brought to you by .{ CORE

View metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository
Not for redistribution. The definitive version was published in the conference/workshop proceedings.
Refer to the paper using: https://doi.org/10.1145/3202710.3203149

From Scrum to Agile: a Journey to Tackle the Challenges of
Distributed Development in an Agile Team

Pernille Lous
IT University of Copenhagen
Copenhagen, Denmark

pelo@itu.dk

Yvonne Dittrich
IT University of Copenhagen
Copenhagen, Denmark
ydi@itu.dk

ABSTRACT

Background: Agile and distributed software development are two
trends that continue to increase rapidly in today’s software industry.
Even though the benefits achievable by combining them are poten-
tially many, the intrinsic challenges of such marriage often lead to
severe complications that can jeopardize the successful completion
of software projects. Method: To investigate empirically how these
two trends can coexist without compromising on the agile core
values and principles, we conducted an exploratory holistic case
study. Focusing on the development team of a Danish SME having
both distributed offices as well as teleworking arrangements, we
showcase (the evolution of) their practices. Results: The case is an
example of the effective application of the agile reflective culture
that allowed the company to evolve to a level in which the col-
location restrictions of agile software development are overcome
by a continuously evolving software process geared towards re-
ducing waste to achieve speed and simplicity. Conclusions: Even
though results need to be considered carefully due to the single
nature of the reported case, we highlight five elements that have
been fundamental in such journey: agile servant-leader, agile team,
trust, virtual work environment, inspect & adapt, and reduce waste.
Extensive information is provided to frame the context and to allow
meaningful future comparisons.

CCS CONCEPTS

» Software and its engineering — Agile software develop-
ment; Programming teams;

KEYWORDS

case study; agile software development; distributed software engi-
neering; software process improvement; continuous deployment;
continuous software engineering

ACM Reference Format:

Pernille Lous, Paolo Tell, Christian Bo Michelsen, Yvonne Dittrich, and Allan
Ebdrup. 2018. From Scrum to Agile: a Journey to Tackle the Challenges

ICSSP ’18, May 26-27, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Record was published in ICSSP ’18:
International Conference on the Software and Systems Process 2018 (ICSSP ’18), May
26-27, 2018, Gothenburg, Sweden, https://doi.org/10.1145/3202710.3203149.

Paolo Tell
IT University of Copenhagen
Copenhagen, Denmark

pate@itu.dk

Christian Bo Michelsen
IT University of Copenhagen
Copenhagen, Denmark

chmi@itu.dk

Allan Ebdrup
Debitoor
Copenhagen, Denmark
aeb@debitoor.com

of Distributed Development in an Agile Team. In ICSSP ’18: International
Conference on the Software and Systems Process 2018 (ICSSP ’18), May 26—
27, 2018, Gothenburg, Sweden. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3202710.3203149

1 INTRODUCTION

Agile software development and distributed software development
are two trends that are steadily increasing in popularity [33]. The
more dynamic approach to rapidly changing markets and the abil-
ity to access a larger pool of skilled personnel—in some cases en-
tire teams—outside of political boundaries are just some of the
advantages that these two trends promise to deliver. This marriage,
however, does not come without costs. Often businesses fail to
effectively embrace them by not carefully addressing the challenges
that this combination entails (e.g., [16, 31, 35]).

The root causes of these challenges are the opposite conditions
required by the two approaches. Arguably, the main tenet of the ag-
ile methodology is the focus on communication among the people
involved in the development of a software system. As the manifesto
for agile software development states in the list of principles: “[t]he
most efficient and effective method of conveying information to
and within a development team is face-to-face conversation” [3].
The idiosyncratic absence of physical presence in distributed de-
velopment, therefore, clearly hinders the ability of a development
team to completely adhere to the principles defining agile software
development. Therefore, the question arises of whether it is possible
to combine these two approaches while reaping their benefits.

The case reported in this paper describes an example of a success-
ful marriage, in which a distributed development team implements
a continuously evolving agile process by persistently focusing on
the core principles of agile software development and the lean
principle of reducing waste.

Case Subject. Debitoor has 40 employees, and its business is
based on an online invoicing and accounting software solution
for small businesses and companies. Fourteen employees, which
are distributed across four sites in three European countries, are
directly involved in the development of the product and represent
our case subject. Debitoor has reached a maturity level that allows
the members of the development team to work from any location,
since every practice is performed in a virtual environment. Addi-
tionally, the reflective company culture ensures that all practices

https://core.ac.uk/display/161811316?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3202710.3203149
https://doi.org/10.1145/3202710.3203149
https://doi.org/10.1145/3202710.3203149

©ACM. PREPRINT. This is the author’s version of the work. It is posted here by permission of ACM for your personal use.
Not for redistribution. The definitive version was published in the conference/workshop proceedings.
Refer to the paper using: https://doi.org/10.1145/3202710.3203149

ICSSP ’18, May 26-27, 2018, Gothenburg, Sweden

are continuously evaluated in pursue of a simpler process and an
overall better work environment.

Research Objective and Contributions. Based on a year-long col-
laboration, we aim to present the journey that Debitoor has un-
dertaken in the past five years. By detailing the context and the
motivations driving the evolution of the practices, we present new
insights and possible approaches to address the challenges of being
agile in a distributed arrangement. Therefore, the study is driven
by the following research question: “How can a development team
adopt an agile process without compromising on the core values and
principles when facing the challenges of distributed development?”

Outline. The remainder of the paper is structured as follows:
Section 2 further presents the related work in the context of (global)
distributed software engineering and agile software development;
Section 3 contextualizes the study subject and details the design
of the case study; and, Section 4 describes the evolution of the
practices by decomposing the journey into phases; and, in Section
5, we discuss the results in light the themes that emerged from the
study. Before concluding with Section 7, we discuss the threats to
the validity of the study in Section 6.

2 RELATED WORK

Global distributed software engineering

Since the late 1980s, business agreements with foreign companies
such as merges, acquisitions, and alliances have been often exe-
cuted [5, 10]. These practices were the forerunner of what nowa-
days evolved into a well established software engineering approach
known as Global Software Engineering (GSE).

GSE promises several benefits, such as, the ability to recruit talent
potentially not available in-situ, reducing time to market, increasing
quality and operational time, and reaching proximity to market,
to name a few [9]. However, being the development of software a
complex endeavour that requires intense human cooperation, the
distribution of software engineering teams across multiple sites,
time-zones, languages, and cultures [29] poses challenges whose
interdependencies are (too) often underestimated [9, 29].

Even though some researchers prefer to focus on specific di-
mensions of cooperation (e.g., coordination [13]), the canonical
framework used to categorize the elements negatively affected by
the distances of GSE comprises communication, collaboration, co-
ordination, and awareness! [11]. These dimensions represent an
extremely useful model that is used often to frame challenges and
solutions in terms of processes (e.g., [21, 26]), tools (e.g., [34, 39]),
and architectural considerations (e.g, [14]).

Agile software development

Most likely the biggest change that the software development in-
dustry has seen in the last decades has been the birth of agile
software development, which emerged as a reaction to what is of-
ten referred to as structured, plan-based, or traditional software
engineering. This transformation, which culminated in the writing
of the manifesto for agile software development in 2001 [3], defined
the beginning of a shift in the development industry.

!In [12], Fuks expanded Ellis’s model [11] to include awareness in what nowadays is
accepted as the 3C collaboration model.

Pernille Lous, Paolo Tell, Christian Bo Michelsen, Yvonne Dittrich, and Allan Ebdrup

The manifesto for agile software development [3] is a list of four
values and twelve principles that describe the philosophy behind
the methodology and, through its construction, clearly positions
itself in contrast with prior methods: “while there is value in the
items on the right, we value the items on the left more”. Agile
methods are characterised by a clear attention to the dynamics of
team work, the strive for working software, the involvement of the
customer, and the ability to react to an ever changing environment.

Even though, at least initially, management feared such revo-
lutionary approach, as soon as results and benefits became more
obvious, agile methods have been adopted by companies of all
sizes and involved in product targeting a variety of application
domains—including more regulated ones [21]. Among the agile
methods, Scrum, XP, and their combination are by far the ones
used the most [41]. In fact, they are extremely easy to combine
due to their different approach to implementing the agile values
and principles: the former provides management practices (i.e., a
set of ceremonies, artifacts, and roles), while the latter focuses on
programming practices (e.g., pair programming, TDD). Interest-
ingly, in the recent years, also Kanban has been adopted widely,
while XP seems to have lost momentum [41]. However, as shown
in [21], hybrid methods are increasingly becoming the practice,
and a combination of Scrum and Kanban (or Scrumban) using XP
practices is quite common.

Distributed agile software development

Despite the distributed software engineering idiosyncratic charac-
teristic of being physically distributed and the numerous values
and principle explicitly requiring co-location, agile methods have
been applied also in distributed arrangements (e.g., [2, 19, 23]). Re-
searchers looked at whether the two approaches could be combined
(e.g., [35]) and, interestingly, in some cases it was found that the use
of agile methods can help reduce partially the issues related to the
distances in distributed environment (e.g., [4, 18]). However, the
combination of the two trends is all but a solved problem, and arti-
cles are constantly reporting challenges that hinder the use of agile
methods in globally distributed teams (see, e.g., [6, 23, 25, 41]). More
recently, strategies to overcome such issues have been described
and suggested. These often result in discussing virtual teams, re-
finement of roles within teams, presenting technical solutions, or
even presenting higher levels of integration of management, e.g.,
using Scrum-of-Scrums or complex agile frameworks like Large-
scale Scrum (LeSS), Scaled Agile Framework (SAFe), or Disciplined
Agile Delivery (DAD) [23]. Unfortunately, the majority of these
approaches appear not to be in line with the agile values and princi-
ples as they tend to introduce heavier management practices; and,
as the CTO of Debitoor stated when discussing SAFe during an
interview, “at every point in which you would expect a feedback loop,
instead there is a person in charge—CTO.”

Even though it is recognized also by Cockburn [7], among oth-
ers, that distribution makes agile development harder, this fallback
strategy towards heavier practices should not be—we claim—the
first and only solution, as it is in direct contrast with the initial moti-
vations behind agile software development of speed and simplicity
[15, 27]. The study at hand contributes to the body of knowledge
by providing experiences based on the journey that a Danish SME

©ACM. PREPRINT. This is the author’s version of the work. It is posted here by permission of ACM for your personal use.
Not for redistribution. The definitive version was published in the conference/workshop proceedings.
Refer to the paper using: https://doi.org/10.1145/3202710.3203149

From Scrum to Agile

§ >o
>fo
>0
>0
>fo

..

[
'
Y
‘e
‘e
Y
‘e
‘
‘e
‘e
‘
Y
Y
‘
‘e
Y
‘e
‘e
‘e
‘e
"oy,
'
Y
‘
'
Y
‘a
‘e
.oy,
‘e

LIRS

..........

>fo
o
o
>fo

Figure 1: Development team overview.

underwent to successfully adopt the agile methodology in its dis-
tributed arrangement.

3 RESEARCH DESIGN

The research objective, i.e., to investigate the use of agile practices
in a company having both distributed offices as well as teleworking
arrangements, has been investigated via an exploratory holistic
case study [42] making use of both qualitative and quantitative
techniques.

3.1 Organizational Context

The case organisation, Debitoor, is a small Danish company created
in 2012, which headquarter is located in Copenhagen (Denmark).
Debitoor provides an online invoicing and accounting software
solution for small businesses and companies. Users of Debitoor’s
system are located in 33 European countries. Debitoor consists
of forty employees in total with multiple national backgrounds.
Between 2012 and 2015, before becoming an independent enterprise,
Debitoor was part of a larger Danish company and was already
allocated to the design and development of the current product.
The results presented in this study will include events that occurred
since 2012, and are based on the collaboration with Debitoor that
started in 2016.

Results and insights presented in this study are based solely
on the analysis of the single development team. Figure 1 provides
an overview of the development team, which consists of fourteen
people in total: five located in Denmark, eight in Ukraine, and one in
Lithuania. The product owner (PO) is located in Ukraine and travels
regularly between Denmark and Ukraine. Located in Denmark, the
CTO is considered to be a part of the development team as his daily
work is heavily in service of the development team. Interestingly,
one developer in Denmark works remotely from his home office and
rarely visits the office in Denmark due to perfume allergy, hence,
considered as an independent site. In terms of expertize, all but one

ZNote: Debitoor’s business arrangement with the Ukraine part of the team is outsourc-
ing. However, all members of the development team consider the relation much more
in line with what would be expected in an insourcing arrangement.

ICSSP ’18, May 26-27, 2018, Gothenburg, Sweden

Table 1: Characterization of the empirical context.

Attribute Value

Year 2016-2017
Empirical focus Empirically based
Empirical background Industry

Industry sector Accounting

Subject of investigation Practitioners

Study results Successful practices
Empirical research method Case study

Source of empirical evidence Observations, interviews
Location Offshore

Legal entity Outsourcing (insourcing)?
Geographic distance Distant (within Europe)
Temporal distance Small (1 hour max)

4 (2x Denmark, Ukraine, Lithuania)
14 (12 developers, 1 PO, 1 CTO)

of sites
Team size

member, which is an intern, are senior developers and have years
of experience working in distributed agile teams.

Table 1 presents a summary to characterize the empirical context
to ease future comparisons. The taxonomy has been adapted from
the one suggested in [40].

3.2 Data Collection

The data collection took place between November 2016 and October
2017 during twelve visits to Debitoor. During the study, we were
given access to the entire tool ecosystem used by the development
team; this included: Slack, Google Sheet/Slide, GitHub, and the
Waffle board. The data collection techniques used during the visits
included semi-structured interviews and observations (see Figure
2 for a detailed breakdown of the activities performed during the
visits) [36]. Details about these techniques follow.

Observations. All nine observations were conducted at the Dan-
ish site. Six of them were full-day observations. During these visits,
we observed the 9:15 stand-up meetings, the retrospective meetings
in two instances, and participated to the daily work life of the team;
this included joining the team during lunches and coffee breaks,
which allowed us to ask questions to clarify specific observations
captured throughout the day while the memory of the event was
still fresh, but without disrupting the team’s activities. Three visits,
which lasted less then 30 minutes, included short observations of
only the stand-up meetings. Field notes were taken during all ob-
servations and were re-written after the observation ended in line
with the process described in [28].

Interviews. Besides discussing general aspects of the work prac-
tices at Debitoor, all these interviews—apart from the first, which
was the project kick-off—were all organized with key members
of the development team to explore recurring insights captured
during the observations and explore the process that led to the
practices observed. Semi-structured interviews were chosen to en-
sure the openness of the conversation on the one hand, while on
the other allowing the topics of interest to be fully explored [37].
In total, seven semi-structured interviews were conducted. One
with the PO, one with a developer from Ukraine, and five with the

©ACM. PREPRINT. This is the author’s version of the work. It is posted here by permission of ACM for your personal use.
Not for redistribution. The definitive version was published in the conference/workshop proceedings.
Refer to the paper using: https://doi.org/10.1145/3202710.3203149

ICSSP ’18, May 26-27, 2018, Gothenburg, Sweden

r 0
16;'(; 11:“ Interview (CTO)

30th Jan
2017

Observation (full day)

15th Feb Observation (full day)

Observation (full day), Interview (CTO, PO)

1st Mar

3rd Mar Observation (full day, including retrospective)

22nd Mar Observation (stand-up)

23rd Mar Observation (full day)

Observation (stand-up)

Observation (full day, including retrospective),
Interview (CTO, Developer)

31st Mar

4th Apr

Observation (stand-up)

21st Apr Interview (CTO)

6th Oct

.
.
'

4

.
.
'

+

.
-
N

'
.
'

+

'
-
'
.
'

4

.
.
'

+

'
28th Mar —
'
.
'

4

.
.
'

+

'
-
'

.
L
'
Y '

Figure 2: Overview of the research activities performed at
Debitoor.

CTO. All interviews were conducted using an interview guide [42],
lasted on average roughly one hour, and were recorded for post
analysis. All but one interview, which was performed through a
Slack-call (Ukraine developer), were conducted face-to-face in a
meeting room.

Access to the tool ecosystem of Debitoor. Throughout the study,
we had access to the entire tool ecosystem used by the development
team. This included access to: Slack—their communication hub;
Google Slides—used to support various meetings; Google Sheet—
their knowledge repository and collaboration tool during the retro-
spective meetings; Waffle.io—hosting their task board; GitHub; as
well as the slides used by the PO during the grooming sessions.

Off-site Data Collection. Finally, throughout the study, the main
contact at Debitoor was available via email and Slack (while on-site),
and this connection was leveraged several times for clarification as
suggested in [28].

3.3 Data Analysis

Audio recordings from the interviews and selected observation
parts were transcribed manually by two researchers. Together with
the field notes, all material was coded using Atlas.ti for data analysis.
The data underwent several coding iteration performed by two re-
searchers along the study. The coding eventually stabilized around
clusters, which were then abstracted into themes (see Section 5).

4 RESULTS

Figure 3 provides an overview of the major process changes that
Debitoor underwent over the last years. After describing the method
previously used, one close to Scrum, we will present the set of

Pernille Lous, Paolo Tell, Christian Bo Michelsen, Yvonne Dittrich, and Allan Ebdrup

practices that are currently used by Debitoor and their evolution
over time focusing, when relevant, on the motivation that triggered
specific modifications.

Previous use of Scrum (Figure 3-A). Since the beginning, Debitoor
was practising distributed agile, for the Ukraine members were al-
ready part of the team. The method followed—Scrum—was adopted
due to company-wide standards. Of interest in this context is that
the team used GitHub to version the code base and Jira to manage
tasks and backlog. The process included quality assurance (QA) in
the form of mandatory formal code reviews and a dedicated QA
team. Additionally, continuous integration was a practice deeply
rooted in the team, hence, team members were familiar with unit
testing and code quality in terms of the application of company
wide standards (e.g., variables naming, methods length, etc.). The
sprints length was two weeks, and, in terms of Scrum ceremonies,
Debitoor did not have sprint reviews at this stage, but was prac-
tising daily stand-up meetings, sprint retrospectives, and sprint
planning meetings. Tasks size was estimated using planning poker
involving the entire team. The team comprised of one team leader
(TL), two POs, and a CTO that was not very involved in the daily
work of the team.

New team leaders (Figure 3-B). Two new team leaders got as-
signed in Debitoor: a primary in Denmark (chief TL) and a sec-
ondary in Ukraine (Ukraine TL). The previous TL got reassigned,
and, later, one PO got dropped. This was a crucial point in the
history of Debitoor, after which all the process improvement ac-
tivities were designed and, most importantly, experimented and
implemented fearlessly. Even though full independence arrived only
after the merge operation of the mother company, Debitoor’s team
was autonomous already at this point, and the chief TL was fully
trusted by management—so much so that he later became the CTO
of Debitoor. Three major changes in the process were experimented
at this stage: regular one-on-ones, the pull request approach that
lead to continuous deployment, and new stand-up meetings. These
will be thoroughly explained in the following relevant sections.

One-on-ones (Figure 3-C). One-on-ones were introduced as a
regularly practice for the development team. These are personal
talks between the chief TL and a team member. The conversations
can cover anything from topics related to the company itself to
private issues in the employee’s private life. Their main purpose
is to ensure the employee’s well-being and satisfaction. They last
approximately thirty minutes, and there is an extra half an hour
that is scheduled as a buffer in case needed. Their frequency is not
a constant, and it might vary between one week and three weeks
depending on whether there is a pressing necessity from individual
employees to discuss specific topics. For a long period, this practice
was performed by the team leader in Denmark and involved all
team members—including the ones distributed. In the case of Danish
employees, such conversation would happen either in a meeting
room or during a walk outside of Debitoor’s premises. While, with
the remote team members, the meeting would be performed over
a Slack call. As the CTO admits: “...] it is much easier to do it in
person. It is sometimes a bit hard with the Kiev-guys. I mean you
have the video feed and you can sit and talk, and you can get quite
intimate and trusting each other—if you are honest and open about

©ACM. PREPRINT. This is the author’s version of the work. It is posted here by permission of ACM for your personal use.
Not for redistribution. The definitive version was published in the conference/workshop proceedings.
Refer to the paper using: https://doi.org/10.1145/3202710.3203149

From Scrum to Agile

ICSSP ’18, May 26-27, 2018, Gothenburg, Sweden

Previous New Sprint planning Jira out, No more . Revised
5 . 8 Pair 5
use of One-on-ones stand-up out, ad-hoc Waffle.io iterations, no . retrospective
. . programming .
in more deadlines meetings

Scrum meetings

grooming in

2012

O

® ® ©

®

) 2017

New .
Continuous Reduce No more
team 3 5
deployment waste estimations
leaders

Long live

Rt practices hacks

Changes in the Introduction .
lity assurance of growth Revised
" OPS-duty

Figure 3: Overview of the changes that Debitoor underwent in their software development process between 2012 and 2017.

things. But it is just—you know—a bit better when you are there [in
person], but unfortunately that is not an option—CTO.” During the
last visit to Debitoor, we were informed that the responsibility of
performing one-on-ones with the Ukraine employees is now given
to the Ukraine local team leader.

Continuous deployment (Figure 3-D). At the same time that the
two TLs got promoted in the team, one of the developers started
experimenting with pull requests on GitHub. The approach trig-
gered a strong interest in the two TLs. As the CTO states when
remembering the events: “this is going to change everything—CTO.”
The decision was therefore taken of moving towards continuous
deployment. This was motivated by the wish of the TLs to achieve
a more parallelized and faster implementation of tasks to produc-
tion. The idea had already been discussed previously, but was never
implemented due to more pressing matters constantly being priori-
tized.

As mentioned before, the team was practising continuous inte-
gration, and the missing part was the automation of the deployment
pipeline. Within the following two weeks, the team managed to
move to continuous deployment. Yes, there were still a few hiccups
and some tasks had to be performed manually, but the infrastruc-
ture was there and tasks could be deployed independently. Debitoor
was already at this point able to deploy more than ten times a day.

New stand-up meetings (Figure 3-E). This ceremony is most likely
the one that has been modified the most. Already at the beginning,
once the continuous deployment pipeline was operational, the chief
TL pushed the development team to design a new format for the
stand-up meetings. Besides following the regular three questions
(i.e., what I did, what I will do, and what impedes me), the meet-
ing was hosted using ‘Join-me’-screen sharing, in which everyone
looked at the same Jira-board with each developer sitting at their
own personal computer with their own headset. The rational that
motivated such request was that the previous (standard) format
was repetitive, boring, and did not engage people. The chief TL
decided to begin an experimentation period to change the practice
in which groups of two people would take turns for a sprint: “two
guys. You get the responsibility of coming up with a new format for
the stand-up and the rule is that everybody has to participate with a
maximum of 15 minutes. It has to be fun—CTO.” This was the setup,
and such were the simple rules. At the very first experiment in the
first week, the couple in charge lead the stand-up meeting using
Google slides “We ran the experiment for quite a while, and we tried
some different things [within this format] and then in the end: “Lets

stop experimenting”. Then, we voted on the stuff we tried and came
up with what we are doing now—CTO.”

The format that emerged from this experimentation is rather
peculiar. “So, basically this whole “stand-up as a service™-thing is
something we build [...] where there are process issues you normally
could just go and talk to people or do a whiteboard or something. We
have tried to solved it in this way by automating some of this stuff
[Google slides] and putting it on slides and then we call it “Stand-
up As A Service”—CTO.” The meeting was still conducted with
each developer sitting at their own personal computer wearing a
headset. The three standard questions were dropped, and instead
Google Slides were used as the main tool to drive the meetings. The
duration of the meetings was carefully tuned to be always less then
15 minutes. The initial slide was automatically generated, e.g., using
calendars data to make people aware of vacation periods, or data
from GitHub. In case of recurring error messages in the production
logs, another slide would be generated to alert the team about a
potentially critical issue in the system. Finally, developers could add
a personal slide to present interesting aspects of currently active
tasks for knowledge sharing purposes: “...] so one of the principles
in Debitoor is that we are not enforcing people a lot of things, right,
they should share things by themselves—Ukraine developer.”

Reduce waste (Figure 3-F). Inspired by the lean principle of reduc-
ing waste and to ensure that team members could feel as productive
as possible, rather then overwhelmed by constant meetings, the
chief TL re-evaluated every practice that would require team mem-
bers to spend time on potentially unproductive activities. As he
often states: “when I started as team lead, I went on the mission to
kill all those meetings. We had so many meetings, and we simply got
rid of those.” Today, meetings are held when necessary and mainly
when employees request them. As one stated: “It is more when we
need it [that we are doing meetings]—Danish developer.” According
to the CTO metrics, ‘developers have about 3% of their time allocated
to meetings, so that is 300 minutes every month—CTO.”

The repercussion of this continuous strive, which is still one of
the core drivers of the CTO’s modus operandi, will be discussed
within the context of the next practices.

Sprint planning out, ad-hoc grooming in (Figure 3-G). As one of the
first process improvement activities geared towards reducing waste,
the TLs decided to remove the lengthy sprint planning meeting.
They realized that the content of these meetings was not of interest
to the entire team, and, given their duration, planning meetings
represented a waste that had to be reduced. “We do not do team

©ACM. PREPRINT. This is the author’s version of the work. It is posted here by permission of ACM for your personal use.
Not for redistribution. The definitive version was published in the conference/workshop proceedings.
Refer to the paper using: https://doi.org/10.1145/3202710.3203149

ICSSP ’18, May 26-27, 2018, Gothenburg, Sweden

grooming at all. There is no reason for everyone to groom every task.
I think it is a huge waste of time—CTO.”

While taking such decision, the TLs discussed the implications of
such drastic change, e.g., reduced knowledge sharing and awareness
among team members. Nonetheless, with an experimental mindset,
they also realized that the worst that could happen would be to
be forced to re-introduce them—eventually this did not happen.
Instead of the planning meetings, they designed a process in which
the PO would groom specific prioritized tasks together with either
single individuals or sub-sets of the team that would have worked
on them.

No more estimations (Figure 3-H). Another important practice
that was removed together with the elimination of planning meet-
ings was task estimations. The planning poker technique was too
lengthy, and tasks were already groomed together with the team
members that would have implemented them to something small
enough that could be performed within a day. Since the people in-
volved in the grooming were the ones that, on the one hand, had the
necessary expertise to assess the tasks and, on the other hand, had
to complete them eventually, the need for (accurate) estimations
diminished and in the end were simply dropped.

Jira out, Waffle.io in (Figure 3-1). After having removed estima-
tion and burndown charts, as they could not be computed anymore,
it was decided to try to replace the project management tool. Jira,
the tool used since 2012, was too heavy and required too much
attention to configure to fit the needs of the team. Therefore, after
evaluating several alternatives, Waffle.io—an automated project
management tool for GitHub—was chosen to be used as a virtual
task board. This event coincided with the removal of Scrum itera-
tion in favour of a lean process closer to Kanban (see later). At this
point, the number of columns on the task board decreased from
seven to only three: ‘the next awesome thing’, ‘in progress’, and ‘in
production’.

Long live Slack (Figure 3-J). To reduce the set of tools used for
communication, Slack was integrated in the tool ecosystem. All
kind of communication at Debitoor happens on Slack. This includes
synchronous and asynchronous as well as textual, audio, video,
and screen sharing. After carefully designing the channels and
educating all employees at Debitoor, Slack had become the one and
only tool used to communicate internally. This change included the
complete removal of email for internal communication.

No more iterations, no more deadlines (Figure 3-K). “We were do-
ing 14 days sprints and having a lot of pain, [as] when the sprint
finishes you have to have everything in the done column before you
can deploy. And one period, we experienced a delay of three weeks,
in which people were starting the next sprint. And, if you are three
weeks delayed then it is also the next sprint that gets delayed. It was
Jjust awful, the entire coordination to do that—CTO.” The pressure
on the team was simply not worth, and the TLs decided to remove
iterations. With the introduction of continuous deployment, in fact,
adhering to a pre-defined pace was not anymore necessary. At the
same time and for practically the same reasons, the TLs decided
to shield the development team from the pressure imposed by the
use of deadlines. It was recognized that deadlines were demotivat-
ing, stressful, and unnecessary for the developers. Customers and

Pernille Lous, Paolo Tell, Christian Bo Michelsen, Yvonne Dittrich, and Allan Ebdrup

partners of Debitoor do not receive specific dates for the delivery
of features; the only exception are major marketing campaigns in
which larger financial consequences are at stakes, and these are
necessary to synchronize PO and CTO with the marketing team.
However, also for these occasions, deadlines are not communicated
to the development team and the responsibility to meet them falls
entirely on the CTO.

Changes in the quality assurance practices (Figure 3-L). After hav-
ing fully implemented continuous deployment, the quality assur-
ance (QA) team quickly became a bottleneck to the continuous flow
of tasks to production. Therefore, the QA team and the mandatory
code reviews were removed: “it turns out it was way more effective
when you need to find someone to review your work. It was super
super important that we did not make these swim lanes where things
would end up stuck with each hand-over—CTO.”

Together with this change, it was made clear that the responsi-
bility of a task would have lied with the developer(s) that owned
the tasks. In other words, a significant amount of trust was given
to the judgement of developer(s), which had to decide whether a
specific piece of code required a more structured review. ‘{O]nce
they are done, it is up to the developers to do code review and ask for
code reviews and do automated testing and do whatever it take to
make sure that this thing [the code] is production quality. We do not
have any testers or QAs so they [the developers] make sure that the
quality is great—CTO.” It is also important to note that at this point
in the history of Debitoor everything that could be automated was
either already automated or in the process of being automated. This
includes: static code checking, verification of code styles, and alike.

In terms of code reviews, these are arranged as follows. Nowa-
days, developers are encouraged to seek a reviewer through Slack.
And, an unwritten rule exists that ensures that reviews are per-
formed within roughly 15 minutes. Because these are not manda-
tory, it is well understood by all team members that, if a review
is requested, it is important. It should be noted that, according
to Debitoor’s internal culture, interrupting a colleague is not an
acceptable behaviour; and, code reviews are the only exception
to this internal code of conduct. During the observations, we saw
no predominance of choosing co-located team members over re-
mote ones when selecting the reviewer. As the CTO confirmed,
the selection criteria is purely based on complexity and expertize
of a specific area of the code base. “There might be a few people
who prefer certain people for code review, but I mean that is people.
That is not Copenhagen/Kiev [Denmark/Ukraine]. That is a personal
thing—CTO.” Finally, contrarily to expectations, it is important to
mention that the number of bugs reported by users with this new
QA process went down drastically: “we reduced the amount of bugs
by 44%—CTO.”

Pair programming (Figure 3-M). Among the QA techniques, pair
programming is certainly a proactive one. This was performed from
the very beginning, and still is performed among team members at
Debitoor regardless of physical location. If the practise is performed
across sites, screen sharing and Slack calls are used. Especially
if the team members are working on closely related tasks, pair
programming happens frequently. However, following the self-
organizing agile principle, the decision of whether to do it or not
is left entirely to the developers, which rely on this technique to

©ACM. PREPRINT. This is the author’s version of the work. It is posted here by permission of ACM for your personal use.
Not for redistribution. The definitive version was published in the conference/workshop proceedings.
Refer to the paper using: https://doi.org/10.1145/3202710.3203149

From Scrum to Agile

ensure quality when facing a more challenging task. "Some people
like to do pair programming, some people like to work alone, some
people like to do pair programming a bit and then work alone—CTO.”

Introduction of growth hacks (Figure 3-N). Inspired by the con-
tinuously evolving practices experimented by the two TLs and
comforted by the fact that proposals advanced at the retrospective
meetings were taken seriously, some team members suggested the
introduction of growth hacks: 20% of the employee’s time dedicated
to the development of personal projects related to the company
product. This initiative was feared by the TLs at first, but, in line
with the experimental culture they were advocating, they accepted.
For a long period of time, Fridays became dedicated to personal
projects. Afterwards, again triggered by developers during a retro-
spective meeting, growth hacks became two days with a bi-weekly
cadence. Interestingly, some developers preferred initially to use
such time to complete delayed tasks. However, after more or less
a year and after the removal of sprint iterations and deadlines, all
developers nowadays use this time for developing creative ideas,
many of which become part of the backlog after being prototyped
during the hacks and accepted for inclusion.

Revised retrospective meetings (Figure 3-O). Following the same
setup used during stand-up meetings, all developers—even when
co-located—sat at their personal computer wearing a headset and
accessed the same Google Sheet. Lead by the developer in Lithuania,
the meeting comprised five steps:

e assessing results based on the previous retrospective;

e sharing good and bad thoughts since the last meeting;

e generating ideas on how to solve the bad thoughts identified
in the previous step;

o defining a plan on how to implement the ideas; and,

e (eventually) assigning tasks to developers if necessary to
ensure their execution.

Initially, developers suggested to change the cadence of the ret-
rospective from two to four weeks. Even though retrospective meet-
ings had been successful for years, the CTO challenged the meeting
format: ‘T mean, they work pretty well and do great results, but I just
felt to try something new after having done the exact same formula
for some years. So we had hired an external facilitator [...] —CTO.”
An external facilitator was hired to try to improve the meeting; but,
after trying different formats, nothing suggested was to the team’s
liking. Eventually, the external facilitator was dropped after taking
a vote in the development team, as the team was happy to revert to
the old format.

Revised OPS-duty (Figure 3-P). OPS-duties at Debitoor are split
among the team members from all sites. That is, no OPS-workers
are employed in the company, and the duties are a rotating respon-
sibility. Initially, OPS-duties switched daily to a new developer, but
this was reported to be tiresome and frustrating for the developers.
Instead, weekly duties were introduced in which developers were
responsible for the duties for an entire week.

In conclusion, guided by the lean principle of reducing waste
and following the agile philosophy, Debitoor clearly went through
a significant journey supported by a culture of experimentation to
continuously reflect and improve both their development process

ICSSP ’18, May 26-27, 2018, Gothenburg, Sweden

and their work environment: “it is a culture itself, that we can change
things as we want. We remove the annoying aspects without problems—
PO.” These process improvement activities have resulted in the
creation of a virtual work environment in which the challenges of
distributed development are overcome. In the next section, we will
abstract and further discuss these results.

5 DISCUSSION

In this section, we abstract the practices of Debitoor previously
presented to answer the research question that drove this study.
We will describe how Debitoor succeeds in adopting an agile pro-
cess even when facing the challenges of distributed development
without compromising on the core values and principles.

5.1 “How can a development team adopt an
agile process without compromising on the
core values and principles when facing the
challenges of distributed development?”

Agile methods fundamentally rely on human interactions. However,
in distributed software development, distance (i.e., geographical,
temporal, cultural, and linguistic [1, 29]) makes such interactions
challenging by putting pressure on one of the most basic princi-
ples of agile software development. A considerable share of the
literature suggests strategies to overcome such issues. These of-
ten result in discussing virtual teams, refinement of roles within
teams, presenting technical solutions, or even presenting higher
levels of integration of management, e.g., using Scrum-of-Scrums
or complex agile frameworks like Large-scale Scrum (LeSS), Scaled
Agile Framework (SAFe), or Disciplined Agile Delivery (DAD) [23].
Unfortunately, the majority of these approaches appear not to be in
line with the agile values and principles as they tend to introduce
heavier management practices.

To perform continuous software process improvement activities,
which lead to hybrid approaches that cannot be related to any
specific method [21], is a healthy practice that should be encouraged.
Ollson and Bosch [30] defined a research-based road-map describing
five stages a company would naturally have to journey through to
reach a maturity that is often referred to as Continuous Software
Engineering (CSE): traditional development, R&D organization all
agile, continuous integration, continuous deployment, and R&D as
an innovation system. Debitoor already was in the third stage of
this journey, and we presented the practices that allowed them to
transition towards continuous deployment and, partially, R&D as
an innovation system.

We argue, however, that to pursue these final stages without com-
promising on the speed and simplicity—goals of the agile philosophy
additional enabling elements need to be carefully considered. In
the following, we introduce the themes that emerged from the em-
pirical work at Debitoor (see Figure 4): agile servant-leader and
agile team focus on the organization, trust and virtual work envi-
ronment describe the environment, while inspect & adapt is the
engine enabling a reflective culture pursuing the reduce waste goal
to achieve speed and simplicity. We claim that these are important
elements that should be considered to ensure healthy transitions
into a distributed company following the agile core values and
principles.

©ACM. PREPRINT. This is the author’s version of the work. It is posted here by permission of ACM for your personal use.
Not for redistribution. The definitive version was published in the conference/workshop proceedings.
Refer to the paper using: https://doi.org/10.1145/3202710.3203149

ICSSP ’18, May 26-27, 2018, Gothenburg, Sweden

Environment:
- Trust
- Virtual work environment

Reduce waste

Inspect to achieve
& Adapt speed and
simplicity

Organization:
- Agile servant-leader
- Agile team

Figure 4: Schematic representation of the themes that sup-
port the continuous reflective culture at Debitoor.

Agile servant-leader. The CTO has been, and still is, instrumental
at Debitoor for enabling a true culture change towards simplicity
and speed. As the Scrum master in Scrum, he is the Agile master in
Debitoor’s processes. His role within the team has a long history: he
started as a team member, became a team leader, and eventually the
CTO. He is respected both within the team and by management for
his technical and social abilities. Additionally, he has been practising
agile software development and has seen its benefits for years.
Since becoming team leader, this combination has allowed him to
successfully implement changes without ‘much’ resistance from
either side.

The agile servant-leader is a key figure within a team/organization
that wants to climb the stairway to heaven [30]. Without a leader
that has the management support changes can be proposed and
discussed, but will hardly be implemented. This for instance was
the case with continuous deployment at Debitoor(Figure 3-D): the
topic had already been discussed, but had never been prioritized.
Similarly, such key figure must be a servant to the development
team to ensure that any impediments, any suggestion for improve-
ment emerging from the team, or any little automation that can
improve the working condition of the team is removed, heard, or
implemented. Examples of this attitude are many in the results, but
certainly the most visible and relevant are the constant one-on-
ones. These meetings exemplify the continuous dedication to the
well-being of the team.

Agile team. It should not come as a surprise that the develop-
ment team is a crucial pillar in an agile software development
organization. It must be self-organizing, states [3]. And, we argue,
it is fundamental to make the combination of agile development
and global software development succeed. The challenges with
achieving a self-organised team can be many, e.g., differences in
culture [32], lack of reflective behaviour [43], or lack of trust [18].
At Debitoor, we have observed how rooted this principle is. The
members of the team are fully empowered to take decisions on how
to perform a development task from the beginning till the end. Pair-
programming, additional grooming, QA, and, of course, deployment
are just few of the most visible techniques and practices that each
team member can independently decide on. Three major factors
were observed that allowed the self-organising team to flourish:
easy access to information, high amount of responsibility placed

Pernille Lous, Paolo Tell, Christian Bo Michelsen, Yvonne Dittrich, and Allan Ebdrup

upon the team members, and an undisputed level of trust. First, the
virtual work environment established at Debitoor allows the team
to easily get access to all information required, and the communi-
cation infrastructure supports all communication needs. Second,
code reviews, grooming, pair programming, and the OPS-duty are
just some of the examples showcasing how the development team
has complete responsibility over the development activities. Lastly,
and arguably most importantly, trust. Each team member is trusted
to be able to pick a task and see it through completion.

Trust. In 1979, Luhmann already noted that “one should expect
trust to be increasingly in demand as a means of enduring the
complexity of the future which technology will generate” [24].
“Trust has become widely acknowledged as a crucial factor in inter-
organizational relationships|[, for it] affects a wide range of rela-
tionship qualities, from increasing relationship stability to lower-
ing transaction costs for the trusting parties” [20]. Trust has been
widely explored in (globally) distributed development [17, 38]. It
is an extremely delicate secret ingredient to cooperation, which is
crucial to work as friction-less, effective, and efficient as possible
within a team.

At Debitoor, trust permeates the organization. Most notably, the
CTO and the development team competences are fully trusted by
each other, by the management, and by all other departments in
the company. This allows them to work efficiently while feeling
part of an organization that believes in their capabilities. And as
Luhmann [24] foresaw, we observed how trust clearly improved
the distributed cooperation, since the coordination that would be
required to (micro) manage individuals was not needed.

Virtual work environment. A challenge often reported in case
studies of companies combining agile development and global soft-
ware engineering is the one of feeling united as one team (e.g.,
[18, 22, 35]) [23]. The feeling of being separated as multiple teams
can have different motivations, and team unity is often reported
to be a problem even when communication is supported by online
channels such as e-mail, instant messages, calls, or virtual rooms
[18]. Physical tools such as a task boards, post-its or burndown
charts placed on-site are artifacts difficult, if not impossible, for the
off-site team to follow and appreciate [16]. Additionally, physical
meetings held on-site might create a feeling of being excluded [19].
When teams are not feeling united, important aspects of agile de-
velopment such as trust and knowledge sharing become a problem;
“the project information should be available with details to all mem-
bers” [8]. A virtual team which is missing a shared understanding
of tasks or goals can end up being an inefficient virtual team [20].

At Debitoor, it was decided that rather than working around
distance, the development team would have embraced it to allow for
a complete inclusion of all sites. As described in the previous section,
all meetings happen online, while sitting at each own work station.
The virtual work environment at Debitoor fosters the creation of
a cohesive team culture, thereby increasing trust and integration
within the team.

Inspect & Adapt. Inspect and adapt emphasises the reflective be-
haviour of the development team to improve the software process
[3]. The engine that has been used in Debitoor to enable software
process improvements has been mainly the retrospective and the

©ACM. PREPRINT. This is the author’s version of the work. It is posted here by permission of ACM for your personal use.
Not for redistribution. The definitive version was published in the conference/workshop proceedings.
Refer to the paper using: https://doi.org/10.1145/3202710.3203149

From Scrum to Agile

one-on-one meetings. These represent the core practices that enable
the Debitoor’s reflective culture to software processes. Triggered
sometimes as a result of the one-on-one meetings, almost every
change is discussed and democratically voted during the retro-
spective meetings. At Debitoor, we saw two clear triggers: a more
top-down approach, in which the CTO would propose changes; and,
a bottom-up one, in which the team would be the initiator. Both of
these triggers have been important in the shaping of the current
software process followed at Debitoor and, we argue, they represent
a healthy balance in an agile team, which should be pursued.

To support this reflective culture, experimentation is encouraged
at Debitoor to ground the decision making process on facts. This
culture is essential to ensure that the outcome of the inspect and
adapt activities can be tested, and—why not—if not achieving the
sought outcome, reverted. In other words, to fail must be a possible
outcome, and failure must be accepted since: on the one hand,
the experience undergone provides knowledge; on the other hand,
because of to the fast feedback cycles, failure is detected fast and
recovery can be achieved quickly.

Reduce waste. Finally, reduce waste. Using the CTO’s words: ‘T
went on the mission to kill all those meetings.” Since becoming a team
leader, the CTO has been following the lean principle of reducing
waste as a goal to guide the decision making process. As represented
in Figure 4, this is the purpose that drives all the process improve-
ment activities at Debitoor to eventually reach a work environment
in which the development team thrives “by being empowered to do
its job without having to ask permission and by being happy. We tried
to be a start-up, as effective as you would be by working in a group of
two people on something than you can be super effective—CTO.”

To summarize, our empirical material hints at the importance
of a few elements that need to be guaranteed to succeed in per-
forming agile development while being distributed. First, a strong
agile backbone (i.e., an agile servant-leader and an agile team). Sec-
ond, team independence—guaranteed by relations based on trust;
and, individual independence—guaranteed by a fully virtual work
environment. Third, a culture of experimentation in which rapid
feedback cycles allow failure to be a learning exercise rather than
an issue. Fourth, a constant strive to achieve simplicity and speed
by reducing waste.

All these together create a reflective culture in which the inspect
and adapt agile principle can be applied constantly in a distributed
agile team to perform process improvement activities that lead to
speed and simplicity.

6 THREATS TO VALIDITY

In this section, we will discuss the threats to the validity of this
study following the basic scheme that distinguishes among con-
struct validity, internal validity, external validity, and reliability
[42]. Internal validity will be skipped, for with this empirical study
based on qualitative data we are not attempting to proving logical
relationships among the concepts presented.

Construct validity. Threats to construct validity were minimized
by using different sources of data including observations, semi-
structured interviews, project artifacts, and off-site data collection.

ICSSP ’18, May 26-27, 2018, Gothenburg, Sweden

As suggested by [37] and [28], this triangulation process allowed
us to clarify and confirm insights by accessing a wide range of
perspectives.

Reliability. To ensure reliability [42] and to reduce the risk of
single-researcher bias, all field activities, but three interviews, were
performed by at least two researchers. With regards to the data
analysis, this was initially performed by two researchers until the
coding scheme stabilized and, afterwards, meetings were arranged
including often up to four researchers to discuss, clarify, and pro-
ceed in the generation of clusters and themes. Additionally, an open
communication with the company contact was kept to verify con-
stantly the findings, hence, decreasing the risk of misinterpretation.

External validity. The main limitation of single case studies is
their generalizability [42]. This study is no exception; however no
statistical significance or generalizability of the results were sought.
Our results and discussions are grounded on the case analyzed and
are extremely affected by the specific context. We have therefore
provided detailed information of the context to allow future studies
to replicate or compare results.

7 CONCLUSIONS

Agile and (globally) distributed software development are two
trends that are relentlessly growing in momentum. Unfortunately,
due to their intrinsic opposing requirements, solutions to combine
them tend to (too easily) compromise on the agile core values and
principles by introducing heavier management practices to cope
with the complexity introduced by geographical, temporal, cultural,
and linguistic distances.

This paper reports on a case study of the software development
team of a Danish SME that successfully adopts agile practices while
being distributed across several locations. Through a thorough pre-
sentation of the practices followed, we showcase how a distributed
team succeeded in dealing with the known problems of distributed
development without compromising on the motivations behind
agile software development: speed and simplicity. Via a continuous
reflective introspection, the team has modified the software devel-
opment process to a maturity that: (i) ensures adherence to the
core agile philosophys; (ii) guarantees mechanisms to continuously
improve the process both from the top (i.e., CTO) and from the
bottom (i.e., the team members); and, (iii) allows team members
to work from any location, since every practice is performed in a
virtual work environment.

Our empirical material hints at the importance of a few key
elements that have been fundamental in such journey: agile servant-
leader, agile team, trust, virtual work environment, inspect & adapt,
and reduce waste. In the future, we plan to validate these findings
by widening the study scope to more organisations.

8 ACKNOWLEDGMENTS

The academic authors would like to thank Debitoor and, in particu-
lar, all the employees that actively participated to the study.

REFERENCES

[1] J Agerfalk and Brian Fitzgerald. 2006. Flexible and distributed software processes:
old petunias in new bowls. In Communications of the ACM. ACM.

©ACM. PREPRINT. This is the author’s version of the work. It is posted here by permission of ACM for your personal use.
Not for redistribution. The definitive version was published in the conference/workshop proceedings.
Refer to the paper using: https://doi.org/10.1145/3202710.3203149

ICSSP ’18, May 26-27, 2018, Gothenburg, Sweden

(2]

[10

[11]

[12

[13

[14]

[15

[16]

[17]

(18]

[22

[23]

[24
[25]

[26

[27]

[28

[29]

Yehia Ibrahim Alzoubi, Asif Qumer Gill, and Ahmed Al-Ani. 2016. Empirical stud-
ies of geographically distributed agile development communication challenges:
A systematic review. Information & Management 53, 1 (2016), 22-37.

Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunning-
ham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries,
Jon Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Suther-
land, and Dave Thomas. 2001. Manifesto for agile software development. (2001).
http://www.agilemanifesto.org/

Sarah Beecham, John Noll, and Ita Richardson. 2014. Using agile practices to
solve global software development problems—-a case study. In Proceedings of the
IEEE International Conference on Global Software Engineering (ICGSE-Workshop).
IEEE, 5-10.

Erran Carmel and Ritu Agarwal. 2001. Tactical approaches for alleviating distance
in global software development. IEEE software 18, 2 (2001), 22-29.

Tsun Chow and Dac-Buu Cao. 2008. A survey study of critical success factors in
agile software projects. Journal of systems and software 81, 6 (2008), 961-971.
Alistair Cockburn. 2006. Agile software development: the cooperative game. Pear-
son Education.

Daniela S Cruzes, Nils B Moe, and Tore Dyba. 2016. Communication between
developers and testers in distributed continuous agile testing. In Proceedings of
the IEEE International Conference on Global Software Engineering (ICGSE). IEEE,
59-68.

Daniela Damian and Deependra Moitra. 2006. Guest editors’ introduction: Global
software development: How far have we come? IEEE software 23, 5 (2006), 17-19.
Christof Ebert and Philip De Neve. 2001. Surviving global software development.
IEEE software 18, 2 (2001), 62-69.

Clarence A Ellis, Simon J Gibbs, and Gail Rein. 1991. Groupware: some issues
and experiences. Commun. ACM 34, 1 (1991), 39-58.

H. Fuks, A. Raposo, M.A. Gerosa, M. Pimentel, and C.J.P. Lucena. 2007. The 3¢
collaboration model. The Encyclopedia of E-Collaboration, Ned Kock (org) (2007),
637-644.

James D Herbsleb. 2007. Global software engineering: The future of socio-
technical coordination. In 2007 Future of Software Engineering. IEEE Computer
Society, 188-198.

James D Herbsleb and Rebecca E Grinter. 1999. Splitting the organization and in-
tegrating the code: Conway’s law revisited. In Proceedings of the 21st international
conference on Software engineering. ACM, 85-95.

Jim Highsmith and Alistair Cockburn. 2001. Agile software development: The
business of innovation. Computer 34, 9 (2001), 120-127.

Rashina Hoda, Norsaremah Salleh, John Grundy, and Hui Mien Tee. 2017. System-
atic literature reviews in agile software development: A tertiary study. Information
and Software Technology 85 (2017), 60-70.

Helena Holmstrom, Eoin O Conchuir,] Agerfalk, and Brian Fitzgerald. 2006.
Global software development challenges: A case study on temporal, geographical
and socio-cultural distance. In Proceedings of the IEEE International Conference on
Global Software Engineering (ICGSE). IEEE, 3-11.

Helena Holmstrom, Brian Fitzgerald, Par J Agerfalk, and Eoin O Conchuir. 2006.
Agile practices reduce distance in global software development. Information
systems management 23, 3 (2006), 7-18.

Samireh Jalali and Claes Wohlin. 2010. Agile practices in global software
engineering-A systematic map. In Proceedings of the IEEE International Conference
on Global Software Engineering (ICGSE). IEEE, 45-54.

Frens Kroeger and Reinhard Bachmann. 2013. Trusting across boundaries. (2013).
Marco Kuhrmann, Philipp Diebold, Jiirgen Miinch, Paolo Tell, Vahid Garousi,
Michael Felderer, Kitija Trektere, Fergal McCaffery, Oliver Linssen, Eckhart
Hanser, et al. 2017. Hybrid software and system development in practice: Water-
fall, scrum, and beyond. In Proceedings of the ACM International Conference on
Software and System Process (ICSSP). ACM, 30-39.

Lucas Layman, Laurie Williams, Daniela Damian, and Hynek Bures. 2006. Es-
sential communication practices for Extreme Programming in a global software
development team. Information and software technology 48, 9 (2006), 781-794.
Pernille Lous, Marco Kuhrmann, and Paolo Tell. 2017. Is Scrum fit for global
software engineering?. In Proceedings of the IEEE International Conference on
Global Software Engineering (ICGSE). IEEE Press, 1-10.

Niklas Luhmann. 1979. Trust and power. John Willey & Sons (1979).

Santiago Matalonga, Martin Solari, and Gerardo Matturro. 2013. Factors affecting
distributed agile projects: a systematic review. International Journal of Software
Engineering and Knowledge Engineering 23, 09 (2013), 1289-1301.

Martha L Maznevski and Katherine M Chudoba. 2000. Bridging space over time:
Global virtual team dynamics and effectiveness. Organization science 11, 5 (2000),
473-492.

Renée McCauley. 2001. Agile development methods poised to upset status quo.
ACM SIGCSE Bulletin 33, 4 (2001), 14-15.

M.B. Miles, AM. Huberman, and J. Saldafia. 2013. Qualitative Data Analysis.
SAGE Publications.

John Noll, Sarah Beecham, and Ita Richardson. 2011. Global Software Develop-
ment and Collaboration: Barriers and Solutions. ACM Inroads 1, 3 (2011), 66—78.

[30

[31

(32]

@
&

[34

[35

(36

(37]

[38

[39

[40]

Pernille Lous, Paolo Tell, Christian Bo Michelsen, Yvonne Dittrich, and Allan Ebdrup

https://doi.org/10.1145/1835428.1835445

Helena Holmstrém Olsson and Jan Bosch. 2014. Climbing the “Stairway to
Heaven”: evolving from agile development to continuous deployment of software.
In Continuous software engineering. Springer, 15-27.

Maria Paasivaara and Casper Lassenius. 2006. Could global software development
benefit from agile methods?. In Proceedings of the IEEE International Conference
on Global Software Engineering (ICGSE). IEEE, 109-113.

Maria Paasivaara, Casper Lassenius, Ville T Heikkil4, Kim Dikert, and Christian
Engblom. 2013. Integrating global sites into the lean and agile transformation at
ericsson. In Proceedings of the IEEE International Conference on Global Software
Engineering (ICGSE). IEEE, 134-143.

Efi Papatheocharous and Andreas S Andreou. 2013. Evidence of agile adoption in
software organizations: An empirical survey. In European Conference on Software
Process Improvement. Springer, 237-246.

Javier Portillo-Rodriguez, Aurora Vizcaino, Mario Piattini, and Sarah Beecham.
2012. Tools used in Global Software Engineering: A systematic mapping review.
Information and Software Technology 54, 7 (2012), 663-685.

Balasubramaniam Ramesh, Lan Cao, Kannan Mohan, and Peng Xu. 2006. Can
distributed software development be agile? Commun. ACM 49, 10 (2006), 41-46.
Per Runeson and Martin Host. 2009. Guidelines for conducting and reporting
case study research in software engineering. Empirical software engineering 14, 2
(2009), 131.

Per Runeson, Martin Host, Austen Rainer, and Bjorn Regnell. 2012. Case study
research in software engineering: Guidelines and examples. John Wiley & Sons.
Darja Smite, Claes Wohlin, Tony Gorschek, and Robert Feldt. 2010. Empirical
evidence in global software engineering: a systematic review. Empirical software
engineering 15, 1 (2010), 91-118.

Igor Steinmacher, Ana Chaves, and Marco Gerosa. 2010. Awareness support in
global software development: a systematic review based on the 3C collaboration
model. Collaboration and Technology (2010), 185-201.

A.R.D. R. Techio, R. Prikladnicki, and S. Marczak. 2015. Reporting Empirical
Evidence in Distributed Software Development: An Extended Taxonomy. In
Proceedings of the IEEE International Conference on Global Software Engineering
(ICGSE). 71-80.

Version One. 2016. The 10th Annual State of Agile Report. (2016). http://
stateofagile.versionone.com

Robert K Yin. 2013. Case study research: Design and methods. Sage publications.
Franz Zieris and Stephan Salinger. 2013. Doing scrum rather than being agile: A
case study on actual nearshoring practices. In Proceedings of the IEEE International
Conference on Global Software Engineering (ICGSE). IEEE, 144-153.

http://www.agilemanifesto.org/
https://doi.org/10.1145/1835428.1835445
http://stateofagile.versionone.com
http://stateofagile.versionone.com

	Abstract
	1 Introduction
	2 Related Work
	3 Research Design
	3.1 Organizational Context
	3.2 Data Collection
	3.3 Data Analysis

	4 Results
	5 Discussion
	5.1 ``How can a development team adopt an agile process without compromising on the core values and principles when facing the challenges of distributed development?''

	6 Threats to validity
	7 Conclusions
	8 Acknowledgments
	References

