in global types is partly inspired by the graph-
based linear types developed in Yoshida [1996] and Yoshida et al. [2001], where order-
ing among multiple linear names (which correspond to session channels) guarantees
deadlock freedom of typed processes. Several works [Kobayashi 2006; Igarashi and
Kobayashi 2004] study generalized forms of linear typing for guaranteeing different
kinds of deadlock freedom incorporating synchronizations and locking.

A main difference of session type disciplines from these and other preceding works in
this field is a notion of rigorously structured conversations and their direct type abstrac-
tion. See Acciai and Boreale [2008] and Dezani-Ciancaglini et al. [2007] for detailed dis-
cussions, including comparisons between the session-based and the behavioral-based
ones [Yoshida 1996; Yoshida et al. 2001; Kobayashi 2006]; in Acciai and Boreale [2008],
Dezani-Ciancaglini et al. [2007], and Bettini et al. [2008], structured session primitives
help to provide simpler typing systems for progress for binary sessions.

By raising the level of abstraction through the use of structured primitives such
as separate session initiation, branching, and recursion, session types can describe
complex interaction structures more intelligibly and enable efficient type-checking.
These features would have direct applicability for the design of programming languages
with communication [Hu et al. 2008; Carbone et al. 2007, 2012; Honda et al. 2007;
Sackman and Eisenbach 2008; Pucella and Tov 2008; Scribble 2008].

One of the novelties of the present work is the introduction of global descriptions
as types and a use of their projection for type-checking. They offer a modular and
systematic causality analysis rather than directly working on individual syntax and
operational semantics, with adaptations to asynchronous and synchronous communi-
cations. Composability of multiple programs is transparent through projection of a
common global type, whereas complex syntax of types and typing are required in the
traditional approach. To our knowledge, this method has not been investigated so far
in the types of mobile processes.

Advanced Process Calculi and Types. Several process calculi for broadcasting have
been investigated to model and analyze broadcasting networks including (recently)
mobile ad-hoc networks, starting from Prasad’s thesis [Prasad 2001]. Recent works
focus on behavioral equivalences with lts [Merro 2007; Mezzetti and Sangiorgi 2006;
Prasad 2006] and static analysis [Nanz et al. 2007] to investigate a number of different
broadcasting methods. None studied the typing system and provided a strong progress
guarantee as ensured by our session types. Our session types use a static participant
information in the syntax and types. Recent advanced typing systems for location-
based distributed processes [Hennessy 2007] use the similar notion for types T @p,
allowing one to dynamically instantiate locations into the capabilities using dependent
type techniques. Since our aim is to prove the simplest extension of the original session
types to multiparty sessions, static participants are enough even for delegations. A
valuable further study will be to investigate a dynamic change of participant numbers
during session initialization (without explicitly declaring p in the syntax) by using
channel-dependent types [Mostrous and Yoshida 2007] or polymorphism.

Other Recent Service-Oriented Calculi. A vast amount of formal work for service-
orientation has been done using process calculi and session types. The reader can refer
to two recent surveys [Dezani-Ciancaglini and de’ Liguoro 2010; Castagna et al. 2011]
for more comparisons. We focus on the most related recent work. Different approaches
to the description of service-oriented multiparty communications are taken in Bravetti

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

Multiparty Asynchronous Session Types 9:43

and Zavattaro [2007] and Bruni et al. [2008]. In Bravetti and Zavattaro [2007], the
global and local views of protocols are described using a synchronous CCS-based cal-
culus as a contract language and testing-preorders to check subcontract compliance;
Bruni et al. [2008] propose a distributed calculus that provides communications ei-
ther inside sessions or inside locations, modeling merging running sessions. Contracts
[Castagna and Padovani 2009] use a process-based specification of protocols in which
conformance means Must-preorder (so that we can ensure liveness). The system in
Castagna and Padovani [2009] can type more processes than session types, thanks to
the flexibility of process syntax for describing protocols. However, typable processes
themselves in Castagna and Padovani [2009] may not always satisfy the properties of
session types such as progress: It is proved later by checking whether the type meets a
certain form. Hence, proving progress with contracts effectively requires an exploration
of all possible paths (interleavings, choices) of a protocol.

Caires and Vieira [2010] propose a proof system that builds a well-founded ordering
on events to enforce progress for processes of the Conversation Calculus [Vieira et al.
2008] where dynamic join and leave of participants are treated. These recent works
do not treat a prescription of protocols offered by the global types, with the efficient
projection and type-checking, which can ensure strong safety properties. Our recent
work [Deniélou and Yoshida 2011] extends a dynamic join and leaving mechanism
based on the multiparty session types by introducing a notion of roles that represent a
unit of local behaviors.

6.3. Recent Works Based on Multiparty Session Types

This subsection summarizes works based on Multiparty Session Types published after
the extended abstract [Honda et al. 2008a] of this article.

Theoretical Studies on Multiparty Session Types. Extensions of the original multi-
party session types [Honda et al. 2008a] have been proposed, often motivated by use
cases resulting from industry applications. Such extensions include a subtyping for
asynchronous multiparty session types to enhance efficiency [Mostrous et al. 2009]
motivated by financial protocols and multicore algorithms; parametrized global types
for parallel programming and Web service descriptions [Deniélou et al. 2012]; commu-
nication buffered analysis [Deniélou and Yoshida 2010]; extensions to the sumtype and
its encoding [Nielsen et al. 2010] for describing healthcare workflows; exception han-
dling for multiparty conversations [Capecchi et al. 2016] for Web services and financial
protocols; and a liveness-preserving refinement for multiparty session types [Padovani
2014b].

Multiparty session types can be extended with logical assertions following the design-
by-contract framework [Bocchi et al. 2010]. This framework is enriched in Bocchi et al.
[2012] to handle stateful logical assertions, whereas Chen and Honda [2012] offer
more fine-grained property analysis for multiparty session types with these stateful
assertions.

In Deniélou and Yoshida [2011], roles are inhabited by an arbitrary number of par-
ticipants that can dynamically join and leave a session. Swamy et al. [2011] show that
the multirole session types [Deniélou and Yoshida 2011] can be naturally represented
in a dependent-typed language.

To enhance expressivity and flexibility of multiparty session types, Demangeon and
Honda [2012] propose nested, higher order multiparty session types, and Castagna
et al. [2012] study a generalization of choices and parallelism. Carbone and Montesi
[2013] directly type a global description language [Carbone et al. 2012] by multiparty
session types without using local types. This direct approach can type processes that
are untypable in the original multiparty session typing (i.e., the communication type

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

9:44 K. Honda et al.

system in this article). Montesi and Yoshida [2013] extend the work in Carbone and
Montesi [2013] to compositional global description languages.

As another line of the study, we extend the multiparty session types to express
temporal properties [Bocchi et al. 2014b]. In this work, the global times are enriched
with time constraints in a way similar to timed automata.

A type system enforcing a stronger correspondence between nondeterministic choices
expressed in multiparty session types and the behavior of processes involved in multi-
party sessions has been investigated in Bocchi et al. [2014a].

Progress and Session Interleaving. Multiparty session types are a convenient method-
ology for ensuring the progress of systems of communicating processes. However,
progress is only guaranteed within a single session [Honda et al. 2008a; Dezani-
Ciancaglini and de’ Liguoro 2010; Deniélou and Yoshida 2011], not when multiple
sessions are interleaved. The first papers considering progress for interleaved sessions
required the nesting of sessions in Java [Dezani-Ciancaglini et al. 2006; Coppo et al.
2007]. These systems can guarantee progress for only one single active binary session.
Coppo et al. [2015b] develop a static interaction type system for global progress in dy-
namically interleaved and interfered multiparty sessions. A type inference algorithm
for this system has been studied in Coppo et al. [2013], although for finite types only.
Padovani [2014a, technical report] presents a type system for the linear π -calculus that
can ensure progress even in presence of session interleaving, exploiting an encoding
similar to that described in Dardha et al. [2012] of sessions into the linear π -calculus.
However, not all multiparty sessions can be encoded into well-typed linear π -calculus
processes. In this respect, the richer structure of multiparty session types increases the
range of systems for which nontrivial properties such as progress can be guaranteed.

Security. Enforcement of integrity properties in multiparty sessions using session
types has been studied in Bhargavan et al. [2009] and Planul et al. [2009]. These
papers propose a compiler that, given a multiparty session description, implements
cryptographic protocols that guarantee session execution integrity.

Capecchi et al. [2010] and in an extended version Capecchi et al. [2014] propose a
session type system for a calculus of multiparty sessions enriched with security levels
and adding access control and secure information flow requirements in the typing
rules; they show that this type system guarantees preservation of data confidentiality
during session execution. In Capecchi et al. [2015], this calculus is equipped with a
monitored semantics that blocks the execution of processes as soon as they attempt to
leak information and raises an error.

Behavioral Semantics. Typed behavioral theory has been one of the central topics in
the study of the π -calculus throughout its history (e.g., reasoning about various encod-
ings into the typed π -calculi [Pierce and Sangiorgi 1996; Yoshida 1996; Kouzapas et al.
2016]). In the context of typed bisimulations and reduction-closed theories, Kouzapas
and Yoshida [2014] show that unique behavioral theories can be constructed based on
the multiparty session types. The behavioral theory in Kouzapas and Yoshida [2014]
treats the mutual effects of multiple choreographic sessions that are shared among
distributed participants as their common knowledge or agreements, reflecting the ori-
gin of choreographic frameworks [WS-CDL 2003]. These features related to multiparty
session type discipline make the theory distinct from any type-based bi-simulations in
the literature and are also applicable to a real choreographic use case from a large-
scale distributed system. This bisimulation is called globally governed since it uses
global multiparty specifications to regulate the conversational behavior of distributed
processes. It is an interesting future work to extend this work toward more scalable
session bi-simulations for the eventful session types and the higher order π -calculus
studied in Kouzapas et al. [2015].

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

Multiparty Asynchronous Session Types 9:45

Runtime Monitoring and Adaptations. Multiparty session types were originally de-
veloped to be used for the static type-checking of communicating processes. Via col-
laborations with Ocean Observatories Initiative [OOI 2015], it was discovered that
the framework of multiparty session types can be naturally extended to runtime type-
checking (monitoring). A formulation of the runtime monitoring (dynamic or runtime
type-checking) was firstly proposed in Chen et al. [2012]. Later, Bocchi et al. [2013]
formally proved its correctness and properties guaranteed by the runtime monitoring
based on multiparty session types.

Works addressing adaptation for multiparty communications include Dalla Preda
et al. [2014] and Coppo et al. [2014]. Dalla Preda et al. [2014] propose a choreographic
language for distributed applications. Adaptation follows a rule-based approach in
which all interactions, under all possible changes produced by the adaptation rules,
proceed as prescribed by an abstract model. In Coppo et al. [2014], a calculus based on
global types, monitors, and processes is introduced, and adaptation is triggered after
the execution of the communications prescribed by a global type in reaction to changes
of the global state.

Linkages with Other Frameworks. Deniélou and Yoshida [2012] give a linkage be-
tween communicating automata [Brand and Zafiropulo 1983] and a general graphical
version of multiparty session types, proving a correspondence between the safety prop-
erties of communicating automata and multiparty session types. This work [Deniélou
and Yoshida 2012] studies more detailed semantics for global and local types, relating
with other frameworks such as model checking and logical verification for contracts
[Villard 2011; Basu et al. 2012] (see Deniélou and Yoshida [2012, §5] for detailed com-
parisons).

Deniélou and Yoshida [2013] study the sound and complete characterization of the
multiparty session types in communicating automata (called multiparty compatibility)
and apply the result to the synthesis of multiparty session types. The inference of
global types from a set of local types is also studied in Lange and Tuosto [2012]. The
techniques developed in Deniélou and Yoshida [2013] and Lange and Tuosto [2012] are
extended to a synthesis of general graphical multiparty session types in Lange et al.
[2015]. This connection is extended to timed communicating automata [Krcál and Yi
2006] and Bocchi et al. [2015] propose general conditions of progress and non-zero
properties of timed communicating automata at the top of multiparty compatibility.

Fossati et al. [2014] study the relationship of multiparty session types with Petri
Nets. They propose a conformance relation between global session nets and endpoint
programs and prove its safety.

A recent work [Carbone et al. 2015] studies a relationship with Linear Logic and mul-
tiparty session types along the line of Wadler [2012] and Caires and Pfenning [2010].

Implementations Based on Multiparty Session Types. We are currently designing and
implementing a modeling and specification language with multiparty session types
[SAV 2010; Scribble 2008] in collaboration with some industrial partners [Honda et al.
2011, 2014]. This protocol language is called Scribble. An article [Yoshida et al. 2013]
also explains the origin and recent development of Scribble.

Java protocol optimization [Sivaramakrishnan et al. 2010] based on multiparty ses-
sion types and the generation of multiparty cryptographic protocols [Bhargavan et al.
2009] are also studied. The multiparty session type theory is applied to healthcare
workflows [Henriksen et al. 2013]. Its prototype implementation (the multiparty ses-
sion π -processes with sumtypes) is available from Apims [2014].

Based on the runtime type-checking theory, we are implementing runtime monitor-
ing [Demangeon et al. 2015; Hu et al. 2013; Neykova et al. 2013] under collaborations
with Ocean Observatories Initiative [OOI 2015]. Demangeon et al. [2015] and Hu et al.
[2013] allow interruptions in Scribble and prove the correctness of this extension.

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

9:46 K. Honda et al.

Furthermore, we generalize the Python implementation to the Actor framework
[Neykova and Yoshida 2014]. In order to express temporal properties studied in timed
multiparty session types [Bocchi et al. 2014b], Neykova et al. [2014] extend Scribble
with timed constrains and implement the runtime monitoring in Python.

We also apply the multiparty session types to high-performance parallel program-
ming in C [Ng et al. 2012, 2012] and MPI [Ng and Yoshida 2014]. A parameterized
version of Scribble [Ng and Yoshida 2014; Ng et al. 2013] based on the theory of param-
eterized multiparty session types [Deniélou et al. 2012] is developed. This extension,
called Pabble, is used for automatically generating MPI parallel programs from se-
quential C code in Ng et al. [2015].

7. CONCLUSION

One of the main open problems of the session types is whether binary sessions can
be extended to n-party sessions and, if they can, to determine their additional ex-
pressiveness and benefits. This article answers the question affirmatively. The present
theory can guarantee stronger conformance to stipulated conversation structures than
binary sessions when a protocol involves more than two parties. We proposed a new
efficient type-checking system and proved type safety and progress extended to mul-
tiparty interactions. The central technical underpinning of the present work is the
introduction of global types that offer an intuitive syntax for describing multiparty
conversation structures from a global viewpoint and the use of their projection for
efficient type-checking, thus proposing a new effective methodology for programming
multiparty interactions in distributed environments. Global types also offer a basis
for a clean modular causal analysis systematically applicable to both synchronous and
asynchronous communications to ensure progress and session fidelity.

There are several significant future topics on the theory and applications of the pro-
posed theory. We are currently starting to use this generalized session type structure as
one of the formal foundations for the next version of a web service description language
(based on an idea from WS-CDL [2003]) developed in Scribble from JBoss Red Hat
[Scribble 2008], a message scheme for financial protocols; for a testable architecture,
SAVARA from JBoss Red Hat [SAV 2010]; for a specification for message middleware
from AMQP [AMQ 2015]; for a specification for large distributed systems from Ocean
Observatories Initiative [OOI 2015]; and for a software development life cycle from Zero
Diviation Life Cycle (ZDLC) [zdl 2015]. In particular, we are currently designing and
implementing a modeling and specification language with multiparty session types
[Scribble 2008] for these standards with our industry collaborators. This consists of
three layers: The first layer is a global type that corresponds to a signature of class mod-
els in UML; the second one is for conversation models in which signatures and variables
for multiple conversations are integrated; and the third layer includes extensions of the
existing languages (such as Java [Hu et al. 2008, 2010; Ng et al. 2011]) that implement
conversation models. Other future topics include tools assistance for the design and
elaboration of global types, incorporation of typed exceptions into sessions, and the inte-
gration of the type discipline with diverse specification concerns including security and
monitoring for distributed messages by the assertional methods [Bocchi et al. 2010].

APPENDIX

A. PROOF OF PROPOSITION 3.13

Here, the proofs of both Conditions (1) and (2) induce concrete algorithms. Global types
are generally treated as regular trees (except, e.g., when we consider substitution). We
first introduce the following notation.

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

Multiparty Asynchronous Session Types 9:47

Notation A.1.

(i) In the following, we write G(0), G(1), . . . , G(n), . . . for the result of n-times unfolding
of each recursion in G. For example, if G is μt.G′ and this is the only recursion
in G, then G(0) is given as G′[end/t], G(1) is given as G′[G(0)/t], and, for each n,
G(n+ 1) is given as G′[G(n)/t]. If G contains more than one recursion, we perform
the unfolding of each of its recursions. For convenience, we set G(−1) to be the
empty graph.

(ii) Observing each G(n+ 1) is the result of adding zero or more unfoldings to G(n), so
that G(n+ 1) contains the exact copy of G(n); we write G(n+ 1)\G(n) to denote the
newly added (unfolded) part of G(n + 1).

(iii) Given a node n in G(m+1)\G(m), we can jump back from n once to reach its “original”
in G(m)\G(m− 1) (which is G(0) if m = 0). This exact copy of n that was created
“one unfolding ago” is called the one-time folding of n, or simply the folding of n.
In the same way, we define the i-th folding of n, which is in G(m− i + 1)\G(m− i)
(which is G(0) if i = m + 1). Note that there are m + 1 such “foldings” of n in
G(m+ 1)\G(m).

Proof of (1). Here, we say there are input/output dependencies from n1 to n2 when
there is an input dependency and an output dependency from n1 to n2.

Claim. (A) Suppose n1,2 and their respective i-th foldings n′
1,2 are in G(m). Then,

there are both input/output dependencies from n1 to n2 if and only if there are both
input/output dependencies from n′

1 to n′
2. (B) Let n′ be the folding of n. Then there is

always both input and output dependencies from n′ to n.

PROOF OF CLAIM. Condition (A) is immediate since the graph structure of the foldings
is identical to that of the originals (i.e., we can simply “fold” the original two onto their
foldings and all prefix relations coincide). Condition (B) is obvious since there always
exist both II and OO dependencies by the definition of linearity.

We now prove the statement. Fix a global type G and assume G(1) is linear. We show
by induction on n (n ≥ 1) that each G(n) is linear. Henceforth, we ignore nodes in carried
types.

Base step. This is linearity of G(1), which is the assumption itself.

Induction Step. Suppose G(n) is linear. Then take two nodes n1 and n2 in G(n + 1)
(but not in carried types) that happen to share a common channel. We show there are
input/output dependencies from n1 to n2, or the same holds in the reverse direction. We
say such n1,2 are conflict-free for brevity. We do case analysis depending on the position
of these nodes in G(m+ 1).
(i) If n1,2 are in G(n), then they already have input/output dependencies by induction
hypothesis.
(ii) If n1 is in G(n)\G(n − 1) and n2 is in G(n + 1)\G(n), then take their two foldings
(say n′

1 and n′
2 , respectively). By induction hypothesis, they are conflict-free by a pair

of dependency chains. By Claim A, we are done.
(iii) If n1 is in G(n− i) (i ≥ 1) and n2 is in G(n+ 1)\G(n), then take the folding of n2 (say
n′

2) which is in G(n). By induction, we know n1 and n′
2 are conflict-free.

By Claim B, there are both input and output dependencies from n2 to n′
2. Thus, we

have both input and output dependencies from n1 to n′
2 and n′

2 to n2 (hence, n1 to n2).
Now we connect these chains and we are done.

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

9:48 K. Honda et al.

B. FULL TYPING RULES FOR RUNTIME PROCESSES

This appendix first presents the full typing rules, except those for expressions.

� � a : 〈G〉 � �∅ P � 	, s̃ : (G�1)@1 {1, . . . , n} = pid(G) |s̃| = sid(G)
� �∅ a[2..n] (s̃).P � 	

[MCAST]

� � a : 〈G〉 � �∅ P � 	, s̃ : (G�p)@p p ∈ pid(G) |s̃| = sid(G)
� �∅ a[p] (s̃).P � 	

[MACC]

� � e j : Sj � �∅ P � 	, s̃ : T @p

� �∅ s[k]!〈ẽ〉; P � 	, s̃ : k! 〈S̃〉; T @p

�, x̃ : S̃ � P∅ � 	, s̃ : T @p

� �∅ s[k]?(x̃); P � 	, s̃ : k? 〈S̃〉; T @p
[SEND], [RCV]

� �∅ P � 	, s̃ : T @p

� �∅ s[k]!〈〈t̃ 〉〉; P � 	, s̃ : k! 〈T ′@p′〉; T @p, t̃ : T ′@p′
� �∅ P � 	, s̃ : T @p, t̃ : T ′@p′

� �∅ s[k]?((t̃)); P � 	, s̃ : k? 〈T ′@p′〉; T @p

[DELEG],[SREC]

� �∅ P � 	, s̃ : Tj@p j ∈ I
� �∅ s[k] � l; P � 	, s̃ : k ⊕ {li : Ti}i∈I@p

� �∅ Pi � 	, s̃ : Ti@p ∀i ∈ I
� �∅ s[k] � {li : Pi}i∈I � 	, s̃ : k &{li : Ti}i∈I@p

[SEL],[BRANCH]

� �∅ e � bool � � P � 	 � � Q� 	

� �∅ if e then P else Q� 	
[IF]

� � P �t̃1 	 � �t̃2 Q� 	′ t̃1 ∩ t̃2 = ∅ 	 � 	′

� �t̃1·t̃2 P | Q�t̃1·t̃2 	 ◦ 	′ [CONC]

	 end only 	′ [] only
� � 0 �∅ 	,	′

� � P �t̃ 	 	 ≤ 	′

� � P �t̃ 	′ [INACT],[SUBS]

�, a : 〈G〉 �t̃ P � 	

� �t̃ (ν a)P � 	

� � P �t̃ 	, s̃ : {Tp@p}p∈I s̃ ∈ t̃ {Tp@p}p∈I coherent
� �t̃\s̃ (ν s̃)P � 	

[NRES],[CRES]

� � ẽ : S̃ 	 end only
�, X: S̃T̃ �∅ X〈ẽs̃1..s̃n〉 � 	, s̃1 : T1@p1, . . , s̃n : Tn@pn

[VAR]

�, X: S̃T̃ , x̃ : S̃ �∅ P � s̃1 : T1@p1..s̃n : Tn@pn �, X: S̃T̃ �t̃ Q� 	

� �t̃ def X(x̃s̃1..s̃n) = P in Q� 	
[DEF]

The typing rules for queues are from Figure 8.

B.1. Proof of Proposition 5.5

Suppose P is a program phrase. By definition, P is without queues and without bound
channels. We show two implications.

(1) � � P �	 implies � � P �∅ 	: Suppose P is typable in the original typing rules (for
program phrases). Since the typing rules for runtime processes subsume the original
rules, they can type P with the same derivation.

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

Multiparty Asynchronous Session Types 9:49

(2) � � P �∅ 	 without [SUBS] implies � � P � 	: Suppose P is typable in the refined
system as � � P �∅ 	 without type contexts in 	 and without using [SUBS]. By the
lack of [SUBS] in the derivation, the derivation precisely follows the structure of P. We
inspect the potential differences between the original rules and the refined rules.

—(Use of Type Contexts in Derivation) Suppose the derivation uses a type context. The
only place it can be taken off is [CONC]. Since there is no queue in P, this means the
type context has been empty as the result of weakening by [INACT]. Hence its use can
be taken off from the derivations.

—(Use of Refined Constraints on Queue Channels in Judgments) Since the only rule
that decreases the number of mentioned queue channels in the judgment (as in �s̃) is
[CRES], we know each judgment in the derivation has the ∅ as its mentioned queue
channels. Hence the constraint on queue channels in [CONC] and other rules are
never used.

Thus, this derivation for P in the refined rules offers the derivation in the original
rules as is; hence, done.

B.2. Proof of Proposition 5.6

Assume � � P �s[1..m] 	. We call s1...sm in � � P �s[1..m] 	, the judgment’s mentioned
queue channels or simply queue channels.

We first show there is one-to-one correspondence between the free queues in P and
the mentioned queue channels by inspecting each rule.

Case [INACT]: Zero queue channel to zero queue.

Case [QNIL]: It connects precisely one channel to one queue.

Case [QVAL], [QSESS], [QSEL]: These “enqueue” rules leave the number of channels one
assigned to the unique queue channel.

Case [MCAST], [MACC], [SEND], [RCV], [DELEG], [SREC], [SEL], and [BRANCH], [IF], [VAR],
[DEF]: Each of these process construction rules leaves the queue channels unchanged
(empty).

Case [CONC]: In the premise, assume � � P �t̃1 	 and � �t̃2 Q � 	′ the free queues in
P have channels t̃1 whereas the free queues in Q have channels t̃2. Since we assume
t̃1 ∩ t̃2 = ∅ and P|Q have exactly the sum of their respective queues.

Case [NRES]: The rule leaves both the queues and the queue channels unchanged.

Case [CRES]: The rule precisely takes off those channels whose channels become bound.

Case [SUBS]: No change in the process and no change in the queue. This exhausts all
cases.

By the preceding case analysis, we conclude that free queues and mentioned queue
channels precisely correspond to each other. Furthermore, the case analysis also shows
that each prefix rule assumes that the process has no free queue before prefixing (in
the premise). Furthermore, a program phrase cannot have channel restriction, so that
all of its existing queues should be recorded in queue channels. We can now conclude
that no queue can be under a prefix.

B.3. Proof of Lemma 5.14

By the definition of ◦ on 	, it suffices to show the commutativity and associativity at
the level of types and type contexts, assuming that combined type contexts never share
a target channel (in the sense defined just before Lemma 5.14, page 33).

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

9:50 K. Honda et al.

We first show the commutativity. We write H1 � H2 (which we read: “H1 and H2 are
coherent”) when H1 ◦ H2 is defined. Note H1 ◦ H2 means either:

—both of H1,2 are type contexts and they do not share a target channel; or
—one of H1,2 is a type context and the other is a type.

Here, the designation “context-context” means the case when we compose two contexts,
similarly for others.

Case Context-Context: We consider the composition of T1,2 that are disjoint in targets
(by our assumption). Then we always have:

T1 � T2 (22)
T1 ◦ T2 = T1[T2] (23)

By the symmetry of � (or equivalently by the assumption on target channels) we have:

T2 � T1 (24)
T2 ◦ T1 = T2[T1] (25)

Because of the isomorphism by the permutation equivalence for target-disjoint type
contexts (cf. Section 5.1, paragraph Type contexts: recall ≈ is extended to type con-
texts unlike ≤sub), we have T1[T2] ≈ T2[T1]; hence, we are done.

Case Type-Context: Immediate since, by definition, T � T and T � T always and
T ◦ T = T ◦ T = T [T].

Case Context-Type: Symmetric to the preceding case.

Case Type-Type: Never defined, hence vacuous.

This exhausts all cases.
Next we show associativity.

Case Context-Context-Context: We consider the composition of T1,2,3, showing (T1 ◦T2)◦
T3 and T1 ◦ (T2 ◦ T3) coincide in definedness and their resulting values. Assume T1,2 are
mutually disjoint in target channels, similarly for T1[T2] and T3. Then, automatically:

T1 � T2 (26)
T1[T2] � T3 (27)

T1[T2] ◦ T3 = T1[T2][T3] (28)

By Equation (27) we have:

T2 � T3 (29)
T1 � T2[T3] (30)

T1 ◦ T2[T3] = T1[T2[T3]] (31)

Since T1[T2][T3] = T1[T2[T3]], we are done. The other direction is symmetric.

Case Context-Context-Type: We consider the composition of T1,2 and T , showing that
the definedness and the resulting value of (T1 ◦ T2) ◦ T and T1 ◦ (T2 ◦ T) coincide. This
case is not symmetric; hence, we show both directions. First, if T1,2 are disjoint then
automatically:

T1 � T2 (32)
T1[T2] � T (33)

T1[T2] ◦ T = T1[T2][T] (34)

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

Multiparty Asynchronous Session Types 9:51

We also always have:

T2 � T (35)
T1 � T2[T] (36)

T1 ◦ T2[T] = T1[T2[T]] (37)

Since T1[T2][T] = T1[T2[T]], we are done. For the other direction, we first compose T2
and T , then compose T1. As noted, we always have

T2 � T (38)
T1 � T2[T] (39)

T1 ◦ T2[T] = T1[T2[T]] (40)

By our assumption, T1 and T2 do not share a target channel. Hence:

T1 � T2 (41)
T1[T2] � T (42)

T1[T2] ◦ T = T1[T2][T] (43)

Again, we note T1[T2[T]] = T1[T2][T]; hence, we are done.

Case Type-Context-Context, Context-Type-Context: By the preceding case Context-
Context-Type and commutativity.

Since we can never combine two types, this exhausts all cases.

B.4. Proof of Subject Reduction Theorem (Theorem 5.19)

Condition (1) is by rule induction on ≡ showing, in both ways, that if one side has a
typing, then the other side has the same typing. In the following, we safely ignore unin-
teresting (permutable) final applications of [SUBS] in derivations by way of Lemma 5.16.

Case P | 0 ≡ P: First assume � � P �s̃ 	. By � � 0 �∅ ∅ and by applying [CONC] to
these two sequents, we immediately obtain � � P|0 �s̃ 	, as required. For the converse
direction, assume � � P|0 �s̃ 	. We can safely assume (via Lemma 5.16) that the
last rule applied is [CONC]. Thus, we can set � � P �s̃ 	1 and � � 0 �∅ 	2 such that
	1 ◦ 	2 = 	. Note that we can safely regard � � 0 � 	2 as being inferred by the axiom
[INACT] since applying [SUBS] to empty types and empty type contexts again leads to
the empty types and empty type contexts: Thus 	2 consists of only empty types and
empty type contexts. Thus, in the composition 	1 ◦ 	2, the empty types and some of
the empty type contexts from 	2 are added to 	1 to generate 	. Let this added part be
	′

2. Since we can weaken 	1 in the first sequent with 	′
2 using Lemma 5.18 Condition

(2), we are done.

Case P | Q ≡ Q | P: By symmetry of the rule, we have only to show one direction.
Suppose � � P|Q �s̃ 	. We can safely assume the last rule applied is [CONC]. We can
thus set � � P �t̃ 	1 and � � Q�r̃ 	2 such that 	1 � 	2, 	1 ◦ 	2 = 	 and t̃ � r̃ = s̃. By
Lemma 5.14, we know 	2 � 	1 and 	2 ◦ 	1 = 	; hence, by applying [CONC] with the
premises reversed we are done.

Case (P | Q) | R ≡ P | (Q | R): By the establishment of the previous case again we
have only to show one direction. Suppose � � (P | Q) | R �s̃ 	. We can safely assume
� � P �t̃ 	1, � � P �r̃ 	2 and � � P �q̃ 	3 such that 	1 � 	2, (1 ◦ 	2) � 	3 and
(1 ◦ 	2) ◦ 	3 = 	, as well as t̃ � r̃ � q̃ = s̃. By the last condition, no two of 	1, 	2, and
	3 share a common target channel in their type contexts (in the sense given just before
Lemma 5.14, page 33) because if the queue for a certain channel does not exist in a
sequent then it cannot be used as a target channel in a type context in its typing. Thus,

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

9:52 K. Honda et al.

we can apply Lemma 5.14 to know 	2 � 	3, 	1 � (2 ◦ 	3) and 	1 ◦ (2 ◦ 	3) = 	. By
applying [CONC] in an appropriate order, we are done.

The remaining rules are reasoned exactly as in Yoshida and Vasconcelos [2007] (note
the arguments for congruence rules are direct from the compositionality of the typing
rules). This concludes the proof of Condition (1).

For Condition (2), we establish the following stronger claim by rule induction:

Claim. Suppose � � P�s̃	 and 	 is partially coherent (cf. Definition 5.9). Then, P → P ′

implies � � P �s̃ 	′ such that either 	
�→ 	′ or 	 = 	′.

All results on reduction on coherent typing are immediately applicable to partially
coherent typing by Proposition 5.13 Condition (1). Furthermore, by Proposition 5.13
Condition (3), 	′ above is again partially coherent. Here, we again ignore irrelevant
final application of [SUBS] through Lemma 5.16. All rule names are those of the typing
rules.
Case [LINK]: Let R def= a[2..n] (s̃).P1 | a[2] (s̃).P2 | · · · | a[n] (s̃).Pn which is a redex of [LINK].
We write R1 for a[2..n] (s̃).P1 and Ri for a[i] (s̃).Pi (2 ≤ i ≤ n). Assume:

� � R � 	. (44)

By Lemma 5.15, we know a ∈ dom(�). Let �(a) = G. Since Equation (44) can only be
inferred by the sequence of [CONC] (up to permutable [SUBS], similarly in the following),
we know � � Ri � 	i (1 ≤ i ≤ n) such that 	1 ◦ . . . ◦ 	n = 	. By [MCAST] and [MACC]
this means:

� � Pi � 	i, s̃ : {(G� i) @i} (45)

for each 1 ≤ i ≤ n. Hence, by the successive applications of [CONC] we reach:

� � (�i Pi) | (�isi ::∅) �s̃ 	, s̃ : {(G� i)@i}1≤i≤n. (46)

Since {(G� i)@i}i collects all projections of G, we can apply [CRES] to obtain:

� � (νs̃)((�i Pi) | (�isi ::∅)) � 	 (47)

for a reductum of [LINK]. Note that the typing does not change.

Case [SEND]: We use the first rule of Lemma 5.17 for “rolling back” a message. Suppose
we have:

� � s!〈ẽ〉; P | s :: h̃ �s 	. (48)

Since [CONC] is the only rule to derive this process we can set

� � s!〈ẽ〉; P �∅ 	1 (49)

and

� � s :: h̃ �s 	2 (50)

such that 	1 ◦ 	2 = 	. Since Equation (49) can only be inferred from [SEND] we know,
first:

� � e j : Sj (51)

for each e j in ẽ; and, second, for some p and for some s̃ that includes s,

	1 = 	′
1 ◦ s̃ : k! 〈S̃〉; T @p (52)

and moreover

� � P �∅ 	′
1 ◦ s̃ :T @p. (53)

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

Multiparty Asynchronous Session Types 9:53

On the other hand, by 	1 � 	2 and Equation (50), we know:

	2 = 	′
2 ◦ s̃ : T @p. (54)

Now assume ẽ ↓ ṽ. Notice that by Equation (51) we have � � v j : Sj for each v j in ṽ.
Thus, by Lemma 5.17, [QVAL], we infer:

� � s :: h̃ · ṽ � 	′
2 ◦ s̃ : T [k! 〈S̃〉; []]@p. (55)

By the algebra of located types and type contexts:

(′
1 ◦ s̃ :T @p) ◦ (′

2 ◦ s̃ :T [k! 〈S̃〉; []]@p)

= (′
1 ◦ s̃ :k! 〈S̃〉; T @p) ◦ (′

2 ◦ s̃ :T []@p) = 	

Thus, by applying [CONC] to Equations (49) and (50), we obtain:

� � P | s :: h̃ · ṽ � 	, (56)

which gives the expected typing for the reductum of [SEND], with no type change.

Case [DELEG]: Similar to [SEND], using the second rule of Lemma 5.17; see Appendix B.5.

Case [LABEL]: We use the third rule of Lemma 5.17 together with the subtyping ≤sub.
Suppose we have:

� � s � l; P | s :: h̃ �s 	, (57)

which is the redex of [LABEL]. Since [CONC] is the only rule to derive this process, we
can set, without loss of generality:

� � s � l; P �∅ 	1 (58)

and

� � s :: h̃ �s 	2 (59)

such that 	1 ◦ 	2 = 	. Since Equation (58) can only be inferred from [SEL] as the last
rule (up to permutable applications of [SUBS]), we know, for some p and for some s̃ that
includes s and for some {li} that includes l,

	1 = 	′
1 ◦ s̃ : k ⊕ {li : Ti}i∈I@p (60)

and, moreover,

� � P �∅ 	′
1 ◦ s̃ :Ti@p, for i ∈ I. (61)

On the other hand, we can write:

	2 = 	′
2 ◦ s̃ : T @p. (62)

By Equations (59) and (62) and Lemma 5.17, [QSEL], we infer:

� � s :: h̃ · l � 	′
2 ◦ s̃ : T [k ⊕ l : []]@p. (63)

By the algebra of located types and type contexts together with subtyping:

(′
1 ◦ s̃ :Ti@p) ◦ (′

2 ◦ s̃ : T [k ⊕ l : []]@p)
= 	′

1 ◦ 	′
2 ◦ s̃ :T [k ⊕ l : Ti]@p

≤sub 	′
1 ◦ 	′

2 ◦ s̃ :T [k ⊕ {li : Ti}i∈I]@p

= (′
1 ◦ s̃ :k ⊕ {li : Ti}i∈I@p) ◦ (′

2 ◦ s̃ :T @p)
= 	

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

9:54 K. Honda et al.

Thus we obtain, by applying [CONC] to Equations (61) and (63) then applying [SUBS]
(the subsumption rule):

� � P | s :: h̃ · l � 	, (64)

which gives the expected typing for the reductum of [SEND], with no type change.

Case [RECV]: By the first of the latter three rules of Lemma 5.17 together with
Lemma 5.18. Suppose

� � s?(x̃); P | s :: ṽ · h̃ �s 	. (65)

Since [CONC] is the only possible last rule (up to permutable [SUBS]), we can set

� � s?(x̃); P �∅ 	1 (66)

and

� � s :: ṽ · h̃ �s 	2 (67)

such that 	1 ◦ 	2 = 	. Since Equation (66) can only be inferred from [RCV], we know,
for some p and for some s̃ that includes s,

	1 = 	′
1 ◦ s̃ : k? 〈S̃〉; T @p (68)

and, moreover,

�, x̃ : S̃ � P �∅ 	′
1 ◦ s̃ :T @p. (69)

By Lemma 5.18, we obtain:

� � P[ṽ/x̃] �∅ 	′
1 ◦ s̃ :T @p. (70)

Furthermore, by 	1 � 	2 and Equation (67), we know:

	2 = 	′
2 ◦ s̃ : k! 〈S̃〉.T @p. (71)

By Lemma 5.17, [QVALDQ], we infer:

� � s :: h̃ � 	′
2 ◦ s̃ : T @p. (72)

Then we obtain:

	
def= (′

1 ◦ s̃ : k? 〈S̃〉.T @p) ◦ (′
2 ◦ s̃ : k! 〈S̃〉.T @p)

�→ (′
1, s̃ : T @p) ◦ (′

2 ◦ s̃ : T @p) (def= 	′).

Thus, by applying [CONC] to Equations (66) and (67), we obtain:

� � P[ṽ/x̃] | s :: h̃ � 	′ (73)

such that 	
�→ 	′, as required. Note that this case demands reduction of typings.

Case [SREC], [BRANCH]: Similar to [RECV], using the latter two rules of Lemma 5.17; see
Appendix B.5.

Case [IFT], [IFF], [DEF], [DEFIN]: Standard; cf. Yoshida and Vasconcelos [2007]. No
difference in the typing.

Case [SCOP]: When a shared name is hidden, assume

� � (νa)P �s̃ 	 (74)

and P → P ′. Then, we can set

�, a : 〈G〉 � P �s̃ 	. (75)

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

Multiparty Asynchronous Session Types 9:55

By induction hypothesis, we know

�, a : 〈G〉 � P ′ �s̃ 	′ (76)

such that either 	
�→

0,1
	′. Hence, by [NRES] we have

� � (νa)P ′ �s̃ 	′ (77)

as required. When session channels are hidden, suppose

� � (νs̃)P �t̃\s̃ 	 (78)

and P → P ′. We can set:

� � P �t̃ 	, s̃ : {Tp@p}p∈I (79)

where {Tp@p}p∈I is coherent. By induction hypothesis,

� � P ′ �t̃ 	′, s̃ : {T ′
p@p}p∈I, (80)

where either 	
�→

0,1
	′ or {s} : {Tp@p}p∈I →0,1 {s} : {T ′

p@p}p∈I . By Proposition 5.13
Condition (2), {T ′

p@p}p∈I is again coherent. Hence, by [CRES], we obtain

� � (νs̃)P ′ �t̃\s̃ 	′ (81)

as required.

Case [PAR]: Suppose we have � � P|Q �t̃1·t̃2 	 and P → P ′. By [CONC], we have
� � P �t̃1 	1 and � � Q �t̃2 	2 such that 	1 ◦ 	2 = 	. By induction hypothesis, we
have � � P ′ �t̃1 	′

1 such that 	1 →0,1 	′
1. By Proposition 5.13 Condition (1), we have

	′
1 � 	2; hence, � � P ′|Q �t̃1·t̃2 	′

1 ◦ 	2. Noting that Proposition 5.13 Condition (1)
also says that (1 ◦ 	2) →0,1 (′

1 ◦ 	2), we are done.
Case [STR]: Immediate from Subject Congruence (the first clause of this theorem).

This exhausts all cases for Condition (2).
Condition (3) is because the empty typing ∅ is always coherent.

B.5. Remaining Cases of Theorem 5.19

Case [DELEG]: We use the second rule of Lemma 5.17. Suppose we have:

� � s!〈〈t̃ 〉〉; P | s :: h̃ �s 	. (82)

Since [CONC] is the only rule to derive this process, we can set

� � s!〈〈t̃ 〉〉; P �∅ 	1 (83)

and

� � s :: h̃ �s 	2 (84)

such that 	1 ◦	2 = 	. Since Equation (83) can only be inferred from [DELEG], we know,
for some p and for some s̃ that includes s,

	1 = 	′
1 ◦ (s̃ : k! 〈T ′@p′〉.T @p, t̃ :T ′@p′) (85)

and, moreover,

� � P �∅ 	′
1, s̃ :T @p. (86)

On the other hand, by 	1 � 	2 and Equation (50), we know:

	2 = 	′
2 ◦ s̃ : T []@p. (87)

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

9:56 K. Honda et al.

By Lemma 5.17, [QSESS], we infer:

� � s :: h̃ · t̃ �s̃′ 	′
2 ◦ s̃ : {T [k! 〈T @p′〉.[]]@p}, t̃ : {T @p′}. (88)

By the algebra of located types and type contexts:

(′
1, s̃ :T @p) ◦ (′

2 ◦ s̃ : {T [k! 〈T @p′〉.[]]@p}, t̃ : {T @p′})
= (′

1 ◦ (s̃ : k! 〈T ′@p′〉.T @p, t̃ :T ′@p′)) ◦ (′
2 ◦ s̃ : T []@p)

= 	

Thus, by applying [CONC] to Equations (83) and (84), we obtain:

� � P | s :: h̃ · t̃ � 	, (89)

which gives the expected typing for the reductum of [DELEG], with no type change.

Case [SREC]: By the second to the last rule of Lemma 5.17. Suppose

� � s?((t̃)); P | s :: t̃ · h̃ �s 	. (90)

Since [CONC] is the only possible last rule (up to permutable [SUBS]), we can set

� � s?((t̃)); P �∅ 	1 (91)

and

� � s :: t̃ · h̃ �s 	2 (92)

such that 	1 ◦ 	2 = 	. Since Equation (91) can only be inferred from [SREC], we know,
for some p and for some s̃ that includes s,

	1 = 	′
1 ◦ s̃ : k? 〈T ′@p′〉.T @p (93)

and, moreover,

� � P �∅ 	′
1 ◦ s̃ :T @p, t̃ :T ′@p′. (94)

By 	1 � 	2 and Equation (92), we know:

	2 = 	′
2 ◦ s̃ : k! 〈T ′@p′〉.T @p, t̃ : T ′@p′. (95)

By Lemma 5.17, [QSESSDQ], we infer:

� � s :: h̃ � 	′
2 ◦ s̃ : T @p. (96)

Then we obtain:

	
def= (′

1 ◦ s̃ : k? 〈T ′@p′〉.T @p) ◦ (′
2 ◦ s̃ : k! 〈T ′@p′〉.T @p, t̃ : T ′@p′)

�→ (′
1 ◦ s̃ :T @p, t̃ : T ′@p′) ◦ (′

2 ◦ s̃ : T @p) (def= 	′)

Thus, by applying [CONC] to Equations (91) and (92), we obtain:

� � P | s :: h̃ � 	′ (97)

such that 	
�→ 	′, as required. Note that this case again demands reduction of typings.

Case [BRANCH]: By the last rule of Lemma 5.17. Suppose

� � s � {li : Pi}i∈I | s ::lj · h̃ �s 	, (98)

where we assume j ∈ I. Since [CONC] is the only possible last rule (up to permutable
[SUBS]), we can set

� � s � {li : Pi}i∈I �∅ 	1 (99)

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

Multiparty Asynchronous Session Types 9:57

and
� � s ::lj · h̃ �s 	2 (100)

such that 	1 ◦ 	2 = 	. First, for 	2 we know, for some p and for some s̃ that includes
s:

	2 = 	′
2 ◦ s̃ : k ⊕ lj : T @p, (101)

where by assumption we have j ∈ I. Since Equation (99) can only be inferred from
[BRANCH] and by 	1 � 	2, we also know:

	1 = 	′
1 ◦ s̃ :k &lj : Tj@p (102)

(where &lj : Tj is the singleton notation as in selection) and, moreover,

� � Pi �∅ 	′
1 ◦ s̃ :Ti@p (103)

for each i ∈ I (so Equation (102) is inferred using [SUBS]). By Lemma 5.17, [QSELDQ],
we infer:

� � s :: h̃ � 	′
2 ◦ s̃ : T @p. (104)

Then we obtain:

	
def= (′

1 ◦ s̃ : k &lj : Tj@p) ◦ (′
2 ◦ s̃ : k ⊕ lj : T @p)

�→ (′
1, s̃ : Tj@p) ◦ (′

2 ◦ s̃ : T @p) (def= 	′).

Thus, by applying [CONC] to Equations (99) and (100), we obtain:

� � P | s :: h̃ � 	′ (105)

such that 	
�→ 	′, as required. Again, we need a reduction of typings.

B.6. Proof of Lemma 5.21

Proof of Conditions (1) and (2). We prove the following claim, which implies both
Conditions (1) and (2) by rule induction on the typing rules. Here and henceforth, we
are confusing a free session channel and its numeric representation in the typing.
Recall that 	 is partially coherent when for some 	0 we have 	 � 	0 and 	 ◦ 	0 is
coherent.

Claim. Assume � � P �t̃ 	 such that 	 is partially coherent and there is no queue at
s. Assume P〈〈s〉〉. Then, one of the following conditions holds:

(a) P contains a unique active receiving (emitting, respectively) prefix at s and 	
contains a unique minimal receiving (emitting, respectively) prefix at s (may
contain another minimal prefix at s).

(b) P contains a unique minimal receiving prefix at s and a unique minimal emitting
prefix at s. Moreover, 	 contains a unique minimal receiving prefix at s and a
unique minimal emitting prefix at s.

Case [MCAST], [MACC]: Vacuous since in this case the unique active prefix in the process
is at a shared name.

Case [SEND], [RCV], [DELEG], [SREC], [SEL], and [BRANCH]: Immediate since there can
only be a unique active channel name, which is by the given prefixing.

Case [INACT], [IF], [VAR], [DEF], [QNIL], [QVAL], [QSESS], [QSEL]: Vacuous.

Case [CONC]: Suppose
� � P �t̃1 	, � �t̃2 Q� 	′ (106)

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

9:58 K. Honda et al.

such that t̃1 ∩ t̃2 = ∅ and 	 � 	′. Observe that if 	 ◦ 	′ is partially coherent, then 	
and 	′, respectively, are partially coherent by definition. By induction hypothesis, we
can assume P and Q satisfy the required condition.

(1) If only one party has an active prefix at s there is nothing to prove.
(2) If both are active at s, suppose both processes, hence 	 and 	′, have receiving

active prefixes at s. Then this cannot be partially coherent since, if so, then the
assumed completion of 	 ◦	′ to a coherent typing should also contain two minimal
receiving prefixes, which is impossible by the definition of ◦. Similarly when two
include active emitting prefixes at s; hence, as required.

Note that this pair may not be a redex: We do not (have to) validate coherence until
we hide channels; however, it is important that there is one output and one input,
otherwise there will be a conflict at s.

Case [NRES]: Vacuous since there is no change either in the process nor in the typing.

Case [CRES]: Vacuous since there is no difference in the typing for s nor in the activeness
in prefixes.

Case [SUBS]: Vacuous again.

B.7. Proof of Proposition 5.26

We show the following logically equivalent result:

Claim. (1) If P is simple then

(1-a) no delegation prefix (input or output) occurs in P and
(1-b) for each prefix with a shared name in P, say a[i](s̃).P ′ or a[2..n](s̃).P ′, there is no

free session channel in P ′ except s̃.

(2) If P is simple and P → P ′, then P ′ is again simple.

We first show Condition (1) by rule induction on typing rules.

Case [MCAST]: The rule reads:

� � a : 〈G〉 � �∅ P � 	, s̃ : (G�1)@1 |s̃| = sid(G)
� �∅ a[2..n] (s̃).P � 	

First, by simplicity, we know 	 = ∅ (since, if not, the premise has at least a doubleton
typing). Condition (1-a) is immediate from the induction hypothesis since the rule does
not add a delegation prefix: For Condition (1-b) if P ′ in a[i](~s).P ′ (resp. a[2..n](s̃).P ′) has
free session channels, then we cannot have 	 = ∅ , violating simplicity.

Case [MACC]: The rule reads:

� � a : 〈G〉 � �∅ P � 	, s̃ : (G�p)@p |s̃| = sid(G)
� �∅ a[p] (s̃).P � 	

Again, 	 = ∅, and the remaining reasoning is precisely the same as in [MCAST].

Case [SEND]: The rule reads:
� � e j : Sj � �∅ P � 	, s̃ :T @p

� �∅ s[k]!〈ẽ〉; P � 	, s̃ :k! 〈S̃〉; T @p

Again, 	 = ∅. Condition (1-a) is immediate from the induction hypothesis since the
rule does not add any delegation prefix. Condition (1-b) is again immediate from the
induction hypothesis since the rule doe not add a shared-name prefix.

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

Multiparty Asynchronous Session Types 9:59

Case [RCV]: The rule reads:

�, x̃ : S̃ � P∅ � 	, s̃ :T @p

� �∅ s[k]?(x̃); P � 	, s̃ :k? 〈S̃〉; T @p

Precisely the same as in [SEND].

Case [DELEG]: The rule reads:

� �∅ P � 	, s̃ :T @p

� �∅ s[k]!〈〈t̃ 〉〉; P � 	, s̃ :k! 〈T ′@p′〉; T @p, t̃ :T ′@p′

Even if 	 = ∅, the conclusion’s typing becomes a doubleton; hence, this rule cannot be
applied.

Case [SREC]: The rule reads:

� �∅ P � 	, s̃ :T @p, t̃ :T ′@p′

� �∅ s[k]?((t̃)); P � 	, s̃ :k? 〈T ′@p′〉; T @p

which is again impossible to apply (the premise’s typing becomes a doubleton).

Case [SEL],[BRANCH]: Similar with [SEND] and [RCV].

Case [IF], [CONC], [CRES], [NRES], [SUBS], [DEF]: By the shape of these rules, in each
rule, there is no addition or removal of a prefix from the premise to the conclusion.
Hence, both Conditions (1-a/b) are immediate from the induction hypothesis.

Case [INACT], [VAR], [QNIL], [QVAL], [QSESS], [QSEL]: Vacuous since no prefixes are
involved.

Hence, as required.
For Condition (2), suppose a derivation of P is simple. By the proof of Theorem 5.19,

if P → P ′, then we have essentially the same derivation for both P and P ′ except:

—taking off the last pair of prefixes from that of P (three pair of prefix rules);
—one of the branches is chosen (conditional)
—copying some part from the derivation for P to that of P ′ (for recursion)

In each case, clearly, the simplicity of the derivation for P implies that of P ′, as
required.

B.8. Proof of Lemma 5.28

Suppose:

(C1). � � P � 	.
(C2). P is simple.
(C3). 	 has a minimal receiving (emitting, respectively) prefix at s.
(C4). none of the prefixes at s in P is under a shared name.
(C5). none of the prefixes at s in P is under a conditional branch.

Under these conditions, we show that P has an active receiving prefix (has an active
emitting prefix or a non-empty queue, respectively). We use rule induction on typing
rules.

Case [MCAST], [MACC]: By Proposition 5.26, there can be no free session channels; hence,
vacuous (since Condition (C3) is not satisfied).

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

9:60 K. Honda et al.

Case [SEND]: The “simple” rule reads:

� � e j : Sj � �∅ P � s̃ :T @p

� �∅ s[k]!〈ẽ〉; P � s̃ :k! 〈S̃〉; T @p

Observe that there can be no other minimal prefix in the typing in the conclusion than
the newly introduced prefix itself: This corresponds to the unique minimal prefix in the
typing.

Case [RCV]: The “simple” rule reads:

�, x̃ : S̃ � P∅ � 	, s̃ :T @p

� �∅ s[k]?(x̃); P � 	, s̃ :k? 〈S̃〉; T @p

Same as [SEND].

Case [SREC], [DELEG]: By Proposition 5.26, these rules are not used in derivation of a
simple process; hence, vacuous.

Case [SEL],[BRANCH]: Similar with [SEND],[RCV].

Case [IF]: Vacuous since Condition (C5) does not hold.

Case [CONC]: The rule reads:

� � P �t̃1 	 � �t̃2 Q� 	′ t̃1 ∩ t̃2 = ∅ 	 � 	′

� �t̃1·t̃2 P | Q�t̃1·t̃2 	 ◦ 	′

We first observe:

Claim A1. If the result of the operation ◦ on typings (when defined) has a minimal
input prefix, then one of the original typings also has the same.

This is because, direct from the definition of ◦, if ◦ results in an input minimal input
prefix, then it cannot come from a type context (which contains only an output prefix);
hence, it can come only from the same in the premise. Furthermore:

Claim A2. If the result of the operation ◦ on typings (when defined) has a minimal
output prefix, then one of the premises also has the same in the form of either the cor-
responding non-empty type context or the corresponding type (“corresponding” means
that the minimal prefix coincides).

The details of the shape of a typing are in fact unnecessary.

Claim B. The composition | preserves activeness of each prefix.

This is immediate from the definition.
Now we reason by induction. In the case of an input prefix in the typing, by Claim A1,

we know that one of the premises also contains an input prefix in the typing. Hence, the
corresponding process has an active input prefix by induction hypothesis. By Claim B,
we are done.

On the other hand, in the case of an output prefix in the typing, by Claim A2 we know
one of the premises also contains the same (either as the corresponding type context
or the corresponding output prefix) in the typing. Hence, by induction hypothesis, the
corresponding process has an active output prefix or a non-empty queue. Hence, by
induction hypothesis, we are done. By Claim B, we are done.

Case [INACT], [VAR]: Vacuous since, in this case, the typing does not contain any active
channel, hence violating Condition (C3).

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

Multiparty Asynchronous Session Types 9:61

Case [SUBS]: The subsumption does not add any new active prefix in the typing; hence,
by induction hypothesis, we are done.

Case [DEF]: As for [SUBS].

Case [QVAL], [QSESS], [QSEL]: In these cases, we have a minimal emitting prefix in the
typing and we have a corresponding non-empty queue, as required.

Case [QNIL]: Vacuous since Condition (C3) is violated.

Case [NRES]: This reads:

�, a : 〈G〉 �t̃ P � 	

� �t̃ (ν a)P � 	

which shows there is no change in the typing and in the process with respect to (free)
active/minimal prefixes; hence, immediate by induction hypothesis.

Case [CRES]: This reads:
� � P �t̃ 	, s̃ : {Tp@p}p∈I s̃ ∈ t̃ {Tp@p}p∈I coherent

� �t̃\s̃ (ν s̃)P � 	

Suppose in the conclusion there is a minimal prefix at s in 	. Then, it is also minimal
in the premise; hence, by induction hypothesis, we are done.

This exhausts all cases.

ACKNOWLEDGMENT

We would like to thank Andi Bejleri for an early collaboration on this work.

REFERENCES

AMQP. 2015. Advanced Message Queuing Protocol. http://www.iona.com/opensource/amqp/.
Lucia Acciai and Michele Boreale. 2008. A type system for client progress in a service-oriented calculus. In

Concurrency, Graphs and Models (LNCS), Vol. 5065. Springer, Pisa, Italy, 642–658.
Apims 2014. Apims. (2014). http://thelas.dk/index.php?title=Apims.
Samik Basu, Tevfik Bultan, and Meriem Ouederni. 2012. Deciding choreography realizability. In Symposium

on Principles of Programming Languages (POPL’12). ACM, Philadelphia, USA, 191–202.
Andi Bejleri and Nobuko Yoshida. 2009. Synchronous multiparty session types. In Proceedings of Pro-

gramming Languages Approaches to Concurrency and Communication-Centric Software (PLACES’08)
(ENTCS), Vol. 241. Elsevier, Oslo, Norway, 3–33.

Lorenzo Bettini, Mario Coppo, Loris D’Antoni, Marco De Luca, Mariangiola Dezani-Ciancaglini, and Nobuko
Yoshida. 2008. Global progress in dynamically interleaved multiparty sessions. In International Confer-
ence on Concurrency Theory (CONCUR’08) (LNCS), Vol. 5201. Springer, Toronto, Canada, 418–433.

Karthikeyan Bhargavan, Ricardo Corin, Pierre-Malo Deniélou, Cédric Fournet, and James Leifer. 2009.
Cryptographic protocol synthesis and verification for multiparty sessions. In Computer Security Foun-
dations Symposium (CSF’09). IEEE, New York, USA, 124–140.

Laura Bocchi, Tzu-Chun Chen, Romain Demangeon, Kohei Honda, and Nobuko Yoshida. 2013. Monitoring
networks through multiparty session types. In IFIP Joint International Conference on Formal Techniques
for Distributed Systems (FMOODS/FORTE’13) (LNCS), Dirk Beyer and Michele Boreale (Eds.), Vol.
7892. Springer, Florence, Italy, 50–65.

Laura Bocchi, Romain Demangeon, and Nobuko Yoshida. 2012. A multiparty multi-session logic. In 7th
International Symposium on Trustworthy Global Computing (TGC’12) (LNCS), Catuscia Palamidessi
and Mark Dermot Ryan (Eds.), Vol. 8191. Springer, Newcastle upon Tyne, UK, 111–97.

Laura Bocchi, Kohei Honda, Emilio Tuosto, and Nobuko Yoshida. 2010. A theory of design-by-contract for
distributed multiparty interactions. In International Conference on Concurrency Theory (CONCUR’10)
(LNCS), Vol. 6269. Springer, Paris, France, 162–176.

Laura Bocchi, Julien Lange, and Nobuko Yoshida. 2015. Meeting deadlines together. In International Con-
ference on Concurrency Theory (CONCUR 2015) (LIPIcs), Vol. 42. Schloss Dagstuhl, Madrid, Spain,
283–296.

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

http://www.iona.com/opensource/amqp/
http://thelas.dk/index.php?title$=$Apims

9:62 K. Honda et al.

Laura Bocchi, Hernán C. Melgratti, and Emilio Tuosto. 2014a. Resolving non-determinism in choreographies.
In European Symposium on Programming (ESOP’14) (LNCS), Zhong Shao (Ed.), Vol. 8410. Springer,
Grenoble, France, 493–512.

Laura Bocchi, Weizhen Yang, and Nobuko Yoshida. 2014b. Timed multiparty session types. In International
Conference on Concurrency Theory (CONCUR’14) (LNCS), Paolo Baldan and Daniele Gorla (Eds.), Vol.
8704. Springer, Rome, Italy, 419–434.

Eduardo Bonelli, Adriana Compagnoni, and Elsa Gunter. 2005. Correspondence assertions for process syn-
chronization in concurrent communications. Journal of Functional Programming 15, 2 (2005), 219–248.

Eduardo Bonelli and Adriana B. Compagnoni. 2007. Multipoint session types for a distributed calculus. In
Trustworthy Global Computing (TGC’07) (LNCS), Vol. 4912. Springer, Sophia-Antipolis, France, 240–
256.

BPMNC 2012. Business Process Model and Notation 2.0 Choreography. Retrieved from http://en.bpmn-
community.org/tutorials/34/.

Daniel Brand and Pitro Zafiropulo. 1983. On communicating finite-state machines. Journal of the ACM 30
(April 1983), 323–342. Issue 2.

Mario Bravetti and Gianluigi Zavattaro. 2007. Towards a unifying theory for choreography conformance and
contract compliance. In Software Composition (LNCS), Vol. 4829. Springer, Braga, Portugal, 34–50.

Roberto Bruni, Ivan Lanese, Hernan Melgratti, and Emilio Tuosto. 2008. Multiparty sessions in SOC. In
Coordination Models and Languages (COORDINATION’08) (LNCS), Vol. 5052. Springer, Oslo, Norway,
67–82.

Luı́s Caires and Frank Pfenning. 2010. Session types as intuitionistic linear propositions. In International
Conference on Concurrency Theory (CONCUR’10) (LNCS), Vol. 6269. Springer, Paris, France, 222–236.

Luı́s Caires and Hugo Torres Vieira. 2010. Conversation types. Theoretical Computer Science 411, 51–52
(2010), 4399–4440.

Sara Capecchi, Ilaria Castellani, and Mariangiola Dezani-Ciancaglini. 2014. Typing access control and secure
information flow in sessions. Information and Computation 238 (2014), 68–105.

Sara Capecchi, Ilaria Castellani, and Mariangiola Dezani-Ciancaglini. 2015. Information flow safety in
multiparty sessions. To appear.

Sara Capecchi, Ilaria Castellani, Mariangiola Dezani-Ciancaglini, and Tamara Rezk. 2010. Session types for
access and information flow control. In International Conference on Concurrency Theory (CONCUR’10)
(LNCS), Vol. 6269. Springer, Paris, France, 237–252.

Sara Capecchi, Elena Giachino, and Nobuko Yoshida. 2016. Global escape in multiparty sessions. Mathe-
matical Structures in Computer Science 26, 2 (2016), 156–205.

Marco Carbone and Joshua Guttman. 2009a. Choreographies with Secure Boxes and Compromised Princi-
pals. In Proceedings of the 2nd Interaction and Concurrency Experience - Structured Interactions (ICE’09)
(EPTCS), Vol. 12. Bologna, Italy, 1–16.

Marco Carbone and Joshua Guttman. 2009b. Execution models for choreographies and cryptoprotocols.
In Proceedings of the 2nd Workshop on Programming Language Approaches to Concurrency and
Communication-cEntric Software (PLACES’09) (EPTCS), Vol. 17. York, UK, 31–42.

Marco Carbone, Kohei Honda, and Nobuko Yoshida. 2007. Structured communication-centred programming
for web services. In European Symposium on Programming (ESOP’07) (LNCS), Vol. 4421. Springer,
Braga, Portugal, 2–17.

Marco Carbone, Kohei Honda, and Nobuko Yoshida. 2008. Structured interactional exceptions in session
types. In International Conference on Concurrency Theory (CONCUR’08) (LNCS), Franck van Breugel
and Marsha Chechik (Eds.), Vol. 5201. Springer, Toronto, Canada, 402–417.

Marco Carbone, Kohei Honda, and Nobuko Yoshida. 2012. Structured communication-centered programming
for web services. ACM Transactions on Programming Languages and Systems 34, 2 (2012), 8.

Marco Carbone, Kohei Honda, Nobuko Yoshida, Robin Milner, Gary Brown, and Steve Ross-Talbot.
2006. A Theoretical Basis of Communication-Centred Concurrent Programming. Retrieved from
http://www.w3.org/2002/ws/chor/.

Marco Carbone and Fabrizio Montesi. 2013. Deadlock-freedom-by-design: Multiparty asynchronous global
programming. In Symposium on Principles of Programming Languages (POPL’13), Roberto Giacobazzi
and Radhia Cousot (Eds.). ACM, Rome, Italy, 263–274.

Marco Carbone, Fabrizio Montesi, Carsten Schrmann, and Nobuko Yoshida. 2015. Multiparty session types
as coherence proofs. In International Conference on Concurrency Theory (CONCUR’15) (LIPIcs), Vol. 42.
Schloss Dagstuhl, Madrid, Spain, 412–426.

Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, and Luca Padovani. 2011. On global types and multi-
party sessions. In International Conference on Formal Methods for Open Object-based Distributed Sys-
tems (FMOODS/FORTE) (LNCS), Vol. 6722. Springer, Reykjavik, Iceland, 1–28.

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

http://en.bpmn-community.org/tutorials/34/
http://en.bpmn-community.org/tutorials/34/
http://www.w3.org/2002/ws/chor/

Multiparty Asynchronous Session Types 9:63

Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, and Luca Padovani. 2012. On global types and multi-
party session. Logical Methods in Computer Science 8, 1 (2012), 24.

Giuseppe Castagna and Luca Padovani. 2009. Contracts for mobile processes. In International Conference
on Concurrency Theory (CONCUR’09) (LNCS). Springer, Bologna, Italy, 211–228.

Tzu-Chun Chen, Laura Bocchi, Pierre-Malo Deniélou, Kohei Honda, and Nobuko Yoshida. 2012. Asyn-
chronous distributed monitoring for multiparty session enforcement. In Trustworthy Global Computing
(TGC’11) (LNCS), Roberto Bruni and Vladimiro Sassone (Eds.), Vol. 7173. Springer, Newcastle upon
Tyne, UK, 25–45.

Tzu-Chun Chen and Kohei Honda. 2012. Specifying stateful asynchronous properties for distributed pro-
grams. In International Conference on Concurrency Theory (CONCUR’12) (LNCS), Maciej Koutny and
Irek Ulidowski (Eds.), Vol. 7454. Springer, Newcastle upon Tyne, UK, 209–224.

Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, and Nobuko Yoshida. 2013. Inference of
global progress properties for dynamically interleaved multiparty sessions. In Coordination Models
and Languages (COORDINATION’13) (LNCS), Rocco De Nicola and Christine Julien (Eds.), Vol. 7890.
Springer, Florence, Italy, 45–59.

Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, and Nobuko Yoshida. 2015a. A gentle intro-
duction to multiparty asynchronous session types. In SFM-15:MP (LNCS), Vol. 9104. Springer, Bertinoro,
Italy, 146–178.

Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Venneri. 2014. Self-adaptive multiparty sessions.
Service Oriented Computing and Applications 9, 3–4 (2014), 249–268.

Mario Coppo, Mariangiola Dezani-Ciancaglini, and Nobuko Yoshida. 2007. Asynchronous session types and
progress for object-oriented languages. In IFIP International Conference on Formal Methods for Open
Object-based Distributed Systems (FMOODS’07) (LNCS), Vol. 4468. Springer, Paphos, Cyprus, 1–31.

Mario Coppo, Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, and Luca Padovani. 2015b. Global progress
for dynamically interleaved multiparty sessions. Mathematical Structures in Computer Science 26, 2
(2015), 238–302.

Mila Dalla Preda, Saverio Giallorenzo, Ivan Lanese, Jacopo Mauro, and Maurizio Gabbrielli. 2014. AIOCJ:
A choreographic framework for safe adaptive distributed applications. In International Conference on
Software Language Engineering (SLE’14) (LNCS), Benoı̂t Combemale, David J. Pearce, Olivier Barais,
and Jurgen J. Vinju (Eds.), Vol. 8706. Springer, Västerås, Sweden, 161–170.

Ornela Dardha, Elena Giachino, and Davide Sangiorgi. 2012. Session types revisited. In International Sym-
posium on Principles and Practice of Declarative Programming (PPDP’12), Danny De Schreye, Gerda
Janssens, and Andy King (Eds.). ACM Press, Leuven, Belgium, 139–150.

Romain Demangeon and Kohei Honda. 2012. Nested protocols in session types. In International Conference
on Concurrency Theory (CONCUR’12) (LNCS), Maciej Koutny and Irek Ulidowski (Eds.), Vol. 7454.
Springer, Newcastle upon Tyne, UK, 272–286.

Romain Demangeon, Kohei Honda, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida. 2015. Practical
interruptible conversations: Distributed dynamic verification with multiparty session types and Python.
Formal Methods in System Design 46, 3 (2015), 197–225.

Pierre-Malo Deniélou and Nobuko Yoshida. 2010. Buffered communication analysis in distributed multiparty
sessions. In International Conference on Concurrency Theory (CONCUR’10) (LNCS), Vol. 6269. Springer,
Paris, France, 343–357.

Pierre-Malo Deniélou and Nobuko Yoshida. 2011. Dynamic multirole session types. In Symposium on Prin-
ciples of Programming Languages (POPL’11). ACM, Austin, USA, 435–446.

Pierre-Malo Deniélou and Nobuko Yoshida. 2012. Multiparty session types meet communicating automata.
In European Symposium on Programming (ESOP’12) (LNCS), Helmut Seidl (Ed.), Vol. 7211. Springer,
Tallin, Estonia, 194–213.

Pierre-Malo Deniélou and Nobuko Yoshida. 2013. Multiparty compatibility in communicating automata:
Characterisation and synthesis of global session types. In International Colloquium on Automata, Lan-
guages and Programming (ICALP’13) (LNCS), Fedor V. Fomin, Rusins Freivalds, Marta Z. Kwiatkowska,
and David Peleg (Eds.), Vol. 7966. Springer, Riga, Latvia, 174–186.

Pierre-Malo Deniélou, Nobuko Yoshida, Andi Bejleri, and Raymond Hu. 2012. Parameterised multiparty
session types. Logical Methods in Computer Science 8, 4 (2012).

Mariangiola Dezani-Ciancaglini and Ugo de’Liguoro. 2010. Sessions and session types: An overview. In
International Workshop on Web Services and Formal Methods (WS-FM’09) (LNCS), Cosimo Laneve and
Jianwen Su (Eds.), Vol. 6194. Springer, Bologna, Italy, 1–28.

Mariangiola Dezani-Ciancaglini, Ugo de’Liguoro, and Nobuko Yoshida. 2007. On progress for structured com-
munications. In Trustworthy Global Computing (TGC’07) (LNCS), Vol. 4912. Springer, Sophia-Antipolis,
France, 257–275.

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

9:64 K. Honda et al.

Mariangiola Dezani-Ciancaglini, Sophia Drossopoulou, Dimitris Mostrous, and Nobuko Yoshida. 2009. Ob-
jects and session types. Information and Computation 207, 5 (2009), 595–641.

Mariangiola Dezani-Ciancaglini, Dimitris Mostrous, Nobuko Yoshida, and Sophia Drossopoulou. 2006. Ses-
sion types for object-oriented languages. In European Conference on Object-Oriented Programming
(ECOOP’06) (LNCS), Vol. 4067. Springer, Nantes, France, 328–352.

Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson, Galen C. Hunt, James R. Larus, and
Steven Levi. 2006. Language support for fast and reliable message-based communication in singularity
OS. In EuroSys2006 (ACM SIGOPS). ACM Press, Leuven, Belgium, 177–190.

Luca Fossati, Raymond Hu, and Nobuko Yoshida. 2014. Multiparty session nets. In Trustworthy Global
Computing (TGC’14) (LNCS), Matteo Maffei and Emilio Tuosto (Eds.), Vol. 8902. Springer, Rome, Italy,
112–127.

Pablo Garralda, Adriana Compagnoni, and Mariangiola Dezani-Ciancaglini. 2006. BASS: Boxed ambients
with safe sessions. In International Symposium on Principles and Practice of Declarative Programming
(PPDP’06). ACM Press, Venice, Italy, 61–72.

Simon Gay. 2008. Bounded polymorphism in session types. MSCS 18 (2008), 895–930.
Simon Gay and Malcolm Hole. 2005. Subtyping for Session Types in the Pi-Calculus. Acta Informatica 42,

2/3 (2005), 191–225.
Simon Gay and Vasco T. Vasconcelos. 2009. Linear type theory for asynchronous session types. Journal of

Functional Programming (2009).
Simon Gay, Vasco T. Vasconcelos, António Ravara, Nils Gesbert, and Alexandre Z. Caldeira. 2010. Modular

session types for distributed object-oriented programming. In Symposium on Principles of Programming
Languages (POPL’10). ACM, Madrid, Spain, 299–312.

Jean-Yves Girard. 1987. Linear logic. Theoretical Computer Science 50 (1987), 1–102.
Matthew Hennessy. 2007. A Distributed Pi-Calculus. Cambridge University Press.
Anders Henriksen, Lasse Nielsen, Thomas Hildebrandt, Nobuko Yoshida, and Fritz Henglein. 2013. Trust-

worthy pervasive healthcare services via multi-party session type. In Foundations of Health Information
Engineering and Systems (FHIES’12) (LNCS), Jens Weber and Isabelle Perseil (Eds.), Vol. 7789. Paris,
France, 124–141.

Kohei Honda. 1993. Types for dyadic interaction. In International Conference on Concurrency Theory (CON-
CUR’93) (LNCS), Eike Best (Ed.), Vol. 715. Springer-Verlag, Hildesheim, Germany, 509–523.

Kohei Honda, Raymond Hu, Rumyana Neykova, Tzu-Chun Chen, Romain Demangeon, Pierre-Malo
Deniélou, and Nobuko Yoshida. 2014. Structuring communication with session types. In Concurrent
Objects and Beyond (COB’14) (LNCS), Gul A. Agha, Atsushi Igarashi, Naoki Kobayashi, Hidehiko Ma-
suhara, Satoshi Matsuoka, Etsuya Shibayama, and Kenjiro Taura (Eds.), Vol. 8665. Springer, 105–127.

Kohei Honda, Aybek Mukhamedov, Gary Brown, Tzu-Chun Chen, and Nobuko Yoshida. 2011. Scribbling
interactions with a formal foundation. In International Conference on Distributed Computing and Inter-
net Technology (ICDCIT’11) (LNCS), Raja Natarajan and Adegboyega K. Ojo (Eds.), Vol. 6536. Springer,
Bhubaneswar, India, 55–75.

Kohei Honda and Mario Tokoro. 1991. An object calculus for asynchronous communication. In European
Conference on Object-Oriented Programming (ECOOP’91), Vol. 512. Geneva, Switzerland, 133–147.

Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. 1998. Language primitives and type disciplines for
structured communication-based programming. In European Symposium on Programming (ESOP’98)
(LNCS), Vol. 1381. Springer-Verlag, Lisbon, Portugal, 22–138.

Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2007. Web services, mobile processes and types. The
Bulletin of the European Association for Theoretical Computer Science. February, 91 (2007), 165–185.

Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008a. Multiparty asynchronous session types. In
Symposium on Principles of Programming Languages (POPL’08). ACM, San Francisco, USA, 273–284.

Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008b. Multiparty Asynchronous Session Types. (2008).
Web page. http://www.doc.ic.ac.uk/∼yoshida/multiparty.

Raymond Hu, Dimitrious Kouzapas, Oliver Pernet, Nobuko Yoshida, and Kohei Honda. 2010. Type-safe
eventful sessions in Java. In European Conference on Object-Oriented Programming (ECOOP’10)
(LNCS), Vol. 6183. Springer, Maribor, Slovenia, 329–353.

Raymond Hu, Rumyana Neykova, Nobuko Yoshida, and Romain Demangeon. 2013. Practical interruptible
conversations: Distributed dynamic verification with session types and python. In Runtime Verification
(RV’13) (LNCS), Axel Legay and Saddek Bensalem (Eds.), Vol. 8174. Springer, Rennes, France, 148–130.

Raymond Hu, Nobuko Yoshida, and Kohei Honda. 2008. Session-based distributed programming in Java. In
European Conference on Object-Oriented Programming (ECOOP’08), Jan Vitek (Ed.), Vol. 5142. Springer,
Paphos, Cyprus, 516–541.

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

http://www.doc.ic.ac.uk/protect $
elax sim $yoshida/multiparty

Multiparty Asynchronous Session Types 9:65

Atsushi Igarashi and Naoki Kobayashi. 2004. A generic type system for the Pi-calculus. Theoretical Computer
Science 311, 1–3 (2004), 121–163.

International Telecommunication Union. 1996. Recommendation Z.120: Message Sequence Chart. (1996).
Naoki Kobayashi. 2006. A new type system for deadlock-free processes. In International Conference on

Concurrency Theory (CONCUR’06) (LNCS), Vol. 4137. Bonn, Germany, 233–247.
Dimitrios Kouzapas, Jorge A. Perez, and Nobuko Yoshida. 2015. Characteristic bisimulations for higher-

order session processes. In International Conference on Concurrency Theory (CONCUR’15) (LIPIcs), Vol.
42. Schloss Dagstuhl, Madrid, Spain, 398–411.

Dimitrios Kouzapas and Nobuko Yoshida. 2014. Globally governed session semantics. Logical Methods in
Computer Science 10, 4 (2014).

Dimitrios Kouzapas, Nobuko Yoshida, Raymond Hu, and Kohei Honda. 2016. On asynchronous eventful
session semantics. Mathematical Structures in Computer Science 26, 2 (2016), 303–364.

Pavel Krcál and Wang Yi. 2006. Communicating timed automata: The more synchronous, the more difficult
to verify. In Computer Aided Verification (CAV’06) (LNCS), Vol. 4144. Springer, Seattle, USA, 249–262.

Leslie Lamport. 1978. Time, clocks, and the ordering of events in a distributed system. Communications of
the ACM 21, 7 (July 1978), 558–564.

Julien Lange and Emilio Tuosto. 2012. Synthesising choreographies from local session types. In International
Conference on Concurrency Theory (CONCUR’12) (LNCS), Maciej Koutny and Irek Ulidowski (Eds.), Vol.
7454. Springer, Newcastle upon Tyne, UK, 225–239.

Julien Lange, Emilio Tuosto, and Nobuko Yoshida. 2015. From communicating machines to graphical chore-
ographies. In Symposium on Principles of Programming Languages (POPL’15), Sriram K. Rajamani and
David Walker (Eds.). ACM Press, Mumbai, India, 221–232.

Massimo Merro. 2007. An observational theory for mobile Ad hoc networks. In Electronic Notes in Theoretical
Computer Science, Vol. 172. Elsevier, 275–293.

Nicola Mezzetti and Davide Sangiorgi. 2006. Towards a calculus for wireless systems. In Electronic Notes in
Theoretical Computer Science, Vol. 158. Elsevier, 331–353.

Leonardo Gaetano Mezzina. 2008. How to infer finite session types in a calculus of services and sessions. In
Coordination Models and Languages (COORDINATION’08) (LNCS), Vol. 5052. Springer, Oslo, Norway,
216–231.

Fabrizio Montesi and Nobuko Yoshida. 2013. Compositional choreographies. In International Conference on
Concurrency Theory (CONCUR’13) (LNCS), Pedro R. D’Argenio and Hernán C. Melgratti (Eds.), Vol.
8052. Springer, Buenos Aires, Argentina, 439–425.

Dimitris Mostrous and Nobuko Yoshida. 2007. Two session typing systems for higher-order mobile processes.
In Typed Lambda Calculi and Applications (TLCA’07) (LNCS), Vol. 4583. Springer, Paris, France, 321–
335.

Dimitris Mostrous and Nobuko Yoshida. 2009. Session-based communication optimisation for higher-order
mobile processes. In Typed Lambda Calculi and Applications, 9th International Conference, TLCA 2009
(LNCS), Pierre-Louis Curien (Ed.), Vol. 5608. Springer, Brasilia, Brazil, 203–218.

Dimitris Mostrous, Nobuko Yoshida, and Kohei Honda. 2009. Global principal typing in partially commu-
tative asynchronous sessions. In European Symposium on Programming (ESOP’09) (LNCS), Vol. 5502.
Springer, York, UK, 316–332.

Sebastian Nanz, Flemming Nielson, and Hanne Riis Nielson. 2007. Topology-dependent abstractions of
broadcast networks. In International Conference on Concurrency Theory (CONCUR’07). Lisbon, Portu-
gal, 226–240.

Matthias Neubauer and Peter Thiemann. 2004a. An implementation of session types. In Practical Aspects
of Declarative Languages (PADL’04) (LNCS), Vol. 3057. Springer, Dallas, USA, 56–70.

Matthias Neubauer and Peter Thiemann. 2004b. Session Types for Asynchronous Communication. (2004).
Universität Freiburg.

Rumyana Neykova, Laura Bocchi, and Nobuko Yoshida. 2014. Timed runtime monitoring for multiparty
conversations. In Workshop on Behavioural Types (BEAT’14) (EPTCS), Marco Carbone (Ed.), Vol. 162.
Rome, Italy, 19–26.

Rumyana Neykova and Nobuko Yoshida. 2014. Multiparty session actors. In Coordination Models and
Languages (COORDINATION’14) (LNCS), Eva Kühn and Rosario Pugliese (Eds.), Vol. 8459. Springer,
Berlin, Germany, 131–146.

Rumyana Neykova, Nobuko Yoshida, and Raymond Hu. 2013. SPY: Local verification of global protocols.
In Runtime Verification (RV’13) (LNCS), Axel Legay and Saddek Bensalem (Eds.), Vol. 8174. Springer,
Rennes, France, 363–358.

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

9:66 K. Honda et al.

Nicholas Ng, Jose G. F. Coutinho, and Nobuko Yoshida. 2015. Protocols by default: Safe MPI code generation
based on session types. In Compiler Construction (CC’15) (LNCS). Björn Franke (Ed.). Springer, London,
UK, 212–232.

Nicholas Ng and Nobuko Yoshida. 2014. Pabble: Parameterised scribble. Service Oriented Computing and
Applications 9, 3–4 (2014), 1–16.

Nicholas Ng, Nobuko Yoshida, and Kohei Honda. 2012. Multiparty session C: Safe parallel programming
with message optimisation. In TOOLS’12 (LNCS), Carlo A. Furia and Sebastian Nanz (Eds.), Vol. 7304.
Springer, Prague, Czech Republic, 202–218.

Nicholas Ng, Nobuko Yoshida, and Wayne Luk. 2013. Scalable session programming for heterogeneous
high-performance systems. In International Conference on Software Engineering and Formal Methods
(SEFM’13) (LNCS), Steve Counsell and Manuel Núñez (Eds.), Vol. 8368. Springer, Madrid, Spain, 82–98.

Nicholas Ng, Nobuko Yoshida, Xin Yu Niu, Kuen Hung Tsoi, and Wayne Luk. 2012. Session types: Towards
safe and fast reconfigurable programming. SIGARCH CAN 40, 5 (2012), 22–27.

Nicholas Ng, Nobuko Yoshida, Olivier Pernet, Raymond Hu, and Yiannos Kryftis. 2011. Safe parallel pro-
gramming with session Java. In Coordination Models and Language (COORDINATION’11) (LNCS),
Vol. 6721. Springer, Reykjavik, Iceland, 110–126.

Lasse Nielsen, Nobuko Yoshida, and Kohei Honda. 2010. Multiparty symmetric sum types. In Expressiveness
in Concurrency (EXPRESS’10) (EPTCS), Vol. 41. Paris, France, 121–135.

OOI. 2015. Ocean Observatories Initiative. Retrieved from http://www.oceanleadership.org/programs-and-
partnerships/ocean-observing/ooi/.

Luca Padovani. 2014a. Deadlock and lock freedom in the linear π -calculus. In Computer Science Logic and
Logic in Computer Science (CSL-LICS’14), Thomas A. Henzinger and Dale Miller (Eds.). ACM Press,
Vienna, Austria, 72:1–72:10.

Luca Padovani. 2014b. Fair subtyping for multi-party session types. Mathematical Structures in Computer
Science (2014), 1–41.

B. Pierce and D. Sangiorgi. 1996. Typing and subtyping for mobile processes. Journal of Mathematical
Structures in Computer Science 6, 5 (1996), 409–454.

Benjamin C. Pierce. 2002. Types and Programming Languages. MIT Press.
Jérémy Planul, Ricardo Corin, and Cédric Fournet. 2009. Secure enforcement for global process specifications.

In International Conference on Concurrency Theory (CONCUR’09) (LNCS), Mario Bravetti and Gianluigi
Zavattaro (Eds.), Vol. 5710. Springer, Bologna, Italy, 511–526.

K. V. S. Prasad. 2001. Broadcast calculus interpreted in CCS upto bisimulation. In Electronic Notes in
Theoretical Computer Science 52, 1, 83–100.

K. V. S. Prasad. 2006. A prospectus for mobile broadcasting systems. In Electronic Notes in Theoretical
Computer Science 162, 1, 295–300.

Riccardo Pucella and Jesse Tov. 2008. Haskell session types with (almost) no class. In Haskell Symposium
(Haskell’08). ACM SIGPLAN, Victoria, Canada.

Matthew Sackman and Susan Eisenbach. 2008. Session Types in Haskell. draft.
SAVARA. 2010. SAVARA JBoss Project. Retrieved from http://www.jboss.org/savara.
Bruce Schneier. 1993. Applied Cryptography: Protocols, Algorithms, and Source Code in C. John Wiley &

Sons, Inc.
Scribble. 2008. Scribble Project. Retrieved from www.scribble.org.
K. C. Sivaramakrishnan, Karthik Nagaraj, Lukasz Ziarek, and Patrick Eugster. 2010. Efficient session type

guided distributed interaction. In Coordination Models and Languages (COORDINATION’10) (LNCS),
Vol. 6116. Springer, Amsterdam, Holland, 152–167.

Stephen Sparkes. 2006. Conversation with steve ross-talbot. ACM Queue 4, 2 (March 2006).
Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub, Karthikeyan Bhargavan, and Jean Yang. 2011.

Secure distributed programming with value-dependent types. In International Conference on Functional
Programming (ICFP’11). IEEE, Tokyo, Japan, 266–278.

Kaku Takeuchi, Kohei Honda, and Makoto Kubo. 1994. An interaction-based language and its typing system.
In Parallel Architectures and Languages Europe (PARLE’94) (LNCS), Vol. 817. Springer-Verlag, Athens,
Greece, 398–413.

F. Javier Thayer, Jonathan C. Herzog, and Joshua D. Guttman. 1999. Strand spaces: Proving security
protocols correct. Journal of Computer Security 7, 2/3 (1999), 191–230.

Vasco T. Vasconcelos, Simon Gay, and António Ravara. 2006. Typechecking a multithreaded functional
language with session types. Theoretical Computer Science 368, 1–2 (2006), 64–87.

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

http://www.oceanleadership.org/programs-and-partnerships/ocean-observing/ooi/
http://www.oceanleadership.org/programs-and-partnerships/ocean-observing/ooi/
http://www.jboss.org/savara
file:www.scribble.org

Multiparty Asynchronous Session Types 9:67

Hugo Torres Vieira, Luı́s Caires, and João Costa Seco. 2008. The conversation calculus: A model of service-
oriented computation. In European Symposium on Programming (ESOP’08) (LNCS), Vol. 4960. Springer,
Budapest, Hungary, 269–283.

Jules Villard. 2011. Heaps and Hops. Ph.D. Dissertation. ENS Cachan.
Phil Wadler. 2012. Proposition as sessions. In International Conference on Functional Programming

(ICFP’12). IEEE, Copenhagen, Denmark, 273–286.
WS-CDL. 2003. Web Services Choreography Working Group. http://www.w3.org/2002/ws/chor/. (2003).
Nobuko Yoshida. 1996. Graph types for monadic mobile processes. In Foundations of Software Technology and

Theoretical Computer Science (FSTTCS’96) (LNCS), Vol. 1180. Springer, Hyderabad, India, 371–386.
Nobuko Yoshida, Martin Berger, and Kohei Honda. 2001. Strong normalisation in the π -Calculus. In Proc.

LICS’01. IEEE, 311–322. The full version in Journal of Information and Computation, 191 (2004),
145–202, Elsevier.

Nobuko Yoshida, Raymond Hu, Rumyana Neykova, and Nicholas Ng. 2013. The scribble protocol language.
In Trustworthy Global Computing (TGC’13) (LNCS), Martı́n Abadi and Alberto Lluch-Lafuente (Eds.),
Vol. 8358. Springer, Buenos Aires, Argentina, 22–41.

Nobuko Yoshida and Vasco Thudichum Vasconcelos. 2007. Language primitives and type discipline for
structured communication-based programming revisited: Two systems for higher-order session commu-
nication. Electronic Notes on Theoretical Computer Science 171, 4 (2007), 73–93.

Nobuko Yoshida, Vasco Thudichum Vasconcelos, Hervé Paulino, and Kohei Honda. 2008. Session-based
compilation framework for multicore programming. In International Symposium on Formal Methods
for Components and Objects (FMCO’08) (LNCS), Frank S. de Boer, Marcello M. Bonsangue, and Eric
Madelain (Eds.), Vol. 5751. Springer, Sophia Antipolis, France, 226–246.

ZDLC. 2015. Zero Deviation Lifecycle. Retrieved from http://www.zdlc.co.

Received January 2009; revised February 2013 and August 2015; accepted September 2015

Journal of the ACM, Vol. 63, No. 1, Article 9, Publication date: March 2016.

http://www.w3.org/2002/ws/chor/
http://www.zdlc.co

